搜档网
当前位置:搜档网 › 基站天线 (2)

基站天线 (2)

基站天线 (2)
基站天线 (2)

合肥学院

课程综述

题目:我国基站天线的现状和发展前景___________

系别:电子信息与电气工程系 _________

专业: _______________

班级: ___________

学号: ____________________

姓名: ________________________

导师:郑娟 __________________________

成绩: _______ 年 4 月 5 日

前言

天线,是用来发射和接收无线电波的一种金属装置。根据使用场合的不同可以分为:手持台天线、基地台天线、车载天线三大类。基站使用的天线属于基地台天线,主要作用是对电磁波进行分集接收和发送,是移动通信系统无线接入网的重要组成部分。

一.基站天线的概念

在蜂窝移动通信系统中,天线是通信设备电路信号与空间辐射电磁波的转换器,是空间无线通信的桥头堡。基站天线就是用来和终端(手机等)收发数据的天线,一般都在楼顶上。

因此基站天线是移动通信系统的重要组成部分,其特性直接影响整个无线网络的整体性能。移动通信基站天线的发展主要经历了全向天线、定向单极化天线、定向双极化天线、电调单极化天线、电调双极化天线、双频电调双极化到多频双极化天线,以及MIMO天线、有源天线等过程。

二.基站天线的技术参数

1.电性能参数

1、工作频段(Frequency Range)

2、输入阻抗

3、驻波比(VSWR)

4、极化方式(Polarization)

5、增益(Gain)

6、水平、垂直波瓣3dB宽度(H/V-Plane Half Power Beam Width)

7、下倾角(Down Tilt)

8、前后比(Front-to-Back Ratio)

9、旁瓣抑制与零点填充(Elevation Upper Side lobes & Null Fill)

10、三阶互调(Third Order Inter modulation)

2.机械性能参数

1、尺寸/重量

2、天线罩材料(Radome Material)

3、外观颜色(Colour)

4、工作温度(Operating Temperature Range)

5、存储温度(Storage Temperature Range )

6、风载(Wind Load)

7、迎风面积(Flat Plate Area)

8、接头型式(Connector Type)

9、天线抱杆

10、防雷

三.我国基站天线的现状

在基站天线的应用方面,随着站址资源的稀缺,使得基站天线要适用于各种环境场所;由于人们对视觉和电磁污染的重视程度越来越高,使得目前基站天线的伪装和美化成为必不可少的手段;由于人们对高质量、精细化的网络优化要求,促生了多种基站天线新的应用方案;由于站址资源的稀缺,多系统共站,多系统共天线的问题也相应的提了出来。

在产业方面,随着移动通信产业的发展,我国基站天线也由网络建设初期国外全部垄断,发展到基本国产,由于竞争激烈和技术的发展,目前基站天线产品的价格已经比初期价格下降了10多倍,基站天线产业面临着过度竞争的局面。

在技术方面,随着移动通信技术的迅猛发展系统给天线提出了越来越高的要求,基站天线的小型化、宽带、多频段、高效率和更能适应系统各种要求的天线仍然是当前国内外天线领域的重要研究课题,同时天线设计及应用还要综合考虑传播、系统、工程和环境条件等方面的因素。

在系统的演进方面,随着系统的演进,作为系统的一部分,基站天线也随系统而演进。由于不同系统的差异,新的移动通信系统对天线性能提出了新的要求,这要求也带动了基站天线技术的发展。

TD-SCDMA系统作为由我国提出的第三代国际移动通信标准已经在我国得到大范围的应用。智能天线作为TD-SCDMA系统的一大特点,不但保证了系统的正常工作,而且也提升了整个系统的性能。智能天线的波束形成技术不是很新的技术,波束形成技术在雷达和声纳系统中已经有很多年的应用。由于TD-SCDMA的特性,使得TD基站的辐射要低于普通移动通信系统,其辐射的电磁辐射流通密度,更远低于国家电磁辐射限制值,完全符合环保标准,“绿色环保”当然也成为TD的一个主打词。

目前,TD-SCDMA室外基站普遍采用了智能天线技术,其天线尺寸要比之前普通的2G 天线大两倍左右。根据调查,由于智能天线尺寸的增大使得公众易形成新的辐射担忧,TD 基站天线的面子问题也是困扰基站建设的问题之一。问题的出现必然带来新的解决方案,相关基站天线厂家在基站天线在小型化和美化方面做了大量的工作,取得了一些进展。在刚刚闭幕的北京通信展上,TD基站天线在小型化和美观化方面已经取得很大进展,可以预计,TD小型化基站天线和美观化天线将在未来的网络建设中起到越来越重要的作用。

四.基站天线的发展前景

1.市场需求

⑴宽带化

随着站址资源的稀缺,使得基站天线要适用于各种环境场所;由于人们对视觉和电磁污染的重视程度越来越高,使得目前基站天线的伪装和美化成为必不可少的手段;由于人们对高质量、精细化的网络优化要求,促生了多种基站天线新的应用方案;由于站址资源的稀缺,多系统共站、多系统共天线的问题相应地提了出来,基站天线的宽带化正是在此背景下提出来的。天线的宽带化使得多系统共站以及多系统共天线成为了可能,这也有效缓解了运营商站址资源选择困难这一难题;其次,通过多系统共站公用天线可有效降低天线成本,这也符合运营商不断降低天线价格的需求。

多系统公用天线的例子如下:6 9 8~960 MHz,可同时应用于LTE700、LTE800、CDMA800、GSM900、UMTS900;1710~2690MHz,可同时应用于DCS1800、PCS1900、UMT S 2 1 0 0和L T E2 6 0 0。当前越来越多电信运营商开始对宽带天线提出了需求,如V odafone、Etisalat以及Orange等都对宽带天线提出了强烈需求,RFS作为无线射频产品的全球领先供应商,已在2009年推出超宽带天线,后续的系列化产品已全部展开研发和设计。

⑵多频带化

无线通信系统新频段的增加,驱动了多频天线的需求。多频天线可以分为二频、三频、四频和五频等。通过使用多频天线,不仅能满足天线运营商扩展新应用、满足兼容未来新技术的要求,而且结合宽带化,还能满足不同天线运营商多系统共站、多系统共天线的需求。多频天线在一定程度上增加了天线重量与迎风面积,因此如何设计较轻且具有较小风载荷的多频天线,是多频天线发展的重要方向。

⑶小型化

天线的易于安装需求、运营商绿色选址需求以及天线的可集成化需求是推动移动通信基站天线小型化的强大推动力。多频带宽带基站天线满足多系统共站、多系统共天线的需求,然而天线本身的重量与风载荷对天线的小型化提出了要求。通过天线的小尺寸及低抛物面设计,能够有效减少天线重量,使其便于安装与维护;其次通过减小其风载荷,能降低环境因素对网络覆盖的影响;再者通过天线的小型化设计,使得满足更多的运营商多系统共站,更多系统共天线的建设要求;最后与无线基站的集成化设计,能有效减少馈线损耗,提高系统容量,提高系统性能。RFS作为无线射频产品的全球领先供应商,其通过高低频共轴设计替代肩并肩设计,有效减少天线重量及风载荷。风载荷减小40%,重量则降低25%。

2.技术演进

随着3G、4G的快速发展以及运营商之间网络服务质量的激烈竞争,移动通信网络对基站天线的性能提出了更高的要求。

当前各天线设备供应商设计的很大一部分工作就是不断地降低天线成本,以应对运营商对天线价格不断降低的期望,然而在各大运营商不断追求更高网络服务质量的背景下,降低天线成本不应以牺牲天线性能为代价,特别是对于适合多系统共用天线的宽带多频化天线,

如何在保证高性能的条件下,尽可能降低天线的成本,是各天线厂家不断改进设计的目标。

智能天线技术在TD及TD-LTE系统中成功地得到了大规模使用,其在使用过程中充分展示了智能天线的巨大使用价值,主要表现为覆盖小区的智能生成,以及用户业务波束的自动跟踪等功能,可有效抑制干扰,提高频谱利用率,从而提高系统容量。因此,FDD基站天线的智能化特征是未来技术发展的又一方向。之所以称其发展方向是因为具有智能化特征,主要包含两层意思,一是多天线(MIMO)技术,二是赋形波束天线,其中MIMO天线技术要求天线各阵列单元之间有良好的隔离度与交叉极化鉴别度,以保证各单元天线间的非相关特性及极化分集接收增益;赋形波束天线要求各天线具备自身阵列单元的校准功能。

有源天线实现了天线与系统的高度集成,它在天线部分集成低噪放、功放、滤波器以及无源冷却装置,实现天线与射频有源模块的集成,振子单元通过插槽形式与馈电网络相连接,因此可以根据实际需要灵活改变阵子单元数。因此有源天线不仅可以实现覆盖网络的灵活变化,而且通过有源集成,消除射频电缆和链路引起的损耗,提高天线性能,提高用户峰值传输速率以及整个站点的数据传输能力。有源天线技术是对移动通信系统射频架构的变革,它通过采用“隐蔽式集成架构”,使得射频完全集成在天线罩内,有效降低能耗,减少站点维护费用,而且还可以减少站点租赁费用,因此完全符合未来低成本、低能耗的绿色移动通信系统发展要求。

总结:

这次的报告大多都是通过上网查资料,翻阅书籍来完成的。在这个过程中学到了不少东西,开拓了自己的视野,自己对天线乃至通信行业都有了一些了解。最重要的是在这个过程中让我明白了自己所学专业在实际生活中的一些具体应用,激发了自己对本专业和这门课程的兴趣。对自己以后努力地方向有了更明确的目标,尤其是看到通信行业的蓬勃发展让我对自己的未来也充满了信心。当然,这次的报告也让我看到了自己存在的许多不足,尤其是对本专业的发展状况和一些专业知识的匮乏,在今后的学习中要努力改进自己的不足。最后,感谢郑老师布置的这篇报告,让我在完成的过程中学习和了解了许多在课堂上不曾接触过的专业和行业知识。

基站天线选型

基站天线选型 一.天线概念 在无线通信系统中,天线是收发信机与外界传播介质之间的接口。同一副天线既可以辐射又可以接收无线电波:发射时,把高频电流转换为电磁波;接收时把电磁波转换为高频电流。 在选择基站天线时,需要考虑其电气和机械性能。电气性能主要包括:工作频段、增益、极化方式、波瓣宽度、预置倾角、下倾方式、下倾角调整范围、前后抑制比、副瓣抑制、零点填充、回波损耗、功率容量、阻抗、三阶互调等。机械性能主要包括:尺寸、重量、天线输入接口、风载荷等。 基站所用天线类型按辐射方向来分主要有:全向天线、定向天线。 按极化方式来区分主要有:垂直极化天线(也叫单极化天线)、交叉极化天线(也叫双极化天线)。上述两种极化方式都为线极化方式。圆极化和椭圆极化天线一般不采用。 按外形来区分主要有:鞭状天线、平板天线、帽形天线等。 在继续论述天线相关理论之前必须首先介绍各向同性(Isotropic)天线。各向同性天线是一种理论模型,实际中并不存在,它把天线假设为一个辐射点源,能量以该点为中心以电磁场的形式向四周均匀辐射,为一球面波。 另外全向天线并不是没有方向性,它只是在水平方向为全向,但在垂直方向是有方向性的。它与各向同性天线是两个不同的概念。 半波振子是基站主用天线的基本单元,半波振子的优点是能量转换效率高。1.天线增益 天线作为一种无源器件,其增益的概念与一般功率放大器增益的概念不同。功率放大器具有能量放大作用,但天线本身并没有增加所辐射信号的能量,它只是通过天线振子的组合并改变其馈电方式把能量集中到某一方向。增益是天线的重要指

标之一,它表示天线在某一方向能量集中的能力。表示天线增益的单位通常有两个:dBi、dBd。两者之间的关系为:dBi=dBd+2.17 dBi定义为实际的方向性天线(包括全向天线)相对于各向同性天线能量集中的相对能力,“i”即表示各向同性——Isotropic。 dBd定义为实际的方向性天线(包括全向天线)相对于半波振子天线能量集中的相对能力,“d”即表示偶极子——Dipole。 两种增益单位的关系见图1: 图1 dBi与dBd的关系 天线增益不但与振子单元数量有关,还与水平半功率角和垂直半功率角有关。 2.天线方向图 天线辐射的电磁场在固定距离上随角坐标分布的图形,称为方向图。用辐射场强表示的称为场强方向图,用功率密度表示的称之功率方向图,用相位表示的称为相位方向图。 天线方向图是空间立体图形,但是通常用两个互相垂直的主平面內的方向图来表示,称为平面方向图。一般叫作垂直方向图和水平方向图。就水平方向图而言,有全向天线与定向天线之分。而定向天线的水平方向图的形状也有很多种,如心型、8字形等。 天线具有方向性本质上是通过振子的排列以及各振子馈电相位的变化来获得的,在原理上与光的干涉效应十分相似。因此会在某些方向上能量得到增强,而某

基站天线的结构、种类和工作原理教案

在移动通信系统中,空间无线信号的发射和接收都是依靠移动天线来实现的。因此,天线对于移动通信网络来说,起着举足轻重的作用,如果天线的选择不好,或者天线的参数设置不当,都会直接影响到整个移动通信网络的运行质量。本章将介绍天线的基本工作原理、结构、种类、技术参数以及天线的选择等知识。 11.1 天线的基本工作原理 当导线上有交变电流流动时,就可以发生电磁波的辐射,辐射的能力与导线的长 度和形状有关。如图11-1a、b所示,若两导线的距离很近,电场被束缚在两导线之间,因而辐射很微弱;将两导线张开,电场就散播在周围空间,如图11-1c所示,这时两导线的电流方向相同,由两导线所产生的感应电动势方向相同,因而电磁波辐射能 力较强。 a)两导线平行 b)两导线平行呈现一定夹角 c)两导线平行呈现180° 图9-1 电磁波的辐射能力与导线的形状 从实质上讲天线是一种转换器,它可以把在封闭的传输线中传输的电磁波转换为 在空间中传播的电磁波,也可以把在空间中传播的电磁波转换为在封闭的传输线中传 输的电磁波。 当导线的长度远小于波长时,导线的电流很小,辐射很微弱;当导线的长度增大 到可与波长相比拟时,导线上的电流就大大增加,因而就能形成较强的辐射。通常将 上述能产生显著辐射的直导线称为振子。两臂长度相等的振子叫做对称振子。每臂长 度为四分之一波长的对称振子称为半波振子;两臂总长与波长相等的振子,称为全波 对称振子。将振子折合起来的,称为折合振子。半波振子如图11-2所示。 图11-2 半波振子 由于单个天线的辐射方向性不够强,为了得到方向性较强的天线,常采用天线阵

列的形式,所谓天线阵列就是将许多个天线按照一定的方式进行排列所形成的阵列,输入到每个天线的信号的幅度和相位都可以是不同的,这样通过合理控制各天线输入信号的幅度与相位,就可以得到所需要的天线特性。 电磁波在自由空间或传输线内的传播过程中是相互独立的,向左传播的电磁波的存在不会影响向右传播的电磁波,因此一副天线可以同时作为接收和发射天线进行工作。 11.2 基站天线的种类 基站天线按照水平方向图的特性可分为全向天线与定向天线两种,全向天线在水平面内的所有方向上辐射出的无线电波能量都是相同的,但在垂直面内不同方向上辐射出的无线电波能量是不同的。定向天线在水平面与垂直面内的所有方向上辐射出的无线电波能量都是不同的。 按照极化特性可分为单极化天线与双极化天线两种。一般来说,全向天线多为单极化天线,定向天线有单极化天线和双极化天线两种。 单极化天线多为垂直极化天线,其振子单元的极化方向为垂直方向,而双极化天线多为45°斜极化天线,其振子单元为左斜45°与右斜45°极化相交叉的振子,如图11-3所示。 图11-3 双极化方式天线结构 双极化天线相当于两副单极化天线合并在一副天线中,采用双极化天线可以减少塔上天线数量,减少工程安装的工作量,因而可以减少系统成本,因此目前得到广泛的使用。 按照应用的场合可以分为室外天线与室内天线。 11.3 基站天线的结构 在移动通信系统中使用的基站天线由多个基本单元振子、馈电网络、天线接头和天线罩组成,如图11-4所示。

关于对天线应用场景的说明及建议

天线应用场景建议 基站天线可以按多种不同的方式进行分类和归纳,在实际应用中,为了有利于给出清晰简洁的选型说明,并提供优先的选型推荐指导,特采用以下分类方式: 定向双极化基站天线 定向单极化基站天线 全向基站天线 双频双极化基站天线 波束电调基站天线 波瓣赋形基站天线 上述每一类天线可以包含不同的频段、不同的增益、不同的水平面半功率波束宽度、不同的预置波束下倾角。其中各类之间的描述也可能存在部分的重叠,比如,前4类中波束下倾可以是采用机械下倾方式、也可以是采用预置电下倾方式,它们和第5类波束电调基站天线将作一描述比较;类似地,波瓣赋形基站天线是对常规(非波瓣赋形)基站天线的进一步描述。以下分别叙述其选型推荐: A.1 定向双极化基站天线 定向双极化基站天线优先推荐在多径反射复杂的场景下使用,主要是含有较多或较复杂的建筑物的环境,如城镇、市区;发达的村镇、工业区等。在这些场景下,复杂的多径反射使电磁波的极化发生了不可预测的变化,于是相对于垂直极化的空间分集天线来说,采用±45°的极化分集天线不但没有理论上的3dB 极化失配损失,甚至可获得更好的分集增益。同时,极化分集天线具有更高的性价比,且选址和安装较空间分集天线更为简单。 在话务量较多的市区,推荐采用双极化65度15dBi天线。简单的应用尽量采用双极化65度15dBi预置4°或双极化65度15dBi预置8°天线,其它下倾角可以采用机械调倾角和预置电调结合的方式。如3°下倾可以采用双极化65度15dBi机械调倾角、6°下倾可以采用双极化65度15dBi预置4°加机械调倾角2°、12°下倾可以采用双极化65度15dBi预置8°加机械调倾角4°等。下倾角的大小与具体的覆盖半径和架设高度有关,对于高话务量场合,基站密集,覆盖半径较小,下倾角较大,比如5°~10°;架设高度越高,下倾角将相应增大。反之,中等话务量场合,站址间距适中,覆盖半径较大,下倾角则较小,比如3°~6°;架设高度越高,下倾角将相应增大。此类天线不推荐采用15°以上的下倾角,因为太大的下倾角在双极化场合的覆盖区域畸变和极化畸变较为严重,此时,推荐采用连续电调天线,后文叙述。 在话务量中等的市区,推荐采用双极化65度17.5dBi天线。简单的应用尽量采用双极化65度17.5dBi 预置2°或双极化65度17.5dBi预置4°天线,其它下倾角可以采用机械调倾角和预置电调结合的方式。

天线基础知识培训资料

天线基础知识 1 天线 1.1 天线的作用与地位 无线电发射机输出的射频信号功率,通过馈线(电缆)输送到天线,由天线以电磁波形式辐射出去。电磁波到达接收地点后,由天线接下来(仅仅接收很小很小一部分功率),并通过馈线送到无线电接收机。可见,天线是发射和接收电磁波的一个重要的无线电设备,没有天线也就没有无线电通信。天线品种繁多,以供不同频率、不同用途、不同场合、不同要求等不同情况下使用。对于众多品种的天线,进行适当的分类是必要的:按用途分类,可分为通信天线、电视天线、雷达天线等;按工作频段分类,可分为短波天线、超短波天线、微波天线等;按方向性分类,可分为全向天线、定向天线等;按外形分类,可分为线状天线、面状天线等;等等分类。 *电磁波的辐射 导线上有交变电流流动时,就可以发生电磁波的辐射,辐射的能力与导线的长度和形状有关。如图1.1 a 所示,若两导线的距离很近,电场被束缚在两导线之间,因而辐射很微弱;将两导线张开,如图 1.1 b 所示,电场就散播在周围空间,因而辐射增强。必须指出,当导线的长度 L 远小于波长λ 时,辐射很微弱;导线的长度 L 增大到可与波长相比拟时,导线上的电流将大大增加,因而就能形成较强的辐射。 图1.1 a 图1.1 b 1.2 对称振子 对称振子是一种经典的、迄今为止使用最广泛的天线,单个半波对称振子可简单地单独立地使用或用作为抛物面天线的馈源,也可采用多个半波对称振子组成天线阵。两臂长度相等的振子叫做对称振子。每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子, 见图1.2 a。另外,还有一种异型半波对称振子,可看成是将全波对称振子折合成一个窄长的矩形框,并把全波对称振子的两个端点相叠,这个窄长的矩形框称为折合振子,注意,折合振子的长度也是为二分之一波长,故称为半波折合振子, 见图1.2 b。

基站详细介绍

基站介绍 一、基站类型 目前基站主要有三种类型: 1、定向基站 一般情况下,每个定向基站有三个定向扇区,每个扇区需要1付双极化定向天线或2付单极化定向天线来完成无线信号的收发功能。 定向基站的主要优点是可容纳载频多,可容纳的话务量高;另外由于定向天线增益高,覆盖距离远,可增加覆盖面积。缺点是在话务量低的地区,使用定向基站可能造成载频浪费,增加投资。 市区及话务量高的其他地区,主要采用定向基站,可以满足容量需求;在话务量低、但基站密度小、站距大的农村地区,也可采用定向基站+高增益天线来满足覆盖要求。 2、全向基站 一般情况下,每个全向基站只有一个扇区,需要2付全向天线来完成无线信号的收发功能。一般需要一个机柜。 全向基站的主要优点是在话务量低的地区,使用全向基站节约载频,可以适当降低投资。缺点是可容纳的话务量低,覆盖面积小。 全向基站主要是适用于话务量低的农村地区。另外在做室内分布时,主要采用全向基站。 3、混合型基站 在全向基站的基础上,增加一个或两个定向扇区,可以增加局部地区的覆盖和容量,又比定向基站节约载频。主要是用于农村地区。 目前,由于话务量越来越高,而且对覆盖的要求也越来越高,因此定向基站的比例比较高,混合型基站很少。 二、基站设备 1、基站配套设备

开关电源: 电池: 空调 传输设备 墙挂式交流箱、室内总接地排。 2、基站主设备 山东移动现网的2G设备主要采用爱立信的RBS系列设备,只有部分沿海地区的近海覆盖设备采用华为和中兴的大功率基站设备,数量很少。 3、三种RBS无线机架: RBS200:每机架最多4个载频,做定向站时每扇区需3条馈线,3付定向天线;做全向站时需3条馈线,3付全向天线一发两收。爱立信早已停止供货,现网数量比较少。 RBS2202:每机架最多6个载频,做定向站时每扇区需2条馈线,2付单极化定向天线(或1付双极化定向天线);做全向站时,需2条馈线,2付全向天线。爱立信从本期停止供货,在现网中占绝大多数。 RBS2206:每机架最多12个载频,体积与RBS2202一样,其它情况与 RBS2202也基本相同。使用RBS2206,在占用机房面积相同的情况下,可以提供更大的话务容量,降低对基站机房面积的要求;从本期开始全面供货,在现网中目前比重较小,但以后比重会越来越大。 三、天馈部分 目前天馈系统的安装一般分地面塔、楼顶塔(楼顶支架)、楼顶抱杆三种。 1、楼顶抱杆一般用于市区或县城 这些地方的基站具有以下特点:基站密度相对较大、天线挂高相对较低、有较高的建筑可放置天线、自建铁塔受到城市规划的限制。 楼顶抱杆的突出优点是投资较低、建设周期短;缺点是受业主的限制较多,如果关系协调不好,对以后的优化、维护会带来很多不便。

天线知识讲座讲解

天线部分 一、天线理论知识 天线是将射频信号转化为无线信号的关键器件,其质量的优良和是否合理使用对无线通信工程的成败起到重要作用。所以我们必须全面了解天线。 1、天线的方位图: 方位图是天线电气性能的最重要指标它直接全面的反映出天线的辐射特性。 定义:天线的辐射电磁场在一定距离上随空间角坐标分布的图形。 由于电磁场的矢量特征包含了幅度、相位、极化方向等信息,因此,对应有:幅度方向图、相位方向图。而电磁场的幅度可用场强和功率密度表示,所以,幅度方向图又分为场强方向图和功率方向图。除非特殊说明,在一般情况下,通常天线方向图指的是功率方向图,幅度以dB为单位。 根据定义,天线的方向图是三维立体图,但实际获得完整的三维方向图是非常困难的。通常根据天线的结构特点,选择两个或多个特征面测得该平面内的二维方向图如:E面方向图:通过最大辐射方向并与电场矢量平行的平面; H面方向图:通过最大辐射方向并与磁场矢量平行的平面; 水平面方向图(Horizontal):是指与地面平行的平面内的方向图; 垂直面方向图(Vertical):是指与地面垂直的平面内的方向图。

当天线为垂直极化时,H面近似为水平面,E面近似为垂直面,如果天线为水平极化则情况正好相反。 E面图和H面图只是描述了天线的功率密度的分布情况,但不能定量的反映天线的主要特征。为了更好的描述天线的方向图,常使用半功率波束宽度、副瓣电平、前后比、第一上副瓣抑制、第一下零点填充等都是描述方向图特征的指标。 2、波瓣: 零功率点波瓣宽度:主瓣最大值两边两个零辐射方 向之间的夹角。 半功率点波瓣宽度:在E面或H面的等距线上,主 瓣最大值两边场强等于最大场强的0.707倍(或一 半功率密度)的两辐射方向之间的夹角。 副瓣电平:在E面或H面的等距线上,副瓣最大值 与主瓣最大值之比,通常用dB表示。 后瓣:与主瓣相反方向上的副瓣。 前后比:等距线上,主瓣功率密度最大值和后瓣功 率密度最大值之比(dB)

波尔威基站天线结构及设计方案详细介绍

波尔威基站天线结构及设计方案详细介绍 1 引言基站天线用于将发射机馈给的射频电能转换为电磁波能,或者把电磁波能转化为射频电能并输送到接收机。天线的工作带宽、转换效率以及满足覆盖要求的方向图性能是设计方案的基本考虑要素。此外,一款优秀的产品还会综合考虑制造工艺、生产成本等因素。 目前市场上有众多基站天线产品,其设计各不相同,但基站天线的主体结构均由外罩、反射板、馈电网络以及振子组成。手动电调天线/遥控电调天线(MET/RET)还包括移相器。 2 基站天线的结构天线外罩是保护天线系统免受外部环境影响的结构物。它应具有良好的电磁辐射透过性能,且在结构上能经受外部恶劣环境(如暴风雨、冰雪、沙尘以及太阳辐射等)的侵袭。使用天线罩可以保证天线系统的工作性能稳定可靠,同时减轻天线系统的磨损、腐蚀和老化,延长使用寿命。另外天线外罩可以降低风负荷和风力矩,减小转动天线的驱动功率,减轻机械安装件的重量,减小惯量,提高固有频率。 基站天线使用的外罩材料主要有玻璃钢、PVC和ASA。GRP外罩强度高,重量重,损耗大,通常用于多频或大尺寸天线。PVC和ASA外罩强度不如GRP外罩,通常用于单频或小尺寸天线,损耗小,成本也更低。反射板起着支撑天线各部件的作用,而反射板的形状主要影响天线的前后比特性及水平面辐射方向图。反射板的设计需依据振子及馈电网络的设计方案而定,目前市场上各品牌天线大相径庭,主要区别体现在振子及馈电网络的设计方案上。 馈电网络的作用是将射频电能按照一定关系分配到各个辐射单元,分配的幅度比和相位差决定了辐射方向图和增益。有基于同轴电缆和基于微带线的设计。振子是基站天线最重要的部件之一,其设计方案的好坏直接决定了天线的辐射性能。虽然辐射单元的结构形状各异,但从辐射原理上可分为微带贴片和对称振子两种方案。 移相器是电调天线的核心部件,通过调节分配到各辐射单元的相位差实现下倾角的变化。改变相位差主要有两种途径:一是改变馈电点位置;二是使用介质移相。 3 波尔威天线设计方案设计独特的天线安装套件不仅可以方便稳固地安装,还可提供精确

基站天线安装规范..

常规基站天线安装规范 ?离开铁塔平台距离: >1M ?天线间距: 同一小区分集接收天线:>3M 全向天线水平间距:>4M 定向天线水平间距:>2.5M 不同平台天线垂直间距:>1M ?收发天线除说明书特别指明不可倒置安置。 ?处于避雷针保护范围内。 ?天线方位:对于定向天线,第一扇区XX度,第二扇区XX度, 第三扇区XX度(根据SE设计要求设定调整)。 ?天线倾角:保证天线实际倾角符合SE设计要求,误差小于2度。 ?天线垂直度:除有天线倾角的基站外,保证天线的垂直度不大于2度

用螺栓、平垫、螺母将U 型槽夹板安装在角臂座上。 ? 安装支架至天线 用螺栓、平垫、螺母将上支架、下支架安装在天线安装板上。 U 型槽夹板 角臂座 上支架 角臂座 下支架

、安装天线 装天线至抱杆 使上支架\下支架的夹板和U型槽夹板抱住抱杆,将螺栓穿过上述夹板的安装孔,然后套入平垫和螺母并锁紧螺母。 安装天线至抱杆时,暂不要 把上、下支架的螺丝拧紧, 以便于调整天线方位角度。 但也不能过松,要保证天线 不会向下滑落。 天线方位角调整好后,再拧 紧上下支架的螺丝。

?调整天线下倾角 根据上支架上的角度标签,将天线调整至所需的下倾角。 ?天线安装结束 下倾角调节好之后,旋紧节点处的螺母(如图中标A处),天线安装结束。

A ●使用6根定长跳线。 ●(可选)若现场无定长跳线,则需裁剪合适长度的跳线,并在跳线两端制作DIN公型 接头。 可选

? 粘贴色环 ● 缠绕色环应方向一致,不能错位,每道缠绕2~3层,相邻两道色环间距为10mm ~15mm 。 ● 在距跳线接头200mm 处粘贴对应扇区的色环。 ? 密封接头 ● 缠绕胶带时,须保证上一层胶带覆盖下一层的50%以上。 ● 缠绕防水胶带时,均匀拉伸防水胶带,使其宽度为原宽度的1/2后再缠绕。每缠一层都要拉紧压实。 绝缘胶带 跳线 天线 缠绕三层防水胶带 缠绕三层绝缘胶带 绑扎线扣 天线 防水胶带 跳线

移动通信天线介绍

目录 第1章概述 (3) 1.1 天线综述 (3) 1.2 基站天线的发展趋向 (4) 1.3 基站天线设计概念 (5) 第2章基站天线的基本技术 (6) 2.1 基站天线 (6) 2.2 系统要求与天线技术 (8) 2.3 天线分类 (9) 2.4 赋形波束天线的设计 (12) 2.4.1 扇形波束 (12) 2.4.2 垂直面赋形波束 (16) 2.4.3 波束倾斜 (18) 2.5 基站分集天线 (19) 2.6 基站天线的无源交调 (23) 2.6.1 无源交调与收发信频率的关系 (23) 2.6.2 PIM的生成点与抑制技术 (24) 第3章基站天线主要指标的设计规范 (25) 3.1 基站天线电压.驻波比(VSWR) (25) 3.2 增益(G) (25) 3.3半功率波束宽度(HPBW) (26) 3.4前后比(F/B) (26) 3.5端口隔离 (27) 3.6极化 (27) 3.7功率容量 (27) 3.8零点填充 (27) 3.9上副瓣抑制 (27) 3.10波束下倾 (27) 3.11 双频双极化天线 (28) 3.12 双频双工双极化天线 (28) 3.13直接接地 (28) 3.14天线输入接口 (29) 3.15无源交调(PIM) (29) 3.16天线尺寸 (29) 3.17天线重量 (29) 3.18风载荷 (30) 3.19工作温度 (30) 3.20湿度要求 (30) 3.21雷电防护 (30) 3.22三防能力 (30)

概述 1.1 天线综述 随着国内经济的快速、持续发展, 改革开放以来,通信产业发生了巨大变化, 这是 众所周知的。通信技术和经济效益的推进,使得通信产业成为国内最大产业之 一,为了适应这一新兴产业的发展,国家也在通信领域进行了重大机构改革。 随着通信本身向信息经济的发展,信息实际上是现代经济的生命线。因此,通 信已成为商业和工业甚至农业等其他行业持续发展的关键因素。 在通信这一领域内,移动通信的发展更加耀眼夺目,人们已不满足在固定场所 处理信息流。在外出旅游、度假、访问等途中也需要通信,因此移动通信有了 契机,它将被工程师们完善地开发并成功地发展。在国内,从八十年代中期至 今,移动通信的发展变迁是有目共睹的,在您的身边、周围处处可以看到移动 终端----手机,丰富多彩,五花八门的手机几乎无时无刻不在传递信息,包括政 治、经济、文化、生活等多个方面。国内最大的GSM蜂窝移动网的用户已逾 两千万;为了实现村村通电话这一宏伟目标,无线接入系统蓬勃发展,为农 村,尤其是偏远村庄的经济发展提供了信息保障。 移动通信的新技术、新器件令人耳目一新,对天线设计师也提出了前所未有的 要求,如在便携的移动终端上如果使用常规天线,用户是不会接受的,而且设 备小型化、微型化也就毫无意义。因此天线设计师们必须研制小型乃至电子天 线以适应现代技术,既能在很小的界面上工作,还要满足电性能指标。然而, 对于天线设计师,不能停留在这种意义上的设计,还有更高的要求,先进的天 线设计能使天线产生另外的系统功能,如分集接收能力,降低多路径衰落,或 极化特性的选择功能等。尤其移动天线设计不再局限于在一个轮廓分明的平坦 基面上实现小型化、轻重量、薄剖面或平嵌安装的全向天线,而是建立一个复 杂的电磁结构,使其在无线信道中发挥重要作用,并成为系统设计的有机部 分,涉及传播特性、本地环境条件、系统组成和性能、信噪比、带宽特性、天 线本身的机械结构、制作技术的适应性以及使用安装的方便性等。移动系统本 身的种类对天线设计影响也很大,陆地、海面、天空和卫星系统之间就有很大 不同。在分区系统中,辐射方向图必须与区域图相一致以避免干扰;城市通信 要采用分集接收以克服多路径衰落;移动终端要求降低移动系统和天线的尺 寸。在小型化便携设备中(如手机),天线和收发信的射频前置电路通常一体

基站天线电机参数

基站天线设置需要重点考虑下倾角、方向角、天线挂高、天线分集距离和隔离距离等参数。在移动通信基站中,通过对基站天线的水平方位角和下倾角进行调节以达到最佳的辐射范围和辐射距离。水平方位角是指基站天线绕轴心线旋转过的角度,该水平方位角影响到基站天线的辐射范围;下倾角是指基站天线与水平地面之间的夹角,该下倾角影响到基站天线的辐射距离。基站天线电机是应用在5G、4G信号通讯基站天线的电调电机齿轮箱,属于非标定制齿轮箱电机,主要传动结构由驱动电机、齿轮箱等;驱动电机可采用直流无刷电机、直流有刷电机、步进电机,齿轮箱可采用行星齿轮箱、蜗轮蜗杆齿轮箱、定制非标齿轮箱;通常按照需求定制齿轮箱中,例如驱动电机类型、齿轮箱结构类型、减速比、输出转速、输出扭矩、规格直径、电压、电流、功率等参数是按需定制。 基站天线电机参数: 产品名称:22MM金属减速齿轮箱 产品分类:五金行星齿轮箱 外径:22mm 材质:五金 旋转方向:cw&ccw 齿轮箱回程差:≤2°(可定制) 轴承:烧结轴承;滚动轴承 轴向窜动:≤0.1mm(烧结轴承);≤0.1mm(滚动轴承) 输出轴径向负载:≤120N(烧结轴承);≤170N(滚动轴承) 输入速度:≤15000rpm 工作温度:-30 (100)

定制参数、规格型号范围: 尺寸规格系列:3.4mm、4mm、6mm、8mm、10mm、12mm、16mm、18mm、20mm、22mm、24mm、28mm、32mm、38mm; 材质系列:塑胶行星齿轮箱、金属行星齿轮箱、蜗轮蜗杆齿轮箱 驱动电机:步进电机、无刷电机、有刷电机、空心杯电机 输出力矩范围:1gf-cm至50kg-cm; 减速比范围:5-1500; 输出转速范围:5-2000rpm;

基站天线基本原理

基站天线基本原理 网优雇佣军微信号:hr_opt 通信路上,我们一起走! 蜂窝通信系统要求从基站到移动台的可靠通信,对天线系统有特别的要求。蜂窝系统是一个双工系统,理想的天线是在发射和接收两个方向提供同样的性能。天线的增益、覆盖方向、波束、可用驱动功率、天线配置、极化方式等都影响系统的性能。 1天线增益 天线增益一般常用dBd和dBi两种单位。dBi用于表示天线在最大辐射方向场强相对于全向辐射器的参考值;而dBd表示相对于半波振子的天线增益。两者有一个固定的dB差值,即0dBd等于2.15dBi,如图错误!文档中没有指定样式的文字。-1所示。 2.15dB 图错误!文档中没有指定样式的文字。-1 dBi与dBd的不同参考示意图0dBd=2.15dBi 目前国内外基站天线的增益范围从0dBi到20dBi以上均有应用。用于室内微蜂窝覆盖的天线增益一般选择0-8 dBi,室外基站从全向天线增益9dBi到定向天线增益18dBi应用较多。增益20dBi左右波束相对较窄的天线多用于地广人稀的道路等方向性较强的特殊环境的覆盖。 2辐射方向图 基站天线辐射方向图可分为全向辐射方向图和定向辐射方向图两大类,分别被称为全向天线和定向天线。如图错误!文档中没有指定样式的文字。-2所示,左边所示分别为全向天线的水平截面图和立体辐射方向图;右边所示分别为定向天线的水平截面图和立体辐射方向图。全向天线在同一水平面内各方向的辐射强度理论上是相等的,它适用于全向小区;图中红色所示为定向天线罩中的金属反射板,它使天线在水平面的辐射具备了方向性,适用于扇形小区。

图错误!文档中没有指定样式的文字。-2 空间辐射方向图(全向天线和定向天线) 3波瓣宽度 3.1水平波瓣宽度 在天线的水平面(垂直面)方向图上,相对于主瓣最大点功率增益下降3dB的两点之间所张的角度,定义为天线的水平(垂直)波瓣宽度,也称水平(垂直)波束宽度或者水平(垂直)波瓣角。天线辐射的大部分能量都集中在波瓣宽度内,波瓣宽度的大小反映了天线的辐射集中程度。 全向天线的水平波瓣宽度为360°,而定向天线的常见水平波瓣宽度有20°、30°、65°、90°、105°、120°、180°多种(如图错误!文档中没有指定样式的文字。-3)。 图错误!文档中没有指定样式的文字。-3 基站天线水平波瓣3dB宽度示意图 各种水平波瓣宽度的天线有相应的适用环境,水平波瓣宽度为20°、30°的天线一般增益较高,多用于狭长地带或高速公路的覆盖;65°天线多用于密集城市地区典型基站三扇

移动通信基站天线的演进及趋势

移动通信基站天线的演进及趋势 过去二十年,我们见证了移动通信从1G到4G LTE的转变。在这期间,通信的关键技术在发生变化,处理的信息量成倍增长。而天线,是实现这一跨越式提升不可或缺的组件。 按照业界的定义,天线是一种变换器,它把传输线上传播的导行波变换成在无界媒介(通常是自由空间)中传播的电磁波,或者进行相反的变换,也就是发射或接收电磁波。通俗点说,无论是基站还是移动终端,天线都是充当发射信号和接收信号的中间件。 现在,下一代通信技术——5G已经进入了标准制定阶段的尾声,各大运营商也正在积极地部署5G设备。毋庸置疑,5G将给用户带来全新的体验,它拥有比4G快十倍的传输速率,对天线系统提出了新的要求。在5G通信中,实现高速率的关键是毫米波以及波束成形技术,但传统的天线显然无法满足这一需求。 5G通信到底需要什么样的天线?这是工程开发人员需要思考的问题。为此雷锋网IoT科技评论邀请了新加坡国立大学终身教授、IEEE Fellow陈志宁为大家讲解5G移动通信中的未来天线技术。 移动通信基站天线的演进及趋势 基站天线是伴随着网络通信发展起来的,工程人员根据网络需求来设计不同的天线。因此,在过去几代移动通信技术中,天线技术也一直在演进。 第一代移动通信几乎用的都是全向天线,当时的用户数量很少,传输的速率也较低,这时候还属于模拟系统。 到了第二代移动通信技术,我们才进入了蜂窝时代。这一阶段的天线逐渐演变成了定向天线,一般波瓣宽度包含60°和90°以及120°。以120°为例,它有三个扇区。 八十年代的天线还主要以单极化天线为主,而且已经开始引入了阵列概念。虽然全向天线也有阵列,但只是垂直方向的阵列,单极化天线就出现了平面和方向性的天线。从形式来

基站天线方位角测量方法简介

基站天线方位角的测量方法 1目的 规范测量方法、降低人为因素、提高测量准确性。 2适用范围 此方法适用于无线设计人员上站勘察时,测量基站方位角。 3使用工具介绍 设计人员通常所使用的指北针如图1所示,由罗盘、照门与准星等组成。方位分划外圈为360°分划制,最小格值1°。测量精度:±5度。 图1 指北针图示 4测量原则 指北针或地质罗盘仪必须每年进行一次检验和校准; 指北针应尽量保持在同一水平面上; 指北针必须与天线所指的正前方成一条直线; 指北针应尽量远离铁体及电磁干扰源(例如各种射频天线、中央空调室外主机、楼顶铁塔、建筑物的避雷带、金属广告牌以及一些能产生电 磁干扰的物体);

测量人员站定后,测量时,展开指北针,转动表盘方位框使方位玻璃上的正北刻度线与方向指标相对正,将反光镜斜放(45°),单眼通过准 星瞄向目标天线,从反光镜反射可以看到磁针N极所对反字表牌上方 位分划,然后用右手转动方位框使方位玻璃上的正北刻度线与磁针N 极对准,此时方向指标与方位玻璃刻度线所夹之角即为目标方位角(按 顺时针方向计算)。测量原则如下图2所示: 图2 测量方法图示 5测量方法 基站方位角的测量方法有很多,需要根据不同的场景和现场人员情况来选择合适的方法进行测量,下面对几种常用的测量方法进行简要介绍。 1)直角拐尺测量法 适用场景与要求:本方法几乎适用于所有场景,但是要求两个人员进行测量,而且其中一人需持有登高证登到天线位置。测量时可以根据现场情况在前方测量或侧方测量。前方测量:在方位角的测量时,两人配合测量。其中一人站在天线的背面近天线位置,另外一人站在天线正前方较远的位置。靠近天线背面的工程师把直角拐尺一条边紧贴天线背面,另一条边所指的方向(即天线的正前方)来

第一章 LTE基站概述

第一章LTE基站概述 1.1 基站概念 基站是移动通信中组成蜂窝小区的基本单元,主要完成移动通信网和移动通信用户之间的通信和管理功能,从狭义上就可以把基站理解成一种无线电收发信电台。换句话说,你的手机信号从哪里来,手机能上网、打电话都是因为你的手机(专业术语称为终端UE)驻留在一个基站上,在基站信号的覆盖范围内。 基站不是孤立存在的,它仅仅属于网络架构中的一部分,它是连接移动通信网和用户终端的桥梁 基站一般由机房,信号处理设备,室外的射频模块、收发信号的天线、GPS、各种传输线缆等等组成。 下面将以基站接收信号,从室外到室内这样的顺序给大家介绍一下基站。 1.2基站室外设备 (1)首先需要通过室外的天线接收信号,天线也是我们在室外判断是否周围有基站最明显的标志。天线的形状如下图所示,类似扁平的长方体。

天线有很多不同的安装方式,下面列举了一些天线安装在不同地方的照片,当你看见这些天线,那么这个天线附近就应该有我们的基站了。

(2)天线接收的信号送往射频单元进行处理,远端射频模块(Remote Radio Unit),简称RRU。接收信号时,RRU将天线传来的射频信号(射频信号就是经过调制的,拥有一定发射频率的电波)转化成光信号,传输给室内处理设备;发送信号时,RRU将从机房传来的光信号转成射频信号通过天线放大发送出去。当然这只是简单地解释了RRU功能,其实RRU对收发信号还有很多其他处理,在后面的模块介绍里会介绍。 RRU有很多类型,在后面的模块介绍里会详细给大家列举。

(3)接收的信号经过射频模块RRU处理后,通过光缆传入机房内的信号处理模块。 (4)室外还有用于系统定位和提供时钟同步的信号的GPS模块,因为长的像蘑菇,也称GPS蘑菇头。 1.3 基站室内设备 (1)基站设备普通情况下,除了天线、射频处理单元RRU、GPS蘑菇头等设备安装在铁塔、抱杆等室外环境,其他的设备是安装在特定的机房内的,如果当前建站的地方处在野外或没有合适的建筑作为机房,则使用一体化机柜,下面通过照片给大家展示一下机房和一体化机柜。

基站天线原理(基于现代移动通信技术)

天线原理
日常应用的基本原则
天线定义
什么是天线? - 天线是基站/馈缆与自由空间之间的有效接口。是电磁能和 空间电磁场之间的转换设备 - 它是在空间上和频率上具有选择性的能量接收器和发射器。
Base Station Antenna Systems August 2007
PRIVATE AND CONFIDENTIAL ? ANDREW CORPORATION 3/06
PRIVATE AND CONFIDENTIAL ? ANDREW CORPORATION 3/06
天线的构成
半波偶极子
F0 (MHz) λ (Meters) 10.0 3.75 1.87 1.07 0.65 0.38 0.31 0.18 0.15 λ (Inches) 393.6 147.6 73.8 42.2 25.7 14.8 12.3 6.95 5.9
辐射单元 馈电网络 反射器 引向器
F0
30

80 160 280 460 800

960 1700 2000
PRIVATE AND CONFIDENTIAL ? ANDREW CORPORATION 3/06
PRIVATE AND CONFIDENTIAL ? ANDREW CORPORATION 3/06
增益dBd 与dBi
电压驻波比VSWR
Good VSWR is only one component of an efficient antenna.
VSWR 1.00 1.10 1.20 Return Loss (dB) ∞ 26.4 20.8 17.7 15.6 14.0 9.5 Power Power Reflected (%) Trans. (%) 0.0 0.2 0.8 1.7 2.8 4.0 11.1 100.0 99.8 99.2 98.3 97.2 96.0 88.9
一个半波偶极子的辐射图象
一个各向同向的辐射器向所 有的方向辐射等同的能量 同偶极子相比的天线的增益以 “dBd” 表示 同各向同性辐射器相比的天线的增益 以 “dBi”表示 例如: 3dBd = 5.15dBi
1.30 1.40 1.50 2.00
2.15dB
偶极子的增益高 2.15dB
PRIVATE AND CONFIDENTIAL ? ANDREW CORPORATION 3/06 PRIVATE AND CONFIDENTIAL ? ANDREW CORPORATION 3/06
1

天线基本知识讲座1天线1.1天线的作用与地位无线电发射机输出

天線基本知識講座 1天線 1.1 天線的作用與地位 無線電發射機輸出的射頻信號功率,通過饋線(電纜)輸送到天線,由天線以電磁波形式輻射出 去。電磁波到達接收地點後,由天線接下來(僅僅接收很小很小一部分功率),並通過饋線送到無線 電接收機。可見,天線是發射和接收電磁波的一個重要的無線電設備,沒有天線也就沒有無線電通信。 天線品種繁多,以供不同頻率、不同用途、不同場合、不同要求等不同情況下使用。 對於眾多品種的天線,進行適當的分類是必要的: 按用途分類,可分為通信天線、電視天線、雷達天線等;按工作頻段分類,可分為短波天線、超 短波天線、微波天線等;按方向性分類,可分為全向天線、定向天線等;按外形分類,可分為線狀天 線、面狀天線等;等等分類。 * 電磁波的輻射 導線上有交變電流流動時,就可以發生電磁波的輻射,輻射的能力與導線的長度和形狀有關。 如圖1.1 a所示,若兩導線的距離很近,電場被束縛在兩導線之間,因而輻射很微弱;將兩導線 張開,如圖1.1 b 所示,電場就散播在周圍空間,因而輻射增強。 必須指出,當導線的長度L 遠小於波長λ 時,輻射很微弱;導線的長度L 增大到可與波長 相比擬時,導線上的電流將大大增加,因而就能形成較強的輻射。

1.2 對稱振子 對稱振子是一種經典的、迄今為止使用最廣泛的天線,單個半波對稱振子可簡單地單獨立地使用 或用作為抛物面天線的饋源,也可採用多個半波對稱振子組成天線陣。 兩臂長度相等的振子叫做對稱振子。每臂長度為四分之一波長、全長為二分之一波長的振子,稱 半波對稱振子, 見圖1.2 a 。 另外,還有一種異型半波對稱振子,可看成是將全波對稱振子折合成一個窄長的矩形框,並把全 波對稱振子的兩個端點相疊,這個窄長的矩形框稱為折合振子,注意,折合振子的長度也是為二分之 一波長,故稱為半波折合振子, 見圖1.2 b 。 1.3 天線方向性的討論 1.3.1 天線方向性 發射天線的基本功能之一是把從饋線取得的能量向周圍空間輻射出去,基本功能之二是把大部

移动通信基站天线基本原理

移动通信基站天线基本原理及选型原则讲义

目录第一章天线的基本理论 第二章分集技术 第三章天线选型原则

第一章天线的基本理论 移动通信系统中,空间无线信号的接收和发射都是依靠基站天线来实现的。因此,基站天线对移动通信网络来说,起着举足轻重的作用。如果天线选择不好,或者天线的参数设置不当,都会直接影响到整个网络运行质量。尤其在基站数量多,站距小,载频数量多的高话务量地区,天线选择及参数设置是否合适,对移动通信网络的干扰、覆盖率、接通率及全网服务质量有很大的影响。 一、天线主要的辐射单元 ?偶极子 ?喇叭 ?缝隙波导 ?印刷类(微带) 二、阵列天线 为了增强天线的方向性,提高天线的增益,得到所需要的辐射特性,把若干个相同的天线按一定的规律排列起来,并给予适当的激励,这样组成的天线系统称为天线阵。组成天线阵的独立单元称为阵元或天线单元。天线阵可分为线阵、面阵、立体阵以及共形阵。 三、天线的极化 移动通信基站天线的极化主要有以下两种: 1、垂直极化 2、+45°/-45°交叉极化

四、天线的方向图 天线的辐射电磁场在固定距离上随空间角(θ,φ)分布的图形称为方向图,方向图是三维立体图。 工程上通常用两个相互垂直的主平面内的方向图表示(即E面和H面)。E面是通过最大辐射方向并与电场矢量平行的平面,H面是通过最大辐射方向并与磁场矢量平行的平面。 常用天线的方向图覆盖示意图:

五、天线方向图参数 ?零功率点波瓣宽度:主瓣最大值两边两个零辐射方向之间的夹角。 ?半功率点波瓣宽度:主瓣最大值两边场强等于最大场强的0.707倍的两辐射方向之间的夹角。 ?副瓣电平:副瓣最大值与主瓣最大值之比,通常用dB表示。 ?后瓣:与主瓣相反方向上的副瓣。 ?前后比:主瓣最大值和后瓣最大值之比(dB)。

基站天线及其在网络优化中的作用分解

无线网络优化中的天线 西安海天天线科技股份有限公司董事长 肖良勇教授 2002年7月

目录 一、天线的基本特性 1、天线辐射的方向图 2、天线的增益 3、天线的驻波比 4、天线的极化 5、天线参数在无线组网中的作用 6、通信方程式。 二、网络优化中的天线 1、网络优化的概念 2、网络优化的主要内容 3、网络优化中天线的作用 三、海天公司为无线网络优化研制的天线介绍 1、遥控电调电下倾天线 2、公路双向天线 3、高速公路覆盖用的高增益天线 4、120o双极化天线 5、赋形天线

无线网络优化中的天线 天线是将传输线中的电磁能转化成自由空间的电磁波,或将空间电磁波转化成传输线中的电磁能的专用设备。在移动网络通信中从基站天线到用户手机天线,或从用户手机天线到基站天线的无线连接,它的运行质量在整个网络运行质量中所占的位置是十分明显的。因此,网络优化也就自然与天线密切相关。为了便于介绍,先从天线的几个基本特性谈起。(见下图) 一、天线的基本特性 1、天线辐射的方向图。 天线辐射电磁波是有方向性的,它表示天线向一定方面辐射电磁波的能力。反之,作为接收天线的方向性表示了它接收不同方向来的电磁波的能力。我们通常用垂直平面及水平平面上表示不同方向辐射(或接收)电磁波功率大小的曲线来表示天线的方向性,并称为天线辐射的方向图。同时用半功率点之间的夹角表示了天线方向图中的水 平波束宽度及垂直波束宽度。(见下图)

水平面方向图 垂直面波束图 立体方向图

2、天线的增益。 天线通常是无源器件,它并不放大电磁信号,天线的增益是将天线辐射电磁波进行聚束以后比起理想的参考天线,在输入功率相同条件下,在同一点上接收功率的比值,显然增益与天线的方向图有关。方向图中主波束越窄,副瓣尾瓣越小,增益就越高。可以看出高的增益是以减小天线波束的照射范围为代价的。 3、天线的驻波比 天线驻波比表示天馈线与基站 (收发信机)匹配程度的指标。 驻波比的定义: 0.1min max ≥= U U VSWR U max ——馈线上波腹电压; U min ——馈线上波节电压。 驻波比的产生,是由于入射波能量传输到天线输入端B 未被全部吸收(辐射)、产生反射波,迭加而形成的。 VSWR 越大,反射越大,匹配越差。 那么,驻波比差,到底有哪些坏处?在工程上可以接受的驻波比是多少?一个适当的驻波比指标是要在损失能量的数量与制造成本之间进行折中权衡的。 ⑴ VSWR >1,说明输进天线的功率有一部分被反射回来,从而降低了天线的辐射功率; ⑵ 增大了馈线的损耗。7/8"电缆损耗4dB/100m ,是在VSWR=1(全匹配)情况下测的;有了反射功率,就增大了能量损

相关主题