搜档网
当前位置:搜档网 › 误差理论与测量平差课程设计报告

误差理论与测量平差课程设计报告

误差理论与测量平差课程设计报告
误差理论与测量平差课程设计报告

n

目录

一、目录 ----------------------------1

二、序言 ---------------------------- 2

三、设计思路------------------------ 3

四、程序流程图---------------------- 4

五、程序及说明---------------------- 5

六、计算结果-----------------------12

七、总结 --------------------------- 15

第二部分序言

1、课程设计的性质、目的和任务

误差理论与测量平差是一门理论与实践并重的课程,其课程设计是测量数据处理理论学习的一个重

要的实践环节,它是在我们学习了专业基础课“误差理论与测量平差基础”课程后进行的一门实践课程。其

目的是增强我们对误差理论与测量平差基础理论的理解,牢固掌握测量平差的基本原理和基本公式,熟悉测量数据处理的基本技能和计算方法,灵活准确地应用于解决各类数据处理的实际问题,并能用所学的计算机理论知识,编制简单的计算程序。

2、误差理论与测量平差课程和其它课程的联系和分工

这次课程设计中所用的数学模型和计算方法是我们在误差理论与测量平差课程中所学的内容,所使用的 C 程序语言使我们在计算机基础课程中所学知识。误差理论与测量平差课程设计是测量平差和计算机程

序设计等课程的综合实践与应用,同时也为我们今后步入工作岗位打下了一定基础。

3、课程设计重点及内容

本次课程设计重点是培养我们正确应用公式、综合分析和解决问题的能力,以及计算机编程能力。

另外它要求我们完成1-2 个综合性的结合生产实践的题目。如目前生产实践中经常用到的水准网严密平差

及精度评定,边角网(导线)严密平差及精度评定等。此次我所选的课程设计课题是水准网严密平差及精度

评定,其具体内容如下:

根据题目要求,正确应用平差模型列出观测值条件方程、误差方程和法方程;解算法方程,得出平差后

的平差值及各待定点的高程平差值;评定各平差值的精度和各高程平差值的精度。

具体算例为:

如图所示水准网,有 2 个已知点, 3 个未知点,(1)已知点高程H1=5.016m , H2=6.016m 7 个测段。各已知数据及观测值见下表( 2)高差观测值 (m)

端点号高差观测值 m测段距离 km序号

1-3 1.359 1.11

1-4 2.009 1.72

2-30.363 2.33

2-4 1.012 2.74

3-40.657 2.45

3-50.238 1.46

5-2-0.595 2.67

(3)求各待定点的高程;3-4 点的高差中误差; 3 号点、 4 号点的高程中误差。

第三部分设计思路

一、解题步骤

(1)此次设计我所采用的模型为间接平差模型,根据已知条件我们可知观测总数n=7,必要观测数 t=3 (则

多余观测数 r=n-t=4 ),因此我需先选定三个参数,即 3、4、5 点的最或然高程

00

X3、X4、X5( X=X +x,X3 =6.375 、

00

X4 =7.025 、 X5=6.611 ;其中 X0为参数的近似值, x 为其改正值)为参数。

(2)列出条件方程,即将每一个观测量的平差值分别表达成所选参数的函数,H1 +h1=X3、H1+h2=X4、H2 +h3=X3、H2+h4=X4、X3 +h5 =X4、X3+h6=X5、 X5 +h7 =H2;整理后得出误差方程, v1=x3、 v2 =x4、v3=x3-4 、v 4=x4-3 、v 5=-x 3+x4 -7 、v 6=-x 3 +x5 -2 、 v7=-x 5,即 v=Bx-l 的形式。

(3)定权,令每千米的观测高差为单位权观测,即P i =1/S i,从而可写出权阵P;根据误差方程式又可得其

T T

系数矩阵 B 和自由项l ,并由它们组成法方程N BB x-W=0(其中N BB=B PB,W=BPl ),法方程的个数等于所选参

数的个数。

(4)解算法方程,求出参数改正值x 并计算参数的平差值X=X0 +x。

(5)由误差方程计算V,并求出观测量的平差值。为了检查平差计算的正确性,将所求的值代入条件方程,

看其是否满足方程。

(6)精度评定,计算单位权中误差,按照题设要求列出权函数式,再根据平差参数的协方差阵求出协因数,最后求出某段高差中误差,某些点的高程中误差。

二、程序设计思想

考虑到在解题过程中一些计算的复杂性,我们需借助一些技术将计算简单化,快捷化,因此在课程设

计过程中,我们把一些 C 语言程序设计引入其中;通过一些简单、明了的程序及子函数调用,我们就可以很方便快捷的求出用笔算比较繁琐、费时的矩阵乘积、矩阵的逆(如B T PB、B T Pl )等运算。

第四部分程序流程图

根据题目列出条件方程并写成误差方程的形式V=Bx-l

确定权阵,根据误差方程得到矩阵B、l 进而写出 B T

运用 C 程序语言求出

T T T-1 B P,进一步得到N BB=BPB、W=BPl 并求出 N BB

-1

用C程序求出参数的改正数 x=N BB W

根据 C 程序语言求B x,进而由 V=Bx-l 写出各观测值的改正数

根据 L=L+V求出各观测值的平差值

检验所求各值是否正确,若无误则往下进行,反之检查各步骤查出错误并改正

由程序计算V T P 进而求出V T PV,求单位权中误差,再根据权函数式、协因数传播定律评定各观测值及所求高

程的精度

第五部分程序及说明一、矩阵相乘计算函数

#include “stdio.h”

void Matrix(a,b,m,n,k,c)

int m,n,k;

double a[],b[],c[];

{

int i,j,l,u;

for(i=0;i<=m-1;i++)

for(j=0;j<=k-1;j++)

{

u=i*k+j;c[u]=0.0;

for(l=0;l<=n-1;l++)

c[u]=c[u]+a[i*n+l]*b[l*k+j];

}

return;

}

1. 计算 B T P

main()

{

int i,j;

static double a[3][7]=B T;

static double c[3][7],b[7][7]=P;

Matrixmul(a,b,3,7,7,c);

printf( “\n ”);

for(i=0;i<=2;i++)

{

for(j=0;j<=6;j++)

printf(“%8.4f\t”,c[i][j];

printf(“\n ”);

}

printf( “\n ”);

return0;

}

2.计算 B T PB,即 N BB

main()

{

int i,j;

static double a[3][7]=B T P;

static double c[3][3],b[7][3]=B;

Matrixmul(a,b,3,7,3,c);

printf( “\n ”);

for(i=0;i<=2;i++)

{

for(j=0;j<=2;j++)

printf(“%8.4f\t”,c[i][j];

printf(“\n ”);

}

printf( “\n ”);

return0;

}

3. 计算 B T Pl ,即 W

main()

{

int i,j;

static double a[3][7]=B T P;

static double c[3][1],b[7][1]=l ;Matrixmul(a,b,3,7,1,c);

printf( “\n ”);

for(i=0;i<=2;i++)

{

for(j=0;j<=0;j++)

printf(“%8.4f\t”,c[i][j];

printf(“\n ”);

}

printf( “\n ”);

return0;

}

-1

二、矩阵的逆计算函数(求N BB)

#include "stdio.h"

#define M 3

void main()

{

float MAT[M][2*M];

float MAT1[M][M];

float t;

int i,j,k,l;

/***********************************************/ /* 对矩阵进行初始化*/

for(i=0;i

for(j=0;j<2*M;j++)

MAT1[j]='\0';

/* 对 MAT1矩阵赋初值*/

for(i=0;i

for (j=0;j

scanf("%f",&MAT1[j]);

/* 打印目标矩阵 ?*/

printf("原矩阵为: \n");

for (i=0;i

{

for (j=0;j

printf("%13.7f",MAT1[j]);

printf("\n");

} /********************************************/

/* 对 MAT1矩阵进行扩展 ,MAT1 矩阵添加单位阵,由M*M变成 2M*2M矩阵 */ for(i=0;i

for(j=0;j<2*M;j++)

if (j

else if (j==M+i) MAT[j]=1;

else MAT[j]=0;

/* 对 M矩阵进行变换,使得前半部分矩阵成为单位阵,则*/

/*后半部分矩阵即为所求矩阵逆阵*/

for(i=0;i

{

/*对第i行进行归一化*/

for (j=0;j<2*M;j++)

for(k=i+1;k

MAT[j]=MAT[j]+MAT[k][j];

for(j=i;j<2*M;j++)

MAT[j]=MAT[j]/t;

/* 对矩阵进行行变换,使得第i列只有一个元素不为零,且为1*/ for(k=0;k

if(k!=i)

{

t=MAT[k];

for (l=i;l<2*M;l++)

MAT[k][l]=MAT[k][l]-MAT[l]*t;

}

}

/* 将后半部分矩阵即所求矩阵逆阵存入MAT2矩阵。 */

for(i=0;i

{

for(j=0;j

MAT1[j]=MAT[j+M];

printf("\n");

}

/*********************************************/

/* 输出所求的逆阵*/

printf("逆阵为: \n");

for(i=0;i

{

for(j=0;j

printf("%8.4f",MAT1[j]);

printf("\n");

}

}

-1

4. 求 N BB W,即改正数x

main()

{

int i,j;

static double a[3][3]=N BB-1;

static double c[3][1],b[3][1]=W;Matrixmul(a,b,3,3,1,c);

printf( “\n ”);

for(i=0;i<=2;i++)

{

for(j=0;j<=0;j++)

printf(“%8.4f\t”,c[i][j];

printf(“\n ”);

}

printf( “\n ”);

return0;

}

5. 计算 Bx

main()

{

int i,j;

static double a[7][3]=B;

static double c[7][1],b[3][1]=x;Matrixmul(a,b,7,3,1,c);

printf( “\n ”);

for(i=0;i<=6;i++)

{

for(j=0;j<=0;j++)

printf(“%8.4f\t”,c[i][j];

printf(“\n ”);

}

printf( “\n ”);

return0;

}

6. 计算 V T P

main()

{

int i,j;

static double a[1][7]=V T;

static double c[1][7],b[7][7]=P;Matrixmul(a,b,1,7,7,c);

printf( “\n ”);

for(i=0;i<=0;i++)

{

for(j=0;j<=6;j++)

printf(“%8.4f\t”,c[i][j];

printf(“\n ”);

}

printf( “\n ”);

return0;

}

7. 计算 V T PV

main()

{

int i,j;

static double a[1][7]=V T P;

static double c[1][1],b[7][1]=V;

Matrixmul(a,b,1,7,1,c);

printf( “\n ”);

for(i=0;i<=0;i++)

{

for(j=0;j<=0;j++)

printf(“%8.4f\t”,c[i][j];

printf(“\n ”);

}

printf( “\n ”);

return0;

注:程序中有下划线部分在 C 语言环境中运行时,需根据已知条件及所求结果进行替换!

第六部分计算结果

根据条件方程及定权原则写出B、l 、P 及 B T

B={{1.0, 0.0, 0.0},

{0.0, 1.0, 0.0},

{1.0, 0.0, 0.0},

{0.0, 1.0, 0.0},

{-1.0, 1.0 ,0.0},

{-1.0, 0.0 ,1.0},

{0.0, 0.0, -1.0}}

l={{0.0},

{0.0},

{4.0},

{3.0},

{7.0},

{2.0},

{0.0}}

P={{0.9091,0.0,0.0,0.0,0.0,0.0,0.0},

{0.0,0.5882,0.0,0.0,0.0,0.0,0.0},

{0.0,0.0,0.4348,0.0,0.0,0.0,0.0},

{0.0,0.0,0.0,0.3704,0.0,0.0,0.0},

{0.0,0.0,0.0,0.0,0.4167,0.0,0.0},

{0.0,0.0,0.0,0.0,0.0,0.7143,0.0},

{0.0,0.0,0.0,0.0,0.0,0.0,0.3846}}

B T={{1.0,0.0,1.0,0.0,-1.0,-1.0,0.0},

{0.0,1.0,0.0,1.0,1.0,0.0,0.0},

{0.0,0.0,0.0,0.0,0.0,1.0,-1.0}}

一、在矩阵相乘计算函数的程序前提下,进行以下子程序的调用

1.替换第 1 个程序中的 B T、P 并运行程序得到 B T P

B T P={{0.9091,0.0,0.4348,0.0,-0.4167,-0.7143,0.0},

{0.0,0.5882,0.0,0.374,0.4167,0.0,0.0},

{0.0,0.0,0.0,0.0,0.0,0.7143,-0.3846}}

2.替换第 2 个程序中的 B T P、 B 并运行程序得到 B T PB,即 N BB

N BB={{2.4748 , -0.4167 , -0.7143},

{-0.4167 ,1.3753 ,0.0} ,

{-0.7143 ,0.0 ,1.0989}}

3.替换第 3 个程序中的 B T P、 l 并运行程序得到 B T Pl ,即 W

W={{-2.6063},

{4.0281} ,

{1.4286}}

二、在矩阵的逆计算函数程序中进行以下操作

运行程序,按照提示及以上运算得到的矩阵N BB输入其元素,运行的结果即为N BB-1 N BB-1 ={{0.5307 ,0.1608 ,0.3450},

{0.1608 , 0.7758 , 0.1045} ,

{0.3450 , 0.1045 , 1.1342}}

三、再次在矩阵相乘计算函数的程序前提下,进行以下子程序的调用

1. 替换第 4 个程序中的

-1

、W并运行程序得到

-1

W,即所选参数的改正数 x N BB N BB

x={{-0.2426},

{2.8552} ,

{1.1421}}

2.替换第 5 个程序中的 B、 x 并运行程序得到 Bx Bx={{-0.2426},

{2.8552},

{-0.2464},

{2.8552},

{3.0978},

{1.3847},

{-1.1421}}

3. 根据 V=Bx-l 求出各观测值的改正数V,并写出 V T,然后替换第 6 个程序中的V T、P 并运行程序得到V T P V={{-0.2426},

{2.8552},

{-4.2426},

{-0.1448},

{-3.9022},

{-0.6153},

{-1.1421}}

V T={{-0.2426,2.8552,-4.2426,-0.1448,-3.9022,-0.6153,-1.1421}}

V T P={{-0.2205,1.6794,-1.8447,-0.0536,1.6260,-0.4395,-0.4393}}

4.替换第 7 个程序中的 V T P、 V 并运行程序得到 V T PV

V T PV=19.7997

四、求出各个观测值平差值并按要求平定精度

X3=6.3748 m X4=7.0279 m X5 =6.6122 m

h

1=1.3588m h

2=2.0119m

h

3=0.3588m

h

4=1.0119m h5=0.6531m

h

6=0.2374m

h

7=-0.5961m

根据公式可求得单位权中误差为 2.225mm

h34= X3- X

4

-1

[1 -1 0]

T

Q34=[1 -1 0] N BB=0.9849

H =X Q=[100]N-1[100]T=0.5307

BB

3334

H4=X4 Q34=[010]N BB-1[0 1 0]T=0.7758

3、4点高差中误差为 2.208mm

3 号点高程中误差为 1.621mm

4 号点高程中误差为 1.96mm

第七部分总结

通过这次误差理论与测量平差的课程设计,我又对整本书有了一个更深的理解。其实课程设计就是将我们所学的理论知识应用于实践的过程,在这一过程中,进一步掌握测量平差的基本原理和基本公式,并熟悉

测量数据处理的基本技能和计算方法。

或许我们已对《误差理论与测量平差》这本书的理论知识有了一定了解,但将它应用于实践依然是我们

的一个难点,尤其是将这门课程与计算机程序完美地结合。这便要求我们在原有的解题思路中加入 C 语言程序,并让它来帮助我们解决矩阵的复杂运算。既然用到了程序,我们就必须保证其运算的简洁性、正确性,

尤其是在编写过程中要认真检查,为程序顺利运行打下基础。另外在各个子程序调用过程中,我们要充分考

虑其顺序性并反复调试,以便得到理想结果。

析和解决问题的能力,同时也为今后步入社会打下了一定的基础。另外,我们还要学会综合利用自身所学的知识,并将它们联系起来帮助自己有效地解决实际中的问题。

总之,在这次课程设计中我不但过了比较充实的一周,还收获了不少知识。

#include

#include

#include

#include

#include

#include

using namespace std;

class SZWPC

{

private:

int gcz_zs; //高差总数

int szd_zs; //总点数

int yz_szd_zs; //已知点数

double s0;//单位权水准路线长度

double m_pvv; //[pvv]

int *qsd_dh; //高差起点号

int *zd_dh; //高差终点号

char **dm; //点名地址数组

double *gcz; //观测值数组

double *szd_gc; //高程值数组

double *P; //观测值的权

double *dX; //高程改正数、平差值

double *V; //残差

double zwc; //单位权中误差

public:

SZWPC();

~SZWPC();

int ij(int i,int j);//对称矩阵下标计算函数

bool inverse(double a[],int n);//对称正定矩阵求逆( 仅存下三角元素 )( 参考他人)void inputdata(char *datafile);//输入原始数据函数

int dm_dh(char *name); //点名转点号

void ca_H0(); //近似高程计算函数

void ca_BTPB(); //法方程组成函数

void ca_dX(); //高程平差值计算函数

void printresult(char *resultfile); //精度估计与平差值输出函数

double ca_V(); //残差计算函数

void zxecpc(char *resultfile);//最小二乘平差函数

};

//////// //构造函数

SZWPC::SZWPC()

{

gcz_zs=0;

szd_zs=0;

yz_szd_zs=0;

}

//// //析构函数

SZWPC::~SZWPC()

{

if(gcz_zs>0)

delete []qsd_dh;

delete []zd_dh;

delete []gcz;

delete []P;

delete []V;

}

if(szd_zs>0)

{

delete []szd_gc;

delete []BTPB;

delete []BTPL;

delete []dX;

for(int i=0; i

if(dm[i]!=NULL)delete[](dm[i]);

delete []dm;

}

}

////// //对称矩阵下标计算函数

int SZWPC::ij(int i,int j)

{

return (i>=j)? i*(i+1)/2+j :j*(j+1)/2+i;

}

//对称正定矩阵求逆 ( 仅存下三角元素 ) bool SZWPC::inverse(double a[],int n) {

double *a0=new double[n];

for(int k=0;k

{

double a00=a[0];

delete []a0;

return false;

}

for(int i=1;i

{

double ai0 = a[i*(i+1)/2];

if(i<=n-k-1)a0[i]=-ai0/a00;

else a0[i]=ai0/a00;

for(int j=1;j<=i;j++)

{

a[(i-1)*i/2+j-1]=a[i*(i+1)/2+j]+ai0*a0[j];

}

}

for(int i=1;i

{

a[(n-1)*n/2+i-1]=a0[i];

}

a[n*(n+1)/2-1]=1.0/a00;

}

delete []a0;

return true;

}

//////////原始数据输入函数

void SZWPC::inputdata(char *datafile)

{

ifstream infile(datafile,ios::in);//声明输入句柄infile打开地址为datafile的文件并if(!infile)

{

infile>>gcz_zs>>szd_zs>>yz_szd_zs;

infile>>s0;

szd_gc=new double [szd_zs];

dX=new double [szd_zs];

BTPB=new double [szd_zs*(szd_zs+1)/2];

BTPL=new double [szd_zs];

qsd_dh=new int [gcz_zs];

zd_dh=new int [gcz_zs];

gcz=new double [gcz_zs];

V=new double [gcz_zs];

P=new double [gcz_zs];

dm=new char* [szd_zs];

for(int i=0;i

{

dm[i] = NULL;// dm_dh函数根据dm[i] 是否为 NULL确定 dm[i] 是否为点名地址}

char buffer[128]; //临时数组,保存从文件中读到的点名

for(int i=0;i<=yz_szd_zs-1;i++)//读取已知高程数据

{

infile>>buffer;

int c=dm_dh(buffer);

infile>>szd_gc[i];

}

for(int i=0;i

{

infile>>buffer; //读取高程起点名

qsd_dh[i]=dm_dh(buffer);

infile>>buffer;//读取高程终点

infile>>gcz[i]>>P[i]; //读取高差值与路线长度

P[i]=s0/P[i];//线路长转化为观测值的权

}

infile.close();

}

//////////点名转点号,返回点名对应的点号

int SZWPC::dm_dh(char *name)

{

for(int i=0;i

{

if(dm[i]!=NULL)

{

if(strcmp(name,dm[i])==0)return i;//将待查点名与已经存入点名数组的点名比较,若存在返回点号

}

else

{

int len=strlen(name);//判断点名长度

dm[i]=new char[len+1];//为点名申请存储空间

strcpy(dm[i], name);//待查点名是一个新的点名,将新点名的地址放到dm数组中

return i;//返回点号

}

}

return -1; //dm数组已经存满,且没有待查点名

}

//////////高程近似值计算

void SZWPC::ca_H0()

{

for(int i=yz_szd_zs;i

for(int j=1;;j++)

{

int k=0; //计算出近似高程的点数

for(int i=0;i

{

int k1=qsd_dh[i]; //高差起点号

int k2=zd_dh[i]; //高差终点号

if(szd_gc[k1]>-10000.0 && szd_gc[k2]<-10000.0)//k1点高程或高程近似值已知,k2 点高程或高程近似值未知

{

szd_gc[k2]=szd_gc[k1]+gcz[i];//计算近似高程

k++;

}

else

if(szd_gc[k1]<-10000.0 && szd_gc[k2]>-10000.0)//k2点高程或高程近似值已知, k1 点高程或高程近似值未知

{

szd_gc[k1]=szd_gc[k2]-gcz[i];//计算近似高程

k++;

}

}

if(k==(szd_zs-yz_szd_zs))break;//所有的近似高程计算完成,退出

}

}

//////////////////////////////

//组成法方程

void SZWPC::ca_BTPB()

{

int t=szd_zs;

for(int i=0; i

for(int k=0; k

{

int i=qsd_dh[k];//获取点号

int j=zd_dh[k];//获取点号

double Pk=P[k];//获取权值

double lk=gcz[k]-(szd_gc[j]-szd_gc[i]);//获得第k个自由项BTPL[i]-=Pk*lk;//获得法方程自由项

BTPL[j]+=Pk*lk;

BTPB[ij(i,i)]+=Pk;//获得法方程系数矩阵

BTPB[ij(j,j)]+=Pk;

BTPB[ij(i,j)]-=Pk;

}

}

/////////////////////////

//高程平差值计算

void SZWPC::ca_dX()

{

for(int i=0;i

{

cerr<<"法方程系数矩阵降秩!"<

exit(0);//退出程序

}

for(int i=0; i

{

double xi=0.0;

for(int j=0; j

{

}

dX[i]=xi;

szd_gc[i]+=xi;//计算高程平差值

}

}

/////////////////////

//残差计算

double SZWPC::ca_V()

{

double pvv=0.0;

for(int i=0;i<=gcz_zs-1;i++)

{

int k1=qsd_dh[i];

int k2=zd_dh[i];

V[i]=(szd_gc[k2]-szd_gc[k1]-gcz[i])*1000;

pvv+=V[i]*V[i]*P[i];

}

return(pvv);

}

////////////////////

//原始数据和平差值输出

void SZWPC::printresult(char *resultfile)

{

double pvv=ca_V(); //残差计算

ofstream outfile(resultfile,ios::out);//以输出方式打开文件,若文件不存在,创建文件//输出原始观测数据

outfile<

outfile<<" "<<"已知点数:"<

outfile<<"单位权水准路线长:"<

误差理论与测量平差课程设计任务书、指导书

《误差理论与测量平差》 课程设计任务书 题目:测量控制网严密平差程序设计 时间:12 月9 日至12 月13 日共一周 专业:测绘工程 班级: 学号: 姓名: 指导教师(签字): 院长(签字):

一、设计内容及要求 本设计重点检查同学们利用误差理论与测量平差知识,解决测量控制网平差问题的能力。因此要求同学们任选下面一题独立进行课程设计。 1、水准网严密平差及精度评定 要求:正确应用平差模型列出观测值条件方程、误差方程、法方程和解算法方程,得出平差后的平差值及各待定点的高程平差值,评定各平差值的精度和各高程平差值的精度。 2、边角网(导线)严密平差及精度评定 要求:对存在1-2个结点的导线网采用间接平差模型列出观测值条件方程、误差方程、法方程和解算法方程;正确给出两类观测值的权;得出平差后的平差值及各待定点坐标的平差值,评定各平差值的精度和各坐标的点位精度。 二、设计原始资料 1、水准网严密平差及精度评定示例。 如图所示水准网,有2个已知点,3个未知点,7个测段。各已知数据及观测值见下表(1)已知点高程H1=5.016m H2=6.016m (2)高差观测值(m) 高差观测值(m) 端点号高差观测值测段距离序号 1-3 1.359 1.1 1 1-4 2.009 1.7 2 2-3 0.363 2.3 3

2-4 1.012 2.7 4 3-4 0.657 2.4 5 3-5 0.238 1.4 6 5-2 -0.595 2.6 7 (3)求各待定点的高程;3-4点的高差中误差;3号点、4号点的高程中误差。(提示,本网可采用以测段的高差为平差元素,采用间接平差法编写程序计算。) 2、平面控制网严密平差及精度评定示例。 如图所示控制网中,有2个已知点,4个未知点,14个方向观测值,3个边长观测值,且方向观测值验前中误差为1.2秒,边长观测值固定误差为0.12分米,边长观测值比例误差为零。各已知数据、观测值见下表。 (1) 已知数据 点号 X (m ) Y (m ) 1 121088.500 259894.000 2 127990.100 255874.600 (2) 方向观测值(D.M.S) 测站 照准点 方向值 测站 照准点 方向值 1 2 0.0000 3 72.10284 4 6 0.0000 3 85.13374 2 217.37126 2 4 0.0000

导线测量严密平差方法

全站仪观测导线测量平差方法的研究 邱健壮1,赵燕2,李宗才3 (1.山东农业大学水利土木工程学院,山东泰安 271018;2.龙口市土地管理局;3.临沂市岸 堤水库管理局) 摘要:针对全站仪观测导线能够即时直接得到待定点的近似坐标的特点,从而提出了便于实际应用的近似坐标平差和严密坐标平差方法。分析了其原理和优点,并给出了实际操作的公式。 关键词:导线;平差;方位角;间接平差 中图分类号: TU204 文献标识码:A 文章编号:1000-2324(2003)01-0096-04 RESEARCH OF TRAVERSE ADJUSTMENT METHOD USING GENERAL TOTAL STATION QIU Jian-zhuang,ZHAO Yan,LI Zong-cai (College of Water Conservancy and CivilEngineering,Shandong Agricultural University,Taian,271018,China) Abstract:On the basis of the characteristic that General Total Station can obtain immediately the approximate coordinates of point during observing traverse.This paper introduces the adjustment method of approximate and rigorous coordinates convenient to realistic application,and analysizes its theory and application advantages,and gives the formula convenient to realistic operation. Key words: traverse,adjustment,azimuth,adjustment by observation equations 1 问题的提出 随着全站仪在工程测量中应用的逐渐普及,采用导线作为测量的平面控制越来越广泛,导线一般多布设成单一导线。应用全站仪观测导线,可以通过机内的微处理器,直接得到地面点的平面近似坐标,因此在成果处理时可以应用这些近似坐标直接按坐标平差(即间接平差)法进行平差。这将优于过去导线计算过程中先进行边、角平差后,再求取坐标的方法。本文主要针对采用全站仪观测导线的近似平差和严密平差方法进行探讨。 2 导线的近似坐标平差 导线测量用于图根控制等低精度测量中,往往采用近似平差即可。由于全站仪直接测定各导线点的近似坐标值,平差计算就不用像传统的导线近似平差计算那样,先进行角度闭合差计算和调整,然后推算方位角,再进行坐标增量闭合差的计算和调整,最后根据平差后的坐标增量计算导线点的坐标。全站仪观测导线直接按坐标平差计算,将更为简便。直接按坐标平差法计算步骤如下:

误差理论与测量平差基础

《误差理论与测量平差基础》授课教案 2006~2007第一学期 测绘工程系 2006年9月

课程名称:误差理论与测量平差基础 英文名称: 课程编号:?? 适用专业:测绘工程 总学时数: 56学时其中理论课教学56学时,实验教学学时 总学分:4学分 ◆内容简介 《测量平差》是测绘工程等专业的技术基础课,测量平差的任务是利用含有观测误差的观测值求得观测量及其函数的平差值,并评定其精度。 本课程的主要内容包括误差理论﹑误差分布与精度指标﹑协方差传播律及权﹑平差数学模型与最小二乘原理﹑条件平差﹑附有参数的条件平差﹑间接平差﹑附有限制条件的间接平差﹑线性方程组解算方法﹑误差椭圆﹑平差系统的统计假设检验和近代平差概论等。 ◆教学目的、课程性质任务,与其他课程的关系,所需先修课程 本课程的教学目的是使学生掌握误差理论和测量平差的基本知识、基本方法和基本技能,为后续专业课程的学习和毕业后从事测绘生产打下专业基础。 课程性质为必修课、考试课。 本课程的内容将在测绘工程和地理信息系统专业的专业课程的测量数据处理内容讲授中得到应用,所需先修课程为《高等数学》、《概率与数理统计》、《线性代数》和《测量学》等。 ◆主要内容重点及深度 考虑到专业基础理论课教学应掌握“必须和够用”的原则,结合测绘专业建设的指导思想,教学内容以最小二乘理论为基础,误差理论及其应用、平差基本方法与计算方法,以及平差程序设计及其应用为主线。 测量误差理论,以分析解决工程测量中精度分析和工程设计的技术问题为着眼点,在掌握适当深度的前提下,有针对性的加强基本理论,并与实践结合,突出知识的应用。 平差方法,以条件平差和参数平差的介绍为主,以适应电算平差的参数平差为重点。 计算方法,以介绍适应电子计算机计算的理论、方法为主,建立新的手工计算与计算机求解线性方程组过程相对照的计算方法和计算格式。 平差程序设计及其应用,通过课程设计要求学生利用所学程序设计的知识和平差数学模型编制简单的平差程序,熟练掌握已有平差程序的使用方法。

误差理论及测量平差课程设计报告

- - - n 目录 一、目录----------------------------1 二、序言---------------------------- 2 三、设计思路------------------------ 3 四、程序流程图---------------------- 4 五、程序及说明---------------------- 5 六、计算结果-----------------------12 七、总结--------------------------- 15 第二部分序言 1、课程设计的性质、目的和任务 误差理论与测量平差是一门理论与实践并重的课程,其课程设计是测量数据处理理论学习的一个重要的实践环节,它是在我们学习了专业基础课“误差理论与测量平差基础”课程后进行的一门实践课程。其目的是增强我们对误差理论与测量平差基础理论的理解,牢固掌握测量平差的基本原理和基本公式,熟悉测量数据处理的基本技能和计算方法,灵活准确地应用于解决各类数据处理的实际问题,并能用所学的计算机理论知识,编制简单的计算程序。 2、误差理论与测量平差课程和其它课程的联系和分工 这次课程设计中所用的数学模型和计算方法是我们在误差理论与测量平差课程中所学的内容,所使用的C程序语言使我们在计算机基础课程中所学知识。误差理论与测量平差课程设计是测量平差和计算机程序设计等课程的综合实践与应用,同时也为我们今后步入工作岗位打下了一定基础。 3、课程设计重点及内容 本次课程设计重点是培养我们正确应用公式、综合分析和解决问题的能力,以及计算机编程能力。另外它要求我们完成1-2个综合性的结合生产实践的题目。如目前生产实践中经常用到的水准网严密平差及精度评定,边角网(导线)严密平差及精度评定等。此次我所选的课程设计课题是水准网严密平差及精度评定,其具体内容如下: 根据题目要求,正确应用平差模型列出观测值条件方程、误差方程和法方程;解算法方程,得出平差后的平差值及各待定点的高程平差值;评定各平差值的精度和各高程平差值的精度。 具体算例为: 如图所示水准网,有2个已知点,3个未知点,7个测段。各已知数据及观测值见下表(1)已知点高程H1=5.016m ,H2=6.016m (2)高差观测值(m)

闭合导线平差计算步骤

闭合导线平差计算步骤: 1、绘制计算草图。在图上填写已知数据和观测数据。 2、角度闭合差的计算与调整 (1)计算闭合差: (2)计算限差:(图根级) (3)若在限差内,则按平均分配原则,计算改正数: (4)计算改正后新的角值: 3、按新的角值,推算各边坐标方位角。 4、按坐标正算公式,计算各边坐标增量。 5、坐标增量闭合差的计算与调整 (1)计算坐标增量闭合差。有: 导线全长闭合差: 导线全长相对闭合差: (2)分配坐标增量闭合差 若 K<1/2000 (图根级),则将、以相反符号,按边长成正比分配到各坐标增量上去。并计算改正后的坐标增量。

6、坐标计算 根据起始点的已知坐标和经改正的新的坐标增量,来依次计算各导线点的坐标。 [ 例题 ] 如图所示闭合导线,试计算各导线点的坐标。 计算表格见下图:

闭合水准路线内业计算的步骤: (1) 填写观测数据 (2) 计算高差闭合差 h f =∑h ,若h f ≤容h f 时,说明符合精度要求,可以进行高差闭合差的调整;否则,将重新进行观测。 (3) 调整高差闭合差 各段高差改正数: i h i i h i L L f V n n f V ·· ∑-= ∑-= 或 各段改正高差: i i i V h h +=改 (4) 计算待定点的高程 闭合差(fh ) 水准路线中各点间高差的代数和应等于两已知水准点间的高差。若不等两者之差称为闭合差 高差闭合差的计算 .支水准路线闭合差的计算方法 .附合水准路线闭合差的计算方法 .闭合水准路线闭合差的计算方法 高差闭合差容许值 (n 为测站数,适合山地) (L 为测段长度,以公里为单位,适合平地) 水准测量中,消除闭合差的原则一般按距离或测站数成正比地改正各段的观测高差

测量平差课程设计指导书word文档

《误差理论与测量平差》课程设计指导书 (测绘工程专业) 2011年6月

《误差理论与测量平差》课程设计指导书 适用专业:测绘工程 学分数:1 学时数:1周 1.设计的目的 《测量平差》是一门理论与实践并重的课程,测量平差课程设计是测量数据处理理论学习的一个重要实践环节,是在学生学习了专业基础理论课《误差理论与测量平差基础》课程后进行的一门实践课程,其目的是增强学生对测量平差基础理论的理解,牢固掌握测量平差的基本原理和公式,熟悉测量数据处理的基本原理和方法,灵活准确地应用于解决各类数据处理的实际问题,并能用所学的计算机基础知识,编制简单的计算程序。 2.设计的任务 (1)该课的课程设计安排在理论学习结束之后进行的,主要是平面控制网和高程控制网严密平差,时间为一周。 (2)通过课程设计,培养学生运用本课程基本理论知识和技能,分析和解决本课程范围内的实际工程问题的能力,加深对课程理论的理解与应用。 (3)在指导老师的指导下,要求每个学生独立完成本课程设计的全部内容。

3.课程设计要求 3.1基本要求: 测量平差课程设计要求每一个学生必须遵守课程设计的具体项目的要求,独立完成设计内容,并上交设计报告。在学习知识、培养能力的过程中,树立严谨、求实、勤奋、进取的良好学风。 课程设计前学生应认真复习教材有关内容和《测量平差》课程设计指导书,务必弄清基本概念和本次课程设计的目的、要求及应注意的事项,以保证保质保量的按时完成设计任务。 3.2具体设计项目内容及要求: 3.2.1高程控制网严密平差及精度评定 总体思路:现有等级水准网的全部观测数据及网型、起算数据。要求对该水准网,分别用条件、间接两种方法进行严密平差,并进行平差模型的正确性检验。 水准网的条件平差: ①列条件平差值方程、改正数条件方程、法方程; ②利用自编计算程序解算基础方程,求出观测值的平 差值、待定点的高程平差值; ③评定观测值平差值的精度和高程平差值的精度。 ④进行平差模型正确性的假设检验。 水准网的间接平差: ①列观测值平差值方程、误差方程、法方程; ②利用自编计算程序解算基础方程,求出观测值的平

《误差理论与测量平差基础》试卷A(答案)

《误差理论与测量平差基础》期末考试试题A(参考答案) 一、名词解释(每题2分,共10分) 1、偶然误差 ——在相同的观测条件系作一系列的观测,如果误差在大小和符号上都表现出偶然性。即从单个误差看,该误差的大小和符号没有规律性,但就大量误差的总体而言,具有一定的统计规律。这种误差称为偶然误差。 2、函数模型线性化 ——在各种平差模型中,所列出的条件方程或观测方程,有的是线性形式,有的是非线性形式。在进行平差计算时,必须首先把非线性形式的函数方程按台劳公式展开,取至一次项,转换成线性方程。这一转换过程,称之为函数模型的线性化。 3、点位误差椭圆 ——以点位差的极大值方向为横轴X 轴方向,以位差的极值F E 、分别为椭圆的长、短半轴,这样形成的一条椭圆曲线,即为点位误差椭圆。 4、协方差传播律 ——用来阐述观测值的函数的中误差与观测值的中误差之间的运算规律的数学公式。如 0K KL Z +=,若观测向量的协方差阵为LL D ,则按协方差传播律,应有T LL ZZ K KD D =。 5、权 ——表示各观测值方差之间比例关系的数字特征,220 i i P σσ=。 二、判断正误(只判断)(每题1分,共10分) 参考答案:X √X √X X X √√X 三、选择题(每题3分,共15分) 参考答案:CCDCC 四.填空题(每空3分,共15分) 参考答案:1. 6个 2. 13个 3.1/n 4. 0.4 5. 0) () () () (432 00 2 0=''+?+?+-''+ -''- W y S X X x S Y Y C AC A C C AC A C ρρ,其中 AB A C A C X X Y Y W αββ-++--=''4300arctan 五、问答题(每题4分,共12分) 1. 几何模型的必要元素与什么有关?必要元素数就是必要观测数吗?为什么? 答:⑴几何模型的必要元素与决定该模型的内在几何规律有关;(1分) ⑵必要元素数就是必要观测数;(1分) ⑶几何模型的内在规律决定了要确定该模型,所必须具备的几何要素,称为必要元素,必要元素的个数,称为必要元素数。实际工程中为了确定该几何模型,所必须观测的要素个数,称为必要观测数,

测量平差课程设计报告

设计报告 设计名称:测量平差课程设计学院名称:测绘工程学院 专业班级:测绘11-3班 学生姓名:邹云龙 学号: 20110242 指导教师:周秋生 黑龙江工程学院教务处制 2013年6月

注:1、在此页后附实习报告、总结。其内容应包括:实习目的、实习内容及实习结果等项目。 2、此页为封皮,用A4幅面纸正反面打印。 3、实习总结使用A4幅面纸张书写或打印,并附此页后在左侧一同装订。 4、实习成绩以优(90~100)、良(80~89)、中(70~79)、及格(60~69)、不及格(60以下)五 个等级评定。

目录 一、水准网观测精度设计 (4) 二、水准网、测角网、边角网平差计算 (6) 1、水准网平差计算 (6) 2、测角网平差计算 (8) 3、边角网平差计算 (12)

一、设计目的 在学完误差理论与测量平差基础课程后,在掌握了测量数据处理基本理论、基本知识、基本方法的基础上,根据设计任务,熟悉自动平差软件的应用,通过实例计算,提高用电子计算机进行相关测量数据处理的能力,在此基础上通过测量程序设计提高用高级语言进行简单测量程序设计的能力。 二、设计任务 (1)水准网观测精度设计 根据所给控制网的形状和高程平差值的点位中误差要求,推求水准高差观测的精度要求。 (2)利用已有平差软件完成下述平差计算任务 1)熟悉前方交会与后方交会计算 分别自选1至2个前后方交会计算实例进行平差计算,熟悉程序使用方法。 2)水准网平差计算 3)导线网平差计算 4)测角网平差计算 分别自选1个水准网、测角网和边角网计算实例进行平差计算,要求每个学生的计算题目不能重复。 建议使用的数据处理软件:测量控制网自动平差系统,黑龙江工程学院,2002年版;平差易,南方测绘,2002年或2005年版。使用指导书见相应电子版文件。 (3)编制测量计算程序 仿照已有测量程序的设计界面和程序计算管理功能,在测角(测边)前方交会与后方交会计算程序、单一符合、闭合水准网平差计算程序、单一符合、闭合导线平差计算程序设计选题中选择一至两项内容进行程序设计,设计使用的语言可采用VB、C、C#等。参考书可选测绘出版社出版,葛永会编《测量程序设计》,和黑志坚等编著的《测量平差》教材,以及针对所使用语言的相关程序设计书籍。 三、设计内容 (一)、水准网观测精度设计 4、水准网如下图所示,各观测高差的路线长度相同。

导线测量平差常见问答

导线测量平差常见问答 一、为何有时计算结果与其它计算有些差异? 答:a.观测角度使用的是前进方向的左角还是右角,本软件采用前进方向的左角,输入负号时表示是前进方向的右角,并转换为左角平差。 b.是否选用了概算,及概算的各选项是否正确。 c.是否使用严密平差,严密平差与近似平差计算结果是不同的。 d.严密平差是否使用迭代平差,有些软件尽管使用严密平差,但只进行单次平差,精度不高。 e.严密平差的先验误差设置是否一致,是否使用了Helmert验后方差定权,软件使用的定权方式可能不一样,导致部分差异。 f.近似平差是否选用了反算等,可以在“项目设置”中更改以适合您的需要。 g.近似平差时是否选用了角度改正前的坐标增量闭合差,这会导致坐标增量闭合差的不一致。 h.高程平差时,水准和三角高程因为定权的不同而有差异,坐标导线按三角高程计算,其它则提供了高差类型的选择。 二、如何选择严密平差或近似平差?近似平差是否需要进行方位角边长反算? 答: 《工程测量规范》规定:一级及以上平面控制网的计算,应采用严密平差法,二级及以下平面控制网,可根据需要采用严密或简化方法平差。当采用简化方法平差时,应以平差后坐标反算的角度和边长作为成果。 《城市测量规范》规定:四等以下平面控制网可采用近似平差法和按近似方法评定其精度。......采用近似平差方法的导线网,应根据平差后坐标反算的方位角与边长作为成果。 因此,严密平差适用于各等级导线,而近似平差适用于较低等级导线,采用近似平差时应对方位角、角度、边长等进行反算,以便方位角、边长、角度等可以作为最终成果使用。 三、为什么软件中默认的计算表格样式与我们的习惯不一样? 答:成果表格可以自定义,计算表因方案设置的不同而有所不同。 这里主要是因为您使用的是近似平差且不进行反算的格式,而本软件默认是严密平差,当选择近似平差时默认也是进行反算的。可以在项目设置中选择近似平差,并且去掉“方位角、边长反算”等即可获得您所需的格式。 四、近似平差时的坐标增量闭合差为什么与有些书上不一样? 答:近似平差中,计算方案里有一个选项,以让用户选择近似平差是否使用在角度闭合差分配前计算的坐标增量闭合差来反映导线精度。使用角度闭合差分配前计算的坐标增量闭合差将与严密平差一致,否则与通常的手工计算一致。 五、验后测角中误差有时相对于角度闭合差为何显得很大? 答:这主要有以下情况: a.先验误差设置不切实际,相对于测角,将测距先验误差设置过高会导致程序认为误差主要来源于角度,而对角度加以较大的改正数,使得评定的测角中误差较大。 b.测量发生错误,主要可能是边长测量错误,使得坐标增量闭合差太大。 c.已知点精度不高。 六、为什么角度闭合差不是平均分配的? 答:严密平差是按最小二乘法平差,角度闭合差不是平均分配的。 近似平差角度闭合差是平均分配的,但如果计算方案里选择了进行反算,则角度、方位角、边长等都是反算后的最终成果,并不是计算的中间成果,角度改正数也就可能有正有负。

误差理论与测量平差课程设计报告

n 目录 一、目录 ----------------------------1 二、序言 ---------------------------- 2 三、设计思路------------------------ 3 四、程序流程图---------------------- 4 五、程序及说明---------------------- 5 六、计算结果-----------------------12 七、总结 --------------------------- 15 第二部分序言 1、课程设计的性质、目的和任务 误差理论与测量平差是一门理论与实践并重的课程,其课程设计是测量数据处理理论学习的一个重 要的实践环节,它是在我们学习了专业基础课“误差理论与测量平差基础”课程后进行的一门实践课程。其 目的是增强我们对误差理论与测量平差基础理论的理解,牢固掌握测量平差的基本原理和基本公式,熟悉测量数据处理的基本技能和计算方法,灵活准确地应用于解决各类数据处理的实际问题,并能用所学的计算机理论知识,编制简单的计算程序。 2、误差理论与测量平差课程和其它课程的联系和分工 这次课程设计中所用的数学模型和计算方法是我们在误差理论与测量平差课程中所学的内容,所使用的 C 程序语言使我们在计算机基础课程中所学知识。误差理论与测量平差课程设计是测量平差和计算机程 序设计等课程的综合实践与应用,同时也为我们今后步入工作岗位打下了一定基础。 3、课程设计重点及内容 本次课程设计重点是培养我们正确应用公式、综合分析和解决问题的能力,以及计算机编程能力。 另外它要求我们完成1-2 个综合性的结合生产实践的题目。如目前生产实践中经常用到的水准网严密平差 及精度评定,边角网(导线)严密平差及精度评定等。此次我所选的课程设计课题是水准网严密平差及精度 评定,其具体内容如下: 根据题目要求,正确应用平差模型列出观测值条件方程、误差方程和法方程;解算法方程,得出平差后 的平差值及各待定点的高程平差值;评定各平差值的精度和各高程平差值的精度。 具体算例为: 如图所示水准网,有 2 个已知点, 3 个未知点,(1)已知点高程H1=5.016m , H2=6.016m 7 个测段。各已知数据及观测值见下表( 2)高差观测值 (m)

《测量程序设计课程设计》指导书-2015

测量数据处理程序设计指导书 设计名称:测量数据处理程序设计 计划周数:2周 适用对象:测绘工程专业本科 先修课程:测量学,测量平差基础,大地控制测量,测量程序设计 一、设计目的 测量数据处理程序设计是学生在系统学习完大地控制测量学、测量平差基础、测量程序设计等相关课程之后,为了系统理解控制网平差的整体过程及综合运用科学工具而安排的。通过课程设计主要达到以下几个目的:掌握控制网平差课程设计具体内容、方法和步骤;通过理论联系实际,进一步巩固已学到的专业理论知识,并加深对理论的认识;培养学生对编写代码,上机调试和编写说明书等基本技能;锻炼学生阅读各类编程参考书籍及加以编程运用的能力。 二、设计内容及日程 在VB、 VC软件或matlab科学计算软件的平台上,选择的具体课程设计题目,进行程序设计与实现,共计10个工作日,工作程序如下: 三、设计的组织: 1.设计领导 (1)指导教师:由教研室指派教师、实验员兼任。

职责:全面组织设计大纲的实施,完成分管工作及相关技术指导。 (2)设计队长:学生班长兼任。 职责:协助教师做好本班学生的人员组织工作。 (3)设计组长:每组一人。 职责:组织执行下达的设计任务,安排组内各成员的工作分工。 2.设计分组 学生实习作业组由3~4人组成(含组长一人)。 四、设计内容 在VB、VC或MATLAB 软件平台上,按选择的设计题目进行相关程序开发 1、闭合导线简易平差、附合导线简易平差支导线计算 2、闭合水准网计算、附合水准网简易平差 3、地形图编号(新、旧两种方法) 4、误差椭圆的参数的计算与绘制误差椭圆 5、水准网严密平差 6、高斯正反算计算 7、高斯投影换带计算 8、七参数大地坐标转换(WGS84-bj54坐标转换、WGS84-CGCS2000坐标转换) 9、四参数坐标转换(西安80-bj54坐标转换、CGCS2000-bj54坐标转换、CGCS2000-西安80坐 标转换(平面) 10、大地高转换为正常高的计算 11、工程投影变形超限的处理 12、遥感图像数据处理 13、曲线(曲面)拟合 14、摄影测量空间后方交会 15、****管理信息系统设计与开发 五、上交成果 1) 小组利用vb、vc或matlab编写的软件包一个及测试数据一份 2)小组关于所开发程序设计说明书一份 3) 个人课程设计的心得一份 4)小组答辩PPT一份

误差理论与测量平差基础试卷

长沙理工大学考试试卷 …………………………………………………………………………………………………………………………… 试卷编号 1 拟题教研室(或教师)签名 范志勇 系主任签名 …………………………………………………………………………………………………………………………… 课程名称(含档次) 误差理论与测量平差基础 课程代号 0809021 专 业 测绘工程 层次(本、专) 本 考试方式(开、闭卷) 闭 一、 正误判断(正确“T ”,错误“F ”每题1分,共10 分)。 1.已知两段距离的长度及中误差分别为128.286m ±4.5cm 与218.268m ±4.5cm ,则其真误差与精度均相同( )。 2.如果X 与Y 的协方差0xy σ=,则其不相关( )。 3.水准测量中,按公式i i c p s = (i s 为水准路线长)来定权,要求每公里高差精度相同( )。 4.可用误差椭圆来确定待定点与待定点之间的某些精度指标( )。 5.在某一平差问题中,观测数为n ,必要观测数为t ,参数个数u <t 且不独立,则该平差问题可采用附有参数的条件平差的函数模型。( )。 6.由于同一平差问题采用不同的平差方法得到的结果不同,因此为了得到最佳平差结果,必须谨慎选择平差方法( )。 7.根据公式() 222220 cos sin 0360E F θσθθθ=+≤≤得到的曲线就是误差椭圆( )。 8.对于特定的平面控制网,如果按间接平差法解算,则误差方程的个数是一定的( )。 9.对于同一个观测值来说,若选定一定权常数0σ,则权愈小,其方差愈小,其精度愈高( )。 10.设观测值向量,1 n L 彼此不独立,其权为() 1,2 ,,i P i n = ,12(,,,)n Z f L L L = ,则有 2 221122111 1Z n n f f f P L P L P L P ?????????=+++ ? ? ?????????? ( )。 二、填空题(每空2分,共24分)。 1、设对某三角网进行同精度观测,得三角形角度闭合差分别为:3秒,-3秒,2秒,4秒,-2秒,-1秒,0秒,-4秒,3秒,-2秒,则测角中误差为 秒。 2、某平差问题函数模型)(I Q =为?? ?????=-=--=+-+=--0?0306051 54431 2 1x v v v v v v v v ,则该函数模型为 平差方法的模型;=n ,=t ,=r ,=c ,=u 。

测量平差课程设计

课程设计报告 设计题目:“误差理论与测量平差基础”课程设计专业:测绘工程 班级学号:xxx 姓名:xx 指导教师:xx 起屹日期:2016年1月11日~2016年1月15日测绘科学与技术学院 1.概述

(1)课程设计名称、目的和要求。 (2)工程和作业区概况、平面控制网布设情况和已有资料的利用情况。(3)课程设计完成情况。 2.平差方案的技术设计 (1)平差原理。 (2)技术要求。 (3)平差模型的选择和探讨。 (4)计算方案的确定及依据。 (5)计算方法和程序设计。 3.平差计算的过程和质量评价 (1)平差方案执行情况。 (2)计算过程说明。 (3)计算过程出现的问题、处理方法和效果。 (4)控制网测量数据的质量评价。 4.课程设计成果及体会

(1)平差成果。 (2)课程设计效果、经验、体会、设想和建议。 (3)上交成果和资料的主要内容、形式和清单。 1. 2.概述 (1) (2)课程设计名称、目的和要求。 名称: 南京工业大学校园数字化测图平面控制网的平差计算 目的: 通过本次课程设计加深对“误差理论与测量平差基础”基本知识的理解,增强应用测量平差原理对测量数据进行处理的能力,学会对实际工程的有关资料进行计算分析和设计的方法,提高独立分析问题、解决问题的能力。 要求: 认真复习“误差理论与测量平差基础”中的有关知识,收集测区已有的各种资料,了解工程概况,查阅相关平差资料,分析比较各种平差模型,写出你所选用的平差方案的理由。 各种数据的计算应运用Excel和MATLAB完成,计算过程要写入报告中,并尽可能利用Excel表格或编写MATLAB函数完成各重复计算,Excel表格或编写的MATLAB函数要写入报告中。

附合导线平差程序设计报告

《测量平差程序》课程设计 (报告) 学生姓名:罗正材 学号:1108030128 专业:2011级测绘工程 指导教师:肖东升

目录 一、前言 (3) 二、平差程序的基本要求 (3) 三、平差程序模块化 (3)

图1 四、平差中的重要函数 (一)、角度制与弧度制的相互转化 C/C++程序设计中,关于角度的计算以弧度制为单位,而在测量以及具体工作中我们通常习惯以角度制为单位。这样,在数据处理中,经常需要在角度制与弧度制之间进行相互转化。这里,我们利用C/C++数学函数库math.h中的相关函数完成这两种功能。 这里,我们使用double类型数据表示角度制数和弧度制数。例如:123度44分58.445秒,用double类型表示为123.4458445,其中分、秒根据小数位确定。 在角度制与弧度制的转化中,涉及如下图2所示的两个环节。 度.分秒度弧度 图2 1.角度化弧度函数 double d_h(double angle) //角度化弧度 { double a,b; angle=modf(angle,&a);//a为提取的度值(int类型),angle为分秒值(小数) angle=modf(angle*100.0,&b); // b为提取的分值(int类型),angle为秒值(小数) return (a+b/60.0+angle/36.0)*(PI+3.0E-16)/180.0; } 2.弧度化角度函数 double h_d(double angle) //弧度化角度

{ double a,b,c; angle=modf(angle*180.0/(PI-3.0E-16),&a); angle=modf(angle*60.0,&b); angle=modf(angle*60.0,&c); return a+b*0.01+c*0.0001+angle*0.0001; } 其中,函数modf(angle,&a)为C语言数学库函数,返回值有两个,以引用类型定义的a 返回angle的整数部分,函数直接返回值为angle的小数部分。 (二)近似坐标计算 在平面网间接平差计算中,近似坐标计算是非常重要的一项基础工作。近似坐标是否计算成功是间接平差是否可以进行的必要条件。 1.两方向交会 已知条件:两个点的近似坐标,这两个点到未知点的方位角,如图3所示 图3两方向交会 根据图4.2,设 1 1 α tg k=, 2 2 α tg k=,则很容易写出 ? ? ? ? ? ? - = - - = B P B P A P A P y y k x x y y k 2 1 整理该式,得两方向交会的的计算公式 ?? ? ? ? ? - - = ?? ? ? ? ? ?? ? ? ? ? - - B B A A P P y x k y x k y x k k 2 1 2 1 1 1 (4.1)对(4.1)式计算,即可得到未知点的近似坐标。应用中需要注意的是,若两方向值相同或相反,则该式无解。 程序中,定义该问题的函数为:int xy0ang(obser &a1,obser &a2) 2.三边交会 如图4所示,为排除两边长交会的二义性,给出如下三边交会的模型,已知条件:三个

导线测量平差教程

计算方案的设置 一、导线类型: 1.闭、附合导线(图1) 2.无定向导线(图2) 3.支导线(图3) 4.特殊导线及导线网、高程网(见数据输入一节),该选项适用于所有的导线,但不计算闭合差。而且该类型不需要填写未知点数目。当点击表格最后一行时自动添加一行,计算时删除后面的空行。 5.坐标导线。指使用全站仪直接观测坐标、高程的闭、附合导线。 6.单面单程水准测量记录计算。指仅进行单面读数且仅进行往测而无返测的水准测量记录计算。当数据中没有输入“中视”时可以用作五等、等外水准等的记录计算。当输入了“中视”时可以用作中平测量等的记录计算。 说明:除“单面单程水准测量记录计算”仅用于低等级的水准测量记录计算外,其它类型选项都可以进行平面及高程的平差计算,输入了平面数据则进行平面的平差,输入了高程数据则进行高程的平差,同时输入则同时平差。如果不需进行平面的平差,仅计算闭、附合高程路线,可以选择类型为“无定向导线”,或者选择类型为“闭附合导线”但表格中第一行及最后一行数据(均为定向点)不必输入,因为高程路线不需定向点。 二、概算 1.对方向、边长进行投影改化及边长的高程归化,也可以只选择其中的一项改正。 2.应选择相应的坐标系统,以及Y坐标是否包含500KM。选择了概算时,Y坐标不应包含带号。

三、等级与限差 1.在选择好导线类型后,再选择平面及高程的等级,以便根据《工程测量规范》自动填写限差等设置。如果填写的值不符合您所使用的规范,则再修改各项值的设置。比如现行的《公路勘测规范》的三级导线比《工程测量规范》的三级导线要求要低一些。 2.导线测量平差4.2及以前版本没有设置限差,打开4.2及以前版本时请注意重新设置限差。 四、近似平差与严密平差的选择及近似平差的方位角、边长是否反算 1.近似平差:程序先分配角度闭合差再分配坐标增量闭合差,即分别平差法。 2.严密平差:按最小二乘法原理平差。 3.《工程测量规范》规定:一级及以上平面控制网的计算,应采用严密平差法,二级及以下平面控制网,可根据需要采用严密或简化方法平差。当采用简化方法平差时,应以平差后坐标反算的角度和边长作为成果。 《城市测量规范》规定:四等以下平面控制网可采用近似平差法和按近似方法评定其精度。......采用近似平差方法的导线网,应根据平差后坐标反算的方位角与边长作为成果。 因此,严密平差适用于各种等级的控制网,而近似平差适用于较低等级。当采用近似平差时,应进行方位角、边长反算。 显示角度改正前的坐标闭合差:勾选此项后,程序在“平面计算表”备注栏内显示角度改正前的坐标闭合差,否则显示角度改正后的坐标增量闭合差。为了以示区别,角度改正前的坐标闭合差以Wx、Wy、Ws表示,角度改正后的坐标增量闭合差以fx、fy、fs表示。 五、近似平差设置 1.方位角、边长反算:根据近似平差后的坐标反算方位角、边长、角度等。反算后的方位角、边长、角度等是平差后的最终值,可以作为最终成果使用,否则仅为平差计算的中间结果,不应作为最终成果使用。反算与不反算表格形式是不一样的。注意:反算后,按最终的角度值

误差理论与测量平差基础习题集

第五章条件平差 §5-1条件平差原理 条件平差中求解的未知量是什么?能否由条件方程直接求得 5. 1. 02 设某一平差问题的观测个数为n.必要观测数为t,若按条件平差法进行平差,其条件方程、法方程及改正数方程的个数各为多少? 5. 1.03 试用符号写出按条件平差法平差时,单一附合水准路线中(如图5-1所示)各观测值平差值的表达式。 图5-1 5. 1. 04 在图5-2中,已知A ,B的高程为H a= 12.123 m , H b=11. 123m,观测高差和线路长度为: 图5-2 S1=2km,S2=Ikm,S3=0.5krn,h1 =-2.003m,h2=-1.005 m,h3=-0.501 m,求改正 数条件方程和各段离差的平差值。 在图5-3的水准网中,A为已知点B、C、D为待定点,已知点高程H A=10.000m,观测了5条路线的高差: h1=1.628m, h2=0. 821 m, h3=0.715m, h4=1.502m, h5=-2.331 m。 各观测路线长度相等,试求:(1)改正数条件方程;(2)各段高差改正数及平差 值。 有水准网如图5-4所示,其中A、B、C三点高程未知,现在其间进行了水准测 量,测得高差及水准路线长度为 h1 =1 .335 m,S1=2 km; h2=1.055 m,S2=2 km; h3=-2.396 m,S3=3km。试按条件平差法求各高差的平差值。 如图5-5 所示,L1=63°19′40″,=30″;L2=58°25′20″,=20″; L3=301°45′42″,=10″. (1)列出改正数条件方程; (2)试用条件平差法求∠C的平差值(注:∠C是指内角)。 5-2条件方程 5. 2.08 对某一平差问题,其条件方程的个数和形式是否惟一? 列立条件方程时要注意哪些问题?如何使得一组条件方程彼此线性无关? 5.2. 10 指出图5-6中各水准网条件方程的个数(水准网中P i表示待定高程点,h i表 示观测高差)。 (a) (b) 图5-6

测量平差课程设计报告精编WORD版

测量平差课程设计报告精编W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

东南大学交通学院 测量平差课程设计报告 设计题目: 专业:测绘工程专业 班级: 学号: 姓名: 指导老师: 日期: 目录 1. 课程设计目的2 2. 课程设计任务2 3. 课程设计重点以及基本要求2 4. 课程设计具体要求 2 5. 课程设计案例及分析3 6. 课程设计展示成果10

8. 课程设计心得体会 17 1、课程设计目的 误差理论与测量平差是一门理论与实践并重的课程,其课程设计是测量数据处理理论学习的一个重要的实践环节,它是在我们学习了专业基础课“误差理论与测量平差基础”课程后进行的一门实践课程。其目的是增强我们对误差理论与测量平差基础理论的理解,牢固掌握测量平差的基本原理和基本公式,熟悉测量数据处理的基本技能和计算方法,灵活准确地应用于解决各类数据处理的实际问题,并能用所学的计算机理论知识,编制简单的计算程序。 2、课程设计的任务 (1)该课的课程设计安排在理论学习结束之后进行的,主要是平面控制网和高程控制网严密平差。 (2)通过课程设计,培养学生运用本课程基本理论知识和技能,分析和解决本课程范围内的实际工程问题的能力,加深对课程理论的理解与应用。 (3)在指导老师的指导下,要求每个学生独立完成本课程设计的全部内容。 3、课程设计重点以及基本要求 课程设计要求每一个学生必须遵守课程设计的具体项目的要求,独立完成设计内容,并上交设计报告。在学习知识、培养能力的过程中,树立严谨、求实、勤奋、进取的良好学风。课程设计前学生应认真复习教材有关内容和《测量平差》课程设计指导书,务必弄清基本概念和本次课程设计的目的、要求及应注意的事项,以保证保质保量的按时完成设计任务。

附合导线平差教程

. 附合导线导线平差步骤 城市平面控制网的种类较多,有GPS网、三角网、边角组合网和导线网,其中导线网按等级划分为三、四等和一、二、三级。本文以附合导线的内业数据处理为例,说明控制点坐标平差处理的方法。 导线的内业计算,就是根据起始点的坐标和起始边的坐标方位角,以及所观测的导线边长和转折角,计算各导线点的坐标。计算的目的除了求得各导线点的坐标外,还有就是检核导线外业测量成果的精度。 在转入内业计算之前,应整理并全面检查外业测量的基础资料,检查数据是否完整,是否有记录错误和计算错误,是否满足精度要求,起算数据是否正确和完整,然后绘制相应导线的平面草图,并将相关数据标示于草图的对应部位。 如图2-21所示的附合导线,观测转折角为左角,计算的步骤如下: (1)填表。 计算之前,首先将示意图中各观测数据(观测角和边长)和已知数据(起始边和附合边的坐标方位角,起始点和终止点的坐标)填入相应表格之中,如表2-19所示。 (2)角度闭合差的计算与调整。 如图2-20所示的附合导线,观测转折角为左角,根据坐标方位角的推算公式可以依次计算各边的坐标方位角: αα+β-180°= BAA1Aαα+β-180=° 12A11αα+180=°+β2 122C′αα+180+)=°+βC CD2C ′βαα°180×-=4+∑测左CDBA计算终边坐标方位角的一般公式为:nβαα 2-5)°′=+∑(-·180测左终边始边为导线观测角 个数。式中n 角度闭合差的计算公式为:αα 2-6 =f′(实测)-(理 论)()β测终边终边. . 2-21 附合导线计算示意图图 的大小,表明测角精度的高低。对于不同等级的导线,有不角度闭合差fβ f) 要求,例如图根导线角度闭合差的允许值为:同的限差(即β容n)(″2-7

误差理论与测量平差基础知识点的不完全归纳

第一章绪论 1、误差理论与测量平差基础是一门专业、基础、理论、核心课程。 2、测量数据或观测数据是指用一定的仪器、工具、传感器或其他手段获取的反映地球与其他实体的空间分布有关信息的数据。 3、任何观测数据总是包含信息和干扰两部分(有效信息和干扰信息)。采集数据就是为了获取有用的信息,干扰也称为误差。 4、观测数据总是不可避免带有误差。 5、误差即测量值与真值之差。 6、当对某个量进行重复观测时就会发现,这些观测值之间往往存在差异,这是由于观测值中包含有观测误差。 7、误差来源于观测条件,观测条件包括测量仪器、观测者、外界条件。 8、偶然误差即总是假定含粗差的观测值已被剔除;含系统误差的观测值已经过适当改正。在观测误差中,仅含偶然误差或是偶然误差占主导地位。 9、在测量中产生误差是不可避免的。 10、根据观测误差对测量结果的影响性质,可分为偶然误差(Δ)、系统误差和粗差() 三类。【】 11、在相同的观测条件下作一系列的观测,如果误差在大小和符号上都表现出偶然性,即从单个误差看,该列误差的大小和符号没有规律性,但就大量误差的总体而然,具有一定的统计规律,这种误差称为偶然误差。(如估读不准确) 12、系统误差包括常差、规律差、随机性系统误差。 13、在相同的观测条件下作一系列的观测,如果误差在大小、符号上表现出系统性,或者在个过程中按一定的规律变化,或者为某一常数,那么,这种误差就称为系统误差。(如视准轴与水准管轴不平行、仪器下沉、水准尺下沉、水准尺竖立不垂直) 14、系统误差的存在必然影响观测结果,具有一定的累加性,是影响巨大的。 15、粗差即粗大误差,是指比在正常观测条件下所能出现的最大误差还要大的误差。(误差=错误,消除粗差的方法:多余观测进行发现、剔除粗差。测量数据中一旦发现粗差,需要舍弃或重测) 16、属于经典测量平差范畴。 17、如何处理由于多余观测引起观测值之间的不符值或闭合差,求出未知量的最佳估值并评定结果的精度是测量平差的基本任务(研究路线)。 18、偶然误差概率统计理论包括偶然误差的分布、评定精度的指标、误差的传播规律、误差检验和误差分析等。 19、测量平差的基本定义是依据某种最优化准则,由一系列带有观测误差的测量数据,求定未知量的最佳估值及精度的理论和方法。 20、测量平差即测量数据调整的意思。 21、P10 公式2-2-5 22、方差和协方差数字特征 23、测量平差的基本任务是处理一系列带有偶然误差的观测值,求出未知量的最佳估值,并评定测量成果的精度。 24、正态分布中没有一个比其他的变量占有绝对优势 25、当观测量仅含有偶然误差时,其数学期望也就是它的真值,真误差=真值—观测值=期望

相关主题