搜档网
当前位置:搜档网 › 蓝桥杯驱动程序带注释--UART串口通信

蓝桥杯驱动程序带注释--UART串口通信

蓝桥杯驱动程序带注释--UART串口通信

cc2530串口UART0通信实验(20200627130016)

/********************* 头文件*************************************************/ #include #include /********************* 宏定义*************************************************/ #define uint unsigned int #define uchar unsigned char // --------------- LED 控制端口------------------------------- // #define GLED P1_0〃绿色LED定义 #define RLED P1_1〃红色LED定义 // --------------- 按键输入端口------------------------------- // #define KEY1 P0_0 /********************* 全局变量**********************************************/ unsigned char Uart0_Rx; unsigned char Text_Data[]=" 海舟物联网教育!\r\n"; /********************* 函数声明***********************************************/ void Delay(uint); void Init_LED(void); void Init_Uart0(void); void Init_Sysclk(void); void Uart0_TX_Data(unsigned char *Data,int len); /****************************************************************************** * 函数名称: void Delay(uint n) * 函数功能: 软件延时函数 * 入口参数: * 出口参数: * 备注: ******************************************************************************/ void Delay(uint n) { uint i; for(i=0;i

UART串口通信设计实例

2.5 UART串口通信设计实例(1) 接下来用刚才采用的方法设计一个典型实例。在一般的嵌入式开发和FPGA设计中,串口UART是使用非常频繁的一种调试手段。下面我们将使用Verilog RTL编程设计一个串口收发模块。这个实例虽然简单,但是在后续的调试开发中,串口使用的次数比较多,这里阐明它的设计方案,不仅仅是为了讲解RTL编程,而且为了后续使用兼容ARM9内核实现嵌入式开发。 串口在一般的台式机上都会有。随着笔记本电脑的使用,一般会采用USB转串口的方案虚拟一个串口供笔记本使用。图2-7为UART串口的结构图。串口具有9个引脚,但是真正连接入FPGA开发板的一般只有两个引脚。这两个引脚是:发送引脚TxD和接收引脚RxD。由于是串行发送数据,因此如果开发板发送数据的话,则要通过TxD线1 bit接着1 bit 发送。在接收时,同样通过RxD引脚1 bit接着1 bit接收。 再看看串口发送/接收的数据格式(见图2-8)。在TxD或RxD这样的单线上,是从一个周期的低电平开始,以一个周期的高电平结束的。它中间包含8个周期的数据位和一个周期针对8位数据的奇偶校验位。每次传送一字节数据,它包含的8位是由低位开始传送,最后一位传送的是第7位。

这个设计有两个目的:一是从串口中接收数据,发送到输出端口。接收的时候是串行的,也就是一个接一个的;但是发送到输出端口时,我们希望是8位放在一起,成为并行状态(见图2-10)。我们知道,串口中出现信号,是没有先兆的。如果出现了串行数据,则如何通知到输出端口呢?我们引入“接收有效”端口。“接收有效”端口在一般情况下都是低电平,一旦有数据到来时,它就变成高电平。下一个模块在得知“接收有效”信号为高电平时,它就明白:新到了一个字节的数据,放在“接收字节”端口里面。

dsp实验-UART串口通信实验

实验八、UART串口通信实验 一、实验目的 1. 了解RS232通信接口的基本原理; 2. 熟悉通信接口芯片(TL16C550C)在DSP I/O空间寄存器的地址映射 及工作原理; 3.了解异步通信中串口模式选择、设置数据传输格式、设置波特率、建立连接、传输数据和断开连接等功能。 二、实验设备 1. 集成开发环境CCS 2. 实验开发板TMS320VC5402DSK、RS232接口电缆线及附件 3.程序“串口调试程序v2.2.exe” 三、实验内容及步骤 实验操作流程参照前面实验。 1 在汇编环境调试Uart:(实现字符或文件的发送和回发功能) a. 实验代码main.s54、uartasm.cmd和uart_init.s54、dsp_init.s54 以及uartasm.h54,c5402_dsk.gel(说明同前)。 b. 串口调试程序“串口调试程序v2.2.exe” , 汇编调试中Build option设置情况与CODEC实验中的汇编调试设置及出错情况相同。 c. 程序文件介绍: 1)“uart.h54”定义了一些寄存器的地址以及函数类型。 2)“dsp_init.s54”与dsp工作有关的寄存器ST1、PMST、IMR、IFR和SWWSR,并且清除INTM位以及设定时钟模式。 3)“uart_init.s54”先检测UART模块是否工作正常,然后设定UART模块的寄存器,如CNTL1、CNTL2、LCR、MSB&LSB(设定波特率)、FCR、IER 等。 4)“main.s54”主程序查看标志位,检测是否UART存在有效接收数据。若有,则执行一定的处理,包括亮LED以及将接收的数据从UART回发。 d. 执行程序时,只要发送数据时,可在串口调试程序的接收窗口立即看到回发的数据。 e. 程序中UART工作参数设置如下: 1)波特率9600(或更低)、无数据校验、字符长度8比特、停止位1、

UART串行口简介

UART异步串行口 UART异步串行口简介 数据通信的基本方式可分为并行通信与串行通信两种: 并行通信:是指利用多条数据传输线将一个资料的各位同时传送。它的特点是传输速度快,适用于短距离通信,但要求通讯速率较高的应用场合。 串行通信:是指利用一条传输线将资料一位位地顺序传送。特点是通信线路简单,利用简单的线缆就可实现通信,降低成本,适用于远距离通信,但传输速度慢的应用场合。 UART 异步串行口的传输格式 异步通信以一个字符为传输单位,通信中两个字符间的时间间隔是不固定的,然 而在同一个字符中的两个相邻位代码间的时间间隔是固定的。 通信协议(通信规程):是指通信双方约定的一些规则。在使用异步串口传送一个 字符的信息时,对资料格式有如下约定:规定有空闲位、起始位、资料位、奇偶校验位、停止位。通讯时序图如下: 开始前,线路处于空闲状态,送出连续“1”。传送开始时首先发一个“0”作为 起始位,然后出现在通信线上的是字符的二进制编码数据。 每个字符的数据位长可以约定为5 位、6 位、7 位或8 位,一般采用ASCII 编码。后面是奇偶校验位,根据约定,用奇偶校验位将所传字符中为“1”的位数凑成奇 数个或偶数个。也可以约定不要奇偶校验,这样就取消奇偶校验位。 最后是表示停止位的“1”信号,这个停止位可以约定持续1 位、1.5 位或2 位 的时间宽度。 至此一个字符传送完毕,线路又进入空闲,持续为“1”。经过一段随机的时间后,下一个字符开始传送才又发出起始位。 每一个数据位的宽度等于传送波特率的倒数。微机异步串行通信中,常用的波特 率为110,150,300,600,1200,2400,4800,9600 ,19200,38400,115200等。 S3C2410的异步串行口 1

SPI、I2C、UART三种串行总线的原理、区别及应用

简单描述: SPI 和I2C这两种通信方式都是短距离的,芯片和芯片之间或者其他元器件如传感器和芯片之间的通信。SPI和IIC是板上通信,IIC有时也会做板间通信,不过距离甚短,不过超过一米,例如一些触摸屏,手机液晶屏那些很薄膜排线很多用IIC,I2C能用于替代标准的并行总线,能连接的各种集成电路和功能模块。I2C 是多主控总线,所以任何一个设备都能像主控器一样工作,并控制总线。总线上每一个设备都有一个独一无二的地址,根据设备它们自己的能力,它们可以作为发射器或接收器工作。多路微控制器能在同一个I2C总线上共存这两种线属于低速传输; 而UART是应用于两个设备之间的通信,如用单片机做好的设备和计算机的通信。这样的通信可以做长距离的。UART和,UART就是我们指的串口,速度比上面三者快,最高达100K左右,用与计算机与设备或者计算机和计算之间通信,但有效范围不会很长,约10米左右,UART优点是支持面广,程序设计结构很简单,随着USB的发展,UART也逐渐走向下坡; SmBus有点类似于USB设备跟计算机那样的短距离通信。 简单的狭义的说SPI和I2C是做在电路板上的。而UART和SMBUS是在机器外面连接两个机器的。 详细描述: 1、UART(TX,RX)就是两线,一根发送一根接收,可以全双工通信,线数也比较少。数据是异步传输的,对双方的时序要求比较严格,通信速度也不是很快。在多机通信上面用的最多。 2、SPI(CLK,I/O,O,CS)接口和上面UART相比,多了一条同步时钟线,上面UART 的缺点也就是它的优点了,对通信双方的时序要求不严格不同设备之间可以很容易结合,而且通信速度非常快。一般用在产品内部元件之间的高速数据通信上面,如大容量存储器等。 3、I2C(SCL,SDA)接口也是两线接口,它是两根线之间通过复杂的逻辑关系传输数据的,通信速度不高,程序写起来也比较复杂。一般单片机系统里主要用来和24C02等小容易存储器连接。 SPI:高速同步串行口。3~4线接口,收发独立、可同步进行 UART:通用异步串行口。按照标准波特率完成双向通讯,速度慢 SPI:一种串行传输方式,三线制,网上可找到其通信协议和用法的 3根线实现数据双向传输 串行外围接口 Serial peripheral interface UART:通用异步收发器 UART是用于控制计算机与串行设备的芯片。有一点要注意的是,它提供了

UART串口通信实验报告

实验四 UART 串口通信 学院:研究生院 学号:1400030034 姓名:张秋明 一、 实验目的及要求 设计一个UART 串口通信协议,实现“串 <-->并”转换功能的电路,也就是 “通用异步收发器”。 二、 实验原理 UART 是一种通用串行数据总线,用于异步通信。该总线双向通信,可以实 现全双工传输和接收。在嵌入式设计中,UART 用来主机与辅助设备通信,如汽 车音响与外接AP 之间的通信,与PC 机通信包括与监控调试器和其它器件,如 EEPROM 通信。 UART 作为异步串口通信协议的一种,工作原理是将传输数据的每个字符一 位接一位地传输。 其中各位的意义如下: 起始位:先发出一个逻辑” 0的信号,表示传输字符的开始。 资料位:紧接着起始位之后。资料位的个数可以是 4、5、6、7、8等,构成 一个字符。通常采用ASCII 码。从最低位开始传送,靠时钟定位。 奇偶校验位:资料位加上这一位后,使得“ 1的位数应为偶数(偶校验)或奇数 (奇校验),以此来校验资料传送的正确性。 停止位:它是一个字符数据的结束标志。可以是 1位、1.5位、2位的高电 平。由于数据是在传输线上定时的,并且每一个设备有其自己的时钟,很可能 在通信中两台设备间出现了小小的不同步。 因此停止位不仅仅是表示传输的结束, 并且提供计算机校正时钟同步的机会。适用于停止位的位数越多,不同时钟同步 的容忍程度越大,但是数据传输率同时也越慢。 空闲位:处于逻辑“ 1状态,表示当前线路上没有资料传送。 波特率:是衡量资料传送速率的指标。表示每秒钟传送的符号数(symbol )。 一个符号代表的信息量(比特数)与符号的阶数有关。例如资料传送速率为 120 字符/秒,传输使用256阶符号,每个符号代表8bit ,则波特率就是120baud,比 特率是120*8=960bit/s 。这两者的概念很容易搞错。 三、 实现程序 library ieee; use ieee.std 」o gic_1164.all; end uart; architecture behav of uart is en tity uart is port(clk : in std_logic; rst_n: in std 」o gic --系统时钟 --复位信号 rs232_rx: in std 」o gic rs232_tx: out std 」o gic --RS232接收数据信号; --RS232发送数据信号;); use ieee.std_logic_ un sig ned.all;

UART串口通信实验报告

实验四UART串口通信 学院:研究生院学号:1400030034姓名:张秋明 一、实验目的及要求 设计一个UART串口通信协议,实现“串<-->并”转换功能的电路,也就是“通用异步收发器”。 二、实验原理 UART是一种通用串行数据总线,用于异步通信。该总线双向通信,可以实现全双工传输和接收。在嵌入式设计中,UART用来主机与辅助设备通信,如汽车音响与外接AP之间的通信,与PC机通信包括与监控调试器和其它器件,如EEPROM通信。 UART作为异步串口通信协议的一种,工作原理是将传输数据的每个字符一位接一位地传输。 其中各位的意义如下: 起始位:先发出一个逻辑”0”的信号,表示传输字符的开始。 资料位:紧接着起始位之后。资料位的个数可以是4、5、6、7、8等,构成一个字符。通常采用ASCII码。从最低位开始传送,靠时钟定位。 奇偶校验位:资料位加上这一位后,使得“1”的位数应为偶数(偶校验)或奇数(奇校验),以此来校验资料传送的正确性。 停止位:它是一个字符数据的结束标志。可以是1位、1.5位、2位的高电平。由于数据是在传输线上定时的,并且每一个设备有其自己的时钟,很可能在通信中两台设备间出现了小小的不同步。因此停止位不仅仅是表示传输的结束,并且提供计算机校正时钟同步的机会。适用于停止位的位数越多,不同时钟同步的容忍程度越大,但是数据传输率同时也越慢。 空闲位:处于逻辑“1”状态,表示当前线路上没有资料传送。 波特率:是衡量资料传送速率的指标。表示每秒钟传送的符号数(symbol)。一个符号代表的信息量(比特数)与符号的阶数有关。例如资料传送速率为120字符/秒,传输使用256阶符号,每个符号代表8bit,则波特率就是120baud,比特率是120*8=960bit/s。这两者的概念很容易搞错。 三、实现程序 library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_arith.all; use ieee.std_logic_unsigned.all; entity uart is port(clk : in std_logic; --系统时钟 rst_n: in std_logic; --复位信号 rs232_rx: in std_logic; --RS232接收数据信号; rs232_tx: out std_logic --RS232发送数据信号;); end uart; architecture behav of uart is

实验四 UART串口通信实验报告

实验四UART串口通信 一、实验目的及要求 设计一个UART串口通信协议,实现“串<-->并”转换功能的电路,也就是“通用异步收发器”。 二、实验原理 UART是一种通用串行数据总线,用于异步通信。该总线双向通信,可以实现全双工传输和接收。在嵌入式设计中,UART用来主机与辅助设备通信,如汽车音响与外接AP之间的通信,与PC机通信包括与监控调试器和其它器件,如EEPROM通信。 UART作为异步串口通信协议的一种,工作原理是将传输数据的每个字符一位接一位地传输。 其中各位的意义如下: 起始位:先发出一个逻辑”0”的信号,表示传输字符的开始。 资料位:紧接着起始位之后。资料位的个数可以是4、5、6、7、8等,构成一个字符。通常采用ASCII码。从最低位开始传送,靠时钟定位。 奇偶校验位:资料位加上这一位后,使得“1”的位数应为偶数(偶校验)或奇数(奇校验),以此来校验资料传送的正确性。 停止位:它是一个字符数据的结束标志。可以是1位、1.5

位、2位的高电平。由于数据是在传输线上定时的,并且每一个设备有其自己的时钟,很可能在通信中两台设备间出现了小小的不同步。因此停止位不仅仅是表示传输的结束,并且提供计算机校正时钟同步的机会。适用于停止位的位数越多,不同时钟同步的容忍程度越大,但是数据传输率同时也越慢。 空闲位:处于逻辑“1”状态,表示当前线路上没有资料传送。 波特率:是衡量资料传送速率的指标。表示每秒钟传送的符号数(symbol)。一个符号代表的信息量(比特数)与符号的阶数有关。例如资料传送速率为120字符/秒,传输使用256阶符号,每个符号代表8bit,则波特率就是120baud,比特率是120*8=960bit/s。这两者的概念很容易搞错。 三、实现程序 library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_arith.all; use ieee.std_logic_unsigned.all; entity uart is port(clk : in std_logic; --系统时钟rst_n: in std_logic; --复位信号 rs232_rx: in std_logic; --RS232接收

实验七 UART串口通信

实验七UART串口通信 一、实验目的 1.能够理解UART串口通信的基本原理和通信过程。 2.学会通过配置寄存器,实现串口通信的基本操作过程。 二、实验内容 通过对单片机编程来实现UART串口通信的基本过程,通过串口调试助手发送数据到单片机,并在数码管上显示出来。 三、实验参考原理 3.1 串行通信的初步认识 通信按照基本类型可以分为并行通信和串行通信。并行通信时数据的各个位同时传送,可以实现字节为单位通信,但是因为通信线多占用资源多,成本高。比如我们前边用到的 P0 = 0xfe;一次给P0的8个IO口分别赋值,同时进行信号输出,类似于有8个车道同时可以过去8辆车一样,这种形式就是并行的,我们习惯上还称P0、P1、P2和P3为51单片机的4组并行总线。 而串行通信,就如同一条车道,一次只能一辆车过去,如果一个0xfe这样一个字节的数据要传输过去的话,假如低位在前高位在后,那发送方式就是0-1-1-1-1-1-1-1-1,一位一位的发送出去的,要发送8次才能发送完一个字节。 在STC89C52上,有两个引脚,是专门用来做UART串口通信的,一个是P3.0一个是P3.1,还分别有另外的名字叫做RXD和TXD,这两个引脚是专门用来进行UART通信的,如果我们两个单片机进行UART串口通信的话,那基本的演示图如图3-1所示。 图3-1 单片机之间UART通信示意图 图中,GND表示单片机系统电源的参考地,TXD是串行发送引脚,RXD是串行接收引脚。两个单片机之间要通信,首先电源基准得一样,所以我们要把两个单片机的GND相互连起来,然后单片机1的TXD引脚接到单片机2的RXD引脚上,即此路为单片机1发送而单片机2接收的通道,单片机1的RXD引脚接到单片机2的TXD引脚上,即此路为单片机2发送而单片机2接收的通道。这个示意图就体现了两个单片机各自收发信息的过程。 当单片机1想给单片机2发送数据时,比如发送一个0xE4这个数据,用二进制形式表示就是0b11100100,在UART通信过程中,是低位先发,高位后发的原则,那么就让TXD 首先拉低电平,持续一段时间,发送一位0,然后继续拉低,再持续一段时间,又发送了一位0,然后拉高电平,持续一段时间,发了一位1......一直到把8位二进制数字0b11100100

UART是什么-串口工作过程分析

UART是什么?串口工作过程分析 一、UART是什么 UART是通用异步收发传输器(Universal Asynchronous Receiver/Transmitter),通常称作UART,是一种异步收发传输器,是设备间进行异步通信的关键模块。UART负责处理数据总线和串行口之间的串/并、并/串转换,并规定了帧格式;通信双方只要采用相同的帧格式和波特率,就能在未共享时钟信号的情况下,仅用两根信号线(Rx 和Tx)就可以完成通信过程,因此也称为异步串行通信。 若加入一个合适的电平转换器,如SP3232E、SP3485,UART 还能用于RS-232、RS-485 通信,或与计算机的端口连接。UART 应用非常广泛,手机、工业控制、PC 等应用中都要用到UART。 UART使用的是异步,串行通信。串行通信是指利用一条传输线将资料一位位地顺序传送。特点是通信线路简单,利用简单的线缆就可实现通信,降低成本,适用于远距离通信,但传输速度慢的应用场合。异步通信以一个字符为传输单位,通信中两个字符间的时间间隔多少是不固定的,然而在同一个字符中的两个相邻位间的时间间隔是固定的。数据传送速率用波特率来表示,即每秒钟传送的二进制位数。例如数据传送速率为120字符/秒,而每一个字符为10位(1个起始位,7个数据位,1个校验位,1个结束位),则其传送的波特率为10×120=1200字符/秒=1200波特。数据通信格式如下图: 其中各位的意义如下:起始位:先发出一个逻辑”0”信号,表示传输字符的开始。数据位:可以是5~8位逻辑”0”或”1”。如ASCII码(7位),扩展BCD码(8位)。小端传输校验位:数据位加上这一位后,使得“1”的位数应为偶数(偶校验)或奇数(奇校验) 停止位:它是一个字符数据的结束标志。可以是1位、1.5位、2位的高电平。空闲位:处于逻辑“1”状态,表示当前线路上没有资料传送。注:异步通信是按字符传

uart串口通信实验报告

串口通信实验报告 基本实验:16位的乘法器 设计思想:乘法器根据以往学过数电的设计经验,应该是移位相加的方法,设被乘数为[15:0]a,乘数为[15:0]b,则从b的最高位开始算起,c初值为0,为b最高位为1,则c就等于c+a;接下来,若b的次高位为1,则c左移一位加a,若为0则c左移一位就可以了,这样的步骤做到b的最低位那么c的值就是a*b,当然最好c是中间寄存器,这样结果才不会出现中间值。 实验的源码: module muti(clk,rst,ready,a,b,c); input clk; input rst; input [15:0]a; input [15:0]b; output [31:0]c; output ready; reg [31:0]c; reg ready; reg [31:0]temp; reg [5:0]n; always @(posedge clk or posedge rst) begin if(rst) begin c<=0; ready<=1; temp<=0; n<=32; end else if(ready) begin temp<=0; n<=32; ready<=0; end else if(n) begin if(b[n-1]) begin temp<=(temp<<1)+a; n<=n-1; end

begin temp<=temp<<1; n<=n-1; end end else begin c<=temp; n<=32; ready<=1; end end endmodul 测试代码: `timescale 1ns/1ns module tb; reg clk; reg [15:0]a; reg [15:0]b; reg rst; wire ready; wire [31:0]c; always #10 clk=~clk; initial begin rst<=1; clk<=0; a=0; b=0; #10 rst=0; #21 a=21;b=32; #650 a=3;b=4; #700 $stop; end muti muti_unit( .a(a), .b(b), .rst(rst), .clk(clk), .ready(ready), .c(c)); endmodule

ARM9(S3C2440)之三串口UART

三 ARM9(S3C2440)的串口UART——理论知识 转载自:骨Zi里德骄傲 概述 S3C2440A 的通用异步收发器(UART)配有3 个独立异步串行I/O(SIO)端口,每个都可以是基于中断或基于DMA 模式的操作。换句话说,UART 可以通过产生中断或DMA 请求来进行CPU 和UART 之间的数据传输。 UART 通过使用系统时钟可以支持最高115.2Kbps 的比特率。如果是外部器件提供UEXTCLK 的UART,则UART可以运行在更高的速度。每个UART 通道包含两个的64 字节的FIFO 给发送和接收。 S3C2440A 的UART 包括了可编程波特率,红外(IR)发送/接收,插入1 个或2 个停止位,5 位、6 位、7 位或8 位的数据宽度以及奇偶校验。 每个UART 包含一个波特率发生器、发送器、接收器和一个控制单元,如图11-1 所示。波特率发生器可以由PCLK、FCLK/n 或UEXTCLK(外部输入时钟)时钟驱动。发送器和接收器包含了64 字节FIFO 和数据移位器。 将数据写入到FIFO 接着在发送前复制到发送移位器中。随后将在发送数据引脚(TxDn)移出数据。与此同时从接收数据引脚(RxDn)移入收到的数据,接着从移位器复制到FIFO。 UART 操作 下述章节描述了UART 的操作,包括了数据发送,数据接收,中断发生,波特率发生,环回(Loopback)模式,红外模式和自动流控制。 数据发送 可编程发送数据帧。由1 个起始位、5 至8 位数据位、1 个可选奇偶校验位以及1 至2 个停止位组成,是由行控制寄存器(ULCONn)指定。发送器也可以产生单帧发送期间强制串行输出为逻辑0 状态的断点状态。此模块在完成发送当前发送字后发送断点信号。在发出断点信号后,其不断发送数据到Tx FIFO(非FIFO 模式情况下Tx保持寄存器)中。 数据接收 与发送类似,接收数据帧也是可编程的。由1 个起始位、5 至8 位数据位、1 个可选奇偶校验位以及1 至2 个停止位组成,是由行控制寄存器(ULCONn)指定。接收器能够检测出溢出(overrun)错误、奇偶校验错误、帧错误和断点状态,每个都可以设置一个错误标志。 –溢出错误表明新数据在读出旧数据前覆盖了旧数据。 –奇偶校验错误表明接收器检测出一个非预期奇偶校验字段。 –帧错误表明接收到的数据没有有效的结束位。 –断点状态表明RxDn 的输入保持为逻辑0 状态的时间长于单帧传输时间。 当其在3 字时间期间(此间隔在字宽位的设置随后)并且在FIFO 模式中Rx FIFO 为非空时不接收任何数据时 发生接收超时状态。 波特率发生 每个UART 的波特率发生器为发送器和接受器提供串行时钟。波特率发生器的源时钟可以选择S3C2440A 的 内部系统时钟或UEXTCLK。换句话说,分频由设置UCONn 的时钟选项选择。波特率时钟是通过16 和由UART

UART串口通信—控制LED灯查询法

UART串口通信—控制LED灯(查询法) 项目说明: 1.通过串口来控制LED灯,发送1(十六进制)点亮LED灯(8个LED蓝灯),发送2(十六进制)关闭LED灯(8个LED蓝灯)。 2.通信速率:9600bps(即波特率为9600)。 3.串口通信:采用查询的方法。 此项目练习的目的:(我们应掌握如下知识点) (1)理解串口是什么。 (2)熟悉串口相关的寄存器。 (3)熟练波特率的计算。 (4)熟悉串口通信的参数:如停止位、奇偶校验位等。 完整代码: #include /*串口初始化:主要涉及寄存器配置*/ void UartInit(void) //初始化uart { TMOD = 0X20; //定时器1定时器方式工作模式2,可自动重载的8位计 数器常把定时/计数器1 以模式2 作为串行口波特率发生器 SCON = 0X50; //串口选择工作模式1使能接收,允许发送,允许接收 PCON = 0X00; //8位自动重载,波特率加倍 TH1 = 0XFD; //用11.0592MHz波特率9600 TL1 = 0XFD; TR1 = 1; //打开中时器 } void main(void) { unsigned char TempDat; UartInit();/*调用串口初始化函数,进行相应的配置,如波特率等*/ while(1) { if (RI)/*查询串口是否接收到一个完整的数据*/ { RI = 0;/*清除标志,准备下一次判断*/ TempDat = SBUF;/*读取串口数据*/ if (1 == TempDat)/*判断串口接收到的数据*/ { P1 = 0;/*如果接收到的数据是1,则点亮8个LED蓝灯*/ }} else if (2 == TempDat) { P1 = 0xff;/*如果接收到的数据是2,则关闭8个LED蓝灯*/ }} else { }

UART串口通信程序

https://www.sodocs.net/doc/2e12855301.html, UART串口通信程序 -------------------------------------------------------------------------------- UART接口实险。 1、串口以查询方式接收数据,并分别将数据显示的PB口和返回。 2、内部1 M晶振,程序采用单任务方式,软件延时。 3、进行此实验请插上JP1的所有8个短路块,JP7(LED_EN)短路块。 4、通过此实验,可以对串口通信有个初步认识。 #include "iom16v.h"/*串口初始化函数*/ void Uart_Init(void) { UCSRA = 0x02; /*倍速*/ UCSRB = 0x18; /*允许接收和发送*/ UCSRC = 0x06; /*8位数据*/ UBRRH = 0x00; UBRRL = 12; /*9600*/ } void Uart_Transmit(unsigned char i) /*数据发送,查询方式*/ { while (!(UCSRA & (1<

串口通信UART模块基本介绍

常用的通信从传输方向上可以分为单工通信、半双工通信、全双工通信三类。单工通信 就是指只允许一方向另外一方传送信息,而另一方不能回传信息。比如电视遥控器、收音机 广播等,都是单工通信技术。半双工通信是指数据可以在双方之间相互传播,但是同一时刻 只能其中一方发给另外一方,比如我们的对讲机就是典型的半双工。全双工通信就发送数据 的同时也能够接收数据,两者同步进行,就如同我们的电话一样,我们说话的同时也可以听 到对方的声音。 IO串口通信需要我们的单片机程序却需要不停的检测扫描单片机 IO 口收到的数据,大 量占用了单片机的运行时间。这时候就会有聪明人想了,其实我们并不是很关心通信的过程,我们只需要一个通信的结果,最终得到接收到的数据就行了。这样我们可以在单片机内部做 一个硬件模块,让它自动接收数据,接收完了,通知我们一下就可以了,我们的 51 单片机 内部就存在这样一个 UART 模块,要正确使用它,当然还得先把对应的特殊功能寄存器配置好。 51单片机的UART 串口的结构由串行口控制寄存器SCON、发送和接收电路三部分构成,先来了解一下串口控制寄存器 SCON。如表1、表2所示。 表1 SCON--串行控制寄存器的位分配(地址 0x98、可位寻址) 位7 6 5 4 3 2 1 0 符号SM0 SM1 SM2 REN TB8 RB8 TI RI 复位值0 0 0 0 0 0 0 0 表2 SCON——串行控制寄存器的位描述 位符号描述 7SM0这两位共同决定了串口通信的模式0~模式 3 共4种模式。我们最常用的就是模式 1,也就是 SM0=0,SM1=1,下边我们重点就讲模式 1,其它模式从略。 6SM1 5SM2多机通信控制位(极少用),模式 1 直接清零。 4REN使能串行接收。由软件置位使能接收,软件清零则禁止接收。 3TB8模式 2 和 3 中要发送的第 9 位数据(很少用)。 2RB8模式 2 和 3 中接收到的第 9 位数据(很少用),模式 1 用来接收停止位。 1TI 发送中断标志位,当发送电路发送到停止位的中间位置时,TI 由硬件置 1,必须通过软件清零。 0RI 接收中断标志位,当接收电路接收到停止位的中间位置时,RI 由硬件置 1,必须通过软件清零。 对于串口的四种模式,模式 1 是最常用的,就是我们前边提到的 1 位起始位,8 位数据位和 1 位停止位。下面我们就详细介绍模式 1 的工作细节和使用方法,至于其它 3 种模式与此也是大同小异,真正遇到需要使用的时候大家再去查阅相关资料就行了。 在我们使用 IO 口模拟串口通信的时候,串口的波特率是使用定时器 T0 的中断体现出来的。在硬件串口模块中,有一个专门的波特率发生器用来控制发送和接收数据的速度。对于STC89C52 单片机来讲,这个波特率发生器只能由定时器 T1 或定时器 T2 产生,而不能由定时器 T0 产生。

UART串口学习笔记

UART总线 UART (Universal Asynchronous Receiver/Transmitter) 通用异步收发器。 UART是用于控制计算机与串行设备的芯片。有一点要注意的是,它提供了RS-232C数据终端设备接口,这样计算机就可以和调制解调器或其它使用RS-232C接口的串行设备通信了。 作为接口的一部分,UART还提供以下功能:将由计算机内部传送过来的并行数据转换为输出的串行数据流。将计算机外部来的串行数据转换为字节,供计算机内部使用并行数据的器件使用。在输出的串行数据流中加入奇偶校验位,并对从外部接收的数据流进行奇偶校验。在输出数据流中加入启停标记,并从接收数据流中删除启停标记。处理由键盘或鼠标发出的中断信号(键盘和鼠票也是串行设备)。可以处理计算机与外部串行设备的同步管理问题。有一些比较高档的UART还提供输入输出数据的缓冲区,现在比较新的UART是16550,它可以在计算机需要处理数据前在其缓冲区内存储16字节数据,而通常的UART是8250。现在如果您购买一个内置的调制解调器,此调制解调器内部通常就会有16550 UART。 UART是一种通用串行数据总线,用于异步通信。该总线双向通信,可以实现全双工传输和接收。在嵌入式设计中,UART用来与PC进行通信,包括与监控调试器和其它器件,如EEPROM通信。 UART通信 UART首先将接收到的并行数据转换成串行数据来传输。消息帧从一个低位起始位开始,后面是7个或8个数据位,一个可用的奇偶位和一个或几个高位停止位。接收器发现开始位时它就知道数据准备发送,并尝试与发送器时钟频率同步。如果选择了奇偶,UART就在数据位后面加上奇偶位。奇偶位可用来帮助错误校验。

相关主题