搜档网
当前位置:搜档网 › CRC算法

CRC算法

CRC算法
CRC算法

CRC算法与实现bhw98

摘要: 本文首先讨论了CRC的代数学算法,然后以常见的CRC-ITU为例,通过硬件电路的实现,引出了比特型算法,最后重点介绍了字节型快速查表算法,给出了相应的C 语言实现。

关键词: CRC, FCS, 生成多项式, 检错重传

引言

CRC的全称为Cyclic Redundancy Check,中文名称为循环冗余校验。它是一类重要的线性分组码,编码和解码方法简单,检错和纠错能力强,在通信领域广泛地用于实现差错控制。实际上,除数据通信外,CRC在其它很多领域也是大有用武之地的。例如我们读软盘上的文件,以及解压一个ZIP文件时,偶尔会碰到“Bad CRC”错误,由此它在数据存储方面的应用可略见一斑。

差错控制理论是在代数理论基础上建立起来的。这里我们着眼于介绍CRC的算法与实现,对原理只能捎带说明一下。若需要进一步了解线性码、分组码、循环码、纠错编码等方面的原理,可以阅读有关资料。

利用CRC进行检错的过程可简单描述为:在发送端根据要传送的k位二进制码序列,以一定的规则产生一个校验用的r位监督码(CRC码),附在原始信息后边,构成一个新的二进制码序列数共k+r位,然后发送出去。在接收端,根据信息码和CRC码之间所遵循的规则进行检验,以确定传送中是否出错。这个规则,在差错控制理论中称为“生成多项式”。

1 代数学的一般性算法

在代数编码理论中,将一个码组表示为一个多项式,码组中各码元当作多项式的系数。例如1100101 表示为

1·x6+1·x5+0·x4+0·x3+1·x2+0·x+1,即x6+x5+x2+1。

设编码前的原始信息多项式为P(x),P(x)的最高幂次加1等于k;生成多项式为G(x),G(x)的最高幂次等于r;CRC多项式为R(x);编码后的带CRC的信息多项式为T(x)。

发送方编码方法:将P(x)乘以xr(即对应的二进制码序列左移r位),再除以G(x),所得余式即为R(x)。用公式表示为

T(x)=x r P(x)+R(x)

接收方解码方法:将T(x)除以G(x),如果余数为0,则说明传输中无错误发生,否则说

明传输有误。

举例来说,设信息码为1100,生成多项式为1011,即P(x)=x3+x2,G(x)=x3+x+1,计算CRC的过程为

x r P(x) x3(x3+x2) x6+x5 x

-------- = ---------- = -------- = (x3+x2+x) + --------

G(x) x3+x+1 x3+x+1 x3+x+1

即R(x)=x。注意到G(x)最高幂次r=3,得出CRC为010。

如果用竖式除法,计算过程为

1110

-------

1011 /1100000 (1100左移3位)

1011

----

1110

1011

-----

1010

1011

-----

0010

0000

----

010

因此,T(x)=(x6+x5)+(x)=x6+x5+x, 即1100000+010=1100010

如果传输无误,

T(x) x6+x5+x

------ = --------- = x3+x2+x,

G(x) x3+x+1

无余式。回头看一下上面的竖式除法,如果被除数是1100010,显然在商第三个1时,就能除尽。

上述推算过程,有助于我们理解CRC的概念。但直接编程来实现上面的算法,不仅繁琐,效率也不高。实际上在工程中不会直接这样去计算和验证CRC。

下表中列出了一些见于标准的CRC资料:

* 统一去掉了,如04C11DB7实际上是104C11DB7。

** 前称CRC-CCITT。ITU的前身是CCITT。

2 硬件电路的实现方法

多项式除法,可用除法电路来实现。除法电路的主体由一组移位寄存器和模2加法器(异或单元)组成。以CRC-ITU为例,它由16级移位寄存器和3个加法器组成,见下图(编码/解码共用)。编码、解码前将各寄存器初始化为"1",信息位随着时钟移入。当信息位全部输入后,从寄存器组输出CRC结果。

3 比特型算法

上面的CRC-ITU除法电路,完全可以用软件来模拟。定义一个寄存器组,初始化为全"1"。依照电路图,每输入一个信息位,相当于一个时钟脉冲到来,从高到低依次移位。移位前信息位与bit0相加产生临时位,其中bit15移入临时位,bit10、bit3还要加上临时位。当全部信息位输入完成后,从寄存器组取出它们的值,这就是CRC码。

typedef unsigned char bit;

typedef unsigned char byte;

typedef unsigned short u16;

typedef union {

u16 val;

struct {

u16 bit0 : 1;

u16 bit1 : 1;

u16 bit2 : 1;

u16 bit3 : 1;

u16 bit4 : 1;

u16 bit5 : 1;

u16 bit6 : 1;

u16 bit7 : 1;

u16 bit8 : 1;

u16 bit9 : 1;

u16 bit10 : 1;

u16 bit11 : 1;

u16 bit12 : 1;

u16 bit13 : 1;

u16 bit14 : 1;

u16 bit15 : 1;

} bits;

} CRCREGS;

// 寄存器组

CRCREGS regs;

// 初始化CRC寄存器组:移位寄存器置为全"1" void crcInitRegisters()

{

regs.val = 0xffff;

}

// CRC输入一个bit

void crcInputBit(bit in)

{

bit a;

a = regs.bits.bit0 ^ in;

regs.bits.bit0 = regs.bits.bit1;

regs.bits.bit1 = regs.bits.bit2;

regs.bits.bit2 = regs.bits.bit3;

regs.bits.bit3 = regs.bits.bit4 ^ a;

regs.bits.bit4 = regs.bits.bit5;

regs.bits.bit5 = regs.bits.bit6;

regs.bits.bit6 = regs.bits.bit7;

regs.bits.bit7 = regs.bits.bit8;

regs.bits.bit8 = regs.bits.bit9;

regs.bits.bit9 = regs.bits.bit10;

regs.bits.bit10 = regs.bits.bit11 ^ a;

regs.bits.bit11 = regs.bits.bit12;

regs.bits.bit12 = regs.bits.bit13;

regs.bits.bit13 = regs.bits.bit14;

regs.bits.bit14 = regs.bits.bit15;

regs.bits.bit15 = a;

}

// 输出CRC码(寄存器组的值)

u16 crcGetRegisters()

{

return regs.val;

}

crcInputBit中一步一步的移位/异或操作,可以进行简化:

void crcInputBit(bit in)

{

bit a;

a = regs.bits.bit0 ^ in;

regs.val >>= 1;

if(a) regs.val ^= 0x8408;

}

细心的话,可以发现0x8408和0x1021(CRC-ITU的简记式)之间的关系。由于我们是从低到高输出比特流的,将0x1021左右反转就得到0x8408。将生成多项式写成

G(x)=1+x5+x12+x16,是不是更好看一点?

下面是一个典型的PPP帧。最后两个字节称为FCS(Frame Check Sequence),是前面11个字节的CRC。

FF 03 C0 21 04 03 00 07 0D 03 06 D0 3A

我们来计算这个PPP帧的CRC,并验证它。

byte ppp[13] = {0xFF, 0x03, 0xC0, 0x21, 0x04, 0x03, 0x00, 0x07, 0x0D, 0x03, 0x06, 0x00, 0x00};

int i,j;

u16 result;

/////////// 以下计算FCS

// 初始化

crcInitRegisters();

// 逐位输入,每个字节低位在先,不包括两个FCS字节

for(i = 0; i < 11; i++)

{

for(j = 0; j < 8; j++)

{

crcInputBit((ppp[i] >> j) & 1);

}

}

// 得到CRC:将寄存器组的值求反

result = ~crcGetRegisters();

// 填写FCS,先低后高

ppp[11] = result & 0xff;

ppp[12] = (result >> 8) & 0xff;

/////////// 以下验证FCS

// 初始化

crcInitRegisters();

// 逐位输入,每个字节低位在先,包括两个FCS字节

for(i = 0; i < 13; i++)

{

for(j = 0; j < 8; j++)

{

crcInputBit((ppp[i] >> j) & 1);

}

}

// 得到验证结果

result = crcGetRegisters();

可以看到,计算出的CRC等于0x3AD0,与原来的FCS相同。验证结果等于0。初始化为全"1",以及将寄存器组的值求反得到CRC,都是CRC-ITU的要求。事实上,不管初始化为全"1"还是全"0",计算CRC取反还是不取反,得到的验证结果都是0。

4 字节型算法

比特型算法逐位进行运算,效率比较低,不适用于高速通信的场合。数字通信系统(各种通信标准)一般是对一帧数据进行CRC校验,而字节是帧的基本单位。最常用的是一种按字节查表的快速算法。该算法基于这样一个事实:计算本字节后的CRC码,等于上一字节余式CRC码的低8位左移8位,加上上一字节CRC右移8位和本字节之和后所求得的CRC码。如果我们把8位二进制序列数的CRC(共256个)全部计算出来,放在一个表里,编码时只要从表中查找对应的值进行处理即可。

CRC-ITU的计算算法如下:

a.寄存器组初始化为全"1"(0xFFFF)。

b.寄存器组向右移动一个字节。

c.刚移出的那个字节与数据字节进行异或运算,得出一个指向值表的索引。

d.索引所指的表值与寄存器组做异或运算。

f.数据指针加1,如果数据没有全部处理完,则重复步骤b。

g.寄存器组取反,得到CRC,附加在数据之后。

CRC-ITU的验证算法如下:

a.寄存器组初始化为全"1"(0xFFFF)。

b.寄存器组向右移动一个字节。

c.刚移出的那个字节与数据字节进行异或运算,得出一个指向值表的索引。

d.索引所指的表值与寄存器组做异或运算。

e.数据指针加1,如果数据没有全部处理完,则重复步骤b (数据包括CRC的两个字节)。

f.寄存器组的值是否等于“Magic Value”(0xF0B8),若相等则通过,否则失败。

下面是通用的CRC-ITU查找表以及计算和验证CRC的C语言程序:

// CRC-ITU查找表

const u16 crctab16[] =

{

0x0000, 0x1189, 0x2312, 0x329b, 0x4624, 0x57ad, 0x6536, 0x74bf,

0x8c48, 0x9dc1, 0xaf5a, 0xbed3, 0xca6c, 0xdbe5, 0xe97e, 0xf8f7,

0x1081, 0x0108, 0x3393, 0x221a, 0x56a5, 0x472c, 0x75b7, 0x643e,

0x9cc9, 0x8d40, 0xbfdb, 0xae52, 0xdaed, 0xcb64, 0xf9ff, 0xe876,

0x2102, 0x308b, 0x0210, 0x1399, 0x6726, 0x76af, 0x4434, 0x55bd,

0xad4a, 0xbcc3, 0x8e58, 0x9fd1, 0xeb6e, 0xfae7, 0xc87c, 0xd9f5,

0x3183, 0x200a, 0x1291, 0x0318, 0x77a7, 0x662e, 0x54b5, 0x453c,

0xbdcb, 0xac42, 0x9ed9, 0x8f50, 0xfbef, 0xea66, 0xd8fd, 0xc974,

0x4204, 0x538d, 0x6116, 0x709f, 0x0420, 0x15a9, 0x2732, 0x36bb,

0xce4c, 0xdfc5, 0xed5e, 0xfcd7, 0x8868, 0x99e1, 0xab7a, 0xbaf3,

0x5285, 0x430c, 0x7197, 0x601e, 0x14a1, 0x0528, 0x37b3, 0x263a,

0xdecd, 0xcf44, 0xfddf, 0xec56, 0x98e9, 0x8960, 0xbbfb, 0xaa72,

0x6306, 0x728f, 0x4014, 0x519d, 0x2522, 0x34ab, 0x0630, 0x17b9,

0xef4e, 0xfec7, 0xcc5c, 0xddd5, 0xa96a, 0xb8e3, 0x8a78, 0x9bf1,

0x7387, 0x620e, 0x5095, 0x411c, 0x35a3, 0x242a, 0x16b1, 0x0738, 0xffcf, 0xee46, 0xdcdd, 0xcd54, 0xb9eb, 0xa862, 0x9af9, 0x8b70, 0x8408, 0x9581, 0xa71a, 0xb693, 0xc22c, 0xd3a5, 0xe13e, 0xf0b7, 0x0840, 0x19c9, 0x2b52, 0x3adb, 0x4e64, 0x5fed, 0x6d76, 0x7cff, 0x9489, 0x8500, 0xb79b, 0xa612, 0xd2ad, 0xc324, 0xf1bf, 0xe036, 0x18c1, 0x0948, 0x3bd3, 0x2a5a, 0x5ee5, 0x4f6c, 0x7df7, 0x6c7e, 0xa50a, 0xb483, 0x8618, 0x9791, 0xe32e, 0xf2a7, 0xc03c, 0xd1b5, 0x2942, 0x38cb, 0x0a50, 0x1bd9, 0x6f66, 0x7eef, 0x4c74, 0x5dfd, 0xb58b, 0xa402, 0x9699, 0x8710, 0xf3af, 0xe226, 0xd0bd, 0xc134, 0x39c3, 0x284a, 0x1ad1, 0x0b58, 0x7fe7, 0x6e6e, 0x5cf5, 0x4d7c, 0xc60c, 0xd785, 0xe51e, 0xf497, 0x8028, 0x91a1, 0xa33a, 0xb2b3, 0x4a44, 0x5bcd, 0x6956, 0x78df, 0x0c60, 0x1de9, 0x2f72, 0x3efb, 0xd68d, 0xc704, 0xf59f, 0xe416, 0x90a9, 0x8120, 0xb3bb, 0xa232, 0x5ac5, 0x4b4c, 0x79d7, 0x685e, 0x1ce1, 0x0d68, 0x3ff3, 0x2e7a, 0xe70e, 0xf687, 0xc41c, 0xd595, 0xa12a, 0xb0a3, 0x8238, 0x93b1, 0x6b46, 0x7acf, 0x4854, 0x59dd, 0x2d62, 0x3ceb, 0x0e70, 0x1ff9, 0xf78f, 0xe606, 0xd49d, 0xc514, 0xb1ab, 0xa022, 0x92b9, 0x8330, 0x7bc7, 0x6a4e, 0x58d5, 0x495c, 0x3de3, 0x2c6a, 0x1ef1, 0x0f78, };

// 计算给定长度数据的16位CRC。

u16 GetCrc16(const byte* pData, int nLength)

{

u16 fcs = 0xffff; // 初始化

while(nLength>0)

{

fcs = (fcs >> 8) ^ crctab16[(fcs ^ *pData) & 0xff];

nLength--;

pData++;

}

return ~fcs; // 取反

}

// 检查给定长度数据的16位CRC是否正确。

bool IsCrc16Good(const byte* pData, int nLength)

{

u16 fcs = 0xffff; // 初始化

while(nLength>0)

{

fcs = (fcs >> 8) ^ crctab16[(fcs ^ *pData) & 0xff];

nLength--;

pData++;

}

return (fcs == 0xf0b8); // 0xf0b8是CRC-ITU的"Magic Value"

}

使用字节型算法,前面出现的PPP帧FCS计算和验证过程,可用下面的程序片断实现:

byte ppp[13] = {0xFF, 0x03, 0xC0, 0x21, 0x04, 0x03, 0x00, 0x07, 0x0D, 0x03, 0x06, 0x00, 0x00};

u16 result;

// 计算CRC

result = GetCrc16(ppp, 11);

// 填写FCS,先低后高

ppp[11] = result & 0xff;

ppp[12] = (result >> 8) & 0xff;

// 验证FCS

if(IsCrc16Good(ppp, 13))

{

... ...

}

该例中数据长度为11,说明CRC计算并不要求数据2字节或4字节对齐。

至于查找表的生成算法,以及CRC-32等其它CRC的算法,可参考RFC 1661, RFC 3309等文档。需要注意的是,虽然CRC算法的本质是一样的,但不同的协议、标准所规定的初始化、移位次序、验证方法等可能有所差别。

结语

CRC是现代通信领域的重要技术之一。掌握CRC的算法与实现方法,在通信系统的设计、通信协议的分析以及软件保护等诸多方面,能发挥很大的作用。如在作者曾经设计的一个多串口数据传输系统中,每串口速率为460kbps,不加校验时误码率大于10-6,加上简单的奇偶校验后性能改善不很明显,利用CRC进行检错重传,误码率降低至10-15以下,满足了实际应用的要求。

CRC标准及计算过程

CRC标准及计算过程 根据应用环境与习惯的不同,CRC又可分为以下几种标准: ①CRC-8码; ②CRC-12码; ③CRC-16码; ④CRC-CCITT码; ⑤CRC-32码。 CRC-12码通常用来传送6-bit字符串。 CRC-16及CRC-CCITT码则是用来传送8-bit字符串,其中CRC-16为美国采用,而CRC-CCITT为欧洲国家所采用。 CRC-32码大都被采用在一种称为Point-to-Point的同步传输中。 生成过程 下面以最常用的CRC-16为例来说明其生成过程。 CRC-16码由两个字节构成,在开始时CRC寄存器的每一位都预置为1,然后把CRC寄存器与8-bit的数据进行异或(异或:二进制运算相同为0,不同为1;0^0=0;0^1=1;1^0=1;1^1=0),之后对CRC寄存器从高到低进行移位,在最高位(MSB)的位置补零,而最低位(LSB,移位后已经被移出CRC寄存器)如果为1,则把寄存器与预定义的多项式码进行异或,否则如果LSB为零,则无需进行异或。重复上述的由高至低的移位8次,第一个8-bit数据处理完毕,用此时CRC寄存器的值与下一个8-bit数据异或并进行如前一个数据似的8次移位。所有的字符处理完成后CRC寄存器内的值即为最终的CRC值。 计算过程 1.设置CRC寄存器,并给其赋值FFFF(hex)。 2.将数据的第一个8-bit字符与16位CRC寄存器的低8位进行异或,并把结果存入CRC 寄存器。 3.CRC寄存器向右移一位,MSB补零,移出并检查LSB。 4.如果LSB为0,重复第三步;若LSB为1,CRC寄存器与多项式码相异或。 5.重复第3与第4步直到8次移位全部完成。此时一个8-bit数据处理完毕。 6.重复第2至第5步直到所有数据全部处理完成。 7.最终CRC寄存器的内容即为CRC值。

计算法简单实现crc校验

计算法简单实现crc校验 计算法简单实现crc校验 前一段时间做协议转换器的时间用到CRC-16校验,查了不少资料发现都不理想。查表法要建表太麻烦,而计算法觉得那些例子太罗嗦。最后只好自己写了,最后发现原来挺简单嘛:)两个子程序搞定。这里用的多项式为:CRC-16=X16+X12+X5+X0=2 +2 +2+2 =0x11021 因最高位一定为“1”,故略去计算只采用0x1021即可 CRC_Byte:计算单字节的CRC值 CRC_Data:计算一帧数据的CRC值 CRC_HighCRC_Low:存放单字节CRC值 CRC16_HighCRC16_Low:存放帧数据CRC值; ------------------------------------------------------------- ;Functi on:CRConebyte ;Input:CRCByte ;Output:CRC_HighCRC_Low ; ------------------------------------------------------------- CRC_Byte: clrfCRC_Low clrfCRC_High movlw09H movwfv_Loop1 movfCRCByte,w movwfCRC_High CRC: decfszv_Loop1;8次循环,每一位相应计算 gotoCRC10 gotoCRCend CRC10 bcfSTATUS,C rlfCRC_Low rlfCRC_High btfssSTATUS,C   ;gotoCRC;为0不需计算movlw10H;若多项式改变,这里作相应变化xorwfCRC_High,f movlw21H;若多项式改变,这里作相应变化 xorwfCRC_Low,f gotoCRC CRCend: nop nop return ; ------------------------------------------------------------- ;CRCone byteend ; ------------------------------------------------------------- ; ------------------------------------------------------------- ;Functi on:CRCdate ;Input:BufStart(A,B,C)(一帧数据的起始地址)v_Count(要做CRC的字节数);Output:CRC16_HighCRC16_Low(结果); ------------------------------------------------------------- CRC_Data: clrfCRC16_High clrfCRC16_Low CRC_Data10 movfINDF,w

crc校验码计算例题

crc校验码计算例题 1、若信息码字为11100011,生成多项式G(X)=X5+X4+X+1,则计算出的CRC 校验码为?x的最高次幂5则信息码(被除数)补五个0为:1110001100000 除数为110011 ------------10110110 --------------------- 110011/1110001100000 -------110011 ------------------ ---------101111 ---------110011 ------------------ ----------111000 ----------110011 ------------------ ------------101100 ------------110011 ------------------------ -------------111110 -------------110011 ------------------------- ---------------11010 2、信息码为101110101,生成多项式X4+X2+1,求冗余位??? 算法同上被除数补四个0 为:1011101010000 除数为:10101 答案:1100 7E 00 05 60 31 32 33 计算CRC16结果应该是:5B3E 方法如下: CRC-16码由两个字节构成,在开始时CRC寄存器的每一位都预置为1,然后把CRC寄存器与8-bit的数据进行异或(异或:二进制运算相同为0,不同为1;0^0=0;0^1=1;1^0=1;1^1=0),之后对CRC寄存器从

查表法计算CRC

在硬件实现中,CRC 通常采用线性反馈移位寄存器实现。其中一个单元对应CRC 的每一比特,图3-2给出了8比特寄存器。对于移位寄存器中的每一单元,如果在发生器多项式中D 的某次幂为1,那么到下一个单元的连接要经过一个异或门(XOR)。对于每一传输块,首先将移位寄存器置零;接传输块数据输入移位寄存器,当传输块的所有比特全部输入移位寄存器后,移位寄存器的存储内容就是所要求的CRC 比特。这些比特以倒序传输,如图3-2,首先传输在最左寄存器中的CRC 比特。 图3-2 8比特CRC 生成移位寄存器 对于上述算法,当输入1个比特时,要经过一系列的异或和移位,才能完成。上图只是8比特CRC 的实现图,考虑到g CRC24A (D)的多项式,实现更为复杂。而下行峰值速率又相对很高,采用这种方法显然是达不到需求的速率的。下面介绍一种更为高效的查表法[17],多核DSP 计算CRC 也使用了查表法。 设传输块有k 比特,CRC 比特数为k n -;下面是按4比特查表计算24比特CRC 的过程。对于传输块中的二进制序列,可以用下面的多项式表示: ()1011222k k k k m x m m m m --=++++ 式(3-1) 将上式每4个比特组合在一起,如下所示: ()44(1)4011222n n n n m x m m m m --=++ ++ 式(3-2) 求此序列的24比特CRC 时,先乘以242(左移24位)后,再除以CRC 的生成多项式()x g ,所得到的余数即为所求的CRC 码。如下式所示: ()()()() () 242424 2444(1) 01222222n n n m x m m m g x g x g x g x -=+++ 式(3-3) 设:()()()()24 0002r x m Q x g x g x =+ ,其中()0r x 为24位二进制余数;将它代入式(3-3)可得: ()()()()()()()()()()()()2424 24044(1)1042424 044(1)102222222222 n n n n n n m x r x m m Q x g x g x g x g x r x m m Q x g x g x g x --??=++++??? ?????=++++?????? 式(3-4) 因为,()()()()()4204244000002[2]222h l h l r x r x r x r x r x =+=+ 式(3-5)

modbus_rtu_crc计算方法

MODBUS RTU模式下的CRC方法 使用RTU模式,消息包括了一基于CRC方法的错误检测域。CRC域检测了整个消息的内容。 CRC域是两个字节,包含一16位的二进制值。它由传输设备计算后加入到消息中。接收设备重新计算收到消息的CRC,并与接收到的CRC域中的值比较,如果两值不同,则有误。 CRC是先调入一值是全“1”的16位寄存器,然后调用一过程将消息中连续的8位字节各当前寄存器中的值进行处理。仅每个字符中的8Bit数据对CRC有效,起始位和停止位以及奇偶校验位均无效。 CRC产生过程中,每个8位字符都单独和寄存器内容相或(O R),结果向最低有效位方向移动,最高有效位以0填充。L SB被提取出来检测,如果LSB为1,寄存器单独和预置的值或一下,如果LSB为0,则不进行。整个过程要重复8次。在最后一位(第8位)完成后,下一个8位字节又单独和寄存器的当前值相或。最终寄存器中的值,是消息中所有的字节都执行之后的C RC值。 CRC添加到消息中时,低字节先加入,然后高字节。CRC简单函数如下: unsigned short CRC16(puchMsg, usDataLen) unsigned char *puchMsg ; /* 要进行CRC校验的消息 */ unsigned short usDataLen ; /* 消息中字节数 */ { unsigned char uchCRCHi = 0xFF ; /* 高CRC字节初始化 */ unsigned char uchCRCLo = 0xFF ; /* 低CRC 字节初始化 */ unsigned uIndex ; /* CRC循环中的索引 */ while (usDataLen--) /* 传输消息缓冲区 */

CRC16校验码如何计算

CRC16校验码如何计算 比如我有一个16进制只字符串 7E 00 05 60 31 32 33 要在末尾添加两个CRC16校验码校验这7个16进制字符请写出算法和答案 7E 00 05 60 31 32 33 计算CRC16结果应该是:5B3E 方法如下: CRC-16码由两个字节构成,在开始时CRC寄存器的每一位都预置为1,然后把CRC寄存器与8-bit的数据进行异或(异或:二进制运算相同为0,不同为1; 0^0=0;0^1=1;1^0=1;1^1=0),之后对CRC寄存器从高到低进行移位,在最高位(MSB)的位置补零,而最低位(LSB,移位后已经被移出CRC寄存器)如果为1,则把寄存器与预定义的多项式码进行异或,否则如果LSB为零,则无需进行异或。重复上述的由高至低的移位8次,第一个8-bit数据处理完毕,用此时CRC寄存器的值与下一个8-bit数据异或并进行如前一个数据似的8次移位。所有的字符处理完成后CRC寄存器内的值即为最终的CRC值。 1.设置CRC寄存器,并给其赋值FFFF(hex)。 2.将数据的第一个8-bit字符与16位CRC寄存器的低8位进行异或,并把结果存入CRC寄存器。 3.CRC寄存器向右

移一位,MSB补零,移出并检查LSB。 4.如果LSB为0,重复第三步;若LSB为1,CRC寄存器与多项式码相异或。 5.重复第3与第4步直到8次移位全部完成。此时一个8-bit 数据处理完毕。 6.重复第2至第5步直到所有数据全部处理完成。 7.最终CRC寄存器的内容即为CRC值。 CRC(16位)多项式为 X16+X15+X2+1,其对应校验二进制位列为1 1000 0000 0000 0101。

CRC_校验码的计算方法

CRC 校验码的计算方法 CRC从原理到实现=============== 作者:Spark Huang(hcpp@https://www.sodocs.net/doc/2d2718062.html,) 日期:2004/12/8 摘要:CRC(Cyclic Redundancy Check)被广泛用于数据通信过程中的差错检测,具有很强的检错能力。本文详细介绍了CRC的基本原理,并且按照解释通行的查表算法的由来的思路介绍了各种具体的实现方法。 1.差错检测 数据通信中,接收端需要检测在传输过程中是否发生差错,常用的技术有奇偶校验(Parity Check),校验和(Checksum)和CRC(Cyclic Redundancy Check)。它们都是发送端对消息按照某种算法计算出校验码,然后将校验码和消息一起发送到接收端。接收端对接收到的消息按照相同算法得出校验码,再与接收到的校验码比较,以判断接收到消息是否正确。 奇偶校验只需要1位校验码,其计算方法也很简单。以奇检验为例,发送端只需要对所有消息位进行异或运算,得出的值如果是0,则校验码为1,否则为0。接收端可以对消息进行相同计算,然后比较校验码。也可以对消息连同校验码一起计算,若值是0则有差错,否则校验通过。 通常说奇偶校验可以检测出1位差错,实际上它可以检测出任何奇数位差错。 校验和的思想也很简单,将传输的消息当成8位(或16/32位)整数的序列,将这些整数加起来而得出校验码,该校验码也叫校验和。校验和被用在IP协议中,按照16位整数运算,而且其MSB(Most Significant Bit)的进位被加到结果中。 显然,奇偶校验和校验和都有明显的不足。奇偶校验不能检测出偶数位差错。对于校验和,如果整数序列中有两个整数出错,一个增加了一定的值,另一个减小了相同的值,这种差错就检测不出来。 2.CRC算法的基本原理------------------- CRC算法的是以GF(2)(2元素伽罗瓦域)多项式算术为数学基础的,听起来很恐怖,但实际上它 的主要特点和运算规则是很好理解的。 GF(2)多项式中只有一个变量x,其系数也只有0和1,如: 1*x^7 + 0*x^6 + 1*x^5 + 0*x^4 + 0*x^3 + 1*x^2 +1*x^1 + 1*x^0

CCITT CRC-16计算原理与实现

CCITT CRC-16计算原理与实现 CRC的全称为Cyclic Redundancy Check,中文名称为循环冗余校验。它是一类重要的线性分组码,编码和解码方法简单,检错和纠错能力强,在通信领域广泛地用于实现差错控制。实际上,除数据通信外,CRC在其它很多领域也是大有用武之地的。例如我们读软盘上的文件,以及解压一个ZIP文件时,偶尔会碰到“Bad CRC”错误,由此它在数据存储方面的应用可略见一斑。 差错控制理论是在代数理论基础上建立起来的。这里我们着眼于介绍CRC的算法与实现,对原理只能捎带说明一下。若需要进一步了解线性码、分组码、循环码、纠错编码等方面的原理,可以阅读有关资料。 利用CRC进行检错的过程可简单描述为:在发送端根据要传送的k位二进制码序列,以一定的规则产生一个校验用的r位监督码(CRC码),附在原始信息后边,构成一个新的二进制码序列数共k+r位,然后发送出去。在接收端,根据信息码和CRC码之间所遵循的规则进行检验,以确定传送中是否出错。这个规则,在差错控制理论中称为“生成多项式”。 1 代数学的一般性算法 在代数编码理论中,将一个码组表示为一个多项式,码组中各码元当作多项式的系数。例如 1100101 表示为 1·x6+1·x5+0·x4+0·x3+1·x2+0·x+1,即 x6+x5+x2+1。 设编码前的原始信息多项式为P(x),P(x)的最高幂次加1等于k;生成多项式为G(x),G(x)的最高幂次等于r;CRC多项式为R(x);编码后的带CRC的信息多项式为T(x)。 发送方编码方法:将P(x)乘以xr(即对应的二进制码序列左移r位),再除以 G(x),所得余式即为R(x)。用公式表示为 T(x)=xrP(x)+R(x) 接收方解码方法:将T(x)除以G(x),如果余数为0,则说明传输中无错误发生,否则说明传输有误。 举例来说,设信息码为1100,生成多项式为1011,即P(x)=x3+x2,G(x)=x3+x+1,计算CRC的过程为 xrP(x) x3(x3+x2) x6+x5 x -------

16位CRC校验码计算程序

/*************************************************************** 16位CRC计算方法 1.预置1个16位的寄存器为十六进制FFFF(即全为1);称此寄存器为CRC寄存器;2.把第一个8位二进制数据(既通讯信息帧的第一个字节)与16位的CRC寄存器的低8位相异或,把结果放于CRC寄存器; 3.把CRC寄存器的内容右移一位(朝低位)用0填补最高位,并检查右移后的移出位;4.如果移出位为0:重复第3步(再次右移一位); 如果移出位为1:CRC寄存器与多项式A001(1010 0000 0000 0001)进行异或;5.重复步骤3和4,直到右移8次,这样整个8位数据全部进行了处理; 6.重复步骤2到步骤5,进行通讯信息帧下一个字节的处理; 7.将该通讯信息帧所有字节按上述步骤计算完成后,得到的16位CRC; *****************************************************************/ /**************************************************************************** 名称: UART_CRC16_Work() 说明: CRC16校验程序 参数: *CRC_Buf:数据地址 CRC_Leni:数据长度 返回: CRC_Sumx:校验值 *****************************************************************************/ unsigned int UART_CRC16_Work(unsigned char *CRC_Buf,unsigned char CRC_Leni) { unsigned char i,j; unsigned int CRC_Sumx; CRC_Sumx=0xFFFF; for(i=0;i>=1; CRC_Sumx^=0xA001; } else

CRC计算方法

1. CRC校验原理 CRC校验原理看起来比较复杂,好难懂,因为大多数书上基本上是以二进制的多项式形式来说明的。其实很简单的问题,其根本思想就是先在要发送的帧后面附加一个数(这个就是用来校验的校验码,但要注意,这里的数也是二进制序列的,下同),生成一个新帧发送给接收端。当然,这个附加的数不是随意的,它要使所生成的新帧能与发送端和接收端共同选定的某个特定数整除(注意,这里不是直接采用二进制除法,而是采用一种称之为“模2除法”)。到达接 收端后,再把接收到的新帧除以(同样采用“模2除法”)这个选定的除数。因为在发送端发送数据帧之 前就已通过附加一个数,做了“去余”处理(也就已经 能整除了),所以结果应该是没有余数。如果有余数,则表明该帧在传输过程中出现了差错。 【说明】“模2除法”与“算术除法”类似,但 它既不向上位借位,也不比较除数和被除数的相同位数值的大小,只要以相同位数进行相除即可。模2加法运算为:1+1=0,0+1=1,0+0=0,无进位,也无借位;模2减法运算为:1-1=0,0-1=1,1-0=1,0-0=0,也无进位,无借位。相当于二进制中的逻辑异或运算。也就是比较后,两者对应位相同则结果为“0”,不 同则结果为“1”。如100101除以1110,结果得到 商为11,余数为1,如图5-9左图所示。如 11×11=101,如图5-9右图所示。

图5-9 “模2除法”和“模2乘法”示例 具体来说,CRC校验原理就是以下几个步骤: (1)先选择(可以随机选择,也可按标准选择, 具体在后面介绍)一个用于在接收端进行校验时,对接收的帧进行除法运算的除数(是二进制比较特串,通常是以多项方式表示,所以CRC又称多项式编码 方法,这个多项式也称之为“生成多项式”)。 (2)看所选定的除数二进制位数(假设为k位),然后在要发送的数据帧(假设为m位)后面加上k-1 位“0”,然后以这个加了k-1个“0“的新帧(一共是 m+k-1位)以“模2除法”方式除以上面这个除数,所 得到的余数(也是二进制的比特串)就是该帧的 CRC校验码,也称之为FCS(帧校验序列)。但要 注意的是,余数的位数一定要是比除数位数只能少一位,哪怕前面位是0,甚至是全为0(附带好整除时)也都不能省略。 (3)再把这个校验码附加在原数据帧(就是m位 的帧,注意不是在后面形成的m+k-1位的帧)后面,构建一个新帧发送到接收端,最后在接收端再把这个新帧以“模2除法”方式除以前面选择的除数,如果没

CRC校验码计算详解

CRC校验码计算详解 以实例说明:2008年下半年上午试题(18)。 采用CRC进行差错检验,生成多项式为G(X)=X4+X+1,信息码字为10110,则计算出的CRC校验码是: A. 0000 B. 0100 C. 0010 D.1111 【分析】 符号表示假定:多项式和多项式的系数排列均用相同的符号表示,如 G(X)= X4+X+1 G(X)=10011 1.已知条件如下: 原码字记做M(X),即:M(X) = 10110 生成多项式记做G(X),即:G(X) = 10011 G(X)的最高阶数记做r,此处r = 4 2.计算步骤 (1)计算XrM(X) 也就是把M(X)的尾部添加r个0 XrM(X) = 10110 0000 (2)计算XrM(X)长除G(X),余数记做Y(X) 这里的“长除”计算方法如下: 10110 0000 10011 001010000 10011 0011100 10011 01111 注意Y(X)的位数为r(此处为4),所以Y(X) = 1111 Y(X)即是CRC校验码。 (3) 计算传输码字T(X) = XrM(X)-Y(X) 计算方法:在M(X)末尾连接上Y(X)即可 即:T(X) = 10110 1111 【答案】 此题只要计算出校验码Y(X)即可。正确答案为:D XrM(X) 10110 0000 -- G(X) 10011 (注意位对应方式,对应位进行异或运算即可) 00101 0000 -- G(X) 100 11 (计算方法同上) 001 1100 -- G(X) 100 11 01111 (此数已经小于G(X),计算到此为止,即Y(X))

一种CRC并行计算原理及实现方法

电子学报 ACTA ELECTRONICA SINICA 1999年第4期第27卷 Vol.27 No.41999 一种CRC并行计算原理及实现方法 朱荣华 【提要】 本文提出一种通用的CRC并行计算原理及实现方法,适于不同的CRC生成多项式和不同并行度(如8位、16位、及32位等),与目前已采用的查表法比较,不需要存放余数表的高速存储器,减少了时延,且可通过增加并行度来降低高速数传系统的CRC运算时钟频率. 关键词:循环冗余码的并行计算,CRC余数,高速数传系统 The Principle and Implementation of a Parallel CRC Computing Zhu Ronghua (Optical Fiber Communication National Key Lab of UESTC,Chengdu 610054) Abstract: The principle and implementation of a general parallel Cyclic Redundancy Code,or CRC computing are described in the paper.It is suitable for any generator polynomial and any parallel degree of generator polynomial between 1 and https://www.sodocs.net/doc/2d2718062.html,pare with Table Lookup Algorithm,it need not the high speed RAM which was used to store the remainder table,and decrease the delay.Thus,we can increase properly parallel degree to decrease the clock frequency of CRC computing in high-speed digital systems. Key words: CRC parallel computing,CRC remainder,High-speed digital system 一、引 言 循环冗余校验码简称为循环冗余码或CRC码(Cyclic Redundancy Check),是一种检出概率高、且易于用硬件实现的检错码.CRC码由一个生成多项式(最高次幂为k)产生,k次幂的生成多项式可产生k-1位的冗余码.适当选取生成多项式可以使CRC码能检出所有奇数位的随机误码,以及突发长度小于等于k-1的突发误码[1,3]. CRC码的编码过程如下: 设待校验的信息码有n位,M=(m n-1,m n-2,…,m1,m0),用多项式M(x)表示: M(x)=m n-1X n-1+…+m1X1+m0 (1) 如果所采用的生成多项式g(x)的最高次幂为k,则先在式(1)的两端乘以X k,变成:

海明码和CRC编码的图解和详细计算过程说课讲解

海明码和C R C编码的图解和详细计算过程

一、CRC编码 1、已知多项式和原报文,求CRC编码,如:使用多项式G(x)=x^5 + x^4 + x +1,对报文10100110进行CRC编码,则编码后的报文是什么? 方法与步骤: 步骤1:对报文10100110,在末尾添加所给多项式的最高次阶个0,如本题为 x^5,则添加5个0,变为:1010011000000。 步骤2:由多项式G(x)=x^5 + x^4 + x +1,得其阶数为1的二进制编码为:110011。 步骤3:步骤1中求得的1010011000000对步骤2中求得的110011进行模二除法,所得到的余数即为校验码,把校验码添加在原报文尾部即为所求的编码报文1010011011000,具体如下: 2.已知道接收到的CRC编码,求原编码或判断是否出错,如:已知G(x)=x^5 + x^4 + x +1,接收的为1010011011001,问是否出错? 步骤一:由多项式G(x)=x^5 + x^4 + x +1,得其阶数为1的二进制编码为:110011。 步骤二:用接收的报文1010011011001对步骤一的110011进行模二除法,看余数是否为0,如为0则正确,如不为0,则出错,计算余数为1,则出错。如下图:

二、海明码 1.求海明码,如:求1011海明码。 步骤一:求校验码位数r,公式为:2^r ≥r+k+1的最小r。题目中为 2^3≥3+4+1,所以取r=3,即校验码为3位。 步骤二:画图,并把原码的位编号写成2的指数求和的方式,其中位编号长度为原码和校验码个数之和,从1开始。校验码插在2的阶码次方的位编号下,且阶小于r。如下: 原码的位编号写成2的指数求和: 7=2^2+2^1+2^0; 6=2^2+2^1; 5=2^2+2^0; 3=2^1+2^0; 步骤三:求校验位,即每个校验位的值为步骤二中“原码的位编号写成2的指数求和”式子中相应2的阶出现的位编号下原码的值异或。即: r0=I4异或I2异或I1=1; (2^0次出现在7,5,3位,其对应的值为I4,I2,I1) r1=I4异或I3异或I1=0; (2^1次出现在7,6,3位,其对应的值为I4,I3,I1) r2=I4异或I3异或I2=0; (2^0次出现在7,6,5位,其对应的值为I4,I3,I2) 把r0,r1,r2带入海明码,得所求的海明码为:1010101

CRC16查表法中表格数据计算方法及实例

最近在搞CRC校验,用的是CRC16标准,查看了很多资料发现很多讲的都是CRC16-CCITT标准,一直想弄明白CRC-16标准中的采用查表法的方式中那两个表格中的数是如何求出来的。可惜没有一个文章仔细的讲,更没有文章给出实例来算一算。 一切只能靠自己了,谁让我喜欢寻根摸底呢。研究了一下本站会员玉丫子的文章,自己琢磨了琢磨,终于知道是怎么算出来的了。 CRC16算法的生成多项式x^16 + x^15 + x^2 + 1,十六进制表示为0x8005。 CRC16常见的表格中的数据是按照先传输LSB,消息右移进寄存器来计算的。因此需要判断寄存器的最低位LSB,同时要将0x8005按位颠倒后(0xA001)根据LSB的情况决定是否与寄存器异或即可。 CRC16的表格中对应的数依次为0~255计算出来的CRC值,因此,此处只选取其中一两个数作为实例计算CRC值。 具体步骤如下所示: 1)从0~255中选取需要计算的数,将其对应的十六进制数放入一个长度为16的寄存器的低八位,高八位填充0; 2)如果寄存器的末位LSB为1,将寄存器的数值右移1位,再与0xA001位异或,否则仅将寄存器右移1位; 3)重复第2步,直到低八位全部右移出寄存器; 4)寄存器中的值则为校验码。 从0~255中挑选2(对应0x02)计算其CRC值: 0x02的CRC-16的表格计算(反向) 00000000 00000010 <- 最低位LSB = 0,高八位填充0 00000000 000000010 右移,高位填充0,并舍弃最后一位 ----------------- 第一次计算 00000000 00000001 <- LSB = 1 00000000 000000001 右移,舍弃最后一位 ^10100000 00000001 <-与0xA001异或 ----------------- 第二次 10100000 00000001 <- LSB = 1 01010000 000000001右移,舍弃最后一位 ^10100000 00000001 <-与0xA001异或 ----------------- 第三次 11110000 00000001 <- LSB = 1 01111000 000000001右移,舍弃最后一位 ^10100000 00000001 <-与0xA001异或 ----------------- 第四次 11011000 00000001 <- LSB = 1 01101100 000000001右移,舍弃最后一位 ^10100000 00000001 <-与0xA001异或 ----------------- 第五次 11001100 00000001 <- LSB = 1 01100110 000000001右移,舍弃最后一位 ^10100000 00000001 <-与0xA001异或 ----------------- 第六次 11000110 00000001 <- LSB = 1 01100011 000000001右移,舍弃最后一位 ^10100000 00000001 <-与0xA001异或 ----------------- 第七次 11000011 00000001 <- LSB = 1 01100001 100000001右移,舍弃最后一位 ^10100000 00000001 <-与0xA001异或 ----------------- 一共右移了八次,得到的结果为CRC 11000001 10000001 <- CRC: 0xC1 81 从本文最后的附表中可以看出auchCRCHi[]的第三个值就是0x 81,auchCRCLo[]的第三个值就是0xC1,可见计算无误。

CRC计算方法

CRC计算方法 1.预置1个16位的寄存器为十六进制FFFF(即全为1);称此寄存器为CRC 寄存器; 2.把第一个8位二进制数据(既通讯信息帧的第一个字节)与16位的CRC寄存器的低 8位相异或,把结果放于CRC寄存器; 3.把CRC寄存器的内容右移一位(朝低位)用0填补最高位,并检查右移后的移出位; 4.如果移出位为0:重复第3步(再次右移一位); 如果移出位为1:CRC寄存器与多项式A001(1010 0000 0000 0001)进行异或; 5.重复步骤3和4,直到右移8次,这样整个8位数据全部进行了处理;6.重复步骤2到步骤5,进行通讯信息帧下一个字节的处理; 7.将该通讯信息帧所有字节按上述步骤计算完成后,得到的16位CRC寄存器的高、低 字节进行交换 7E 00 05 60 31 32 33 计算CRC16结果应该是:5B3E 方法如下: CRC-16码由两个字节构成,在开始时CRC寄存器的每一位都预置为1,然后把CRC寄存器与8-bit的数据进行异或(异或:二进制运算相同为0,不同为1;0^0=0;0^1=1;1^0=1;1^1=0),之后对CRC寄存器从高到低进行移位,在最高位(MSB)的位置补零,而最低位(LSB,移位后已经被移出CRC寄存器)如果为1,则把寄存器与预定义的多项式码进行异或,否则如果LSB为零,则无需进行异或。重复上述的由高至低的移位8次,第一个8-bit数据处理完毕,用此时CRC寄存器的值与下一个8-bit数据异或并进行如前一个数据似的8次移位。所有的字符处理完成后CRC寄存器内的值即为最终的CRC值。 1.设置CRC寄存器,并给其赋值FFFF(hex)。 2.将数据的第一个8-bit字符与16位CRC寄存器的低8位进行异或,并把结果存入CRC寄存器。3.CRC寄存器向右移一位,MSB补零,移出并检查LSB。4.如果LSB为0,重复第三步;若LSB为1,CRC寄存器与多项式码相异或。5.重复第3与第4步直到8次移位全部完成。此时一个8-bit数据处理完毕。6.重复第2至第5步直到所有数据全部处理完成。 7.最终CRC寄存器的内容即为CRC值。 CRC(16位)多项式为 X16+X15+X2+1,其对应校验二进制位列为1 1000 0000 0000 0101

三种CRC计算

//CRC16校验在通讯中应用广泛,这里不对其理论进行讨论,只对常见的3种 //实现方法进行测试。方法1选用了一种常见的查表方法,类似的还有512字 //节、256字等查找表的,至于查找表的生成,这里也略过。 // ---------------- POPULAR POLYNOMIALS ---------------- // CCITT: x^16 + x^12 + x^5 + x^0 (0x1021) // CRC-16: x^16 + x^15 + x^2 + x^0 (0x8005) #define CRC_16_POLYNOMIALS 0x8005 // -------------------------------------------------------------- // CRC16计算方法1:使用2个256长度的校验表 // -------------------------------------------------------------- const BYTE chCRCHTalbe[] = // CRC 高位字节值表{ 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40 };

CCITT CRC-16计算原理与实现CRC-ITU

CCITT CRC-16计算原理与实现 时间:2011-08-28 22:37:20 来源:作者: CRC的全称为Cy clic Redundancy Check,中文名称为循环冗余校验。它是一类重要的线性分组码,编码和解码方法简单,检错和纠错能力强,在通信领域广泛地用于实现差错控制。实际上,除数据通信外,CRC在其它很多领域也是大有用武之地的。例如我们读软盘上的文件,以及解压一个ZIP文件时,偶尔会碰到“Bad CRC”错误,由此它在数据存储方面的应用可略见一斑。 差错控制理论是在代数理论基础上建立起来的。这里我们着眼于介绍CRC的算法与实现,对原理只能捎带说明一下。若需要进一步了解线性码、分组码、循环码、纠错编码等方面的原理,可以阅读有关资料。 利用CRC进行检错的过程可简单描述为:在发送端根据要传送的k位二进制码序列,以一定的规则产生一个校验用的r位监督码(CRC码),附在原始信息后边,构成一个新的二进制码序列数共k+r位,然后发送出去。在接收端,根据信息码和CRC码之间所遵循的规则进行检验,以确定传送中是否出错。这个规则,在差错控制理论中称为“生成多项式”。 1 代数学的一般性算法 在代数编码理论中,将一个码组表示为一个多项式,码组中各码元当作多项式的系数。例如1100101 表示为 1·x6+1·x5+0·x4+0·x3+1·x2+0·x+1,即x6+x5+x2+1。 设编码前的原始信息多项式为P(x),P(x)的最高幂次加1等于k;生成多项式为G(x),G(x)的最高幂次等于r;CRC多项式为R(x);编码后的带CRC的信息多项式为T(x)。 发送方编码方法:将P(x)乘以xr(即对应的二进制码序列左移r位),再除以G(x),所得余式即为R(x)。用公式表示为 T(x)=xr P(x)+R(x) 接收方解码方法:将T(x)除以G(x),如果余数为0,则说明传输中无错误发生,否则说明传输有误。 举例来说,设信息码为1100,生成多项式为1011,即P(x)=x3+x2,G(x)=x3+x+1,计算CRC的过程为xrP(x) x3(x3+x2) x6+x5 x -------- = ---------- = -------- = (x3+x2+x) + -------- G(x) x3+x+1 x3+x+1 x3+x+1 即R(x)=x。注意到G(x)最高幂次r=3,得出CRC为010。 如果用竖式除法,计算过程为 1110 ------- 1011 /1100000 (1100左移3位) 1011 ---- 1110 1011 ----- 1010 1011 ----- 0010 0000

相关主题