搜档网
当前位置:搜档网 › 地震信号处理功能

地震信号处理功能

地震信号处理功能
地震信号处理功能

地震信号处理工具基本功能:

1.根据反应谱数据生成人工地震波;

说明:根据用户输入的加速度反应谱曲线,拟合人工地震波;人工地震波衰减函数由用户输入确定。

2.计算加速度地震波的相关系数;

说明:对用户输入的两条加速度时程曲线计算其相关系数。

3.计算加速度地震波的反应谱曲线;

说明:根据用户输入的加速度时程曲线计算绝对反应谱曲线、反应谱曲线类型可以为:位移谱、速度谱、加速度谱、拟加速度谱、拟速度谱。

4.加速度波转换为速度波和位移波;

说明:根据用户输入的加速度时程曲线积分得到位移时程曲线和速度时程曲线。

5.地震波的零基线修正;

说明:本项用于根据加速度时程曲线积分得到位移时程曲线或速度时程曲线时可能出现的漂移现象对输入时程进行零线修正。

6.计算加速度地震波的傅氏谱;

说明:根据用户输入的加速度时程曲线分析其傅立叶谱,确定输入的加速度时程曲线的频谱特性。

7.计算加速度地震比的功率谱;

说明:根据用户输入的加速度时程曲线分析其功率谱,确定输入的加速度时程曲线的频谱特性。

8.地震波有效持时计算。

说明:对用户输入的加速度时程曲线,计算其有效持续时间。支持的有效持时定

义类型有:Uniform、Bracket、Significant三类,其中Significant类型的计算同时输出其arias能量分布。

水平地震作用计算

上海市工程建设规《建筑抗震设计规程》(DGJ08-9-2013)强制性条文 3 抗震设计的基本要求 3.1.1 抗震设防的所有建筑应按现行标准《建筑工程抗震设防分类标准》GB 50223 确定其抗震设防类别及其抗震设防标准。 3.3.1选择建筑场地时,应根据工程需要和地震活动情况、工程地质和地震地质的有关资料,对抗震有利、一般、不利和危险地段做出综合评价。对不利地段,应提出避开要求,当无法避开时应采取有效的措施。对危险地段,禁建造甲、乙类的建筑,不应建造丙类的建筑。 3.4.1建筑设计应根据抗震概念设计的要求明确建筑形体的规则性。不规则的建筑应按规定采取加强措施;特别不规则的建筑应进行专门研究和论证,采取特别的加强措施;重不规则的建筑不应采用。 注:形体指建筑平面形状和立面、竖向剖面的变化。 3.5.2结构体系应符合下列各项要求: 1应具有明确的计算简图和合理的地震作用传递途径。 2应避免因部分结构或构件破坏而导致整个结构丧失抗震能力或对重力荷载的承载能力。 3应具备必要的抗震承载力,良好的变形能力和消耗地震能量的能力。 4对可能出现的薄弱部位,应采取措施提高其抗震能力。 3.7.1 非结构构件,包括建筑非结构构件和建筑附属机电设备,自身及其与结构主体的连接,应进行抗震设计。 3.7.4框架结构的围护墙和隔墙,应估计其设置对结构抗震的不利影响,避免不合理设置而导致主体结构的破坏。 3.9.1抗震结构对材料和施工质量的特别要求,应在设计文件上注明。 3.9.2 结构材料性能指标,应符合下列要求: 1 砌体结构材料应符合下列规定: 1)普通砖和多砖的强度等级不应低于MU10,其砌筑砂浆强度等级不应低于M5; 2)混凝土小型空心砌块的强度等级不应低于MU7.5,其砌筑砂浆强度等级不应 低于Mb7.5。 2混凝土结构的材料应符合下列规定: 1) 混凝土的强度等级,框支梁、框支柱及抗震等级为一级的框架梁、柱、节点核 芯区,不应低于C30;构造柱、芯柱、圈梁及其它各类构件不应低于C20; 2) 抗震等级为一级、二级、三级的框架和斜撑构件(含梯段),其纵向受力钢筋采 用普通钢筋时,钢筋的抗拉强度实测值与屈服强度实测值的比值不应小于 1.25;钢筋的屈服强度实测值与屈服强度标准值的比值不应大于1.3,且钢筋 在最大拉力下的总伸长率实测值不应小于9%。 3钢结构的钢材应符合下列规定: 1) 钢材的屈服强度实测值与抗拉强度实测值的比值不应大于0.85; 2) 钢材应有明显的屈服台阶,且伸长率不应小于20%; 3) 钢材应有良好的焊接性和合格的冲击韧性。 3.9.4 在施工中,当需要以强度等级较高的钢筋替代原设计中的纵向受力钢筋时,应按照钢筋受拉承载力设计值相等的原则换算,并应满足最小配筋率要求。

水平地震作用计算

上海市工程建设规范《建筑抗震设计规程》(DGJ08-9-2013)强制性条文 3 抗震设计的基本要求 3.1.1 抗震设防的所有建筑应按现行国家标准《建筑工程抗震设防分类标准》GB 50223 确定其抗震设防类别及其抗震设防标准。 3.3.1选择建筑场地时,应根据工程需要和地震活动情况、工程地质和地震地质的有关资料,对抗震有利、一般、不利和危险地段做出综合评价。对不利地段,应提出避开要求,当无法避开时应采取有效的措施。对危险地段,严禁建造甲、乙类的建筑,不应建造丙类的建筑。 3.4.1建筑设计应根据抗震概念设计的要求明确建筑形体的规则性。不规则的建筑应按规定采取加强措施;特别不规则的建筑应进行专门研究和论证,采取特别的加强措施;严重不规则的建筑不应采用。 注:形体指建筑平面形状和立面、竖向剖面的变化。 3.5.2结构体系应符合下列各项要求: 1应具有明确的计算简图和合理的地震作用传递途径。 2应避免因部分结构或构件破坏而导致整个结构丧失抗震能力或对重力荷载的承载能力。 3应具备必要的抗震承载力,良好的变形能力和消耗地震能量的能力。 4对可能出现的薄弱部位,应采取措施提高其抗震能力。 3.7.1 非结构构件,包括建筑非结构构件和建筑附属机电设备,自身及其与结构主体的连接,应进行抗震设计。 3.7.4框架结构的围护墙和隔墙,应估计其设置对结构抗震的不利影响,避免不合理设置而导致主体结构的破坏。 3.9.1抗震结构对材料和施工质量的特别要求,应在设计文件上注明。 3.9.2 结构材料性能指标,应符合下列要求: 1 砌体结构材料应符合下列规定: 1)普通砖和多孔砖的强度等级不应低于MU10,其砌筑砂浆强度等级不应低于 M5; 2)混凝土小型空心砌块的强度等级不应低于MU7.5,其砌筑砂浆强度等级不应 低于Mb7.5。 2混凝土结构的材料应符合下列规定: 1) 混凝土的强度等级,框支梁、框支柱及抗震等级为一级的框架梁、柱、节点核 芯区,不应低于C30;构造柱、芯柱、圈梁及其它各类构件不应低于C20; 2) 抗震等级为一级、二级、三级的框架和斜撑构件(含梯段),其纵向受力钢筋采 用普通钢筋时,钢筋的抗拉强度实测值与屈服强度实测值的比值不应小于 1.25;钢筋的屈服强度实测值与屈服强度标准值的比值不应大于1.3,且钢筋 在最大拉力下的总伸长率实测值不应小于9%。 3钢结构的钢材应符合下列规定: 1) 钢材的屈服强度实测值与抗拉强度实测值的比值不应大于0.85; 2) 钢材应有明显的屈服台阶,且伸长率不应小于20%; 3) 钢材应有良好的焊接性和合格的冲击韧性。

附录H 单层厂房横向平面排架地震作用效应调整

附录H 单层厂房横向平面排架地震作用效应调整 H.1 基本自振周期的调整 H.1.1 按平面排架计算厂房的横向地震作用时,排架的基本自振周期应考虑纵墙及屋架与柱连接的固结作用,可按下列规定进行调整: 1 由钢筋混凝土屋架或钢屋架与钢筋混凝土柱组成的排架,有纵墙时取周期计算值的80%,无纵墙时取90%; 2 由钢筋混凝土屋架或钢屋架与砖柱组成的排架,取周期计算值的90%; 3 由木屋架、钢木屋架或轻钢屋架与砖柱组成排架,取周期计算值。 H.2 排架柱地震剪力和弯矩的调整系数 H.2.1 钢筋混凝土屋盖的单层钢筋混凝柱厂房,按H.1.1确定基本自振周期且按平面排架计算的排架柱地震剪力和弯矩,当符合下列要求时,可考虑空间工作和扭转影响,并按H.2.3的规定调整: 1 7度和8度; 2 厂房单元屋盖长度与总跨度之比小于8或厂房总跨度大于12m; 3 山墙的厚度不小于240mm,开洞所占的水平截面积不超过总面积50%,并与屋盖系统有良好的连接; 4 柱顶高度不大于15m。 注:1.屋盖长度指山墙到山墙的间距,仅一端有山墙时,应取所考虑排架至山墙的距离; 2.高低跨相差较大的不等高厂房,总跨度可不包括低跨。 H.2.2 钢筋混凝土屋盖和密铺望板瓦木屋盖的单层砖柱厂房,按H.1.1确定基本自振周期且按平面排架计算的排架柱地震剪力和弯矩,当符合下列要求时,可考虑空间工作,并按第H.2.3条的规定调整: 1 7度和8度; 2 两端均有承重山墙 3 山墙或承重(抗震)横墙的厚度不小于240mm,开洞所占的水平截面积不超过总面积50%,并与屋盖系统有良好的连接;

4 山墙或承重(抗震)横墙的长度不宜小于其高度; 5 单元屋盖长度与总跨度之比小于8或厂房总跨度大于12m。 注:屋盖长度指山墙到山墙或承重(抗震)横墙的间距。 H.2.3 排架柱的剪力和弯矩应分别乘以相应的调整系数除高低跨度交接处上柱以外的钢筋混凝土柱其值可按表H.2.3-1采用,两端均有山墙的砖柱,其值可按表H.2.3-2采用。 H.2.4 高低跨交接处的钢筋混凝土柱的支承低跨屋盖牛腿以上各截面,按底部剪力法求得的地震剪力和弯矩应乘以增大系数,其值可按下式采用: 式中η-地震剪力和弯矩的增大系数; ζ-不等高厂房低跨交接处的空间工作影响系数,可按表H.2.4采用; nh-高跨的跨数; n0-计算跨数,仅一侧有低跨时应取总跨数,两侧均有低跨时应取总跨数与高跨跨数之和; GEL-集中于交接处一侧各低跨屋盖标高处的总重力荷载代表值;

5.6荷载效应和地震作用组合的效应

〈〈高层建筑混凝土结构技术规程》 5. 6荷载效应和地震作用组合的效应 5. 6荷载效应和地震作用组合的效应 5.6.1 持久设计状况和短暂设计状况下,当荷载与荷载效应按线形关系考虑时,荷载基本组合的效应设计值应按下式确定: S =Y G&k +Y L Q Y Q&k w Y w S wk ( 5.6.1 ) 式中:S――荷载组合的效应设计值;Y G永久荷载分项系数;Y Q――楼面活荷载分项系数; Y w――风荷载的分项系数;Y L――考虑结构设计使用年限的荷载调整系数,设计使用年限为50年时取1.0,设计使 用年限为100年时取1.1 ;S3k 永久荷载效应标准值;S Qk 楼面活荷载效应标准值; S-――风荷载效应标准值;》Q、》w――分别为楼面活荷载组合值系数和风荷载组合值系数,当永久荷载效应起控制作用时应分别取0.7和0.0 ;当可变荷载效应起控制作用时应分别取 1.0和0.6或0.7和1.0。 注:对书库、档案室、储藏室、通风机房和电梯机房,本条楼面活荷载组合值系数取0.7的场合应取为0.9。 5.6.2 持久设计状况和短暂设计状况下,荷载基本组合的分项系数应按下列规定采用: 1永久荷载的分项系数Y G当其效应对结构承载力不利时,对由可变荷载效应控制的组合应取 1.2,对由永久荷载控 制的组合应取1.35 ;当其效应对结构有利时,应取 1.0 ; 2楼面活荷载的分项系数Y Q:—般情况下应取1.4 ; 3风荷载的分项系数Y w应取1.4。 2位移计算时,本规程公式(5.6.1 )中个分项系数均应取1.0。 5.6.3 地震设计状况下,当作用与作用效应按线形关系考虑时,荷载和短暂作用基本组合的的效应设计值应按下式确定: S d S=Y °&E + Y Eh Shk + Y Ev Svk +书w Y Sk (5.6.3 ) 式中:S――荷载和地震作用组合的效应设计值;S GE――重力荷载代表值的效应; S Ehk――水平地震作用标准值的效应,尚应乘以相应的增大系数、调整系数; S Evk ――竖向地震作用标准值的效应,尚应乘以相应的增大系数、调整系数; Y G――重力荷载分项系数;Y w――风荷载分项系数;Y Eh――水平地震作用分项系数;Y E ------------- 竖向地震作用分项系数; 屮w――风荷载组合值系数,应取0.2。 5.6.4 地震设计状况下,荷载和地震作用基本组合的分项系数应按表 5.6.4 采用。当重力荷载效应对结构的承载力有利时, 表5.6.4 中Y G不应大于1.0。 2 "―"表示组合中不考虑该项荷载或作用效应。 5.6.5 非抗震设计时,应按本规程第5.6.1 条的规定进行荷载组合的效应计算。抗震设计时,应同时按本规程第 5.6.1条 和5.6.3 条的规定进行荷载和地震作用的效应计算;按本规程第 5.6.3 条计算的组合内力设计值,尚应按本规程的有关规定 进行调整。

承载力抗震调整系数的正确应用

承载力抗震调整系数得正确应用 一、有关规范对承载力抗震调整系数γ RE 得规定 旧《建筑抗震设计规范》(QBJ 11—89)中第4.4.2条以及新《建筑抗震设计规范》(GB 50011—2001)中第5.4.2条中规定,结构构件得截面抗震验算应采用表达式S≤R /γ RE ,式中:S为地震作用效应与其她荷载作用效应得基本组合,R为结构构件得承载力设计值。 《混凝土结构设计规范》(QBJ 10—89)第8.1.3条、《钢筋混凝土高层建筑结构与施工规程》(GBJ 13—91)第5.5.1条进一步对钢筋混凝土结构具体规定为:考虑地 震作用组合得钢筋混凝土结构构件,其截面承载力应除以承载力抗震调整系数γ RE 。而偏心受压、受拉构件得正截面承载力在抗震与非抗震两种情况下取值相同。 二、在γ RE 使用中得常见错误 应该说,上述规范得规定已经明确规定了γ RE 得用法,即对非抗震得截面承载力, 通过引入γ RE ,对截面承载力加以提高,用作抗震设计时得截面承载力。然而,在实际 应用中,却常因为对γ RE 得理解不完全或不够重视,出现这样或那样得错误。最典型得一个例子就是《一级注册结构工程师专业考试应试题解》中第5页得[题1—2抗震偏 压柱得配筋计算]中与γ RE ,应用有关得内容有: (1)根据柱轴压比为0.12确定偏压柱γ RE 为0.75。 (2)利用γ RE 对柱内力进行调整:M=γ RE M 1 ,N=γ RE N 1 ,其中M 1 ,N 1 为有地震作用组合得 最不利内力设计值。 (3)求偏心距增大系数时,截面曲率得修正系数为ξ1=0.5fcA/N。 错误就出在第(3)步中ξ1=0.5fcA/N。此处N取为经过γ RE 调整后得轴向力

5.6荷载效应和地震作用组合的效应

《高层建筑混凝土结构技术规程》5.6荷载效应和地震作用组合的效应 5.6荷载效应和地震作用组合的效应 5.6.1持久设计状况和短暂设计状况下,当荷载与荷载效应按线形关系考虑时,荷载基本组合的效应设计值应按下式确定: S d=γG S Gk+γLψQγQ S Qk+ψwγw S wk(5.6.1) 式中:S d——荷载组合的效应设计值;γG——永久荷载分项系数;γQ——楼面活荷载分项系数; γw——风荷载的分项系数;γL——考虑结构设计使用年限的荷载调整系数,设计使用年限为 50 年时取 1.0,设计使用年限为 100 年时取 1.1;S Gk——永久荷载效应标准值;S Qk——楼面活荷载效应标准值; S wk——风荷载效应标准值;ψQ、ψw——分别为楼面活荷载组合值系数和风荷载组合值系数,当永久荷载效应起控制作用时应分别取 0.7 和 0.0;当可变荷载效应起控制作用时应分别取 1.0 和 0.6 或 0.7 和 1.0。 注:对书库、档案室、储藏室、通风机房和电梯机房,本条楼面活荷载组合值系数取 0.7 的场合应取为 0.9。 5.6.2持久设计状况和短暂设计状况下,荷载基本组合的分项系数应按下列规定采用: 1永久荷载的分项系数γG:当其效应对结构承载力不利时,对由可变荷载效应控制的组合应取 1.2,对由永久荷载控制的组合应取 1.35;当其效应对结构有利时,应取 1.0; 2楼面活荷载的分项系数γQ:一般情况下应取 1.4; 3风荷载的分项系数γw应取 1.4。 2位移计算时,本规程公式(5.6.1)中个分项系数均应取 1.0。 5.6.3地震设计状况下,当作用与作用效应按线形关系考虑时,荷载和短暂作用基本组合的的效应设计值应按下式确定: S d S=γG S GE+γEh S Ehk+γEv S Evk+ψwγw S wk(5.6.3) 式中:S d——荷载和地震作用组合的效应设计值;S GE——重力荷载代表值的效应; S Ehk——水平地震作用标准值的效应,尚应乘以相应的增大系数、调整系数; S Evk——竖向地震作用标准值的效应,尚应乘以相应的增大系数、调整系数; γG——重力荷载分项系数;γw——风荷载分项系数;γEh——水平地震作用分项系数;γEv——竖向地震作用分项系数;ψw——风荷载组合值系数,应取 0.2。 5.6.4地震设计状况下,荷载和地震作用基本组合的分项系数应按表 5.6.4 采用。当重力荷载效应对结构的承载力有利时,表 5.6.4 中γG不应大于 1.0。 表 5.6.4A级高度钢筋混凝土高层建筑的最大适用高度(m) 注:1g 为重力加速度; 2"—"表示组合中不考虑该项荷载或作用效应。 5.6.5非抗震设计时,应按本规程第 5.6.1 条的规定进行荷载组合的效应计算。抗震设计时,应同时按本规程第 5.6.1 条和 5.6.3 条的规定进行荷载和地震作用的效应计算;按本规程第 5.6.3 条计算的组合内力设计值,尚应按本规程的有关规定进行调整。 1 / 1

荷载及荷载效应组合和地震作用

荷载及荷载效应组合和地震作用 乙、荷载及荷载效应组合和地震作用 2荷载及荷载效应组合和地震作用 2.1楼、屋面荷载取值 2.1.1高层建筑和公共建筑的走廊、门厅、楼梯楼面均布活荷载标准值取2.5kN/m2,不符合《荷载规范》第4.1.l条和表4.l.l项11(3)的要求。 改进措施:《荷载规范》GB 50009局部修订第4.1.l条表4.1.1项次11(3)中规定:其他民用建筑及当人流可能密集时,其走廊、楼梯,门厅楼面均布活荷载取3.5kN/m2。因此对高层建筑和公共建筑的走廊、门厅、楼梯的楼面均布活荷载标准值取 2.5kN/m2不正确,应取3.5kN/m2。 2.1.2在楼板设计时漏算固定隔墙自重产生的荷载效应。 改进措施:《荷载规范》GB 50009第4.1.1条表4.1.l的注5规定,对固定隔墙的自重应按恒荷载考虑。因此在楼板设计时必须考虑固定隔墙自重产生的荷载效应,否则该设计属不正确。 2.1.3设计框架结构的楼板时,未考虑可灵活自由布置的非固定隔墙荷载。 改进措施:框架结构的优点是便于根据房间的不同用途进行分隔,设置灵活自由非固定的隔墙,因而在设计楼板时,应考虑房屋在使用过程中设置这类隔墙的可能性。为此应按《荷载规范》GB 50009第4.1.1条表4.1.1的注5规定,对这类隔墙应取每延米墙重(kN/m)的1/3作为楼面活荷载标准值的附加值(kN/m2)计入楼面设计荷载内,并将此附加值在结构设计说明书中注明,以便今后使用。 未考虑这类隔墙荷载将降低该房屋适应变更房间分隔的能力。 2.1.4屋面板设计时对保温层或找坡层荷载取值偏小。 改进措施:对保温层或找坡层荷载取值偏小情况,经常发生在设计人员疏忽大意或校审人员校审不严时,因而应加强设计管理工作,增强设计人员和校审人员的工作责任心,防止此类问题发生。 2.1.5高层建筑、裙房以外的首层地下室顶板的设计荷载取值偏小;例如: (1)位于汽车通道下方的板未考虑消防车荷载; (2)未考虑施工过程中由于材料堆放等引起的施工荷载。 改进措施:汽车通道下方的首层地下室顶板应考虑消防车荷载,否则可能会造成不安全。顶板设计时应根据工程的实际情况确定顶板由于消防车产生的荷载。当消防车直接行驶于顶板上时,可直接按《荷载规范》GB 50009表4.1.1第8项的规定取值;当顶板上填有覆土或其他充填物时,应按消防车轮压处于最不利位置并考虑其在土中或充填物内的扩散分布,进行分析计算后确定消防车荷载。 地下室顶板设计时应考虑在施工过程中由于材料堆放等原因引起的施工荷载,此施工荷载应在结构设计说明中注明,以便施工单位控制此荷载,避免发生超载。 2.1.6现浇钢筋混凝土楼板为双向板,其上置放有局部活荷载(非中心位置处),在设计时其活荷载未按等效均布活荷载确定方法进行计算。 改进措施:一般情况(采用有限元方法分析者除外),在设计现浇钢筋混凝土双向板时,作用在板上的楼面局部荷载应进行等效均布荷载的换算。换算时,可按单跨四边简支双向板,使局部荷载产生的板的绝对最大弯矩与满布均布荷载产生的板中心处最大弯矩相等的条件而求得,此满布的均布荷载值即为所换算的等效均布荷载值。由于双向板可求得两个等效均布荷载值,设计时应取其中的较大值。 注:当局部均布荷载位于板中心时(即当a=b,c=d时),即可求得该双向板局部均布荷载最不利布置(板中心处)时换算的等效均布荷载值。其可根据建筑结构静力计算手册查表计算确定。

大跨桥梁结构地震动空间效应的影响研究

大跨桥梁结构地震动空间效应的影响研究 摘要:本文通过总结国内外对大跨桥梁结构地震动反应分析方法,分析了大跨桥梁的多点激励和行波效应问题,为同类桥梁设计提供参考。 关键词:地震动,空间效应,反应谱,动态时程分析; 1、多点激励及行波效应地震反应分析方法 考虑随时间和空间变化的地震动场多点激励时,大跨桥梁结构的地震反应分析方法可以分为两大类:一类是以地震地面运动为确定过程的确定性分析方法,主要包括反应谱法和动态时程分析法;一类是以地震地面运动为随机过程的概率性分析方法,主要是指随机振动法。 (1)反应谱法 反应谱法使用简便,工程应用广泛,是当前各国规范首推的抗震设计方法。反应谱法是基于一致地震激励下单质点系统的线弹性分析而建立的。由于大跨桥梁较强的空间耦合效应以及目前长周期反应谱方面存在的问题,加上地震地面运动的时空变化特征难以模拟等因素,反应谱法有时会产生很大的误差。如何改进现有的反应谱法使其适用于多点激励下的大跨桥梁地震反应分析,许多学者基于随机理论提出了改进的反应谱方法,如Yamamura和Tanaka的分组法 、Berrah和Kausel的修正系数法DerKiureghian和Neuenhofer的MSRS法、Heredia-Zavoni和Vammarake的组合法等。刘洪兵、朱唏提出了一种简化的基于单个模态振子振动特性的多支承激励反应法,并对芜湖长江大桥主航道斜拉桥在多支承地震激励下的地震响应进行了研究。王淑波博士也基于虚拟激励原理提出了HOC系列反应谱组合方法来考虑一致激励、行波输入以及任意相干激励等多种地震输入情况,并认为该系列方法能近似考虑结构的非平稳振动效应。 (2)动态时程分析法 动态时程分析法主要依据确定的地震加速度时程求出结构的反应,是公认的精细分析方法。该方法在计算上能很好地解决多点输入问题,可以近似考虑基础.土—结构相互作用、非线性、非比例阻尼等问题,可以分析结构在地震作用下弹性和非弹性阶段的内力变化以及构件逐步开裂、损坏的全过程。Dibaj首先推导了结构对于多点输入反应的基本运动方程,对该方程进行振型分解,定义了多点激励振型参与系数,得到了基于振型叠加法的时程分析方法。A.Ghaffarpu 从70年代起就在时间域用逐步积分法对大跨桥梁的抗震性能作了很多研究。范立础、陈幼平等分别对南浦大桥和永和桥进行了多点输入条件下的地震反应分析。时程分析法的主要缺点:1)计算工作量大,为了得到结构反应的统计结果,必须对多条地震波进行分析;2)计算结果过分依赖于所选取的加速度时间历程曲线,同样峰值的不同地震波计算得到的响应可能相差很大。

新抗震规范——地震作用和结构抗震验算

5 地震作用和结构抗震验算 5.1 一般规定 5.1.1各类建筑结构的地震作用,应符合下列规定: 1一般情况下,应至少在建筑结构的两个主轴方向分别计算水平地震作用,各方向的水平地震作用应由该方向抗侧力构件承担。 2有斜交抗侧力构件的结构,当相交角度大于15°时,应分别计算各抗侧力构件方向的水平地震作用。 3质量和刚度分布明显不对称的结构,应计入双向水平地震作用下的扭转影响;其它情况,应允许采用调整地震作用效应的方法计入扭转影响。 48、9度时的大跨度和长悬臂结构及9度时的高层建筑,应计算竖向地震作用 5平面投影尺度很大的空间结构,应视结构形式和支承条件,分别按单点一致、多点、多向或多向多点输入计算地震作用。 注:8、9度时采用隔震设计的建筑结构,应按有关规定计算竖向地震作用。 【说明】本次修订,拟明确大跨空间结构地震作用的计算要求。 1、平面投影尺度很大的空间结构指,跨度大于120m、或长度大于300m、或悬臂大于40m的结构。 2、关于结构形式和支承条件 (1)周边支承空间结构,如:网架、单、双层网壳、索穹顶、弦支穹顶屋盖和下部圈梁-框架结构,当下部支承结构为一个整体、且与上部空间结构侧向刚度比大于等于2时,应允许采用三向(水平 两向加竖向)单点一致输入计算地震作用;当下部支承结构由结构缝分开、且每个独立的支承结 构单元与上部空间结构侧向刚度比小于2时,应采用三向多点输入计算地震作用; (2)两线边支承空间结构,如:拱,拱桁架;门式刚架,门式桁架;圆柱面网壳等结构,当支承于独立基础时,应采用三向多点输入计算地震作用。 (3)长悬臂空间结构,应视其支承结构特点,采用多向单点一致输入、或多向多点输入计算地震作用。 3、关于单点一致输入 仅对基础底部输入一致的加速度反应谱或加速度时程进行结构计算。 4、关于多向输入 沿空间结构基础底部,三向同时输入,其地震动参数(加速度峰值或反应谱峰值)比例取:水平主向: 水平次向:竖向= 1.00:0.85:0.65。 5、关于多点输入 考虑地震行波效应和局部场地效应,对各独立基础或支承结构输入不同的设计反应谱或加速度时程进行计算,估计可能造成的扭转效应。多点输入的简化计算方法参见本规范第5.1.2条第5款规定。 6、关于多向多点输入 同时考虑多向和多点输入进行计算。 7、关于行波效应 研究证明,地震传播过程的行波效应、相干效应和局部场地效应对于大跨空间结构的地震效应有不同程 度的影响,其中,以行波效应和场地效应的影响较为显著,一般情况下,可不考虑相干效应。对于周边支承空 间结构,行波效应影响表现在对大跨屋盖系统和下部支承结构;对于两线边支承空间结构,行波效应通过支座 影响到上部结构。 行波效应将使不同点支承结构或支座处的加速度峰值不同,相位也不同,从而使不同点的设计反应谱或 加速度时程不同,计算分析应考虑这些差异。由于地震动是一种随机过程,多点输入时,应考虑最不利的组合 情况。行波效应与潜在震源、传播路径、场地的地震地质特性有关,当需要进行多点输入计算分析时,应对此 作专门研究。 8、关于局部场地效应

教学楼户外楼梯的空间地震效应及其加固措施

教学楼户外楼梯的空间地震效应及其加固措施 摘要:汶川地震震害调查中发现,楼梯斜板结构破坏较为严重,甚至楼梯板早于主体结构破坏出现。本文结合震害调查结果,针对目前中小学抗震鉴定中普遍存在的户外楼梯抗震问题,结合某中学教学楼抗震鉴定实例,讨论了楼梯斜板的空间刚度效应对整体结构抗震性能的影响。分析结果表明,楼梯斜板的空间刚度效应对整体结构抗震性能影响较大,不能忽略;楼梯斜板在地震作用下,表现为偏心受拉(压)构件,而不是原设计所认为的受弯构件,这也解释了汶川地震中楼梯间结构震害较重的原因。最后本文提出了一个切实可行的楼梯斜板加固措施。 关键词:教学楼、户外楼梯、楼梯斜板、空间抗震效应、加固措施。 Abstract: During Wenchuan earthquake, a lot of stairways has been destroyed, some of which elapsed before the main structure was ruined. There are many problems about the seismic performance of outdoor stairways in many schools. Regarding to a specific seismic-appraisal project, considering the seismic damage investigation results, the influence of spatial stiffness effect of outdoor stairways on the structure seismic performance was studied. According to the analysis results, spatial stiffness effect of the stairways has an important influence on the seismic-resistance performance of the entire structure. This effect is often ignored in structural design. Under earthquake action, the stair-slab is an eccentrically-tensioned member rather than a bented member. It is the reason why seismic damage of stair-slab is serious during Wenchuan earthquake. Finally, an efficient retrofit scheme is proposed to reinforcing the stair-slab. keyword: School Building, Outdoor Stair, Inclined Stair-slab, Seismic Spatial Effects, Structure Retrofit. 1、引言 2008年5月12日,四川汶川发生里氏8.0级特大地震。楼梯承担着逃生路线的重要作用,然而在震害调查中发现,楼梯间的震害较为严重,而且大部分楼梯间是在主体结构破坏前产生破坏,严重影响了楼梯作为逃生路线的重要功能[1] [2],图1、2为典型的楼梯破坏情形,主要表现为楼梯斜梁、板在中间部位折断、开裂。楼梯斜梁、板连接了框架结构的上下两层,为楼层间的斜撑构件,地震时,楼层间会发生层间相对位移,抵抗层间位移的构件有框架柱及斜撑构件,由于斜撑构件的刚度比框架柱要大,地震时作为斜撑构件的楼梯斜梁或斜板承担更大的层间拉扯力,楼梯首先在薄弱部位发生破坏,如图1,楼梯斜梁在转折处出现应力集中,最容易且最先发生破坏;如图2,由于楼梯斜板跨中板顶没有配置钢筋,当板顶出现拉应力时,梯板上部很容易首先开裂,在往复地震荷载作用下,导致梯板中部断裂。 目前上海地区中小学教学楼很多采用了户外独立柱板式楼梯(见图3、4)的结构形式,这类楼梯的建筑效果好,但存在抗震安全隐患,因为在结构整体抗震分析中,通常采用SETWE(PKPM)软件将楼梯斜板作为平板对待,并未考虑楼

地震作用计算

地震作用计算 一、确定计算前提: 烈度:甲类建筑按安评报告且应高于本地设防烈度,乙、丙类按本地设防烈度。(高层适用)方向:两个主轴方向+斜交抗侧力构件方向(斜交角度大于15度) 双向地震:质量刚度明显不对称 (1)从平面形状上判别:平面为L 形,T形等属于平面不规则的结构为明显不对称的结构,位移比无论为何值,均应考虑双向地震作用 (2)位移比大于1.2(或1.3,尚无定论)的结构属平面不规则中的扭转不规则,无论平面形状对称与否,均应考虑双向地震作用。 (3)从竖向形状上判别:大地盘结构为明显的质量及刚度竖向不对称应考虑双向地震作用(4)竖向质量和刚度明显不对称的结构,如上下刚度差别较大,或上下的质量差别较大的结构应考虑双向地震作用。 竖向地震:7度半(高层)、8度、9度的大跨度和长悬臂结构,9度时的高层考虑。 8、9度时的隔震结构 偶然偏心:(高层、单向地震考虑,多层不考虑,双向地震不考虑)

二、选择计算方法: 底部剪力法、振型分解反应谱发、时程分析法。 三、计算重力荷载代表值: 采用半层集中法,屋面活荷载和软钩吊车荷载不计入,书库、档案馆等活载组合系数取0.8 楼顶计算: 楼板+下半层墙体重力+活荷载×0+雪荷载×0.5+积灰荷载×0.5 每层计算:楼板+上下半墙重量+等效均布活载×0.5(书库、档案活载×0.8)+实际情况的楼活载×1.0 四、计算水平地震作用效应: 地震效应Fi计算 楼层剪力计算 考虑扭转耦联作用边榀构件地震效应放大(采用扭转耦联振型分解法的除外)考虑地基与结构相互作用地震效应折减 薄弱层放大系数1.25 剪重比调整 0.2V0调整(框剪)筒体结构调整。 框支柱调整(部分框支剪力墙) 地震作用标准值 五、计算竖向地震作用效应:

楼板刚_弹性计算假定对梁式转换高层建筑地震作用效应的影响_荣维生

第35卷第11期建 筑 结 构2005年11月楼板刚、弹性计算假定对梁式转换高层 建筑地震作用效应的影响 荣维生 王亚勇 (中国建筑科学研究院工程抗震研究所 北京100013) [提要] 论述了楼板刚弹性计算假定对梁式转换结构地震反应的影响。提出楼层地震剪力在抗侧力构件中的分配除按楼盖的刚性、柔性和弹性三种情况考虑以外,还存在另一种分配方式,即转换层上邻近楼层框支剪力墙分配的地震剪力受转换层下部结构落地剪力墙设置的间距和楼板面内变形的影响。建议进行复杂高层建筑结构内力与位移计算时,楼板宜按弹性考虑。 [关键词] 楼板计算模型 刚性 弹性 抗侧力构件 地震剪力分配 框支剪力墙 楼板面内变形 E ffects of Floor Rigid or Flexible H ypotheses on Seismic R esponse of T all Building with T ransferring B eams/Rong Weisheng,Wang Y ayong(China Academy of Building Research,Beijing100013,China) Abstract:The effect on seismic responses of structure with transfer beams is discussed when horizontal diaphragms are assumed to be rigid or flexible.Except that the story shear forces of earthquake are assigned among the vertical lateral force2resisting members with the three types of rigidity,flexibility,and elasticity of the floor,the other kind of as2 signment is introduced that translated shear walls in adjacent stories above the transfer story receiving shear forces is impacted by spaces of shear walls below the transfer story and in2plane diaphragm deformations.Therefore,the advice that a flexible diaphragm model should be adopted in calculating internal forces and displacements of complex tall building structure is presented. K eyw ords:rigid;flexible;diaphragm models;lateral force2resisting members;assignments of earthquake shear forces;translated shear wall;in2plane diaphragm deformation 1 问题的提出 对带转换层的高层建筑的结构计算分析往往采用常规的计算方法,在结构计算模型中假定楼板在其自身平面内为无限刚性。这种假定在竖向抗侧力构件不连续的情况下,计算结果可能不符合结构构件的实际受力状况,特别是在结构地震作用效应分析中[1,2]。 文[3]中采用了与文[1],[2]相似的算例,只将梁式转换结构改为板式转换结构,而计算的结果则刚好相反:转换层上部几层框支剪力墙分配的剪力不仅没有增加,反而出现一定程度的减小。在梁式和板式两种转换结构没有实质性改变的情况下,出现了两种不同的计算结果。在排除了人为、计算程序错误外,首先应分析框支剪力墙分配剪力增大的原因。框支剪力墙下端与框支柱相连,框支柱侧向刚度小,变形较容易,这样与框支柱相连的框支剪力墙也应容易变形。而框支剪力墙之所以分配较多的剪力,是由于受到较强的约束,不容易变形。在梁截面不变时,产生这种变化的原因只能是楼板的计算假定。 为了验证此判断的正确性,选取一个梁式转换结构的算例,其结构平面布置如图1所示。 计算模型结 图1 计算模型结构布置   构总高度9616m,转换层以下为框支剪力墙结构,层高415m,转换层上部为剪力墙结构,层高310m;转换层设置在层3。计算模型两个主轴方向转换层上、下结构等效侧向刚度比分别为γex=1158,γey=1110。 在计算模型中,对结构楼板采用不同的有限元假定,得到三种计算模型。其具体计算模型:L d为假定结构各层楼板均为刚性膜,即每层楼板在平面内无限刚;L etr为假定结构转换层顶板为弹性板,其他各层楼板均为刚性膜;L e为假定结构各层楼板均为弹性板。转换层楼板厚为200mm,其他各层楼板厚均为 91

偶然偏心和双向地震作用的正确选用

偶然偏心和双向地震作用的正确选用 考虑偶然偏心:[是]或[否] 偶然偏心的含义指的是:有偶然因素引起的结构质量分布的变化,会导致结构固有振动特性的变化,因而结构在相同地震作用下的反应也将发生变化。考虑偶然偏心,也就是考虑由偶然偏心引起的可能最不利的地震作用。详见《SATWE用户手册》125页10条。 根据《高规》12页第3.3.3条“计算单向地震作用时应考虑偶然偏心的影响”,故单向地震力计算时选[是],双向地震力计算时选[否],多层规则结构可不考虑。 考虑偶然偏心计算时,对结构的荷载(总重、风荷载)、周期、竖向位移、风荷载作用下的位移及结构的剪重比没有影响;而对结构的地震力和地震下的位移(最大位移、层间位移、位移角等)有较大区别,平均增大18.47%;对结构构件(梁、柱)的配筋平均增大2%~3%。 考虑双向地震作用:[是]或[否] 根据《抗规》第26页第5.1.1条3款(强条):“质量和刚度分布明显不对称的结构,应计入双向地震作用下的扭转影响”。一般情况下,均可在建筑结构的两个主轴方向分别计算水平地震作用,此时可不考虑上一条的[偶然偏心]用户可根据实际工程情况选择是否需要考虑。 实际,对于多层结构而言,如果比较规则,那么可通过《抗规》第5.2.5条(剪重比的要求)来考虑结构的扭转和偶然偏心;对于高层而言,如果结构比较规则,则应选用“考虑偶然偏心”项,而不必再选“考虑双向地震作用”。对于不规则结构,不论多层还是高层均应选用“考虑双向地震作用”。 ——摘自《框架结构(结构专业)施工图设计实例》梁峰张叙主编2007年版 10 偶然质量偏心 《高层建筑混凝土结构技术规程JGJ3-2002》3.3.3条规定,计算地震作用时,应考虑偶然偏心的影响,附加偏心距可取与地震作用方向垂直的建筑物边长的5%。 偶然偏心的含义指的是:由偶然因素引起的结构质量分布的变化,会导致结构固有振动特性的变化,因而结构在相同地震作用下的反应也将发生变化。考虑偶然偏心,也就是考虑由偶然偏心引起的可能最不利的地震作用。 从理论上,各个楼层的质心都可以在各自不同的方向出现偶然偏心,从最不利的角度出发,我们在程序中只考虑下列四种偏心方式: A)、X向地震,所有楼层的质心沿Y轴正向偏移5%,该工况记作EXP; B)、X向地震,所有楼层的质心沿Y轴负向偏移5%,该工况记作EXM; C)、Y向地震,所有楼层的质心沿X轴正向偏移5%,该工况记作EYP; D)、Y向地震,所有楼层的质心沿X轴负向偏移5%,该工况记作EYM; 要实现偶然偏心,首要任务是确定各个偏心方式下的结构振动特性。最准确的办法是当然是针对不同的偏心方式重新计算结构固有振动特性,求解广义特征值问题,但是这样做效率较低。对于完全采用刚性楼板假定的结构倒没有问题,对于存在“独立弹性节点”的结构则要花费较多的时间。考虑到这一点,我们采用一种稍为简单的方式来确定振动特性:将未偏心的初始结构的各振型的地震力作用点,按照指定方式偏移5%后,重新作用于结构上,此时结构产生的位移,就是一个近似的偏心振型。知道了解偏心振型,偏心地震作用的计算就可以进行了。这个办法有一定的近似性,但提高了效率。通过试算,我们认为其结果还是比较合理的,可以在工程计算中采用。 考虑了偶然偏心地震后,就在原有的未偏心X,Y地震EX,EY的基础上,新增加了四个地震工

大跨度结构地震行波效应研究

第45卷第4期 2005年7月 大连理工大学学报 Journa l of Da l i an Un iversity of Technology Vol .45,No .4Jul .2005文章编号:100028608(2005)0420480207 收稿日期:2004206203; 修回日期:2005204223. 基金项目:国家自然科学基金资助项目(10472023);教育部博士点专项科研基金资助项目(20040141020).作者简介:张亚辉3(19722),男,副教授. 大跨度结构地震行波效应研究 张亚辉3, 李丽媛, 陈 艳, 林家浩 (大连理工大学工业装备结构分析国家重点实验室,辽宁大连 116024) 摘要:借助于虚拟激励法,深入研究了行波效应对结构地震响应的影响.对于一具有两个地 面支撑的单自由度体系,推导出内力功率谱的解析表达式;以此为基础,分析了地震波视波速对体系极值响应的影响,并讨论了动态相对位移和拟静位移分量对体系极值响应的贡献.计算结果表明,对于跨度较大或地震波视波速较小的结构,内力随视波速的变化显著发生改变;动态相对位移和拟静位移分量对体系极值响应的影响与结构的自振频率和波速都有很大关系.最后,对一实际悬索桥采用不同地震波视波速进行了随机地震响应分析,计算结果进一步表明行波效应对结构地震响应的影响非常大. 关键词:行波效应;地震;拟静位移;随机振动;大跨度结构 中图分类号:TU 311.3;TU 208.5文献标识码:A 0 引 言 大跨度结构的抗震分析一般要考虑地震地面运动的空间变化效应.因为大跨度结构具有较大 的平面尺寸,当地震发生时,不同支座处的地面运 动往往差别很大[1、2] ,其地震响应与基于均匀地面运动假定的结果有很大差别.另外,大跨度结构一般都是重要的公共设施,例如超长桥梁、高架公路、体育馆、大坝以及核电站管线等,其地震安全性对于设施的正常运行乃至公众的生命财产都至关重要.故此,大跨度结构的抗震分析受到了世界各国的普遍重视.目前国内外在抗震设计中主要是用时间历程法[3]来处理这类抗震问题.时间历程法的最主要缺点是其计算结果严重依赖于所选取的地震动时程曲线,通常要对许多条地震动曲线进行计算并加以综合处理.由于时间历程法一般计算量非常大,也限制了它采用大量的输入地震动曲线进行计算[4].近20多年,各国学者一直在努力探索更为高效简便的计算方法[4~15].很多研究者尝试了将基于均匀地面运动假定的传统反应谱方法推广到多点输入地震响应分析中[4~7].为了便于分析,这些方法往往忽略掉很多重要的因素.例如,Yam am u ra 等[5]将地面运 动分成几个互相独立的子群,每个子群中的地面运动是完全相干的.Berrah 等[6]只考虑了部分相干效应.而且上述研究工作都没有考虑拟静位移的影响,也没有考虑行波效应和局部场地效应.K iu regh ian 等[4]基于随机振动理论提出了考虑地 震地面运动行波效应、部分相干效应和局部场地效应的反应谱方法.但是该方法对动力响应分量的计算需要进行四重求和,计算量非常大. H ER ED I A ′ 2Z AVON I 等[7]对此进行了改进,将求和降为三重,但在计算精度上又遭到质疑[8],而且计算效率仍难以满足工程要求. 也有很多研究者直接采用随机振动方法来进行这类地震响应分析[9~11].如L ee 等[9]分别从时间域和频率域研究了核电站管线在不均匀场地激励下的安全性问题;L in 等[10]将输油管线视为有多个支点的连续梁受平稳随机地震作用,并用严格的随机振动方法来求解.随机振动方法的优点在于能够较充分地考虑地震发生的统计概率特性.但传统算法的计算效率很低,因此随机振动 方法是“还不能被执业工程师所接受的方法”[4]或“将其应用于地震工程界还是不现实的,除非是 对于只有少量自由度和支承的简单结构”[7] .而 虚拟激励法[12、13] 克服了传统随机振动计算方法

相关主题