搜档网
当前位置:搜档网 › 配位化学基础

配位化学基础

配位化学基础
配位化学基础

配位化学基础

配位化学是在无机化学基础上发展起来的一门具有很强交叉性的学科,配位化学旧称络合物化学,其研究对象是配合物的合成、结构、性质和应用。配位化学的研究范围,除最初的简单无机加和物外,已包括含有金属-碳键的有机金属配位化合物,含有金属-金属键的多核蔟状配位化合物即金属簇合物,还包括有机配体与金属形成的大环配位化合物,以及生物体内的金属酶等生物大分子配位化合物。

一、配合物的基本概念

1.配合物的定义及构成

依据1980年中国化学会无机化学命名原则,配合物可以定义为:由可以给出孤对电子或多个不定域电子的一定数目的离子或分子(统称为配体)和具有接受孤对电子或多个不定域电子的空位的原子或离子(统称为中心原子),按一定的组成和空间构型所形成的化合物。结合以上规定,可以将定义简化为:由中心原子或离子和几个配体分子或离子以配位键相结合而形成的复杂分子或离子,统称为配体单元。含配体单元(又称配位个体)的化合物称为配位化合物。

配体单元可以是配阳离子,配阴离子和中性配分子,配位阳离子和阴离子统称配离子。配离子与与之平衡电荷的抗衡阳离子或阴离子结合形成配位化合物,而中性的配位单元即时配位化合物。但水分子做配体的水合离子也经常不看成配离子。

配位化合物一般分为内界和外界两部分,配体单元为内界,抗衡阳离子或阴离子为外界,而含中性配位单元的配位化合物则无外界。配合物的内界由中心和配体构成,中心又称为配位化合物的形成体,多为金属,也可以是原子或离子,配体可以是分子、阴离子、阳离子。

2.配位原子和配位数

配位原子:配体中给出孤对电子与中心直接形成配位键的原子

配位数:配位单元中与中心直接成键的配位原子的个数配位数一般为偶数,以4、6居多,奇数较少

配位数的多少和中心的电荷、半径及配体的电荷、半径有关:

一般来说,中心的电荷高、半径大有利于形成高配位数的配位单元,如氧化数为+1的中心易形成2配位,氧化数为+2的中心易形成4配位或6配位,氧化数为+3的易形成6配位。配体的半径大,负电荷高,易形成低配位的配位单元。

配位数的大小与温度、配体浓度等因素有关:

温度升高,由于热震动的原因,使配位数减少;配体浓度增大,利于形成高配位。

配位数的大小与中心原子价电子层结构有关:

价电子层空轨道越多一般配位数较高

配位数的大小与配体位阻和刚性有关:

配体的位阻一般都会使中心原子的配位数降低,位阻越大、离中心原子越近,配位数的降低程度也就越大。配体的刚性不利于配体在空间中的取向,长回事中心原子的配位数降低。

3.配体的类型

⑴.经典配体与非经典配体

经典配体:维尔纳型配合物中的配体即配体原子只能单纯地提供孤对电子与中心原子形

成σ配键

非经典配体:不同于只提供孤对电子的经典配体,它往往即能给出电子又接受电子,能

用π电子或者反馈π键与中心原子配位(包括π配体和π酸配体) π配体:往往以不饱和有机分子上的π电子与中心原子键合

π酸配体:配体不仅能给中心原子提供孤对电子形成σ配键,同时还用自身空的

π轨道接受中心原子的反馈电子,形成反馈π键

⑵.单基配体、多基配体以及螯合物

单基配体(即单齿配体):只有一个配位原子的配体

多基配体(即多齿配体):含两个或两个以上配位原子的配体

螯合物(即内配位化合物):由多基配体形成的环状结构的配位化合物

内盐:阴离子多基配体与阳离子中心形成的中性配位单元

⑶.金属配体

金属配体:将具有孤对电子的配合物作为配体

4.配合物类型

按成键方式分类: {经典配合物

非经典配合物(特殊配合物)

非经典配合物:金属羰基配合物、分子氮配合物、烯和炔类配合物、 金属簇状配合物和王冠类化合物 按中心原子个数分类: {单核配合物

多核配合物配位聚合物

5.配合物的命名

⑴首先根据盐类命名习惯,依次命名阴、阳离子,注意区分某酸某和某化某;非离子型的中性分子配合物则作为中性化合物命名

⑵内界的命名原则

①配体名称列在中心原子之前,两者以“合”字连接,如H[AuCl 4] 四氯合金(II )酸 ②带倍数词头的无机含氧酸阴离子命名时需用括号括起,有机配体要用括号括起来,如

[Cu(en)2]SO 4 硫酸二(乙二胺)合铜(II )

③配体数目用倍数词头二、三、四等表示,如H[AuCl 4] 四氯合金(II )酸

④中心离子的氧化数在其名称后用带括号的罗马数字表示,(负氧化数需带负号,为零

时省略)

⑶配体命名原则

若配体不止一种,不同配体间以中圆点分开

①无机配体先于有机配体

②无机配体中,先阴离子,其次为中性配体,最后是阳离子配体

③同类配体若不止一种,名称按配原子元素符号的英文字母顺序排列

④若同类配体配原子相同,则含较少原子数的配体在前,含较多原子数的配体在后

⑤同类配体配原子相同,配体中原子数也相同,则在配体的结构式中与配体相连的原子

的元素符号的顺序依次排列

⑥注意区分配体化学式相同配原子不同的两个配体的命名,如硫氰根(以S配位)和异

硫氰根(以N配位)

⑦羟基配体与金属相连时,一般表现为阴离子,但在命名时将其称为“基”。如

K[B(C6H5)4] 四笨基合硼(III)酸钾

⑷多核配合物的命名

①多核配合物中若中心原子间有金属键连接且结构对称,则应该在前面加倍数词头。

如[(CO)5Mn-Mn(CO)5] 二(五羟基合锰)

②若结构不对称,则将其中一个元素符号中的英文字母在前的中心原子及相连配体作

为另一个中心原子的配体(词尾用“基”)来命名。如

[(C6H5)3AsAuMn(CO)5] 五羟基·[(三笨基胂)金基]合锰

③对于配位聚合物,命名前在重复单元的名称前加“聚”,若为链状配位聚合物,则往

往在名称前加“链”取代“聚”

④桥联配体前加词头“μ-”,π电子配体前加词头“η-”

⑤原子簇和物中还应该表明中心原子的几何形状,如三角形,正方形,四面形等

⑸几何异构体的命名

用“顺-”(或cis-)表示顺式异构体,用“反-”(trans-)表示反式异构体

用“面-”(或fac-)表示面式异构体,“经-”(mer-)表示经式异构体

当配合物中存在多种配体时,用小写英文字母作为位标表示配体具体的空间位置

⑹含不饱和配体配合物的命名

对于有机金属配合物,在以π键配位的不饱和配体的名称前加词头η,若配体与中心原子以σ键键合,则在配体前加词头σ

二、配合物的合成、分离与晶体培养

1.配合物的合成

根据配位数和氧化数的变化,可以将合成方法分:

加成反应:中心原子的配位数增加,氧化数不变

取代反应:中心原子的配位数、氧化数均不变

解离反应:中心原子的配位数减小,氧化数不变

氧化或还原反应:中心原子的氧化数不变

氧化加成反应:中心原子的氧化数和配位数均不变

按实验方法分类:

直接法:通过配体与中心原子直接进行配位反应,包括溶液中的直接配位反应、金

属蒸汽法、基底分离法等

组分交换合成法:包括金属交换反应和配体取代反应

氧化还原反应:包含电化学合成法

水热、溶剂热法

微波辐射合成法

热分解合成法

分层扩散法

固相反应法

模板法

2.配合物的分离

⑴对于经典配合物(通常具有盐的性质,易溶于水,常采用结晶的方法)

①蒸发浓缩除去溶剂:用冰盐冷却较浓的反应混合物使产品析出。加入所需化合物的

晶种,并在液面下摩擦器壁常有利于晶体析出

注意:当配体是挥发性的(如NH3),或对热不稳定(如多聚磷酸盐),或只能增大溶液的浓度而不结晶时,则不宜采用浓缩的方法

②缓慢加入能与溶剂互相混溶但又不能溶解所需配合物的溶剂,使产品析出

例如:【Cu(NH3)4】SO4,在水中溶解度大不易析出,若在其溶液中加入乙醇(在乙醇中的溶解度小)则结晶析出

③利用同离子效应使产品析出

④加入沉淀剂

⑵对于非经典配合物(通常是共价性化合物,一般溶于非极性溶剂,具有较低的沸点和熔点)也可以用上列方法,但更常用蒸馏、升华和色层分离的方法

注意:若配合物在水中溶解度不大,可采用在沸水中进行重结晶。也可以选用适当有机溶剂,在有机相中重结晶

3.配合物制备的注意事项

⑴、溶剂选择:依次顺序[1]水;[2]乙醇;[3]甲醇;[4]水-乙醇[5]水-甲醇;[6]乙腈;

[7]DMF(N,N-二甲基甲酰胺)或DMSO(二甲亚砜);[8]或其他混合溶剂;[9]

四氢呋喃水或醇的用量合计20mL左右,可以适当增加,取决于溶解性DMF的用量要小,一般合计10mL,配体和金属盐各用5mL溶解DMF可直接用于配合物的合成,也可在后续用于重结晶

⑵操作

①混合操作:容器采用50或100mL烧杯或100mL圆底烧瓶

方法一:金属盐与配体分别溶解于溶剂后混和;

方法二:第一配体与第二配体溶于有机溶剂,然后滴入金属盐的水溶液,混和

方法三:第一配体和金属盐溶于水或醇/水混和溶剂,调节pH,然后滴入第二配体的醇溶液

②酸碱度控制:采用广泛和精密pH试纸测量混和溶液pH值,然后根据需要搅拌下调节pH6-7(过渡金属)或5.5-6.5(稀土金属)

③温度控制:加热设备采用加热磁力搅拌器或恒温磁力电热套

方法一:常温下以烧杯做容器,平板磁力搅拌器或不加热的电热套

方法二:60-70℃恒温水浴控制,圆底烧为容器置于500mL烧杯中水浴加热2-3h;或置于恒温槽中加热保温3h或更长时间

方法三:回流控温

⑶影响配合物生成因素

内因:中心原子(离子)和配体的性质以及他们之间的成键情况

外因:溶液的酸碱度、浓度、温度,共存离子的影响等

4.晶体的培养

测定晶体结构的关键问题是培养出合格的单晶,合格的单晶体(晶粒)粒径≈0.3mm三个方向基本匀称表面光滑,无棱片状或细绒毛状

内因:分子间色散力、偶极性及氢键

外因:溶剂极性|挥发或扩散速度、温度

⑴晶体生长的共同条件:

①结晶物质要纯净

②过饱和浓度要低

要培养晶体,基本条件:溶液要达到过饱和(但若过饱合度太大,一次形成的晶核多,晶体颗粒小)晶粒长大的三种方法:

①小晶粒做晶种,放在刚达到饱和的溶液中,通过自然挥发等方法慢慢除

去溶剂,增加过饱合度,使小晶粒长大。

②长时间放置,使相对较小的晶粒因界面能大而溶解度较大,逐渐溶解;

相对较大的晶粒过饱和度大,溶质逐渐地结晶沉积到这些较大的晶粒上。

③利用蒸气扩散法,缓慢地改变溶液的组成,增加过饱和度,向结晶过程发展。

③溶液的组成和温度合适:

溶液的组成合适:溶质一定,溶剂需要选择。选择合适的溶剂,考虑两方面因素:溶解度和溶剂不同对晶体外形生长的影响

温度合适:温度影响溶液的溶解度,也就是说影响溶液的组成(影响溶液的相图),有些晶体在夏天易生长,有些晶体在冬天易生长

⑵培养单晶的方法:

方法一:对于溶液体系,直接置于小烧杯中,用保鲜膜包裹并扎数十个孔或用纸包裹,室温静置。

方法二:对于有少量沉淀的体系,冷却至室温后,过滤,滤液置于小烧杯中,用保鲜膜包裹并扎数十个孔或用纸包裹,室温静置。

方法三:对于有大量沉淀物的体系,冷却,过滤,滤液置于小烧杯中,用保鲜膜包裹并扎数十个孔或用纸包裹,室温静置。此处沉淀需要再用水、乙醇分别洗涤(注意:不要将洗涤后的溶液与前面的溶液混和),然后真空干燥备用。取一小部分约50mg,溶于5mLDMF,过滤后,滤液培养单晶。或将此溶液置于小试管中,然后小心注入1mL异丙醇或乙醇,封口静置(这是扩散法的一种方法)。

方法四:对于产生大量沉淀的体系,如果沉淀难溶于DMF或DMSO,可以再考虑用扩散法,即试管用容器,分上中下三层,下层为配体的水溶液或DMF溶液(溶液选择视配体的溶解性,必须保证是可溶的透明的溶液状态),中层为水-乙醇混和溶剂或DMF-乙醇混和溶剂(体积比为1:1)约1mL,上层为金属盐的乙醇溶液,封口、静置。有时,下层为金属盐与某一配体的水溶液(如果二者反应后无混浊现象,而与另一配体混和即有大量沉淀的情况)

注意:在单晶培养过程中,烧杯不能触动,甚至是风吹等振动。单晶必须是有规则平面闪光的颗粒状或块或片或棒状,如果是粉末,宣告失败。

常用单晶培养方法:常规的溶液法、扩散法(气相扩散、液层扩散和凝胶扩散等)以及水热或溶剂热合成法

三、配合物的空间结构

1.配位数与空间构型的关系

⑴一配位的配合物呈直线型配位数为1的配合物很少,目前报道的两个含一个单

齿配体都是中心原子与一个大体积单齿配体键合的金属有机化合物

⑵二配位的配合物直线型二配位的配合物较少,主要限于Cu+、Ag+、Au+、Hg+和Be2+

等d10和s2电子构型的配合物,可以认为中心原子是以sp或dp杂化轨道与配体成键

⑶三配位的配合物平面三角形中心原子以sp2、dp2或d2s杂化轨道与配体的轨道成

⑷四配位的配合物呈正四面体或平面四边形

⑸五配位的配合物三角双锥或四方锥

⑹六配位的配合物八面体或三棱柱

⑺七配位的配合物单帽八面体、单帽三棱柱或五角双棱

⑻八配位的配合物十二面体、四方反棱柱、六角双锥

⑼九配位的配合物三帽三棱柱、单帽四方反棱柱

⑽十配位及十以上配位的配合物多为镧系和锕系配合物,结构往往是畸变的正多面体,到目前为止,所发现的配合物的配位数最大为16

2.配合物的异构现象

1.立体异构:化学式相同、成键原子的连接方式也相同,但空间排列不同

①几何异构:凡是一个分子与其镜像分子不能重叠者即互为对映体,而不属于对映体的

立体异构体皆为几何异构体。几何异构体主要是顺反异构。

②对映异构(旋光异构):若一个分子与其镜像分子不能重叠,则该分子与其镜像分子

互为对映异构体。对映异构体的物理性质(如熔点、水中的溶解度等)均相同,化学性质也颇为相似,但其平面偏振旋转的方向不同

2.构造异构:化学式相同,而成键原子的连接方式不同

①配位异构:配合物的组成相同,只是配体在配阴离子和配阳离子之间的分配不同

②电离异构:配合物在溶液中电离时,由于内界和外界配体发生交换而生成不同配离子

③水合异构:化学组成相同的配合物,由于水分子处于内、外界的不同而引起的异构现

象,一般只限于晶体中讨论

④聚合异构:化学式相同但分子量成倍数关系的一组配合物称为聚合异构体

⑤键合异构:含多个配位原子的配体与金属离子配位时,由于键合原子的不同而造成的

异构

四、配合物的反应性

1.配合物的稳定性

⑴配合物稳定性常数的测定:电位法、极谱法、分光光度法、萃取法和离子交换法、量

热滴定法等

⑵影响配合物稳定性的因素:

内因:中心原子和配体的性质

中心原子的影响:半径与电荷、电子构型

配体的影响:配体原子的电负性、配体的碱性、螯合效应、空间位阻外因:溶液的酸碱度、浓度、温度、和压力等外界条件

2.配体的反应性

⑴配体的亲核加成反应

⑵配体的酸式解离反应

⑶中心离子活化配体的反应

3.配位催化反应

定义:在催化过程中催化剂与反应物或反应中间体之间发生配位反应,使反应物分子在配位后处于活化状态从而加速和控制反应的进程。

特点:配位与解离这种活化分子的方式为反应提供了较低的的反应能垒;可以对反应方向和产物结构起选择性的效果;可以促进电子传递;提供了电子与能量偶联传递途径。

⑴按反应选择性分类:常规催化体系、区域选择性催化反应体系和立体选择催化反应

体系

⑵按相体系分类:均相催化和异相催化

⑶配位催化基本原理:

关键:降低反应活化能

降低途径:一是使化学键的部分成键电子转移,消弱了该化学键,从而易生成新的化学键;二是使反键轨道中填充电子,为生成新化学键提供条件。

配位催化的催化剂大多是过渡金属配合物或其盐类

⑷配位催化中的基本反应:

①配体的配位与解离

②氧化加成和还原消除

③插入及挤出反应

④σ—π重排

⑸配体对催化反应的影响

⑹配位催化反应举例:

①催化氢化反应

②催化氧化反应

③夏普勒斯催化不对称环氧化体系

④烯烃聚合

五.配合物的表征方法

应用各种物理方法去分析化合物组成和结构,以了解原子、分子和晶体等物质中的基本微粒如何相互作用(键型)以及他们在空间中的几何排布和配置方式(构型)电子吸收光谱

荧光光谱

红外光谱

拉曼光谱

射线光电子光谱

核磁共振

顺磁共振

圆二色谱法

电化学

射线衍射

电喷雾质谱

六.功能配合物

1.配合物发光材料

⑴OLED有机电致发光材料

⑵发光金属凝胶

2.荧光探针及分子传感器

设计原理主要基于光诱导电子转移、分子内电荷转移、电子能量转移、激基缔合物等机理

荧光探针及荧光分子传感器一般由荧光团、间隔基和受体三部分构成

pH荧光探针

阳离子荧光探针

配合物作为荧光探针

3.导电配合物

一般认为配合物多为绝缘体,究其原因,因为它们不存在强的相互作用力(这里所指的是小于范德华半径的原子间近距离接触或π轨道的有效重叠)

目前导电配合物主要有低维配位聚合物和电荷转移复合物

4.磁性配合物

磁化率X:材料的磁化强度M与外磁场强度H的比值

抗磁体过渡族金属铁磁体铁、钴、镍弱磁体顺磁体贵金属、稀土金属、碱金属强磁体

反铁磁体а—Mn、铬等亚铁磁体四氧化三铁抗磁性:与外磁场相反的方向诱导出磁化强度的现象即磁化强度方向与磁场强度方向相反(磁化率为负),源于电子在轨道中运动时与外磁场的相互作用,故所有物质均具有抗磁性

顺磁性:是指材料对磁场响应很弱的磁性,主要源于原子内部存在永久磁矩。故只有未成对电子的物质才具有顺磁性,且磁化强度方向与磁场强度方向相同(磁化率为正)在原子自旋(磁矩)受交换作用而呈现有序排列的磁性材料中,如果相邻原子自旋间是受负的交换作用,自旋为反平行排列,则磁矩虽处于有序状态(称为序磁性),但总的净磁矩在不受外场作用时仍为零。这种磁有序状态称为反铁磁性。

亚铁磁性:是在无外加磁场的情况下,磁畴内由于相邻原子间电子的交换作用或其他相互作用。使它们的磁矩在克服热运动的影响后,处于部分抵消的有序排列状态,以致还有一个合磁矩的现象。

近年来配合物基分子磁体的研究方向:

①高T C分子基磁体

②低微分子基磁体:包括单分子磁体(可磁化的分子)和单链磁体(指像 Glauber 模

型那样具有磁化强度缓慢弛豫作用的一维材料)

③自选转换材料

无机化学 第12章 配位化学基础习题及全解答-教学提纲

第12章 配位化学基础 1 M 为中心原子,a, b, d 为单齿配体。下列各配合物中有顺反异构体的是 (A ) (A ) Ma 2bd (平面四方)(B ) Ma 3b (C ) Ma 2bd (四面体)(D ) Ma 2b (平面三角形) 2 在下列配合物中,其中分裂能最大的是 (A ) (A ) Rh(NH 3)36+ (B )Ni(NH 3) 36+ (C ) Co(NH 3)36+ (D ) Fe(NH 3)36+ 3 在八面体强场中,晶体场稳定化能最大的中心离子d 电子数为 (B ) (A ) 9 , (B ) 6 , (C )5 , (D )3 4 化合物[Co(NH 3)4Cl 2]Br 的名称是 溴化二氯?四氨合钴(III ) ; 化合物[Cr(NH 3)(CN)(en)2]SO 4的名称是 硫酸氰?氨?二乙二胺合铬(III )。 5 四硫氰·二氨合铬(Ⅲ)酸铵的化学式是 NH 4[Cr (SCN )4(NH 3)2] ; 二氯·草酸根·乙二胺合铁(Ⅲ)离子的化学式是[Fe Cl 2(C 2O 4)en]- 4 。 6. 下列物质的有什么几何异构体,画出几何图形 (1)[Co(NH 3)4Cl 2]+ (2)[Co(NO 2)3(NH 3)3] 答:(1)顺、反异构(图略),(2)经式、面式异构(图略)。 7.根据磁矩,判断下列配合物中心离子的杂化方式,几何构型,并指出它们属于何类配合物(内/外轨型。 (1)[Cd (NH 3)4]2+ μm =0 ; (2)[Ni(CN)4]2- μm =0 ; (3)[Co(NH 3)6]3+ μm =0 ; (4)[FeF 6]3- μm =5.9μB ; 答:

中级无机化学习题和答案

中级无机化学习题 第二章 对称性与群论基础 1、利用Td 点群特征标表(右表)回答下列问题 (1)、群阶,对称操作类数,不可约表示数 (2)、SO 42-离子中S 原子3p x 轨道及3d xy 轨道所属的不可约表示 (3)、可约表示Г(10,-2,2,0,0)中包括了 哪些不可约表示?SO 42-离子是否表现为红外活性?SO 42-离子是否表现为拉曼活性的? 解:(1)点群的阶h=8;对称操作类=5;不可约表示数=5 (2)S 原子的P X 轨道所属不可约表示为T 2表示。 (3)()01231)2(811018 1 11=??+?-?+??=?Γ?=∑i A g h a χ;同理 02 =A a ;11=T a ;12=T a ;2=E a ;故可约表示E T T 221)0,0,2,2,10(⊕⊕=Γ- 因T 2表示中包含(x,y,z )和 (xy,xz,yz),故既表现为红外活性又表现为拉曼活性。 2 (1)、点群的阶,对称操作类数,不可约表示数 (2)、NH 3分子中偶极矩所属的不可约表示 (3)可约表示Г(6,0,2)中包括了哪些不可约表示? 解:(1)点群的阶h=6; 对称操作类=3;不可约表示数=3 (2)NH 3分子中偶极矩所属不可约表示为A 1表示 (3)()21231021616 1 11=??+??+??=?Γ?= ∑i A g h a χ;同理 02=A a , 2=E a ; 故可约表示E A 221)2,0,6(⊕=Γ 3 (1)、点群的阶,对称操作类数,不可约表示数 (2)、SF 5Cl 分子中S 原子Px 轨道所属的不可约表示 (3)、可约表示Г(4,0,0,-2,0)中包括了哪些不可约表示?

配位化学讲义 第十一章 无机小分子配合物

配位化学讲义第十一章无机小分子配合物

第十一章无机小分子配体配合物 小分子配体的过渡金属配合物,已成为配位化学中发展最快的领域之一。现已证实,小分子通过与过渡金属离子的配位而活化,进而可引起许多重要的反应。 第一节金属羰基(CO)配合物 一、概述 金属羰基配合物是过渡金属元素与CO所形成的一类配合物。 1890年,Mond和Langer发现Ni(CO)4,这是第一个金属羰基配合物。 常温、常压 Ni(粉) + CO Ni(CO)4 (无色液体,m .p.= -25℃) 150℃ Ni(CO)4Ni + 4CO 这成为一种提纯Ni的工艺。 现已知道,所有过渡金属至少能生成一种羰基配合物,其中金属原子处于低价(包括零价)状态。 二、类型 1、单核羰基配合物 这类化合物都是疏水液体或易挥发的固体,能不同程度地溶于非极性溶剂。M-C-O键是直线型的。例: V(CO)6 黑色结晶,真空升华V-C, 2.008(3) ? Cr(CO)6Cr-C, 1.94(4) ? Mo(CO)6无色晶体,真空升华,Mo-C, 2.06(2)? 八面体 W(CO)6W-C, 2.06(4)? Fe(CO)5黄色液体,m.p.=20℃,Fe-C,1.810(3)?(轴向)三角 b.p.=103℃ 1.833(2)?(赤道)双锥 Ni(CO)4无色液体,m.p.= -25℃,Ni-C,1.84(4)?四面体 2、双核和多核金属羰基配合物 多核羰基配合物可以是均核的,如:Fe3(CO)12;也可以是异核的,如

MnRe(CO)10。 M 在这类化合物中,不仅有M-C-O 基团, 而且还有O —C 和M-M 键,且 M μ2-CO 常与M-M 键同时存在。即: O —C 例:(1)Mn 2(CO)10为黄色固体,m.p.151℃,Mn-Mn=2.93? OC CO OC CO OC M M CO M=Mn 、Tc 、Re OC CO OC CO (2) Fe 2(CO)9 金色固体,m.p.100℃(分解),难挥发 OC CO CO OC Fe Fe CO Fe 2(CO)9 OC CO OC CO (3)Fe 3(CO)12 绿黑色固体,m.p.140-150℃(分解) OC CO Fe O C OC C O OC Fe C C Fe O CO CO CO CO CO Fe 3(CO)12 (4)M 3(CO)12 M=Ru 、Os OC CO O C OC C O OC C C O CO CO CO CO CO M M M

配位化学第一组第三章作业

第三章配合物在溶液中的稳定性作业 1.下列各组中,哪种配体与同一种中心离子形成的配合物稳定性较高,为什么? (1)Cl- , F-和Al3+(2)Br-,I-和Hg2+ (3)2CH3NH2,en和Cu2+(4)Br-,F- 和Ag+ (5)RSH,ROH和Pt2+(6)Cl-,OH-和Si4+ (7)RSH,ROH和Mg2+ 解(1)F-与Al3+形成配合物更稳定,因为F-电负性大,离子半径更小(2)I-与Hg2+更稳定,因为碘离子的电负性较大,离子半径更小(3 )2CH3NH2与Cu2+形成的配合物更稳定,因为它的碱性比en更强与形成的配合物更稳定 (4)Br-与Ag+形成的配合物更稳定,因为与Ag+形成配合物Br-变形性比F-强 (5)RSH与Pt2+形成配合物更稳定,因为在与Mg2+形成配合物时S 的半径小于O的半径 (6)OH-与Si4+形成的配合物更稳定,因为在与Si4+形成配合物时OH-的电荷比更多 (7)RSH与Mg2+形成配合物更稳定,因为在与Mg2+形成配合物时S 的半径小于O的半径 2.写出下列,配体与中心离子形成的配合物的稳定次序。 解(1)CH3NH2,en,NH2-NH2,NH2-OH和Cu2+ en > CH3NH2 > NH2-NH2 > NH2OH

(2)R3CCOOH,CH3COOH,Cl3CCOOH,I3CCOOH和Fe3+ R3CCOOH > CH3COOH > I3CCOOH > Cl3CCOOH (3)NH3,NH2-NH2,NH2-OH,R-OH和Ag+ NH3 > NH2-NH2 > NH2-OH > R-OH (4)N, NH2 与Zn2+ N> NH2 (5)NH2 O2N, NH2 C H3, NH2 NO2与Cu2+ NH2 C H3> NH2 NO2> NH2 O2N (6) N OH, N OH CH3 与Ni2+ N OH CH3 > N OH CH3 3.下列二组试剂与同一种金属离子形成螯合物时,估计lg k的大小次序:

第三章 第四节 配合物与超分子

第四节配合物与超分子 [核心素养发展目标] 1.能从微观角度理解配位键的形成条件和表示方法,能判断常见的配合物。2.能利用配合物的性质去推测配合物的组成,从而形成“结构决定性质”的认知模型。 3.了解超分子的结构特点与性质。 一、配合物 1.配位键 (1)概念:由一个原子单方面提供孤电子对,而另一个原子提供空轨道而形成的化学键,即“电子对给予—接受”键。 (2)表示方法:配位键常用A—B表示,其中A是提供孤电子对的原子,叫给予体,B是接受孤电子对的原子,叫接受体。 如:H3O+的结构式为;NH+4的结构式为。 (3)形成条件 形成配位键的一方(如A)是能够提供孤电子对的原子,另一方(如B)是具有能够接受孤电子对的空轨道的原子。 ①孤电子对:分子或离子中,没有跟其他原子共用的电子对就是孤电子对。如、 、分子中中心原子分别有1、2、3对孤电子对。含有孤电子对的微粒:分子如CO、NH3、H2O等,离子如Cl-、CN-、NO-2等。 ②含有空轨道的微粒:过渡金属的原子或离子。一般来说,多数过渡金属的原子或离子形成配位键的数目基本上是固定的,如Ag+形成2个配位键,Cu2+形成4个配位键等。 2.配合物 (1)概念 通常把金属离子或原子(称为中心离子或原子)与某些分子或离子(称为配体或配位体)以配位键结合形成的化合物称为配位化合物,简称配合物。如[Cu(NH3)4]SO4、[Ag(NH3)2]OH等均为配合物。 (2)组成 配合物[Cu(NH3)4]SO4的组成如下图所示:

①中心原子:提供空轨道接受孤电子对的原子。中心原子一般都是带正电荷的阳离子(此时又叫中心离子),最常见的有过渡金属离子:Fe3+、Ag+、Cu2+、Zn2+等。 ②配体:提供孤电子对的阴离子或分子,如Cl-、NH3、H2O等。配体中直接同中心原子配位的原子叫做配位原子。配位原子必须是含有孤电子对的原子,如NH3中的N原子,H2O中的O原子等。 ③配位数:直接与中心原子形成的配位键的数目。如[Fe(CN)6]4-中Fe2+的配位数为6。 (3)常见配合物的形成实验 实验操作实验现象有关离子方程式 滴加氨水后,试管中首先出现蓝色沉淀,氨水过量后沉淀逐渐溶解,得到深蓝色的透明溶液,滴加乙醇后析出深蓝色晶体Cu2++2NH3·H2O===Cu(OH)2↓+2NH+4、Cu(OH)2+4NH3=== [Cu(NH3)4]2++2OH-、 [Cu(NH3)4]2++SO2-4+H2O===== 乙醇[Cu(NH3)4]SO4·H2O↓ 溶液变为红色Fe3++3SCN-Fe(SCN)3滴加AgNO3溶液后,试管 中出现白色沉淀,再滴加氨水后沉淀溶解,溶液呈无色Ag++Cl-===AgCl↓、AgCl+2NH3===[Ag(NH3)2]++Cl- (4)配合物的形成对性质的影响 ①对溶解性的影响 一些难溶于水的金属氢氧化物、氯化物、溴化物、碘化物、氰化物,可以溶解于氨水中,或依次溶解于含过量的OH-、Cl-、Br-、I-、CN-的溶液中,形成可溶性的配合物。如Cu(OH)2+4NH3===[Cu(NH3)4]2++2OH-。 ②颜色的改变 当简单离子形成配离子时,其性质往往有很大差异。颜色发生变化就是一种常见的现象,根据颜色的变化就可以判断是否有配离子生成。如Fe3+与SCN-形成硫氰化铁配离子,其溶液显红色。

无机化学-第12章-配位化学基础习题及全解答-

1 / 7 第12章 配位化学基础 1 M 为中心原子,a, b, d 为单齿配体。下列各配合物中有顺反异构体的是 (A ) (A ) Ma 2bd (平面四方)(B ) Ma 3b (C ) Ma 2bd (四面体)(D ) Ma 2b (平面三角形) 2 在下列配合物中,其中分裂能最大的是 (A ) (A ) Rh(NH 3)36+ (B )Ni(NH 3) 36+ (C ) Co(NH 3)36+ (D ) Fe(NH 3)36+ 3 在八面体强场中,晶体场稳定化能最大的中心离子d 电子数为 (B ) (A ) 9 , (B ) 6 , (C )5 , (D )3 4 化合物[Co(NH 3)4Cl 2]Br 的名称是 溴化二氯?四氨合钴(III ) ; 化合物[Cr(NH 3)(CN)(en)2]SO 4的名称是 硫酸氰?氨?二乙二胺合铬(III )。 5 四硫氰·二氨合铬(Ⅲ)酸铵的化学式是 NH 4[Cr (SCN )4(NH 3)2] ; 二氯·草酸根·乙二胺合铁(Ⅲ)离子的化学式是[Fe Cl 2(C 2O 4)en]- 4 。 6. 下列物质的有什么几何异构体,画出几何图形 (1)[Co(NH 3)4Cl 2]+ (2)[Co(NO 2)3(NH 3)3] 答:(1)顺、反异构(图略),(2)经式、面式异构(图略)。 7.根据磁矩,判断下列配合物中心离子的杂化方式,几何构型,并指出它们属于何类配合物(内/外轨型。 (1)[Cd (NH 3)4]2+ μm =0 ; (2)[Ni(CN)4]2- μm =0 ; (3)[Co(NH 3)6]3+ μm =0 ; (4)[FeF 6]3- μm =5.9μB ; 答: 8判断下列配离子属何类配离子 9 配合物K 3 10 计算下列金属离子在形成八面体配合物时的CFSE/Dq (1) Cr 2+ 离子,高自旋;

第一章 配位化学基础要点

绪论 导课:配位化学一般是指金属和金属离子同其他分子或离子相互反应的化学。它是在无机化学的基础上发展起来的一门独立的、同时也与化学各分支学科以及物理学、生物学等相互渗透的具有综合性的学科。配位化学所涉及的化合物类型及数量之多、应用之广,使之成为许多化学分支的汇合口。现代配位化学几乎渗透到化学及相关学科的各个领域,例如分析化学、有机金属化学、生物无机化学、结构化学、催化活性、物质的分离与提取、原子能工业、医药、电镀、燃料等等。因此,配位化学的学习和研究不但对发展化学基础理论有着重要的意义,同时也具有非常重要的实际意义。 一、配位化学的任务 配位化学是研究各类配合物的合成、结构、性质和应用的一门新型学科。 配合物的合成是重点,结构与性质研究是难点,研究方法是关键。应用是落脚点。二、配位化学的学科基础 配位化学的学科基础是无机化学,分析化学、有机化学、物理化学和结构化学。配位化学已成为许多化学分支的汇合口。 配位化学是许多新兴化学学科的基础。如:超分子化学,酶化学,蛋白质化学,生物无机化学,材料化学,化学生物学,药物化学,高分子化学等。 三、配位化学的研究方法 1、合成方法:要求掌握有机和无机化学的合成技术,特别是现今发展起来的水热技术、微波技术、微乳技术、超临界技术等。 2、结构研究:元素分析、紫外光谱、红外光谱、质谱、核磁共振、荧光光谱、X-衍射等。 3、性质研究:电位滴定、循环伏安、磁天平、变温磁化率、交流磁化率、电子顺磁共振、光电子能谱、E-扫描、催化性质、凝胶电泳、园二色谱、核磁共振研究与细胞及DNA 的作用。 4、应用:催化反应用于有机合成、金属酶的模拟、分子识别、金属药物、非线性光学材料、分子磁体、介孔材料、分子机器等。 四、配位化学的学习方法 1、课前预习:在上课以前,把下一次课的内容先粗略的看一次,把自己看不懂的内容做上记号,有时间再认真的看一次,如果仍看不懂,做好记录,等待课堂解决。 2、上课:根据课前预习的难度,对较难理解的部分认真听讲,理解教师的分析思路,学习思考问题和解决问题的方法。在教材上作好批注。 3、复习:对在课堂上没有弄懂的问题在课间问主讲教师,下课后对整个课堂内容复习一次并作好复习笔记。 五、课程的内容安排:

09级研究生《配位化学》试题(参考答案)

化学系09级研究生《配位化学》试题(参考答案) 一、填空题(每空1分共15分) 1、硝基五氨合钴离子 2 6 2、⑴﹢2 ⑵6 ⑶4 ⑷八面体 3、空轨道孤对电子 4、[Co(CN) 6]3-八面体 [Co(CN) 6 ]3- 5、八面体 SP3d2 d2SP3 二.解释、区别下列名词(5*7=35分) 1.单齿配体与多齿配体 单齿配体:指一个配体且只含有一个配位原子的配体 多齿配体:指含有两个以上的配位原子的配体 2.d2sp3杂化和sp3d2杂化 d2SP3杂化:指两个(n-1)d轨道,一个ns轨道和三个np轨道混合时就会产生6个d2SP3杂化轨道 SP3d2 杂化:指一个ns轨道,三个np轨道和两个nd轨道混合时就会产生6个SP3d2 杂化轨道 3.简单配合物与螯合物 简单配合物:单齿的分子或离子配体与中心原子作用形成的配合物 熬合物:由双齿或多齿配体与同一中心离子作用形成的环称为熬合环,所形成的具有熬合环的配合物 4.低自旋配合物和高自旋配合物 低自旋配合物:当P成对能小于△分裂能的配合物 高自旋配合物:当P成对能大于△分裂能的配合物 5.金属酶与金属蛋白 金属酶:必须有金属离子参与才有活性的酶,简单地说是结合有金属离子的酶是一种生物催化剂。 金属蛋白:金属离子与蛋白形成配合物,其主要作用不是催化某个生化过程,而是完成生物体内如电子传递之类特定的生物功能的活性物质。 6.强场配体:在光谱学中,△分裂能较大的为强场配体,如:NO 2 - CN- 弱场配体:在光谱学中,△分裂能较小的为强场配体,如:I- Cl- 7.晶体场理论:金属离子与配体间的相互作用为静电作用,同时考虑到配位体对中心离子d 轨道的影响。 分子轨道理论:着重于分子的整体性,它把分子看作是一个整体来处理,比较全面反映分子内部电子的各种运动状态,它不仅能解决分子中存在的电子对键、单电子键、三电子键的形成,而且对多原子分子的结构也能比较好的说明。 三、选择题(每题3分共15分) 1、B 2、A 3、C 4、C 5、A

无机答案第11章 配位化合物

第11章 配位化合物 习 题 1.给出下列中心金属离子的特征配位数: (a)Cu+;(b)Cu2+;(c)Co3+;(d)Zn2+;(e)Fe2+;(f)Fe3+。 2.按照摩尔导电率的大小将下列配合物排序: (a)K[Co(NH3)2(NO2)4];(b)[Cr(NH3)3(NO2)3];(c)[Cr(NH3)3(NO2)] 3 [Co(NO2)6]2;(d)Mg[Cr(NH3)(NO2)5]。 3.解释为什么EDTA钙盐可作为铅的解毒剂?为什么用EDTA的钙盐而不能用游离的EDTA? 4.指出下列配离子中金属元素的氧化态: (1) [Cu(NH3)4]2+; (2) [Cu(CN)2]-; (3) [Cr(NH3)4(CO3)]+; (4) [Co(en)3]2+; (5) [CuCl4]2-; (6) Ni(CO)4. 5.命名下列配合物: (1)K3[Co(NO3)6]; (2)[Cr(Py)2(H2O)2Cl2]; (3)[Cr(H2O)5Cl]Cl2?H2O; (4)K2[Ni(en)3]; (5)[Co(NH3)4(NO2)Cl]Cl; (6)K3[Fe(C2O4)3]?3H2O; (7)K2[Cu(C2H2)3]; (8)[Pt(Py)4][PtCl4]. 6.根据下列配合物的名称,写出其化学式: (1)亚硝酸?溴三氨合铂(Ⅱ); (2)一水合二氨?二乙二胺合铬(Ⅲ); (3)溴化硫酸根?五氨合钴(Ⅳ); (4)六氟合铂(Ⅳ)酸钾。 7.画出配离子[Cr(NH3)(OH)2Cl3]2-所有可能的几何异构体。 8.指出下列配合物中配位单元的空间构型并画出它们可能存在的几何异构体:(1)[Pt(NH3)2(NO2)Cl]; (2)[Pt(Py)(NH3)ClBr]; (3)[Co(NH3)2(OH)2Cl2]; (4)K4[Co(NH3)2(NO2)4]; (5)[Ni(NH3)3(OH)3]; (6)[Ni(NH3)2Cl2]. 9.配离子[Cr(en)2Cl2]+存在几种几何异构体,哪种异构体可以表现出旋光活性,画出这些异构体。 10.下列两种配离子是否存在旋光异构体,如果有,请画出来。 (1)[Co(en)Br2I2]-;

《无机化学》第十一章 配合物结构之课后习题参考答案

第十一章 配合物结构之课后习题参考答案 2解:(1)[CuCl 2]-的磁距为0。 (2)[Zn(NH 3)4]2+的磁距为0。 (3)[Co(NCS)4]2-的磁距为87.3)23(3=+?。 3解: (1) (2) (3) 4解:(1)[Co(en)3]2+为外轨型 (2)[Fe(C 2O 4)3]3-为外轨型

(3)[(Co(EDTA)]-为内轨型 5解:Ni 2+离子的价电子构型为:3d 8。因Cl -为弱场配体,形成[NiCl 4]2-配离子时,其3d 轨道中的电子不会发生重排腾出空的3d 轨道,所以只能使用最外层的空轨道形成sp 3杂化,其空间构型为正四面体,[NiCl 4]2-含有2个未成对电子,其磁距=83.2)22(2=+?。 而CN -为强场配体,可使Ni 2+离子的3d 轨道上的电子重排,腾出1条空的3d 轨道,则采取dsp 2杂化,空间构型为平面正方形,无成单电子数,其磁距为0,所以是反磁性的。 6解:(1)[Ru(NH 3)6]2+中Ru 2+离子的价电子构型为4d 6, 形成配离子后处于低自旋状态, 即4d 上的成单电子重排成三对电子对, 无成单电子存在,其磁距为0. (2)[Fe(CN)6]3-中Fe 3+离子的价电子构型为3d 5, 形成配离子后处于低自旋状态, 即3d 上的成单电子重排成两对电子对, 有1个成单电子存在, 其磁距为73.1)21(1=+?. (3)[Ni(H 2O)6]2+中Ni 2+离子的价电子构型为3d 8, 形成配离子后处于高自旋状态, 即3d 上的成单电子不能重排, 则有2个成单电子存在, 其磁距为83.2)22(2=+? (4)[V(en)3]3+中V 3+离子的价电子构型为3d 2, 本身3d 轨道就有3条是空的,形成配离子时不需重排, 有2个成单电子存在, 其磁距为83.2)22(2=+?。 (5)[CoCl 4]2-中Co 2+离子的价电子构型为3d 7, 形成配离子后处于高自旋状态, 即3d 上的成单电子不能重排, 则有3个成单电子存在, 其磁距为87.3)23(3=+?。

无机化学 第12章 配位化学基础习题及全解答

无机化学第12章配位化学基础习 题及全解答 第12章配位化学基础1 M为中心原子,a, b, d 为单齿配体。下列各配合物中有顺反异构体的是Ma2bd Ma3b Ma2bd Ma2b 2 在下列配合物中,其中分裂能最大的是Rh(NH3)6 Ni(NH3) 6 Co(NH3)6 Fe(NH3)6 3 在八面体强场中,晶体场稳定化能最大的中心离子d 电子数为9 , 6 , 5 , 3 4 化合物[Co(NH3)4Cl2]Br 的名称是溴化二氯?四氨合钴;化合物[Cr(NH3)(CN)(en)2]SO4的名称是硫酸氰?氨?二乙二胺合铬。 5 四硫氰·二氨合铬酸铵的化学式是NH4[Cr42] ;二氯·草酸根·乙二胺合铁离子的化学式是[Fe Cl2en] 4 。 6. 下列物质的有什么几何异构体,画出几何图形[Co(NH3)4Cl2]

[Co(NO2)3(NH3)3] 答:顺、反异构,经式、面式异构。7.根据磁矩,判断下列配合物中心离子的杂化方式,几何构型,并指出它们属于何类配合物[Cd (NH3)4]μm=0 ;[Ni(CN)4] μm=0 ;[Co(NH3)6] μm=0 ;[FeF6] μm=μB ;答:序配离子[Cd(NH3)4] [Ni(CN)4] [Co(NH3)6] [FeF6] 3-3+22+3+3-2+ 2-+ 3?3?3?3?-d电子数磁矩/μm 10 8 6 5 0 0 0 杂化方式SP dSP dSP SPd 322323几何构型正四面体平面正方形内/外轨外轨型内轨型内轨型外轨型正八面体正八面体8判断下列配离子属何类配离子序号9 配合物K3[Fe(CN)5(CO)]中配离子的电荷应为-3 —,配离子的空间构型为八面体,配位原子为C,中心离子的配位数为 6 ,d 电子在t2g 和eg轨道上的排布方式为t2g eg —60配离子[Fe(en)3] [Mn(CN)6] [Co(NO2)6] 4-4-2+△o与P关系△o<P

第11章 配合物结构

第十一章配合物结构 & 主要内容: q 配合物的空间构型和磁性 q 配合物的化学键理论 & 重点难点: q 配合物的结构理论,包括价键理论、晶体场理论和分子轨道理论。并根据这些理论解释配合物的有关性质。 q 由试验测得的磁矩算出未成对电子数;推测中心离子的价电子的分布情况和中心离子采取的杂化方式;确定配合物是内轨型还是外轨型,来解释配合物的相对稳定性。 q 根据晶体场分裂能与电子成对能的相对大小,判断在晶体场中中心离子的价电子在不同轨道中的分布,推论配合物类型,确定配合物的磁性,估算出配合物磁矩数值,进一步可计算晶体场稳定化能,说明配合物的相对稳定性。 & 教学目的: q 熟悉配合物价键理论的基本要点、配合物的几何构型与中心离子杂化轨道的关系。 q 了解内轨型、外轨型配合物的概念、中心离子价电子排布与配离子稳定性、磁性的关系q 了解配合物晶体场理论的基本要点;了解八面体场中d电子的分布和高、低自旋的概念,推测配合物的稳定性、磁性;了解配合物的颜色与d-d跃迁的关系。 & 授课学时 4学时 §11.1配合物空间构型和磁性 11.1.1 配合物的空间构型 配合物分子或离子的空间构型与配位数的多少密切相关。

由图可见,配合物的空间构型除了与配位数密切相关外,还与配体种类有关,例如,配位数 同样是4,但为四面体构型,而则为平面正方形。 11.1.2 配合物的磁性 磁性:物质在磁场中表现出来的性质。 顺磁性:被磁场吸引的性质。例如:O 2,NO,NO 2 等物质具有顺磁性。 反磁性:被磁场排斥的性质。大多数物质具有反磁性。 铁磁性:被磁场强烈吸引的性质。例如:Fe,Co,Ni属于铁磁性物质。 物质的磁性与内部的电子自旋有关。若电子都是偶合的,由电子自旋产生的磁效应彼此抵消,这 种物质在磁场中表现反磁性;反之,有未成对电子存在时,才会在磁场中显示磁效应,可用磁矩(μ)。 式中,μ为磁矩,单位是B.M.(玻尔磁子), n为未成对电子数。 可用未成对电子数目n估算磁矩μ。 n 0 1 2 3 4 5 μ/B.M. 0 1.73 2.83 3.87 4.90 5.92 物质的磁性亦可用磁天平测定。实验测得的磁矩与估算值略有出入,总趋势比较吻合。

第十一章 配合物结构

第十一章配合物结构 (11-1) 如果配合物具有平面四方形和八面体空间构性,这类配合无可能存在几何异构体。 (1)[Co(NH3)4(H2O)2]3+具有八面体空间构性,其顺、反几何异构体为: (3),(4)与(1)类似,请自行完成。 (2)[PtCl(NO2)(NH3)2]为平面四方形构型,其顺、反几何异构体为: (5)[IrCl3(NH3)3]为八面体构型,属[MX3A3]型配合物,其顺、反几何异构体分别称为面式和经式异构体: (11-3) 磁矩是研究配合物结构的重要实验数据之一。决定配合物磁矩的最最重要因素是中心离子或原子的未成对电子数,由试验测得磁矩后,可以推测出未成对电子数,进而确定形成体的价层电子排布、杂化轨道类型及配合物的空间构型。 [Co(H2O)6]2+的μ=4.3B.M,Co2+为3d7电子构型,推知Co2+的未成对电子数n=3,其价层电子排布为: 配合无为正八面体的空间构型。 [Mn(CN)6]4-:μ=1.8B.M,Mn2+为3d5电子构型,n=1。其价层电子分布为: 配合物的空间构型为八面体。 自行回答[Ni(NH3)6]2+的相关问题。 *如果已经确定配合物个体的空间构型,可推知形成体的杂化轨道类型,再确定其价层电子排布和未成对电子数,从而可估算出该配合物磁矩。(11-2)题就属这种情况,请自行完成本体的解答。同样,也可完成(11-5)题。 (11-4) 本题的解体思路与(11-3)相同。这里,主要是对三种常见的螯合剂en,C2O42-,EDTA 的配位原子种类和数目要进一步熟悉;同时对内轨型和外轨型配合物的概念要很了解。 [Co(en)3]2+:μ=3.82B.M,Co2+为3d7, n=3,每个en有两个配位原子N。Co2+ 的价层电子分布为: Co2+采用sp3d2杂化轨道成键,为外轨型配合物(即成键轨道为ns,np,nd),是正八面体空间构型。 [Fe(C2O4)33-]的5.75B.M,Fe3+为,n=5,其价层电子分布为: 1C2O42-个有2个配位O,Fe3+以sp3d2杂化轨道成键,是外轨型八面体配合物。[Co(EDTA)]-的,n=0,Co3+的价层电子分布为: 每个EDTA中有2个N和4个O为配位原子,Co3+以d2sp3杂化轨道与EDTA成键,该螯合物空间构型为八面体,是内轨型配合物(其成键轨道为(n-1)d,ns,np)。

2018安徽安徽高中化学竞赛无机化学第十三章 配位化学基础

第十三章配位化学基础 13. 1. 01 配位化合物的定义: 由于配位化合物涉及的化学领域非常广泛,所以要严格定义配位化合物很困难。目前被化学界基本认可的方法是首先定义配位单元,而后在配位单元的基础上,进一步定义配位化合物。 由中心原子或离子和几个配体分子或离子以配位键相结合而形成的复杂分子或离子,称为配位单元。[ Co(NH3)6 ]3+,[ Cr(CN)6 ]3-和[ Ni(CO)4 ] 都是配位单元。分别称作配阳离子、配阴离子和配分子。 含有配位单元的化合物称为配位化合物,也叫络合物。例如 [ Co(NH3)6 ]Cl3,K3 [ Cr(CN)6 ],[ Ni(CO)4 ] 都是配位化合物。 [ Co(NH3)6 ] [ Cr(CN)6 ] 也是配位化合物。判断配位化合物的关键在于物质中是否含有配位单元。 13. 1. 02 配位化合物的內界和外界: 在配位化合物中,配位单元称为内界,外界是简单离子。例如 [ Co(NH3)6 ]Cl3中,[ Co(NH3)6 ]3+是内界,Cl-是外界。又如 K3 [ Cr(CN)6 ] 中,[ Cr(CN)6 ]3-是内界,K+是外界。 配位化合物中可以无外界,如[ Ni(CO)4 ] 中就没有外界, [ Co(NH3)6 ] [ Cr(CN)6 ] 中也没有外界。但配位化合物不能没有内界。 在溶液中,内外界之间是完全解离的,例如在水溶液中 [ Co(NH3)6 ]Cl3==== [ Co(NH3)6 ]3++ 3 Cl- 13. 1. 03 配位化合物的中心和配体: 内界配位单元由中心和配体构成。例如在配位单元[ Co(NH3)6 ]3+ 中,Co3+为中心,NH3为配体。中心又称为配位化合物的形成体。中心多为金属离子,尤其是过渡金属离子;而配体经常是阴离子或分子。 13. 1. 04 配位原子和配位数: 配体中给出孤电子对与中心直接形成配位键的原子,叫配位原子。配位单元中,中心周围的配位原子的个数,叫配位数。 配位单元[ Co(NH3)6 ]3 + 的中心Co3+的周围有6个配体NH3,每个NH3中有一个N 原子与Co3+直接配位。N 是配位原子,Co 的配位数是6。

中级无机化学习题和答案

中级无机化学习题 第二章对称性与群论基础 1利用Td点群特征标表(右表)回答下列问题 (1 )、群阶,对称操作类数,不可约表示数 (2)、SQ2-离子中S原子3p x轨道及3d xy轨道所属的不可约表示 (3)、可约表示r(10,- 括了哪些不可约表示?SQ?离子是否 表现为红外活性?SQ2-离子是否表现 为拉曼活性的? 解:(1)点群的阶h=8;对称操作类=5; 不可约 表示数=5 (2)S原子的P X轨道所属不可约表示为T2表示。 1 1 (3)a A1 1g i 11 10 1 8 ( 2) 1 3 2 10 ;同理 h 8 a A2 0;a T1 1 ;a T2 1 ;3E 2 ;故可约表示(10, 2,2,0,0) T1 T2 2E 因T2表示中包含(x,y,z )和(xy,xz,yz), 故既表现为红外活性又表现为拉曼活性。 2. 利用C3v点群特征标表(见下表)回答下列问题 (2)、NH分子中偶极矩所属的不可约表示 (3、可约表示r( 6, 0, 2)中包括了哪些不可约表示?解:(1、点群的阶h=6;对称操作类=3;不可约 表示数=3 (2)NH分子中偶极矩所属不可约表示为A表示 1 1 (3) a A1g i 161 201 321 2 ;同理 h 6 a A2 0 , a E 2 ;故可约表示(6,0,2) 2A1 2E 3

(2) 、SECI分子中S原子Px轨道所属的不可约表示 (3) 、可约表示r( 4, 0, 0, -2 , 0)中包括了哪些不可约表示?

-1 △o =20300cm 4、试用特征标表的分析 MnO 的杂化方式。(要求有分析的详细过程) 第三章配位化学基础 属离子的t 2g 轨道变成了 * MO(中心金属离子的d 电子将填入其中),能量升高,结果使 减小。上述分子轨道的形成和电子的占据相当于形成了 L M 键。 2 ?第二过渡系金属离子 皿+水化焓与原子序数的关系如右图所示,试解释之。 解:① M 2 H 2O M (H 2O)2 H 0 ; CFSE(晶体场稳定化能) 随d n (d 电子数增加) 呈双峰变化,给5分; ②从 H °中扣出CFSE 后其 H :随d n 变化呈直线关系。 3、 什么叫Jahn-Teller 效应?指出下列配离子中,哪些会发生结构变形? ( 10分) (1) Cr(H 2O)6 ; (2) Ti(H 2O)3 ; (3) Fe(CN): ; (4) Mn(H 2。);; (5) Cu(H 2O)6 ; (6) MnF ; ; (7) CdCl ; ; (8) Ni(CN) 4。 4. 试用晶体场理论解释 Ti(H 2O)62+的吸收光谱 1配位体与中心金属离子的 成键作用将影响配合物的分裂能,假 定配位体的 轨道能量低于中心金属离子的 轨道,且已被电子所 填满。请画出在八面体场中, 这种 成键作用的分子轨道能级图, 分 析其对配合物的 △ o 的影响。 解:中心金属离子的 e g 轨道与配体的 轨道对称性不匹配,保留非 键。中心金属离子有 对称性的是t 2g 轨道,当其与能量较低的已被 电子填满的配体的 轨道组成分子轨道时,其成键 MC 更接近于配 体的 轨道(即配体上的 电子将进占 成键分子轨道),而中心金 e g * t 2g e g * *( t 2g *) ■-—— 飞2g ) ML n 血 过證系密国离f?】的水介範

无机化学 第12章 配位化学基础习题及全解答-

第12章配位化学基础 1 M为中心原子,a, b, d 为单齿配体。下列各配合物中有顺反异构体的是(A)(A) Ma2bd(平面四方)(B) Ma3b (C) Ma2bd(四面体)(D) Ma2b(平面三角形) 2 在下列配合物中,其中分裂能最大的是(A) (A) Rh(NH3)3 6+(B)Ni(NH 3) 3 6 +(C) Co(NH 3) 3 6 +(D) Fe(NH 3) 3 6 + 3 在八面体强场中,晶体场稳定化能最大的中心离子d 电子数为(B)(A) 9 , (B) 6 , (C)5 , (D)3 4 化合物[Co(NH3)4Cl2]Br 的名称是溴化二氯?四氨合钴(III); 化合物[Cr(NH3)(CN)(en)2]SO4的名称是硫酸氰?氨?二乙二胺合铬(III)。 5 四硫氰·二氨合铬(Ⅲ)酸铵的化学式是 NH4[Cr(SCN)4(NH3)2] ; 二氯·草酸根·乙二胺合铁(Ⅲ)离子的化学式是[Fe Cl2(C2O4)en]-4。 6. 下列物质的有什么几何异构体,画出几何图形 (1)[Co(NH3)4Cl2]+ (2)[Co(NO2)3(NH3)3] 答:(1)顺、反异构(图略),(2)经式、面式异构(图略)。 7.根据磁矩,判断下列配合物中心离子的杂化方式,几何构型,并指出它们属于何类配合物(内/外轨型。 (1)[Cd (NH3)4]2+ μm=0 ;(2)[Ni(CN)4]2-μm=0 ; (3)[Co(NH3)6]3+μm=0 ;(4)[FeF6]3-μm=5.9μB; 答:

8判断下列配离子属何类配离子 9 配合物K3[Fe(CN)5(CO)]中配离子的电荷应为 -3 —,配离子的空间构型为 八面体 ,配位原子为 C (碳) ,中心离子的配位数为 6 ,d 电子在t 2g 和e g 轨道上的排布方式为 t 2g 6 e g 0 — ,中心离子所采取的杂化轨道方式为 d 2sp 3 ,该配合物属 反 磁性分子。 10 计算下列金属离子在形成八面体配合物时的CFSE/Dq (1) Cr 2+ 离子,高自旋; (2) Mn 2+离子,低自旋; (3) Fe 2+离子,强场; (4) Co 2+离子,弱场。 解:(1) Cr 2+ 离子,高自旋:d 4,t 2g 3 e g 1 ,(-4×3+6×1)Dq = -6Dq ; (2) Mn 2+ 离子,低自旋:d 5,t 2g 5 e g 0,(-4×5)Dq+2P = -20Dq+2P ; (3) Fe 2+ 离子,强场: d 6,t 2g 6 e g 0,(-4×6)Dq+2P = -24Dq+2P ; (4) Co 2+ 离子,弱场: d 7 ,t 2g 5 e g 2 ,(-4×5+6×2)Dq = -8Dq 。 11 判断下列各对配合物的稳定性的高低:(填“ >”或“< ”) (1)[Cd(CN)4]2-、[Cd(NH 3)4]2+ ;(2) [AgBr 2]-、[AgI 2]-;(3)[Ag(S 2O 3)2]3- 、[Ag(CN)2]- (4) [FeF]2+、 [HgF]+ ;(5)[ Ni(NH 3)4]2+、[Zn(NH 3)4]2+ 答:(1) [Cd(CN)4]2->[Cd(NH 3)4]2+, CN -是比NH 3更强的配体; (2) [AgBr 2]-<[AgI 2]-, Ag + 属于软酸,I -属于软碱,而Br -属于交界碱; (3) [Ag(S 2O 3)2]3-<[Ag(CN)2]- CN -是比S 2O 32-更强的配体; (4) [FeF]2+ > [HgF]+ ; F -属于硬碱,Fe 3+ 属于硬酸,而Hg 2+ 属于软酸; (5) [ Ni(NH 3)4]2+ <[Zn(NH 3)4]2+ 查表发现:logK f (Zn(NH 3)42+ )=9.46, 而logK f (Ni(NH 3)42+ )=7.96 。 12 已知△0([Co(NH 3)6]3+ )=23000cm -1 ,△0([Co(NH 3)6]2+ )=10100cm -1 ,通过计算证明 f K

配位化学—研究生版

下列表述正确的是晶体场活化能=反应物的晶体场稳定化能-过渡态的晶体场稳定化能。一个化学体系吸收了光子之后,将引起下列哪种过程产生荧光 指出下列说法中哪个有错误?磷光光谱与最低激发三重态的吸收带之间存在着镜像关系。ziegler _natta 催化属于配位催化 在循环伏安法的研究中一般使用的电极系统是三电极系统 电喷雾质谱的离子化方式是哪种?强电场 用实验方法测定某金属配合物的摩尔吸收系数e,测定值得大小决定于配合物的性质 哪位化学家提出了超分子化学的概念?j.m.lehn 紫外-可见吸收光谱主要决定于分子的电子结构 下列表述正确的是外界机理中电子转移的速度非常快 在o2,oh-,f-,cl-,br-,l-等离子与co3+所形成的配合物中,I-的配合物吸收波长最短 哪种元素是含量最多的微量金属元素?fe 下列表述正确的是?配合物配体取代反应的速度与金属离子的d电子构型有关 已知[nicl4]2-是顺磁性分子,则它的几何形状为四面体形 大部分配合物催化剂是过渡金属,主要因为它们有着d电子结构 荧光分析法和磷光分析法的灵敏度比吸收光度法的灵敏度高 下列配合物中,在水溶液中解离度最小的是[pt(nh3)2cl2] 下列各组配位体中,二者均可作为螯合剂的是en、c2o42- 下列不是还原剂的是seo2 分子荧光过程是光致发光 影响中心原子配位数的因素有其余三条都是 粉末x射线衍射进形晶体结构确定的困难在于?衍射峰重叠

x射线最早是哪位科学家发现的?伦琴 拉曼散射发生的原因是,分子振动改变了分子的极化率 cro42-具有较深的颜色,其中心离子为cr(vi),氧化能力强,该离子的电子跃迁是lmct 欲测某有色物的吸光光谱,下列方法中可以采用的是分光光度法 正八面体场中d轨道能级分裂为两组,其中能量较低的一组称为t2g,不包括下列哪种轨道dx2-y2 电喷雾质谱峰一般用哪种方法归属?同位素分布 下列选项中正确的是?中心离子半径和电荷增加,缔合机理反应更易进行。 红外光谱法,试样状态可以是气,液,固态都可以 以下配体中不能够作为异性双基配体(两可配体)的是nh3 用于治疗癌症的第一代含铂药物是trans-[ptcl2(nh3)2] 已知某反应的级数为一级,则可确定该反应一定是其他都有可能 配位催化中,离去配体底下位阻大小对催化速率额的影响越大速率越快 在醇类化合物中,o-h伸缩振动频率额随溶液浓度的增加,向低波数方向位移的原因是形成氢键随之加强 循环伏安法中可逆电极过程的阳极和阴极的峰电压的差值随扫描速率增大而不变 下列哪项不是影响晶体场分裂能的主要原因未配位的溶剂分子 由于羰基既是б电子对给予体,又是π电子对(接受体),因而羰基是π酸配体。 下列关于螯合物的叙述中,不正确的是有两个以上配位原子的配体均生成螯合物 不是氧载体的是哪种?细胞色素p-450 下列配合物或配离子中,没有反馈π键的是[fef6]3- 已知[fe(h2o)6]3+ 为外轨配合物,其中心离子未成对电子数和杂化轨道类型是5 ,sp3d2 下列叙述错误的是拉曼光谱与红外光谱产生的机理相同

第十一章配位化合物

第十一章配位化合物 一、判断题: 1. 已知K2 [ Ni (CN)4 ]与Ni (CO)4 均呈反磁性,所以这两种配合物的空间构型均为平面正方形。 2.某配离子的逐级稳定常数分别为K、K、K、K,则该配离子的不稳定常数K= K·K·K·K。 3.HgS 溶解在王水中是由于氧化还原反应和配合反应共同作用的结果。 4.在多数配位化合物中,内界的中心原子与配体之间的结合力总是比内界与外界之间的结合力强。因此配合物溶于水时较容易解离为内界和外界,而较难解离为中心离子(或原子)和配体。 5.Zn2+只能形成外轨型配合物。 6.Fe2+既能形成内轨型配合物又能形成外轨型配合物。 二、选择题: 1.下列配合物中,属于内轨型配合物的是......................................()。 (A) [ V(H2O)6 ]3+,μ = 2.8 B. M.;(B) [ Mn (CN) ]4-,μ = 1.8 B. M.;。 6 (C) [Zn (OH)4]2-,μ = 0 B. M.;(D) [ Co(NH3)6 ]2+,μ = 4.2 B. M.。 2.配合物(NH4 )3[ SbCl6 ]的中心离子氧化值和配离子电荷分别是()。 (A) + 2 和? 3; (B) + 3 和? 3; (C) ? 3 和 + 3; (D) ? 2 和 + 3。 3. 第一过渡系列二价金属离子的水合热对原子序数作图时有两个峰,这是由于( ) (A) 前半系列是6配位,后半系列是4配位 (B) d电子有成对能 (C) 气态离子半径大小也有类似变化规律 (D) 由于晶体场稳定化能存在,使水合热呈现这样的规律 4 Fe(Ⅲ)形成的配位数为 6 的外轨配合物中,Fe3+离子接受孤对电子的空轨道是 ( ) (A) d2sp3 (B) sp3d2 (C) p3d3 (D) sd5 5. [NiCl4]2-是顺磁性分子,则它的几何形状为 ( ) (A) 平面正方形 (B) 四面体形 (C) 正八面体形 (D) 四方锥形 6.下列配离子的形成体采用sp杂化轨道与配体成键且μ = 0 B.M.的是.........()。 (A) [Cu (en)2]2+; (B)[CuCl2]-; (C)[AuCl4]-; (D) [BeCl4]2-。 7. [Ni(en)3]2+离子中镍的价态和配位数是 ( ) (A) +2,3 (B) +3,6 (C) +2,6 (D) +3,3 8. [Co(SCN)4]2-离子中钴的价态和配位数分别是( ) (A) -2,4 (B) +2,4 (C) +3,2 (D) +2,12 9. 0.01mol氯化铬( CrCl3·6H2O )在水溶液中用过量AgNO3处理,产生0.02molAgCl沉淀,此氯 化铬最可能为 ( ) (A) [Cr(H2O)6]Cl3 (B) [Cr(H2O)5Cl]Cl2·H2O (C) [Cr(H2O)4Cl2]Cl·2H2O (D) [Cr(H2O)3Cl3]·3H2O 10. 在[Co(en)(C2O4)2]配离子中,中心离子的配位数为 ( ) (A) 3 (B) 4 (C) 5 (D) 6 11. 在 K[Co(NH3)2Cl4] 中,Co 的氧化数和配位数分别是( ) (A) +2 和4 (B) +4 和6 (C) +3 和6 (D) +3 和 4 12. 在 [Ru(NH3)4Br2]+中,Ru 的氧化数和配位数分别是( ) (A) +2 和4 (B) +2 和6 (C) +3 和6 (D) +3 和 4

相关主题