搜档网
当前位置:搜档网 › 典型例题分析

典型例题分析

典型例题分析
典型例题分析

典型例题-G-方差分析-2

某企业准备用三种方法组装一种新的产品,为确定哪种方法每小时生产的产品数量最多,随机抽取了30名工人,并指定每个人使用其中的一种方法。通过对每个工人生产的产品数进行方差分析,得到如下表所示的结果。

每个工人生产产品数量的方差分析表

(2)若显著性水平为α=0.05,检验三种方法组装的产品数量之间是否有显著差异。 解:

(1)完成方差分析表,以表格中所标的①、②、③、④、⑤、⑥为顺序,来完成表格,具体步骤如下: ①求k -1

根据题目中“该企业准备用三种方法组装一种新的产品”可知,因素水平(总体)的个数k =3,所以第一自由度df 1=k -1=3-1=2,即SSA 的自由度。 ②求n -k

由“随机抽取了30名工人”可知,全部观测值的个数n =30,因此可以推出第二自由度df 2=n -k =30-3=27,即SSE 的自由度。 ③求组间平方和SSA

已知第一自由度df 1=k -1=3-1=2,MSA =210 根据公式

1-=

=

k SSA

MSA 自由度组间平方和

所以,SSA =MSA ×(k -1)=210×2=420

④求总误差平方和SST

由上面③中可以知道SSA =420;此外从表格中可以知道:组内平方和SSE =3836,根据公式SST =SSA +SSE 可以得出SST =420+3836=4256,即总误差平方和SST=4256 ⑤求SSE 的均方MSE

已知组内平方和SSE =3836,SSE 的自由度n -k =30-3=27 根据公式

0741

.142273836

==-==

k n SSE MSE 自由度组内平方和

所以组内均方MSE =142.0741

⑥求检验统计量F

已知MSA =210,MSE =142.0741 根据

4781.10741.142210

===

MSE MSA F

所以F=1.4781

(2)题目中假设α=0.05,根据第一自由度df 1=k -1=3-1=2和第二自由度df 2=n -k =30-3=27,查F 分布表得到临界值F 0.05(2,27)=3.354131,所以F =1.4781

典型例题-G-方差分析-3

五个地区每天发生交通事故的次数如表1所示。

由于是随机抽样,有一些地区的样本容量较多,(如南部和西部)而有些地区样本容量较少(如东部)。试以α=0.01的显著性水平检验各地区平均每天交通事故的次数是否相等。 解:

计算原数据的和:

以及原数据的平方和:

()()∑∑===++++-

++++=-=r

j nj

i ij x n x SST 11

222

6538.2006755646657261

771539834898831

()0167

.1186676555645664577715398348988312222221112

=????

??++++-++++=-=∑∑∑===j

r

j nj

i r

j j ij

x n x SSE

6371.820167.1186538.200=-=-=SSE SST SSA

6593

.2046371

.821,4151==-=∴=-=-r SSA MSA r

6198

.5210167

.118,21526==-=∴=-=-r n SSE MSE r n

6762.36198.56593

.20===

∴MSE MSA F

单因素方差分析表

假设检验:

H 0:μ1=μ2=μ3=μ4=μ5,五个地区平均每天交通事故的次数相等。

H 1:μ1,μ2,μ3,μ4,μ5不全相等,五个地区平均每天交通事故的次数不相等。 查表得:F 0.01(4,21)=4.37>F =3.6762

所以接受H 0,即五个地区平均每天交通事故的次数相等。

典型例题-H-相关与回归分析-2

设有统计资料如下表所示。

用EXCEL 的回归分析(置信度90%),得到如下结果: SUMMARY OUTPUT 回归统计

Multiple R 0.987760119R Square 0.975670053Adjusted R Square 0.972628809

标准误差

3.545815055观测值10方差分析

df

SS MS

F Significance F 回归分析

14033.5175654033.517565320.81287799.67595E-08

残差8100.582435312.57280441

总计

94134.1

Coefficients 标准误差t Stat P-value Lower 95%Upper 95%下限 90.0%上限 90.0%Intercept -0.208871752.879726332-0.0725318060.943959317-6.849532574 6.431789074-5.563861187 5.146117686X Variable 1

0.7176566730.04006736917.911250049.67595E-08

0.6252611530.8100521930.6431494750.792163871

试通过用公式计算,比较对照,理解所得结果。 解:

x -bar =66.2,y -bar =47.3 相关系数为

()()()()

987760119

.01

.41346.78314

.56202

2

=?=

----=

∑∑∑Y Y X X Y Y X X r i

i

i i

XY

()1

.41341

2

=-=∑=n

i i y y SST

717656673.066251656104736623693310?21212

1111=-??-?=??? ??-?

??

????? ??-=∑∑∑∑∑=====n i n i i i n i i n

i i n

i i i x x n y x y x n β

20887175.02.66717656673.03.47??0-=?-=-=x y ββ

i i x y 717656673.020887175.0?+-=

()517565

.4033?12

=-=∑=n

i i y y SSR

()5824353.100?1

2

=-=∑=n i i i y

y SSE

SSR +SSE =4033.517565+100.5824353=4134.1=SST

2

22)(987760119.0975670053.01.4134517565.4033XY r SST SSR r =====

对于第一部分:

SUMMARY OUTPUT

回归统计

Multiple R 0.987760119R Square 0.975670053Adjusted R Square 0.972628809

标准误差

3.545815055观测值

10

通过以上计算分析,可知:

Multiple R 0.987760119 是相关系数; R Square 0.975670053 是判定系数;

Adjusted R Square 0.972628809 是根据以下公式来计算的:

972628809

.011101

10)975670053.01(111)1(122=---?--=---?

--=p n n R R

标准误差 3.545815055 是根据以下公式来计算的:

()545815055.32105824353

.10022

?1

2

=-=-=

--=

∑=n SSE n y

y s n

i i

i

e

观测值 10 是原始数据的个数,即n 。

对于第二部分:

方差分析df SS

MS F

Significance F 回归分析14033.5175654033.517565320.8128779

9.67595E-08

残差8100.582435312.57280441

总计

9

4134.1

第一列df 是自由度,第1行的1表示是一元线性回归;第二行是残差的自由度n -2=8,第三行是总的自由度1+8=9;

第二列SS 是误差平方,第一行是SSR =4033.517565,第二行是SSE =100.5824353,第三行是SST =4134.1,这里有SSR +SSE =SST ;

第三列MS 是平均误差平方,第一行是MSR =4033.517565/1=4033.517565,第二行是MSE =100.5824353/8=12.57280441;

第四列F 是F =MSR /MSE =4033.517565/12.57280441=320.6128779;

最后一列Significance F 是用EXCEL 函数FDIST(320.8128779,1,8)计算出来的。9.67595E-08是科学计数法,表示9.67595×10-8 对于第三部分:

Coefficients 标准误差t Stat P-value Lower 95%Upper 95%下限 90.0%上限 90.0%Intercept -0.208871752.879726332-0.0725318060.943959317-6.8495325746.431789074-5.5638611875.146117686X Variable 1

0.7176566730.04006736917.911250049.67595E-080.6252611530.8100521930.6431494750.792163871

第一列Coefficients 是回归系数,第一行是截距的回归系数,即β0^=-0.20887175,第二行是斜率的回归系数,即β1^=0.717656673;

第二列标准误差,第一行是截距的标准误差,是根据以下公式来计算的:

()

879726332

.26

.78312.66101545815055.3)(12

1

2

2

?0

=+?=-+=∑=n

i i

i

e

x x x n

s s β

第二行是斜率的标准误差,是根据以下公式来计算的:

()

040067369

.06

.7831545815055

.31

2

?1

==

-=

∑=n

i i

i

e

x x s s β

第三列t Stat ,即t 统计量,由对应的回归系数除以标准误差:

-0.20887175/2.879726332=-0.072531806 0.717656673/0.040067369=17.91125004

第四列P value ,是用EXCEL 函数TDIST(|t Stat|,n -2,2)计算出来的,第一个参数是t 统计量,第二个参数是自由度,第三个参数2表示双尾。

TDIST(|-0.072531806|,8,2)=TDIST(0.072531806,8,2)=0.943959317 TDIST(|17.91125004|,8,2)=TDIST(17.91125004,8,2)=9.67595E-08

9.67595E-08是科学计数法,表示9.67595×10-8

第五、六列的Lower 95%,Upper 95%是EXCEL 默认的95%置信度下,截距和斜率的置信区间,是根据以下公式来计算的:

879726332.230600413.220887175.0)2(?0

?0?±-=-±β

αβs n t

即:

849532574.6)2(?0

?0-=--β

αβs n t 431789074.6)2(?0

?0=-+β

αβs n t

040067369.030600413.2717656673.0)2(?1

?1?±=-±β

αβs n t

即:

625261153.0)2(?1

?1=--β

αβs n t

810052193.0)2(?1

?1=-+β

αβs n t

第七、八列的下限90%,上限90%是根据输入的90%置信度下,截距和斜率的置信区间,是根据以下公式来计算的:

879726332.285954803.120887175.0)2(?0

?0?±-=-±β

αβs n t

即:

563861187.5)2(?0

?0-=--β

αβs n t 146117686.5)2(?0

?0=--β

αβs n t

040067369.085954803.1717656673.0)2(?1

?1?±=-±β

αβs n t

即:

643149475.0)2(?1

?1=--β

αβs n t 792163871.0)2(?1

?1=-+β

αβs n t

典型例题-I-时间序列分析-1

某企业某种产品的有关资料如表1所示。

表1

要求:

(1)将表中空格数字填齐;

(2)计算1994年-1999年间该企业产量的年平均增长速度。 解:

(2)

年平均增长速度=%73.31%7.104%3.104%5.100%104%3.1055

=-????

典型例题-J-指数-1

给出某市场上四种蔬菜的销售资料如下表所示。

要求:(1)用拉氏公式编制四种蔬菜的价格总指数和销售量总指数; (2)再用帕氏公式编制四种蔬菜的价格总指数和销售量总指数; (3)比较两种公式编制出来的价格总指数和销售量总指数的差异。 解:

(1)拉氏价格指数和销售量指数

%77.1023865039720

001==

=

∑∑q

p q p L p

%26.1033865039910

01==

=

∑∑p

q p

q L q

(2)帕氏价格指数和销售量指数

%43.1023991040880

1

011==

=

∑∑q

p q p P p %92.1023972040880

1

01

1==

=

∑∑p

q q p P q

(3)拉氏价格指数和销售量指数

10700

00

1=-∑∑q

p q p 12600

1=-∑∑p

q p q

即由于价格上涨2.77%,使销售额增加了1070元;又由于销售量增长3.26%,使销售额增加了1260元。

帕氏价格指数和销售量指数

9701

01

1=-∑∑q p q p

11601

01

1=-∑∑p q p q

即由于价格上涨2.43%,使销售额增加了970元;又由于销售量增长2.92%,使销售额增加了1160元。

数值分析典型习题

特别声明:考试时需带计 算器作辅助计算 1.2015x *=是经四舍五入得到的近似值,则其相对误差* r e ≤-31 104 ?. 2. 01(),(), ,()n l x l x l x 是以01,, ,n x x x 为节点的拉格朗日插值基函数,则 3.设(0)1(1)3(2)4(3)2f =,f =,f =,f =,[0123]f =,,,1 3 - . 4. 利用Simpson 公式求?2 1 2dx x = 7.3 5. 设求积公式1 0()d (),(1)n k k k f x x A f x n ≈≥∑?=是Gauss 型求积公式,则3 n k k k A x == ∑1 .4 6. 数值微分公式(2)(2) ()i i i f x h f x h f x h +≈ --'的截断误差为 2().O h 7. 设1101A ?? = ??? ,则A 的谱半径()A ρ= 1 ,A 的条件数1cond ()A = 4. 8. 用牛顿下山法求解方程3 03 x x -=根的迭代公式是 2 13 3(1),3n n n n x x x x x λ+-=-- 下山条件是 1()().n n f x f x +< 9.对任意初始向量(0)x 及任意向量f ,线性方程组的迭代公式(1)()(0,1,2,)k k k +=+=x Bx f ,迭代序列()k x 收敛于方程组的精确解x *的充分必要条件是()1.ρ

物体的受力分析及典型例题

物体的受力(动态平衡)分析及典型例题 受力分析就是分析物体的受力,受力分析是研究力学问题的基础,是研究力学问题的关键。 受力分析的依据是各种力的产生条件及方向特点。 一.几种常见力的产生条件及方向特点。 1.重力。 重力是由于地球对物体的吸引而使物体受到的力,只要物体在地球上,物体就会受到重力。 重力不是地球对物体的引力。重力与万有引力的关系是高中物理的一个小难点。 重力的方向:竖直向下。 2.弹力。 弹力的产生条件是接触且发生弹性形变。 判断弹力有无的方法:假设法和运动状态分析法。 弹力的方向与施力物体形变的方向相反,与施力物体恢复形变的方向相同。 弹力的方向的判断:面面接触垂直于面,点面接触垂直于面,点线接触垂直于线。 【例1】如图1—1所示,判断接触面对球有无弹力,已知球静止,接触面光滑。图a 中接触面对球 无 弹力;图b 中斜面对小球 有 支持力。 【例2】如图1—2所示,判断接触面MO 、ON 对球有无弹力,已知球静止,接触面光滑。水平面ON 对球 有 支持力,斜面MO 对球 无 弹力。 【例3】如图1—4所示,画出物体A 所受的弹力。 a 图中物体A 静止在斜面上。 b 图中杆A 静止在光滑的半圆形的碗中。 c 图中A 球光滑,O 为圆心,O '为重心。 【例4】如图1—6所示,小车上固定着一根弯成α角的曲杆,杆的另一端固定一个质

量为m 的球,试分析下列情况下杆对球的弹力的大小和方向:(1)小车静止;(2)小车以加速度a 水平向右加速运动;(3)小车以加速度a 水平向左加速运动;(4)加速度满足什么条件时,杆对小球的弹力沿着杆的方向。 3.摩擦力。 摩擦力的产生条件为:(1)两物体相互接触,且接触面粗糙;(2)接触面间有挤压;(3)有相对运动或相对运动趋势。 摩擦力的方向为与接触面相切,与相对运动方向或相对运动趋势方向相反。 判断摩擦力有无和方向的方法:假设法、运动状态分析法、牛顿第三定律分析法。 【例5】如图1—8所示,判断下列几种情况下物体A 与接触面间有、无摩擦力。 图a 中物体A 静止。图b 中物体A 沿竖直面下滑,接触面粗糙。图c 中物体A 沿光滑斜面下滑。图d 中物体A 静止。 图a 中 无 摩擦力产生,图b 中 无 摩擦力产生,图c 中 无 摩擦力产生,图d 中 有 摩擦力产生。 【例6】如图1—9所示为皮带传送装置,甲为主动轮,传动过程中皮带不打滑,P 、Q 分别为两轮边缘上的两点,下列说法正确的是:( B ) A .P 、Q 两点的摩擦力方向均与轮转动方向相反 B .P 点的摩擦力方向与甲轮的转动方向相反, Q 点的摩擦力方向与乙轮的转动方向相同 C .P 点的摩擦力方向与甲轮的转动方向相同, Q 点的摩擦力方向与乙轮的转动方向相反 D .P 、Q 两点的摩擦力方向均与轮转动方向相同 【例7】如图1—10所示,物体A 叠放在物体B 上,水平地面光滑,外力F 作用于物体B 上使它们一起运动,试分析两物体受到的静摩擦力的方向。

多元统计分析模拟考题及答案.docx

一、判断题 ( 对 ) 1 X ( X 1 , X 2 ,L , X p ) 的协差阵一定是对称的半正定阵 ( 对 ( ) 2 标准化随机向量的协差阵与原变量的相关系数阵相同。 对) 3 典型相关分析是识别并量化两组变量间的关系,将两组变量的相关关系 的研究转化为一组变量的线性组合与另一组变量的线性组合间的相关关系的研究。 ( 对 )4 多维标度法是以空间分布的形式在低维空间中再现研究对象间关系的数据 分析方法。 ( 错)5 X (X 1 , X 2 , , X p ) ~ N p ( , ) , X , S 分别是样本均值和样本离 差阵,则 X , S 分别是 , 的无偏估计。 n ( 对) 6 X ( X 1 , X 2 , , X p ) ~ N p ( , ) , X 作为样本均值 的估计,是 无偏的、有效的、一致的。 ( 错) 7 因子载荷经正交旋转后,各变量的共性方差和各因子的贡献都发生了变化 ( 对) 8 因子载荷阵 A ( ij ) ij 表示第 i 个变量在第 j 个公因子上 a 中的 a 的相对重要性。 ( 对 )9 判别分析中, 若两个总体的协差阵相等, 则 Fisher 判别与距离判别等价。 (对) 10 距离判别法要求两总体分布的协差阵相等, Fisher 判别法对总体的分布无特 定的要求。 二、填空题 1、多元统计中常用的统计量有:样本均值向量、样本协差阵、样本离差阵、 样本相关系数矩阵. 2、 设 是总体 的协方差阵, 的特征根 ( 1, , ) 与相应的单 X ( X 1,L , X m ) i i L m 位 正 交 化 特 征 向 量 i ( a i1, a i 2 ,L ,a im ) , 则 第 一 主 成 分 的 表 达 式 是 y 1 a 11 X 1 a 12 X 2 L a 1m X m ,方差为 1 。 3 设 是总体 X ( X 1, X 2 , X 3, X 4 ) 的协方差阵, 的特征根和标准正交特征向量分别 为: 1 2.920 U 1' (0.1485, 0.5735, 0.5577, 0.5814) 2 1.024 U 2' (0.9544, 0.0984,0.2695,0.0824) 3 0.049 U 3' (0.2516,0.7733, 0.5589, 0.1624) 4 0.007 U 4' ( 0.0612,0.2519,0.5513, 0.7930) ,则其第二个主成分的表达式是

数值分析典型例题

第一章典型例题 例3 ln2=0.…,精确到10-3的近似值是多少 解 精确到10-3=,即绝对误差限是=, 故至少要保留小数点后三位才可以。ln2 第二章典型例题 例1 用顺序消去法解线性方程组 ??? ??1 -=4+2+4=+2+31 -=4++2321 321321x x x x x x x x x 解 顺序消元 ?? ?? ??????---???→???????????---????→???????????--=-?+-?+-?+1717005.555.00141 25.025.105.555.001412142141231412]b A [)3()2/1()2/3(231312r r r r r r M 于是有同解方程组 ?? ? ??-==--=++17175.555.0142332321x x x x x x 回代得解 x 3=-1, x 2=1,x 1=1,原线性方程组的解为X =(1,1,-1)T 例2 取初始向量X (0)=(0,0,0)T ,用雅可比迭代法求解线性方程组 ??? ??5 =+2+23=++1=2-2+321 321321x x x x x x x x x 解 建立迭代格式 ???????+--=+--=++-=+++5223122) (2)(1)1(3 ) (3)(1)1(2 ) (3)(2)1(1k k k k k k k k k x x x x x x x x x (k =1,2,3,…)

第1次迭代,k =0 X (0)=0,得到X (1)=(1,3,5)T 第2次迭代,k =1 ???????-=+?-?-=-=+--==+?+?-=3 532123 351515232)2(3) 2(2)2(1x x x X (2)=(5,-3,-3)T 第3次迭代,k =2 ???????=+-?-?-==+---==+-?+-?-=1 5)3(2521 3)3(511)3(2)3(2)2(3) 3(2)3(1x x x X (3)=(1,1,1)T 第4次迭代,k =3 ???????=+?-?-==+--==+?+?-=1 512121 311111212)2(3) 2(2)2(1x x x X (4)=(1,1,1)T 例4 证明例2的线性方程组,雅可比迭代法收敛,而高斯-赛德尔迭代法发散。 证明 例2中线性方程组的系数矩阵为 A =?? ?? ? ?????-122111221 于是 D =?? ?? ??????100010001 D -1=D ??????????=022001000L ~ ????? ?????-=000100220U ~ 雅可比迭代矩阵为

一次函数经典例题大全

一.定义型 例1. 已知函数是一次函数,求其解析式。 解:由一次函数定义知 , ,故一次函数的解析式为y=-6x+3。 注意:利用定义求一次函数y=kx+b解析式时,要保证k≠0。如本例中应保证m-3≠0。 二. 点斜型 例2. 已知一次函数y=kx-3的图像过点(2, -1),求这个函数的解析式。 解:一次函数的图像过点(2, -1), ,即k=1。故这个一次函数的解析式为y=x-3。 变式问法:已知一次函数y=kx-3 ,当x=2时,y=-1,求这个函数的解析式。 三. 两点型 例3.已知某个一次函数的图像与x轴、y轴的交点坐标分别是(-2, 0)、(0, 4),则这个函数的解析式为_____。 解:设一次函数解析式为y=kx+b,由题意得 ,故这个一次函数的解析式为y=2x+4 四. 图像型 例4. 已知某个一次函数的图像如图所示,则该函数的解析式为__________。 解:设一次函数解析式为y=kx+b由图可知一次函数的图像过点(1, 0)、(0, 2) 有故这个一次函数的解析式为y=-2x+2 五. 斜截型 例5. 已知直线y=kx+b与直线y=-2x平行,且在y轴上的截距为2,则直线的解析式为___________。 解析:两条直线;。当k1=k2,b1≠b2时,

直线y=kx+b与直线y=-2x平行,。 又直线y=kx+b在y轴上的截距为2,故直线的解析式为y=-2x+2 六. 平移型 例6. 把直线y=2x+1向下平移2个单位得到的图像解析式为___________。 解析:设函数解析式为 y=kx+b, 直线y=2x+1向下平移2个单位得到的直线y=kx+b与直线y=2x+1平行 直线y=kx+b在y轴上的截距为 b=1-2=-1,故图像解析式为 七. 实际应用型 例7. 某油箱中存油20升,油从管道中匀速流出,流速为0.2升/分钟,则油箱中剩油量Q(升)与流出时间t(分钟)的函数关系式为___________。 解:由题意得Q=20-0.2t ,即Q=-0.2t+20 故所求函数的解析式为 Q=-0.2t+20()注意:求实际应用型问题的函数关系式要写出自变量的取值范围。 八. 面积型 例8. 已知直线y=kx-4与两坐标轴所围成的三角形面积等于4,则直线解析式为__________。 解:易求得直线与x轴交点为,所以,所以|k|=2 ,即 故直线解析式为y=2x-4或y=-2x-4 九. 对称型 若直线与直线y=kx+b关于 (1)x轴对称,则直线的解析式为y=-kx-b (2)y轴对称,则直线的解析式为y=-kx+b (3)直线y=x对称,则直线的解析式为 (4)直线y=-x对称,则直线的解析式为 (5)原点对称,则直线的解析式为y=kx-b 例9. 若直线l与直线y=2x-1关于y轴对称,则直线l的解析式为____________。 解:由(2)得直线l的解析式为y=-2x-1 十. 开放型 例10. 已知函数的图像过点A(1, 4),B(2, 2)两点,请写出满足上述条件的两个不同的函数解析式,并简要说明解答过程。 解:(1)若经过A、B两点的函数图像是直线,由两点式易得y=-2x+6 (2)由于A、B两点的横、纵坐标的积都等于4,所以经过A、B两点的函数图像还可以 是双曲线,解析式为 (3)其它(略)

应用多元统计分析习题解答典型相关分析Word版

第九章 典型相关分析 9.1 什么是典型相关分析?简述其基本思想。 答: 典型相关分析是研究两组变量之间相关关系的一种多元统计方法。用于揭示两组变量之间的内在联系。典型相关分析的目的是识别并量化两组变量之间的联系。将两组变量相关关系的分析转化为一组变量的线性组合与另一组变量线性组合之间的相关关系。 基本思想: (1)在每组变量中找出变量的线性组合,使得两组的线性组合之间具有最大的相关系数。即: 若设(1) (1)(1) (1)12(,, ,)p X X X =X 、(2)(2)(2) (2) 12(,, ,)q X X X =X 是两组相互关联的随机变量, 分别在两组变量中选取若干有代表性的综合变量Ui 、Vi ,使是原变量的线性组合。 在(1)(1)(1)(2)()()1D D ''==a X b X 的条件下,使得(1)(1)(1)(2)(,)ρ''a X b X 达到最大。(2)选取和最初挑选的这对线性组合不相关的线性组合,使其配对,并选取相关系数最大的一对。 (3)如此继续下去,直到两组变量之间的相关性被提取完毕为此。 9.2 什么是典型变量?它具有哪些性质? 答:在典型相关分析中,在一定条件下选取系列线性组合以反映两组变量之间的线性关系,这被选出的线性组合配对被称为典型变量。具体来说, ()(1)()(1) ()(1) ()(1)1122i i i i i P P U a X a X a X '=++ +a X ()(2)()(2) ()(2) ()(2)1122i i i i i q q V b X b X b X '=+++b X 在(1)(1)(1)(2)()()1D D ''==a X b X 的条件下,使得(1)(1)(1)(2)(,)ρ''a X b X 达到最大,则称 (1)(1)'a X 、(1)(2)'b X 是(1)X 、(2)X 的第一对典型相关变量。 典型变量性质: 典型相关量化了两组变量之间的联系,反映了两组变量的相关程度。 1. ()1,()1 (1,2,,)k k D U D V k r === (,)0,(,)0()i j i j Cov U U Cov V V i j ==≠ 2. 0(,1,2,,) (,)0 ()0() i i j i j i r Cov U V i j j r λ≠==?? =≠??>? 9.3 试分析一组变量的典型变量与其主成分的联系与区别。 答:一组变量的典型变量和其主成分都是经过线性变换计算矩阵特征值与特征向量得出的。主成分分析只涉及一组变量的相互依赖关系而典型相关则扩展到两组变量之间的相互依赖关系之中 ()(1)()(1)()(1)()(1) 1122i i i i i P P U a X a X a X '=+++a X ()(2)()(2)()(2)()(2)1122i i i i i q q V b X b X b X '=+++b X (1)(1)(1)(1)1 2 (,,,)p X X X =X 、(2)(2)(2)(2)1 2 (,,,)q X X X =X

数值分析典型习题资料

数值分析典型习题

特别声明:考试时需带计 算器作辅助计算 1.2015x *=是经四舍五入得到的近似值,则其相对误差* r e ≤ -31 104 ?. 2. 01(),(),,()n l x l x l x L 是以01,,,n x x x L 为节点的拉格朗日插值基函数,则 3.设(0)1(1)3(2)4(3)2f =,f =,f =,f =,[0123]f =,,,1 3 - . 4. 利用Simpson 公式求?2 1 2dx x = 7.3 5. 设求积公式1 0()d (),(1)n k k k f x x A f x n ≈≥∑?=是Gauss 型求积公式,则3 n k k k A x == ∑1 .4 6. 数值微分公式(2)(2) ()i i i f x h f x h f x h +≈ --'的截断误差为 2().O h 7. 设1101A ?? = ??? ,则A 的谱半径()A ρ= 1 ,A 的条件数1cond ()A = 4. 8. 用牛顿下山法求解方程3 03 x x -=根的迭代公式是 2 13 3(1),3n n n n x x x x x λ+-=-- 下山条件是 1()().n n f x f x +< 9.对任意初始向量(0)x 及任意向量f ,线性方程组的迭代公式(1)()(0,1,2,)k k k +=+=L x Bx f ,迭代序列()k x 收敛于方程组的精确解x *的充分必要条件是()1.ρ

函数概念典型例题

函数概念及其表示---典例分析 例1.下列各组函数中,表示同一函数的是( C ). 选题理由:函数三要素。 A. 1,x y y x == B. 11,y x y = += C. ,y x y == D. 2||,y x y == 点评:有利于理解函数概念,强化函数的三要素。 变式: 1.函数f (x )= 2(1)x x x ??+? ,0,0x x ≥< ,则(2)f -=( ). A. 1 B .2 C. 3 D. 4 例2.集合{}22M x x =-≤≤,{}02N y y =≤≤,给出下列四个图形,其中能表示以M 为定义域,N 为值域的函数关系的是( B ). 选题理由:更好的帮助学生理解函数概念,同时也体现函数的重要表示法图像法,图形法是数形结合思想应用的前提。 变式: 1.下列四个图象中,不是函数图象的是(B ). 2.设集合A ={x |0≤x ≤6},B ={y |0≤y ≤2},从A 到B 的对应法则f 不是映射的是( ). A. f :x →y = 1 2x B. f :x →y = 1 3x C. f :x →y =1 4x D. f :x →y =1 6 x A. B. C. D.

函数的表达式及定义域—典例分析 【例1】 求下列函数的定义域: (1)1 21 y x = +-;(2 )y = . 选题理由:考查函数三要素,定义域是函数的灵魂。 解:(1)由210x +-≠,解得1x ≠-且3x ≠-, 所以原函数定义域为(,3)(3,1)(1,)-∞----+∞. (2 )由30 20 x -≥??≠,解得3x ≥且9x ≠, 所以原函数定义域为[3,9)(9,)+∞. 选题理由:函数的重要表示法,解析式法。 变式: 1 .函数y =的定义域为( ). A. (,1]-∞ B. (,2]-∞ C. 11(,)(,1]22-∞-- D. 1 1(,) (,1]2 2 -∞-- 2.已知函数()f x 的定义域为[1,2)-,则(1)f x -的定义域为( ). A .[1,2)- B .[0,2)- C .[0,3)- D .[2,1)- 【例2】已知函数1( )1x f x x -=+. 求: (1)(2)f 的值; (2)()f x 的表达式 解:(1)由121x x -=+,解得13x =-,所以1 (2)3f =-. (2)设11x t x -=+,解得11t x t -= +,所以1()1t f t t -=+,即1()1x f x x -=+. 点评:此题解法中突出了换元法的思想. 这类问题的函数式没有直接给出,称为抽象函数的研究,常常需要结合换元法、特值代入、方程思想等. 变式: 1.已知()f x =2x +x +1,则f =______;f [(2)f ]=______. 2.已知2(21)2f x x x +=-,则(3)f = . 【例 2】 已知f (x )=33x x -+?? (,1) (1,)x x ∈-∞∈+∞,求f [f (0)]的值. 选题理由:分段函数生活重要函数,是考察重点。 解:∵ 0(,1)∈-∞ , ∴ f 又 ∵ >1, ∴ f )3)-3=2+ 12=52,即f [f (0)]=5 2 . 点评:体现了分类讨论思想。 2.某同学从家里到学校,为了不迟到,先跑,跑累了再走余下的路,设在途中花的时间为 t ,离开家里的路程为d ,下面图形中,能反映该同学的行程的是( ).

中学物理受力分析经典例题__物理受力分析

中学物理受力分析经典例题 1.分析满足下列条件的各个物体所受的力,并指出各个力的施力物体. 2.对下列各种情况下的物体A 进行受力分析 3. 对下列各种情况下的物体A 进行受力分析,在下列情况下接触面均不光滑. 4.对下列各种情况下的A 进行受力分析(各接触面均不光滑) (1)沿水平草地滚动的足球 V (3)在光滑水平面上向右运动的物体球 (2)在力F 作用下静止水 平面上的物体球 F (4)在力F 作用下行使在 路面上小车 F V v (5)沿传送带匀速运动的物体 (6)沿粗糙的天花板向右运动的物体 F>G F A V (2)沿斜面上滑的物体A (接触面光滑) A V (1)沿斜面下滚的小球, 接触面不光滑. A V (3)静止在斜面上的物体 A (4)在力F 作用下静止在斜面上的物体A. A F (5)各接触面均光滑 A (6)沿传送带匀速上滑的 物块A A F 1)A 静止在竖直墙面上 A v (2)A 沿竖直墙面下滑 A (4)静止在竖直墙轻上的物体A F A (1)A 、B 同时同速向右行使向 B A F F B A (2)A 、 B 同时同速向右行 使向 (6)在拉力F 作用下静止 在斜面上的物体A F A (5)静止在竖直墙轻上的物体A F A

5.如图所示,水平传送带上的物体。 (1)随传送带一起匀速运动 (2)随传送带一起由静止向右起动 6.如图所示,匀速运动的倾斜传送带上的物体。 (1)向上运输 (2)向下运输 7.分析下列物体A 的受力:(均静止) (4)静止的杆,竖直墙面光滑 A (5)小球静止时的结点A A (6)小球静止时的结点A A α B A B A (光滑小球A ) A B α

数值分析典型例题

第一章典型例题 例3…,精确到10-3的近似值是多少? 解 精确到10-3=,即绝对误差限是?=, 故至少要保留小数点后三位才 可以。ln2? 第二章典型例题 例1 用顺序消去法解线性方程组 解 顺序消元 于是有同解方程组 回代得解 x 3=-1, x 2=1,x 1=1,原线性方程组的解为X =(1,1,-1)T 例2 取初始向量X (0)=(0,0,0)T ,用雅可比迭代法求解线性方程组 解 建立迭代格式 ??? ????+--=+--=++-=+++5223122)(2)(1)1(3) (3)(1)1(2 )(3)(2)1(1k k k k k k k k k x x x x x x x x x (k =1,2,3,…) 第1次迭代,k =0 X (0)=0,得到X (1)=(1,3,5)T 第2次迭代,k =1 X (2)=(5,-3,-3)T 第3次迭代,k =2 X (3)=(1,1,1)T 第4次迭代,k =3

X (4)=(1,1,1)T 例4 证明例2的线性方程组,雅可比迭代法收敛,而高斯-赛德尔迭 代法发散。 证明 例2中线性方程组的系数矩阵为 A =?? ?? ? ?????-122111221 于是 D =?? ?? ??????100010001 D -1 =D ?? ?? ? ?????=022001000L ~ ?? ?? ? ?????-=000100220U ~ 雅可比迭代矩阵为 B 0=?? ?? ? ?????--=??????????-??????????-=+--022101220022101220100010001)U ~L ~(D 1 得到矩阵B 0的特征根03,2,1=λ,根据迭代基本定理4,雅可比迭代法收敛。 高斯-赛德尔迭代矩阵为 G =-U ~ )L ~D (1-+ =-?? ?? ??????----=??????????-??????????---=??????????-??????????-2003202200001002201200110010001002201220110011 解得特征根为?1=0,?2,3=2。由迭代基本定理4知,高斯-赛德尔迭代发散。 例5 填空选择题: 1. 用高斯列主元消去法解线性方程组 作第1次消元后的第2,3个方程分别为 。

初中物理受力分析习题

初中物理受力分析典型例题 【1】如图,一根细线拴着一只氢气球A ,试画出A 所受的力的示意图。 【2】试画出下图中斜面上木块A 的受力示意图。 【3】如图所示,物体A 、B 各重10N 、20N ,水平拉力F1 = 2N ,F2=4N ,物体保持静止, 则A 、B 间的静摩擦力大小为________N ,B 与地面间的摩擦力大小为________N 。 ) 【7】如图所示,小王在探究“力和运动的关系”的实验中,他将物体M 放在水平桌面上, 两边用细线通过滑轮与吊盘相连.若在左盘中放重为G 的砝码,右盘中放重为2G 的砝码时, 物体M 能以速度v 向右作匀速直线运动.如果左、右盘中的砝码不变,要让物体M 能在水平 桌面上以2v 的速度向左作匀速直线运动,则应在左盘中再加上砝码,所加砝码的重为(吊盘 重、滑轮与细线间和滑轮与轴间摩擦不计) ( ) A 、G B 、2G C 、3 G D 、4 G 【8】如图所示,纸带穿过打点计时器(每隔一定时间在纸带上打下一个点)与一木块左端 相连,木块在弹簧测力计作用下沿水平桌面(纸面)向右运动时,就能在纸带上打出一系列

的点。图10中①和②是打点计时器先后打出的两条纸带,与其对应的测力计的示数分别为F1、F2,木块运动的速度分别为v1、v2,那么 A.F1<F2,v1<v2 B.F1=F2,v1<v2 C.F1=F2,v1>v2 D.F1>F2,v1>v2 、B A B C D 1 的缘故;但自行车运动会越来越慢,最后停下来,这是由于自行车受到了2 __________N;若使物体竖直向下匀速运动,则向上的拉力应为_______N。 3、用弹簧测力计拉着重200N的物体在水平桌面上做匀速直线运动,当速度为4m/s时,弹簧测力计的示数为20N,若速度为1m/s时,该物体受到的摩擦力为 N,合力为______N,若将拉力增大,当弹簧测力计的示数变为30N时,物体受到的摩擦力为_________N,此时物体受到的合力为_________N. 4、空降兵在降落伞打开后的一段时间力将匀速下落,它的体重为650N,伞重200N,若人受到的阻力忽略不计,则伞对人的拉力为 N,伞受到的阻力为 N。

数值分析典型例题

数值分析典型例题 例1 对下列各数写出具有5位有效数字的近似值。236.478, 0.00234711, 9.000024, 9.0000343 10?. 解:按照定义,以上各数具有5位有效数字的近似值分别为:236.478, 0.0023471, 9.0000, 9.0000310?。 注意: *x =9.000024的5位有效数字是9.0000而不是9,因为9 是1位有效数字。 例2 指出下列各数具有几位有效数字。2.0004, -0.00200, -9000, 9310?, 23 10-?。 解:按照定义,以上各数的有效数字位数分别为5, 3, 4,1,1 例3 已测得某物体行程* s 的近似值s=800m ,所需时间* s 的近似值为t=35s ,若已知m s s s t t 5.0||,05.0||**≤-≤-,试求平均速度v 的绝对误差和相对误差限。 解:因为t s v /=,所以)()(1)()()(2t e t s s e t t e t v s e s v v e -=??+??≈ 从 而 05.00469.035 800 5.0351|)(||||)(|1|)(|22≤≈+?≤+≤t e t s s e t v e 同样v v e v e r )()(≈)()()()(t e s e t e v t t v s e v s s v r r r -=??+??= 所以00205.035 05 .08005.0|)(||)(||)(|≈+≤+≤t e s e v e r r r 因此绝对误差限和相对误差限分别为0.05和0.00205。 例4试建立积分20,,1,05 =+=n dx x x I n n 的递推关系,并研究它的误差 传递。 解:151 --= n n I n I ……………………………………………..…...(1) 5ln 6ln 0-=I ,计算出0I 后可通过(1)依次递推计算出1I ,…,20I 。 但是计算0I 时有误差0e ,由此计算出的1I ,…,20I 也有误差,由(1)可 知近似值之间的递推关系为 151 --= n n I n I ……………………………………………….…..(2) (1)-(2)可得 01)5(5e e e n n n -=-=-,由0I 计算n I 时误差被放大了n 5倍。所以(1)不稳 定。 (1) 可以改写为 n I I n n 51 511+ -=- ……………………………………… (3) 如果能先求出20I ,则依次可以求出19I ,…,0I ,计算20I 时有误差,这样根据(3)计算19I ,…,0I 就有误差,误差传播为 n n n e e ?? ? ??-=-511 ,误差依次减少。 例5 用二分法求解方程012)(23=+--=x x x x f 在区间[0,1]内的1个实根,要求有3为有效数字。 解:因为0)1()0(