搜档网
当前位置:搜档网 › 换热器-翅片管

换热器-翅片管

换热器-翅片管
换热器-翅片管

管翅式换热器

一、管翅式换热器的概述

翅片式散热器是在普通的换热管上加装翅片来达到强化传热的目的,在气体与液体热交换器中使用最为广泛。当一端的流路处于高压状态或换热系数比另一端的流路大得多时,常常使用这类换热器。例如气液换热器中,液侧的换热系数一般比气侧的换热系数高很多,翅片通常加在气侧以增加其换热面积。管翅型换热器大多采用圆管和矩形截面管(椭圆管也有使用),根据不同的用途,翅片或者用于管外,或者用于管内,或者管内外都用。

单根管子垂直上加翅片图(a),称单独翅片管。每根管加纵向翅如图(b),一般用于凝结换热和套管换热器中的粘性流体。整个管排上整体套上翅片如图(c)。

单独翅片管的几何表面比整体套翅更粗糙,但紧凑性差些。大多数单立翅化管用光滑圆形翅、螺旋形翅、或各种环形翅来强化翅片的几何形状:扇形翅、回旋翅、钉头翅、开缝翅、丝圈等翅片。常用的连接方法有热套、镶钳、张力缠绕和焊接等方法。此外,翅片管也可采用整体轧制、整体铸造或机械加工等方法制造。

二、管翅式换热器的应用

1、翅管式换热器广泛地用作空调和制冷设备中的蒸发器和冷凝器。

2、汽车或固定内燃式发动机中的水冷却器、油冷却器。

3、过程工业和发电厂的空气冷却器等。

这些换热器通常是水、油、制冷剂走管程,管外空气流过翅管。

翅片管及规格

翅片管及规格 文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]

翅片管 为了提高换热效率,通常在换热管的表面通过加翅片,增大换热管的外表面积(或内表面积),从而达到提高换热效率的目的,这样的换热管叫做翅片管。 翅片管作为换热元件,长期工作于高温烟气的工况下,比如锅炉换热器用翅片管使用环境恶劣,高温高压且处于腐蚀性气氛,这要求翅片管应具有很高的性能指标。 1) 防腐性能(Anti-corrosion) 2) 耐磨性能(Anti-wear) 3) 低的接触热阻(lower contact resistance) 4) 高的稳定性(Higher Stability) 5) 防积灰能力 高频焊螺旋翅片管是目前应用最为广泛的螺旋翅片管之一,现广泛应用于电力、冶金、水泥行业的预热回收以及石油化工等行业.高频焊螺旋翅片管是在钢带缠绕钢管的同时,利用高频电流的集肤效应和邻近效应,对钢带和钢管外表面加热,直至塑性状态或熔化,在缠绕钢带的一定压力下完成焊接。这种高频焊实为一种固相焊接。它与镶嵌、钎焊(或整体热镀锌)等方法相比,无论是在产品质量(翅片的焊合率高,可达95%),还是生产率及自动化程度上,都是更为先进。 我公司的主要产品:高频焊翅片管、无缝翅片管、工业翅片管、翅片管换热器,热管、热管换热器等。 我公司技术力量雄厚,生产设备先进,凭借优质的产品质量,迅速的交货,良好的销售服务,诚信的合同往来,合理优惠的价格,在同行业中有很高的声誉,产品畅销全国,赢得了广大用户的赞誉,我们期待您的合作! 高频焊接螺旋翅

产品展示: U型翅片管 高频焊翅片管 普通翅片管 无缝管翅片管 工业用翅片管 高频焊翅片管 工业翅片管散热器复合翅片管

换热器原理与设计(答案)

广东海洋大学 2013年清考试题 《换热器原理与设计》课程试题 课程号: 1420017 √ 考试 □ A 卷 □ 闭卷 □ 考查 □ B 卷 √ 考试 一.填空题(10分。每空1分) 1.相比较沉浸式换热器和喷淋式换热器,沉浸式换热器传热系数 较低。 2.对于套管式换热器和管壳式换热器来说, 套管式换热器 金属耗量多,体积大,占地面积大,多用于传热面积不大的换热器。 3.在采用先逆流后顺流<1-2>型热效方式热交换器时,要特别注意温度交叉问题,避免的方法是 增加管外程数 和两台单壳程换热器串联。 4.在流程的选择上,腐蚀性流体宜走 管程,流量小或粘度大的流体宜走壳程,因折流档板的作用可使在低雷诺数(Re >100)下即可达到湍流。 5.采用短管换热,由于有入口效应,边界层变薄,换热得到强化。 6. 相对于螺旋槽管和光管,螺旋槽管的换热系数高. 7. 根据冷凝传热的原理,层流时,相对于横管和竖管,横管 传热系数较高。 8.减小管子的支撑跨距能增加管子固有频率,在弓形折流板缺口处不排管,将 减小 管子的支撑跨距 9. 热交换器单位体积中所含的传热面积的大小大于等于700m 2/m 3,为紧凑式换热器。 10. 在廷克流动模型中ABCDE5股流体中,真正横向流过管束的流路为B 股流体,设置旁路挡板可以改善C 股流体对传热的不利 GDOU-B-11-302 班级: 姓 名: 学号: 试题共 4 页 加白纸3 张 密 封 线

影响。

二.选择题(20分。每空2分) 1.管外横向冲刷换热所遵循侧传热准则数为(C ) A. 努赛尔准则数 B. 普朗特准则数 C. 柯尔本传热因子 D. 格拉肖夫数 2.以下哪种翅片为三维翅片管( C ) A. 锯齿形翅片 B. 百叶窗翅片 C. C管翅片 D. 缩放管 3.以下换热器中的比表面积最小( A ) A.大管径换热器B.小管径换热器 C.微通道换热器 D. 板式换热器 4. 对于板式换热器,如何减小换热器的阻力(C ) A.增加流程数B.采用串联方式 C.减小流程数 D. 减小流道数。 5.对于板翅式换热器,下列哪种说法是正确的( C ) A.翅片高度越高,翅片效率越高 B.翅片厚度越小,翅片效率越高 C.可用于多种流体换热。 D. 换热面积没有得到有效增加。 6.对于场协同理论,当速度梯度和温度梯度夹角为( A ),强化传热效果最好。 A.0度B.45度 C.90度 D. 120度 7. 对于大温差加热流体(A ) A.对于液体,粘度减小B.对于气体,粘度减小 C.对于液体,传热系数减小 D. 对于气体,传热系数增大8. 对于下列管壳式换热器,哪种换热器不能进行温差应力补偿( B ) A.浮头式换热器B.固定管板式换热器 C.U型管换热器 D. 填料函式换热器。 9. 对于下列管束排列方式,换热系数最大的排列方式为( A ) A.正三角形排列B.转置三角形排列 C.正方形排列 D. 转正正方形排列。 10. 换热器内流体温度高于1000℃时,应采用以下何种换热器(A )

翅片换热器传热系数

翅片换热器传热系数 ABRAHAM LAPIN and W. FRED SCHURIG I Polytechnic Institute of Brooklyn, Brooklyn 1, N. Y. 许多方程来源于实验数据,同时提出了有交叉流动的热交换器的设计。对关于换热器行数 的总传热影响,进行了图示作为参考. 翅片管在热交换器中的使用有了迅速增长。当内部传热系数比外面的系数极大时,它经常被实际增加一定数量的外表面来为低外系数进行补偿。许多研究人员都对翅片管的传热进行研究。因为对可能的翅片类型的安排有非常大的数量,大多数研究都局限于特定条件。 实验设备与程序 设备金属板材风管横截面为 30x12 3/4 英寸。上部是固定的,但较低的部分,可提高或降低 容纳一个可变数目的排。这下部分(进口)进行拟合有5英寸空气校正叶片可助均匀分布的空气线圈。 传热表面(台风的空气调节股份有限公司)。每个单元有八个翅片管manifolded 在一起以并行方式进行。 5 / 8英寸 0.dx0.025英寸铜管 11/2英寸 0.dx0.018英寸轧花 8每英寸,30英寸翅翅片长度 Ao/Ai=16.30,Ao=2.44平方英尺 翅片管直径= 2.4 1.248平方英尺,空气流面积最小 这些铝管的用途,则被关在一个长方形的30×12 3/4英寸的帧。一个3/4设备橡胶障板安放在沿 一侧的框架。翅片管相邻本遮光罩一个侧和框架本身上另一边。该框架结构允许一个交错管的安排通过简单地转弯连续排对单位180度的另一个。

一台吹风机提供空气供给在逆流而上空调管道内结束。 测量 水流量用校准过的转子流量计。空气流量是用一个托马斯米测量,其中包括四个帧开口用1.134 镍铬合金 欧姆/英尺,有一个总电阻每一个约25欧姆。流动的空气用仪表测量通过一系列的圆盘和圆环折流板顺流混合。温度进行了测量精确温度计刻度为0.1 C 。每一个温度计的位置了经过精心挑选的,确保读出正确的总体温度。 一系列的运行是由1到8步骤在一个单元中。这在试管被水平和安排一个三角形的场地:1 1/2-inch 水平和垂直距离管-Le. 1.5X1.677英寸,三角形场地。所有的管道都是相连的,所以只有一个水程。水联系之间是这样的空气和水逆向流动。 程序 热水用泵送进管中,同时冷空气穿过翅片。水流量和温度维持在恒定的9000(磅/小时)和50度,它给出一种管程雷诺数超过20000。 管外的空气流速各在1100 - 5000英镑每小时之间,给人们提供了一种基于最小的通流面积3至15英尺/秒。在室温下空气进入导管。两个完全独立的流动进行着。所有实验结果可再生的有4%。一系列等温压力损耗测量使用一至八行被独立的传热。流动的空气温度通过翅片管时68度。和流量从1200到4500磅每小时。给雷诺数范围2200到8500。 压力损失用一个倾斜的水压计测量。 计算和结果 p 12p 2l m WC (T - T ) = c (t - t ) =UA t ω? 12p 2l () c (t - t )p m m WC T T U A t A t ω-==?? 111'11i i si i av so o o o L UA h A h A kA h A h A =++++ 111'11U o o o i i si i av so o A A A L h A h A k A h h =++++ 0.80.3 0.0225()(Re)(Pr)i h k D = 0.8 0.2 (10.01)160()i i t V h d +=

内翅片管式换热器

●内翅片管式换热器 ●1前言 管式换热器普遍用于石油,化工,冶金,电力等行业中,它具有结构简单,制造容易,材料广泛,适应性强等特点,是工业生产中的主要换热设备.目前,广泛应用的金属管式换热器是通过间壁来换热的,它传输的热量受到间壁面积和传热能力的限制,其综合传热系数不高, 一般气一气换热的管式换热器仅为15~ZOW/m20C左右,管式插件换热器为30~3w/m2OC左右.由于管式换热存在着综合传热系数低,设备庞大等不足,为此各种插件热器,翅片管换热器等新型换热器应运而生.目前,开发新型高效换热器已成为换热器的发展趋 势.内翅片管式换热器是我们最新研制开发的新型换热器,系国内首创,属于一代新型高效换热器,目前,已在工业中应用,取得了良好的效果. 2内翅片管式换热器及其应用 2.1内翅片管式换热器 新型内翅片管式换热器的主要特点是: 通过在换热管内扩展表面,强化管内传热的途径来提高换热器的性能.内 翅片管采用纵向直肋,管内翅化比可达4~6,与一般光滑管相比,其管内给热系数可提高3~4倍左右.内翅片管的翅片采用 焊接工艺焊接,其焊着率为i00.内翅片管式换热器与一般管式换热器在结构上差异不大,它们之间的区别主要在于换热管的不同.内翅片管如图1所示. 内翅片管的规格见表1 图1内翅片管 内翅片管的规格袁袁1 Do(ram)lh(mm)8(ram)晶L(ram) 38—89l12—131~2l22{4--610000 其中:Do一督径h一翅片高度a翅片厚度

n一翅片散且一内翅化比L一翅片营长虚46 与一般管式换热器相比,内翅片管式换 热器具有以下优点: (1)管内给热系数相比.对于一般气一气换热管式换热器而言,管内热阻往往是控制热阻,因此,提高管内给热系数至关重要.采用翅片管时,管内翅 化比可达4~6,管内给热系数可提高3~4倍,从而显著地强化了管内传热. (2)传热能力强.一般管式换热器的传热系数近似为K—a.a2/

翅片管换热器实验指导书

*********************************************************** 空气 水热交换器实验 ************************************************************ 指导说明书 同济大学热能实验室 陈德珍 2000年1月

第一部分空冷器实验台系统说明 本实验台是上海交通大学开发、针对换热器课程的教学要求而设计的科教产品。所用的换热器为一较小的间壁式换热器,空气—水作为介质,实验台由独立的风源,热水源,温度控制器等组合而成,有较大的灵活性,以后还可发展冷却塔性能试验。 一、实验台组成、系统、设备及仪表 实验台系统的简图见图1,主要由风源、热水源、可控硅温度控制器组成。且各自独立,有较大的灵活性。 主要性能: 1.风源:风机:电机:400w,三相380v 风量:800m3/h 风压:60mmH2O 出风口尺寸:200×135mm 吸风口配二只可叠套的橡胶收缩风口,测速段处直径分别为 D1=120mm及D2=60mm, 2.热水源:水箱尺寸:445×245×575mm 水泵:电机:120W 单相220v 流量:1.5m3/h 压头:12mH2O 加热器:3KW 220V 3只 转子流量计:LZB-25 60-600L/h 3.可控硅温度控制器:TA-092 PID调节仪 ZK-03 三相可控硅电压调整器 最大输出功率10KW 铂电阻温度传感器BA20~100℃ 可控硅 3CT 20A/1000V 电源:三相380V 4.试验用换热器 实验所用的间壁式换热器为一较紧凑的翅片管式散热器,由铜管束套带皱折的铝整 体翅片构成,见图2。 主要参数: 管束:紫铜管管径:d0=10mm d1=8mm 节距横向:s1=45mm 纵向:s2=13mm 翅片:铝制、皱折、整片 片厚:δ=0.1mm 片节距:t=2.6mm 试件总体尺寸: 水侧:横向管数:n1=3 纵向管排数:n2=8 总管数:n=n1×n2=24 水通道并联管子数:即n1=3 管子总长度:L=a×n=0.2×24=4.8m 通道面积:F w=n1×π×d1×d1/4 =1.508×10-4㎡ 气侧:通道尺寸:a=200mm b=130mm h=116mm 翅片数:m=76

翅片管换热器原理及选取

翅片管换热器原理及选取 翅片管换热器目前使用最广泛的是钢铝翅片管(绕片式钢铝复合型翅片管、轧片式钢铝复合型翅片管)它利用了钢管的耐压性和铝的高效导热性能,在专用的机床上复合而成。其接触热阻在210℃的工作情况下几乎为零。 翅片管换热器一般用于加热或冷却空气,具有结构紧凑,单位换热面积大等特点。广泛应用于纺织,印染,石油,化工,干燥,电力等各个领域。 供暖系统的热媒(蒸汽或热水)通过散热设备的壁面主要以对流传热方式(对流传热量大于辐射传热量)向房间传热。这种散热设备通称为翅片管换热器。而以钢制散热翅片管制作的翅片管换热器通称翅片管换热器。这既是它的定义也是它的原理。那么又该怎么选取呢?通豪热能小编接下就跟大家分享一下翅片管换热器的选取。 其实在只要知道其基本要求就不会再选取时迷茫,基本要求如下: 1.热工性能方面的要求。翅片管换热器的传热系数K值越高,说明其散热性能越好。提高散热器的散热量,增大翅片管换热器传热系数的方法,可以采用增加外壁散热面积(翅片式散热器)、提高散热器周围空气流动速度和增加散热器向外辐射强度等途径。 2.经济方面的要求。翅片管换热器传给房间的单位热量所需

金属耗量越少,成本越低,其经济性能好。 翅片管换热器的金属热强度是衡量散热器经济性的一个标志。金属热强度是指散热器内热媒平均温度与室内空气温度差为1℃时,每公斤质量散热器单位时间内所散发的热量。这个指标可作为衡量同一材质散热器经济性的一个指标。对于不同材质的翅片管换热器,其经济评价标准宜以翅片管换热器单位散热量的成本(元/w)来衡量。 3.安装使用和工艺方面的要求。翅片管换热器应具有一定的机械强度和承压能力;翅片管换热器的结构形式应便于组合成所需要的散热面积,结构尺寸要小,少占房间面积和空间,翅片管换热器的生产工艺应满足大批量生产的要求。 4.卫生和美观方面的要求。翅片管换热器外表光滑,不积灰和易于清扫,翅片管换热器的装设不应影响房间观感。 5.使用寿命的要求。翅片管换热器应不易于被腐蚀和破损,使用年限长。

翅片式换热器的设计及计算

制冷剂系统翅片式换热器设计及计算 制冷剂系统的换热器的传热系数可以通过一系列实验关联式计算而得,这是因为在这类换热器中存在气液两相共存的换热过程,所以比较复杂,现在多用实验关联式进行计算。之前的传热研究多对于之前常用的制冷剂,如R12,R22,R717,R134a等,而对于R404A和R410A的,现在还比较少。按照传热过程,换热器传热量的计算公式为: Q=KoFΔtm (W) Q—单位传热量,W Ko—传热系数,W/(m2.C) F—传热面积,m2 Δtm—对数平均温差,C Δtmax—冷热流体间温差最大值,对于蒸发器,是入口空气温度—蒸发温度,对于冷凝器,是冷凝温度—入口空气温度。 Δtmin—冷热流体间温差最小值,对于蒸发器,是出口空气温度—蒸发温度,对于冷凝器,是冷凝温度—出口空气温度。 传热系数K值的计算公式为: K=1/(1/α1+δ/λ+1/α2) 但换热器中用的都是圆管,而且现在都会带有肋片(无论是翅片式还是壳管式),换热器表面会有污垢,引入污垢系数,对于蒸发器还有析湿系数,在设计计算时,一般以换热器外表面为基准计算传热,所以对于翅片式蒸发器表述为: Kof--以外表面为计算基准的传热系数,W/(m2.C) αi—管内侧换热系数,W/(m2.C) γi—管内侧污垢系数,m2.C/kW δ,δu—管壁厚度,霜层或水膜厚度,m λ,λu—铜管,霜或水导热率,W/m.C ξ,ξτ—析湿系数,考虑霜或水膜使空气阻力增加系数,0.8-0.9(空调用亲水铝泊时可取1)αof—管外侧换热系数,W/(m2.C) Fof—外表面积,m2 Fi—内表面积,m2 Fr—铜管外表面积,m2 Ff—肋片表面积,m2 ηf—肋片效率, 公式分析: 从收集的数据(见后表)及计算的结果来看,空调工况的光滑铜管内侧换热系数在2000-4000 W/(m2.C)(R22取前段,R134a取后段,实验结果表明,R134a的换热性能比R22高)之间。因为现在蒸发器多使用内螺纹管,因此还需乘以一个增强因子1.6-1.9。 下面这个计算公式来自《制冷原理及设备》(第二版,1996,吴业正主编):

翅片管及规格

翅片管 为了提高换热效率,通常在换热管的表面通过加翅片,增大换热管的外表面积(或内表面积),从而达到提高换热效率的目的,这样的换热管叫做翅片管。 翅片管作为换热元件,长期工作于高温烟气的工况下,比如锅炉换热器用翅片管使用环境恶劣,高温高压且处于腐蚀性气氛,这要求翅片管应具有很高的性能指标。 1) 防腐性能(Anti-corrosion) 2) 耐磨性能(Anti-wear) 3) 低的接触热阻(lower contact resistance) 4) 高的稳定性(Higher Stability) 5) 防积灰能力 高频焊螺旋翅片管是目前应用最为广泛的螺旋翅片管之一,现广泛应用于电力、冶金、水泥行业的预热回收以及石油化工等行业.高频焊螺旋翅片管是在钢带缠绕钢管的同时,利用高频电流的集肤效应和邻近效应,对钢带和钢管外表面加热,直至塑性状态或熔化,在缠绕钢带的一定压力下完成焊接。这种高频焊实为一种固相焊接。它与镶嵌、钎焊(或整体热镀锌)等方法相比,无论是在产品质量(翅片的焊合率高,可达95%),还是生产率及自动化程度上,都是更为先进。 我公司的主要产品:高频焊翅片管、无缝翅片管、工业翅片管、翅片管换热器,热管、热管换热器等。 我公司技术力量雄厚,生产设备先进,凭借优质的产品质量,迅速的交货,良好的销售服务,诚信的合同往来,合理优惠的价格,在同行业中有很高的声誉,产品畅销全国,赢得了广大用户的赞誉,我们期待您的合作! 高频焊接螺旋翅片管

产品展示: U型翅片管高频焊翅片管 普通翅片管无缝管翅片管

工业用翅片管高频焊翅片管 工业翅片管散热器复合翅片管

板翅式换热器

板翅式换热器 同组人:张弘达18、张来超14 薛业成06、张太平02

引言: 板翅式换热器:通常由隔板、翅片、封条、导流片组成。在相邻两隔板间放置翅片、导流片以及封条组成一夹层,称为通道,将这样的夹层根据流体的不同方式叠置起来,钎焊成一整体便组成板束,板束是板翅式换热器的核心。 --------张弘达 一、板翅式换热器的发展 二十世纪三十年代,板翅式换热器首先在航空工业上被采用,它结构紧凑、轻巧、传热效率高等特点引起了研究人员和设计工作者的兴趣。随后在制冷、石油化工、空气分离、航空航天、动力机械、超导等工业部门得到广泛应用,被公认是高效新型换热器之一。 1942年,美国的诺利斯首先进行了平直翅片、锯齿翅片、波纹翅片、钉状翅片的传热机理研究,找出几种主要翅片的摩擦因子(f),传热因子(j)与雷诺数(Re)的关系,为以后的研究与设计奠定了基础。1947年美国海军研究署、船舶局、航空局合作在斯坦福大学拟定了系统的研究计划并扩大了研究范围。 板翅式换热器发展中另一方面是制造工艺,对于结构复杂、隔板和翅片又很薄的铝合金钎焊工艺掌握是在经历了一段相当漫长又曲折过程,在突破许多关键技术后才达到今天的水平。 现在国外板翅式换热器最高设计压力可达10MPa以上,最大

芯体尺寸(L×W×H)6000~7000×1200×1200mm,重达10吨以上,可以有十多种流体同时换热。我国是从20世纪60年代中期开始板翅式换热器试验研究,70年代初期自行开发成功,并首先在空分设备上得到应用。90年代初,杭氧厂引进美国S.W公司大型真空钎焊炉和板翅式换热器制造技术,板翅式换热器生产在我国得到飞速发展。现在已在空气分离、石油化工(乙烯、合成氨、天然气分离与液化)、动力机械及航天(神舟号飞船)等工业部门得到广泛应用。并有部分出口国外(美国、加拿大等国)。 我国板翅式换热器目前的生产水平相当于国际上20世纪90年代中期水平。杭氧现已开发有近50种不同型式和尺寸规格的翅片,可满足各种换热要求。 二、板翅式换热器特点 (1)传热效率高。 (2)结构紧凑,单位体积换热面积为管壳式换热器5倍以上,最大可达几十倍。管壳式换热器一般为150~200m2/m3,而板翅式换热器因翅片具有扩展二次表面,使传热面积可达到1500~2500 m2/m3。 (3)轻巧、牢固。铝材密度ρ为2.7g/cm3,而钢材为7.8g/cm3,铜材为8.9g/cm3。 (4)适应性大,可适用多种介质热交换。在同一设备内可允许多达十多种介质之间热交换,可作气—气、气—液、液—液之间换热,亦可作冷凝和蒸发。 (5)经济性好。由于结构紧凑、铝材又轻,降低了设备投资费。

翅片管换热器实验指导书

空气水热交换器实验指导说明书 同济大学热能实验室 陈德珍

2000年1 月 第一部分空冷器实验台系统说明 本实验台是上海交通大学开发、针对换热器课程的教学要求而设计的科教产品。所用的换热器为一较小的间壁式换热器,空气—水作为介质,实验台由独立的风源,热水源,温度控制器等组合而成,有较大的灵活性,以后还可发展冷却塔性能试验。 一、实验台组成、系统、设备及仪表 实验台系统的简图见图1,主要由风源、热水源、可控硅温度控制器组成。且各自独立,有较大的灵活性。主要性能: 1. 风源:风机:电机:400w,三相380v 风量:800m3/h 风压:60mmH2O 出风口尺寸:200× 135mm 吸风口配二只可叠套的橡胶收缩风口,测速段处直径分别为 D 1=120mm及D2=60mm, 2. 热水源:水箱尺寸:445× 245×575mm 水泵:电机:120W 单相220v 流量:h 压头:12mH2O 加热器:3KW 220V 3 只转子流量计:LZB-25 60-600L/h 3. 可控硅温度控制器:TA-092 PID 调节仪ZK-03 三相可控硅电压调整器最大输出功率10KW 铂电阻温度传感器BA 2 0~100 ℃ 可控硅3CT 20A/1000V 电源:三相380V 4. 试验用换热器 实验所用的间壁式换热器为一较紧凑的翅片管式散热器,由铜管束套带皱折的铝整体翅片构成,见图2。 主要参数: 管束:紫铜管管径:d0=10mm d 1=8mm 节距横向:s1=45mm 纵向:s2=13mm 翅片:铝制、皱折、整片片厚:δ= 片节距:t= 试件总体尺寸:水侧:横向管数:n=3 纵 向管排数:n=8 总管数:n=n× n=24 水通道并联管子 数:即n=3 管子总长度:L=a× n=× 24= 通道面积: F w=n×π×d1× d1/4 -4 =×10-4 ㎡气侧:通道尺寸: a=200mm b=130mm h=116mm 翅片数:m=76 通风面积:Fa=a× b= 传热总面积:

不同翅片形式管翅式换热器流动换热性能比较

不同翅片形式管翅式换热器流动换热性能比较 摘要:随着制冷空调行业的发展,人们已经把注意力集中在高效、节能节材的紧凑式换热器的开发上,而翅片管式换热器正是制冷、空调领域中所广泛采用的一种换热器形式。对于它的研究不仅有利于提高换热器的换热效率及其整体性能,而且对改进翅片换热器的设计型式,推出更加节能、节材的紧凑式换热器有着重要的指导意义。 由于翅片管式换热器在翅片结构形式和几何尺寸的不同,造成其换热性能和阻力性能上的极大差异。本文概述目前国内外空调制冷行业中的普遍采用的几种不同翅片类型(平直翅片、波纹翅片、开缝翅片、百叶窗形翅片)的换热及压降实验关联式及其影响因素,对不同翅片形式的管翅式换热器的换热及压降特性的实验关联式进行总结,并对不同翅片的流动换热性能进行了比较。正确地选用实验关联式及性能指标,将对翅片管式换热器的优化设计及其制造提供可靠的依据。 关键词:翅片形式;管翅式;换热器;关联式;流动换热性能

Study on heat transfer and flow characteristics of fin-and-tube heat exchangers with various fin types Abstract:With the development of refrigeration and air conditioning, high efficiency, energy saving and material saving compact type of heat exchanger is development, as one kind of compact heat exchanger, fin-and-tube heat exchanger has a wide application in future. It is necessary to develop compact heat exchanger which is more energy saving and material saving to improve the heat exchanger thermal efficiency and the overall performance of heat transfer. This paper summaries the heat transfer and pressure drop correlations of different fin surfaces, and the corresponding influencing factors. The heat transfer and friction characteristic of these kinds of fin types are compared, and the results show the difference of these fin types. The appropriate correlation and evaluation criterion will provide reliable foundation to the design and optimization of compact heat exchangers. Key words:Fin-and-tube heat exchanger; Heat transfer and flow characteristics; Experimental correlations; Comparison

翅片管换热器基础资料3

第六讲热负荷和热平衡 主讲人哈尔滨工业大学刘纪福教授 https://www.sodocs.net/doc/2d18519624.html, 在以上几讲的基础上,从本讲开始将逐步讲述翅片管换热器的设计计算方法。 众所周知,翅片管换热器是庞大的换热器家族中的一种,其设计计算肯定要基于共性的和基础性的设计计算原理和方法,本讲座将尽量突出翅片管换热器的“个性”和特点,并尽量做到联系工程实际,通俗易懂。 本讲的主题是换热器中的两个基本概念—热负荷和热平衡,并通过多个实例来掌握它的应用和计算。 1、热负荷 对一个换热设备来说,热负荷就是指换热量或传热量,即在单位时间内所交换的热量,单位是KW(KJ/S)或Kcal/h(千卡每小时),(请记住二者的换热关系:1 KW=860 Kcal/h)。工程上热负荷常用Q来表示。 在翅片管换热器的设计中,热负荷通常并不是由用户直接提出来的,而是由设计者根据用户的实际需求和现场的技术参数计算出来的。下面举几个实例加以说明。 【例1】有一个供热公司要为一台供暖用的10t/h热水锅炉安装一台翅片管式省煤器,希望将排烟温度从220oC降至120oC。烟气流量说不准,可能是2万多立方米每小时,并告知引风机的型号和流量。 为了确定省煤器的热负荷,设计者要从用户那里获取尽可能多的与排烟量有关的信息,如:燃煤量、煤的热值、锅炉是否满负荷运行、风机型号等。最后根据自己的经验帮助用户确定排烟量的设计值:16000Nm3/h 。然后按下式计算省煤器的热负荷:Q=G g×(Tg1 ×Cp g1-Tg2 ×Cp g2)KW 此处:Gg:烟气的质量流量,kg/s Cp g1 Cp g2:烟气的入口处比热和出口处比热,查物性表,KJ/(K g·oC) Tg1:烟气入口温度,oC Tg2:烟气出口温度,oC 在本例中,Gg=16000×1.295/3600=5.755 kg/s

翅片管换热器基础知识

翅片管换热器基础知识 在换热器中,很多时候传热两侧流体的换热系数大小不平衡,通常我们会在换热系数小的一侧加装翅片。 什么是翅片管?

翅片管,又叫鳍片管或肋片管。顾名思义,翅片管就是在原有的管子表面上(不论外表面还是内表面)加工上了很多翅片,使原有的表面得到扩展,而形成一种独特的传热元件。 为什么要采用翅片管? 在原有表面上加工上翅片能起到什么作用呢?

翅片管换热器的结构与一般管壳式换热器基本相同,只是用翅片管代替了光管作为传热面。这使得其结构更加紧凑,换热面积增加,可以加强换热。 什么情况时,选用翅片管呢? 有几个原则: (1)管子两侧的换热系数如果相差很大,则应该在换热系数小的一侧加装翅片。 ?例1:锅炉省煤器,管内走水,管外流烟气,烟气侧应采用翅片。 ?例2:空气冷却器,管内走液体,管外流空气,翅片应加在空气侧。 ?例3:蒸汽发生器,管内是水的沸腾,管外走烟气,翅片应加在烟气侧。 应注意,在设计时,应尽量将换热系数小的一侧放在管外,以便于加装翅片。 (2)如管子两侧的换热系数都很小,为了强化传热,应在两侧同时加装翅片,若结构上有困难,则两侧可都不加翅片。 在这种情况下,若只在一边加翅片,对传热量的增加是不会有明显效果的。

?例1:传统的管式空气预热器,管内走空气,管外走烟气。 因为是气体对气体的换热,两侧的换热系数都很低,管内加翅片又很困难,只好用光管了。 ?例2:热管式空气预热器,虽然仍是烟气加热空气,但因烟气和空气都是在管外流动,故烟气侧和空气侧都可方便地采用翅片管,使传热量大大增加。 (3)如果管子两侧的换热系数都很大,则没有必要采用翅片管。 ?例1:水/水换热器,用热水加热冷水时,两侧换热系数都足够高,就没有必要采用翅片管了。但为了进一步增强传热,可采用螺纹管或波纹管代替光管。 ?例2:发电厂冷凝器,管外是水蒸汽的凝结,管内走水。两侧的换热系数都很高,一般情况下,无需采用翅片管。 翅片管束 1什么是翅片管束? 由多支翅片管按一定规律排列起来而组成的换热单元叫翅 片管束。一个翅片管换热器可以由一个或多个翅片管束组成。 2翅片管束的结构组成包括? ?翅片管(多支):传热的基本元件。 ?管箱(集箱)或管板:连接翅片管两端的箱体,弯管或钢板。 当翅片管与箱体或管板连接以后,翅片管之间的间距也就固定了,同时,管箱使管内的流体形成了连续的流道。

翅片是换热器设计

强制对流空气冷却式空调冷凝器的设计 陈景锐机电工程系制冷工程02010962 【摘要】本文介绍了强制对流空气冷却式空调冷凝器的结构及特点,并详细论述了其设计过程,最后联系实践,制作出用于指导生产的工序指导卡。 【关键词】空调冷凝器、设计、工序指导卡 引言:换热器是制冷空调系统中最重要的部件之一,其性能的好坏直接影响着整个系统的性能。因此,换热器的研究一直是制冷空调领域中一个非常活跃的研究方向。本文以冷凝器为例,对强制对流空气冷却式空调换热器的设计进行了初步探讨。 一、概述 冷凝器的功能是把由压缩机排出的高温高压制冷剂气体冷凝成液体,把制冷剂在蒸发器中吸收的热量(即制冷量)与压缩机耗功率相当的热量之和排入周围环境中。因此,冷凝器是制冷装置的放热设备,其传热能力将直接影响到整台制冷设备的性能和运行的经济性。 冷凝器按其冷却介质可分为水冷式、空冷式和水/空气混合式。由于空冷式冷凝器使用方便,尤其适合于缺水地区,在小型制冷装置(特别是家用空调)中得到广泛应用。 空冷式冷凝器可分为强制对流式和自然对流式两种。自然对流式冷凝器传热效果差,只用在电冰箱或微型制冷机中。下面仅讨论强制对流式冷凝器。 二、强制对流空气冷却式冷凝器的结构及特点 强制对流空气冷却式冷凝器都采用铜管穿整体铝片的结构(因此又称管翅式冷凝器)。其结构组成主要为——U形弯传热管、翅片、小弯头、分叉管、进(出)口管以及端板等(如图1),其加工工艺流程如图2。

下面简要介绍一下各主要部分: 1、U形弯传热管 U形弯传热管俗称大U弯,其材 料一般为紫铜。为了减少金属材料消 耗量及减少冷凝器重量,在强度允许 的条件下,应尽量避免使用厚壁铜 管。 U形弯传热管有光管和内螺纹管两种。 由于内螺纹管重量轻、成本不高,并且其内 表面传热系数较光管要增加2~3倍【1】。因此, 现在光管已基本上被内螺纹管代替了。 2、翅片 除非客户特别要求,否则翅片的材料一 般为铝。它有平片、波纹片和冲缝片三种形 式,并且这三种形式的表面传热系数也相差 较大。对使用波纹片和冲缝片的管簇,其空 气侧表面传热系数目前尚无简单准确的计算 式。实践表明,采用波纹片和冲缝片时,空气侧表面传热系数较一般平翅片分别大20%和60%以上【2】。 由于空气通过叉排管簇时的扰动程度大于顺排,空气通过叉排管簇时的表面传热系数较顺排管簇高10%以上,因而,空冷式冷凝器的管簇排列以叉排为好。为了使弯头的规格统一,一般管簇都按等边三角形排列。为了使翅片有较高的翅片效率,保证弯头的加工工艺要求,管中心矩1S应是传热管外径的2.5倍。按等边三角形叉排布置的翅片管簇,对每根而言,其翅片相当于正六角形(如图3) 【1】参看《小型制冷装置设计指导》。 【2】参看《小型制冷装置设计指导》。

换热器毕业设计论文

换热器毕业设计论文Newly compiled on November 23, 2020

第1章 浮头式换热器是管壳式换热器系列中的一种,它的特点是两端管板只有一端与外壳固定死,另一端可相对壳体滑移,称为浮头。浮头式换热器由于管束的膨胀不受壳体的约束,因此不会因管束之间的差胀而产生温差热应力,另外浮头式换热器的优点还在于拆卸方便,易清洗,在化工工业中应用非常广泛。本文对浮头式换热器进行了整体的设计,按照设计要求,在结构的选取上,即壳侧两程,管侧四程。首先,通过换热计算确定换热面积与管子的根数初步选定结构,然后按照设计的要求以及一系列国际标准进行结构设计,设计的前半部分是工艺计算部分,主要设根据设计传热系数、压强校核、壳程压降、管程压降的计算;设计的后半部分则是关于结构和强度的设计。主要是根据已经选定的换热器型式进行设备内各零部件(如壳体、折流板、管箱固定管板、分程隔板、拉杆、进出口管、浮头箱、浮头、支座、法兰、补强圈)的设计。 换热器是国民经济和工业生产领域中应用十分广泛的热量交换设备。随着现代新工艺、新技术、新材料的不断开发和能源问题的日趋严重,世界各国已普遍把石油化工深度加工和能源综合利用摆到十分重要的位置。换热器因而面临着新的挑战。换热器的性能对产品质量、能量利用率以及系统运行的经济性和可靠性起着重要的作用,有时甚至是决定性的作用。目前在发达的工业国家热回收率已达96%。换热设备在现代装置中约占设备总重30%左右,其中管壳式换热器仍然占绝对的优势,约70%。其余30%为各类高效紧凑式换热器、新型热管热泵和蓄热器等设备。其中板式、螺旋板式、板翅式以及各类高效传热元件的发展十分迅速。在继续提高设备热效率的同时,促进换热设备的结构紧凑性,产品系列化、标准化和专业化,并朝大型化的方向发展。浮头式换热器是管壳

低温工况下翅片管换热器的设计计算方法

陈叔平来进琳陈光奇李喜全谢振刚 (兰州理工大学石油化工学院,兰州物理研究所) 摘要:采用分段模型将气化压力高于介质临界压力的翅片管换热器内低温介质的气化过程分为液相、气相两个传热区。同时考虑气化过程中翅片管表面结霜情况,对低温介质在翅片管换热器内的吸热气化过程进行传热分析,给出了适合各分区传热特性的计算关联式,为工程设计提供参考。 1 引言 空温式翅片管换热器是通过吸收外界环境中的热量并传递给低温介质使其气化的设备。其结构如图1所示,翅片结构如图2所示。由于其具备结构简单、运行成本低廉等优点广泛应用于低温液体气化器、低温贮运设备自增压器等[1-3]。实际应用中,低温工况下翅片管换热器普遍存在结霜现象,考虑地区、温度和季节变化在内,各种换热器的结霜面积大约占总面积的60%~85%。结霜,一方面霜层在翅片管表面的沉积增加了冷壁面与空气间的导热热阻,恶化了传热效果;同时,霜层的增长产生的阻塞作用大大增加了空气流过换热器的阻力,造成气流流量的下降,使换热器的换热量大大地减少[4]。以往的空温式翅片管换热器都是依据现有的相关经验来进行设计制造的,并且忽略了翅片管在结霜工况下对传热性能的影响,实际应用偏差较大,有些气化量不足, 影响生产;有些过大,造成不必要的浪费。因此如何合理设计空温式翅片管换热器,方便工程应用是当前急需解决的问题。国内文献对此进行过不少的理论分析与实验研究,目前仍未得出一个比较实用的、相对精确的关联式。本文的目的就是探讨这些问题,为空温式翅片管换热器的设计计算提供参考依据。 2 传热量的计算 由热力学相关知识可知,换热器管内工作介质的压力在临界压力以上,温度低于临界温度时为液体,高于临界温度时为气体;在临界压力和临界温度以下时,有一相变的气-液两相区,温度高于压力对应的饱和温度时为气体,低于饱和

相关主题