搜档网
当前位置:搜档网 › 电磁场复习要点

电磁场复习要点

电磁场复习要点
电磁场复习要点

电磁场复习要点

(考试题型:填空15空×2分,单选10题×2分,计算50分)

第一章 矢量分析

一、重要公式、概念、结论

1. 掌握矢量的基本运算(加减运算、乘法运算等)。

2. 梯度、散度、旋度的基本性质,及在直角坐标系下的计算公式。 梯度:x

y z u u u

u x y z

????=++???e e e 散度:y x z

A A A x y z

?????=

++???A 旋度:

3. 两个重要的恒等式: ()0u ???=,()0????=A

4. 亥姆霍兹定理揭示了:研究一个矢量场,必须研究它的散度和旋度,才能确

定该矢量场的性质。 5.

二、计算:两个矢量的加减法、点乘、叉乘运算以及矢量的散度、旋度的计算。 第二章 电磁场的基本规律 一、重要公式、概念、结论

1.电荷和电流是产生电磁场的源量。

2.从宏观效应看,物质对电磁场的响应可分为极化、磁化和传导三种现象。 3. 静电场的基本方程:

s l

D D ds Q

E E dl ρ??=?=??=?=??

表明:静电场是有散无旋场。

电介质的本构关系: 0r D E E εεε== (记忆0ε的值)

x

y

z

y y z x z x x y z x y

z

A A A A A A x y z y z z x x y A A A ???????

???????

???=

=-+-+- ??? ???????????????e e e A e e e

4. 恒定磁场的基本方程:

l s

H J H dl I B B ds ??=?=??=?=?? 磁介质的本构关系:0r B H H μμμ== (记忆0μ的值)

5. 相同场源条件下,均匀电介质中的电场强度为真空中电场强度值的

倍r

1

ε。 6. 相同场源条件下,均匀磁介质中的磁感应强度是真空中磁感应强度的r μ倍。 7. 电场强度的单位是V/m ;磁感应强度B 的单位是T (特斯拉),或Wb/m 2 8. 电磁感应定律表明:变化的磁场可以激发电场。 9. 全电流定律表明:变化的电场也可激发磁场。 10. 理解麦克斯韦方程组:

微分形式: 积分形式:

??????=?=??=?=?????-=???-

=?????+=???+

=??s

s l s l s s d B B Q s d D D s d t B l d E t B E s d t

D J l d H t D J H 0

)(

ρ

本构关系: E J H B E D

σμε===

二、计算。

1. 海水的电导率σ=4S/m ,r ε=81,若设海水中的电场是按余弦变化的,求当频率为1f MHz =时,位移电流同传导电流的振幅之比。(P68 例

2.5.3)

6123

0cos cos cos 22108.851081

, 1.125104

x m d m dm m

c m dm r cm

m cm E e E t D

J E t t

J E J E E t J f J E J ωωεωωεσσωωεπεεπσσσ--=?==-?∴===????∴=====?解:设电场强度为故位移电流密度为而传导电流密度为则

2.已知同轴线,内导体半径为a ,外导体半径为b (厚度忽略不计),内外导体上均匀分布电荷,密度分别为12s s ρρ和,应用高斯定理求:各处的电场强度;

S

00

111

22001212

33002100

2222232S

s s s s s s L q q q

E dS E dS E L r a q E aL a a r b E L E aL bL a b r b E L E ρπρεεερπρπρεερ

ρπρπρρπρεερ

=??=??=

<=∴=?<

→?=?+?+>?=?=

??解:取半径为、长度为的圆柱面为高斯面。

由高斯通量定理有当时,当时,当时,

思考:若题目改为同心导体球壳,应怎么计算?

第三章 静电场分析 一、重要公式、概念、结论

1.理解静电场与电位的关系,Q

PQ P

U E dl =??,()()?=-?E r r

2. 恒定电场的基本方程

000

l s

E E dl J J ds ??=?=??=?=??

本构关系: E J

σ=

3.矢量磁位A具有多值性,对于恒定磁场,一般规定A的散度为零(库伦规范)。4.球形导体接地体,其接地电阻的大小和半径成反比。

5.镜像法是利用唯一性定理求解静电场的间接方法。该方法是用等效的镜像电荷代替原来场问题的边界。

二、计算:

1.掌握电容的计算方法。(P96 例3.1.4;例3.1.5)

2.掌握自感的计算方法。(P117 例

3.3.3;P118例3.3.4)

第四章时变电磁场

一、重要公式、概念、结论

1. 波动方程是由麦克斯韦方程推导出来的,它揭示了时变电磁场具有波动性这一规律。

=?

2. 能流密度矢量(坡印廷矢量)的定义、单位(P176)、及公式:S E H

3. 掌握时谐电磁场的瞬时值和复数形式的相互转换方法。(参考P181例

4.

5.1、P182例4.5.2)

4. 通过正弦量的相位判断波的方向。例如300cos(4)x E e t z πωπ=-,其复数形式为:4300j z

x E e e ππ-=;则由其相位4t z ωπ-,或4j z

e

π-,知:

波的方向为n

z e e =

第五章 均匀平面波在无界空间中的传播 一、重要公式、概念、结论

1. 理解均匀平面波的概念:等相位面是无限大的平面,且该面上电场和磁场的方向、振幅都保持不变的电磁波。

2.理想介质中均匀平面波的传播特性:(公式P194~P196,见下面的公式)

0222;=120377;2m

n

n v f k v T f k

k e π

ωπωπληπη

ηη

========

Ω≈Ω=

3. 电磁波极化的概念:在空间固定点处电场矢量末端点随时间变化的轨迹。

4. 电磁波极化的类型:线极化、圆极化和椭圆极化。

5. 掌握电磁波极化类型的判断方法:(先将电场的各个分量写成以余弦为基准的标准形式,注意t ω项要为正;再来判断初相位。)

线极化:电场两分量的初相位相同或相差±π;或电场只有一个分量。

圆极化:电场两分量的振幅相等且初相位相差2

π

±

; 椭圆极化:不满足线极化和圆极化条件的其他情况。

对圆极化和椭圆极化还要判断其旋向:(1)将电场的两个分量写成以余弦为基准的标准形式(t ω项要为正);(2)判断两个分量初相位的大小关系及波的方向;(3)用初相位大的分量的单位矢量叉乘初相位小的分量的单位矢量(包含单位矢量前的正负号),其结果若和波的方向相同则为右旋波;反之,则为左旋波。

6.判定媒质为良导体的条件是:

ωε

判定媒质为良介质的条件是:1σ

ωε

7. 趋肤效应:高频电磁波在良导体中衰减很快,以致于无法进入良导体深处,仅

可存在其表面层内,这种现象称为趋肤效应;电磁波的频率越高,衰减越厉害。 8. 趋肤深度(δ):电磁波进入良导体后,场强振幅衰减到表面处振幅的1/e 时所传播的距离。

二、计算:教材P224-225 习题5.2、5.6、5.12 第六章 均匀平面波的反射与透射 一、重要公式、概念、结论 1. 对导电媒质的垂直入射(了解):

2122121122=

;=1rm c c tm c

im c c im c c c c E E E E ηηητηηηηηητ-Γ===+Γ++∴Γ反射系数透射系数式中,和均为复数,、均为复数。

2. 理想介质对理想导体的垂直入射:

媒质1为理想介质,1110,c σηη==为实数。媒质2为理想导体22,0c ση=∞=。

3. 理想介质对理想介质的垂直入射:

理想介质中1122c c ηηηη==,则:

分界面0z =时,分界面0z =节或波腹点的距离是

2λ;波节点到相邻波腹点的距离是4

λ

。 4. 2222

22112,,,...222im rm tm rav rm iav

rav tav iav im

E E E S E S S S S E ηηη=====Γ 5. 驻波比S 定义为合成波电场E 的最大值与最小值之比

1max |1E =-

传输线存在三种工作状态,即行波状态、驻波状态和混和波状态。其中,驻波状态不能传输能量。

二、计算:

1.自由空间中某均匀平面波垂直入射到某无耗媒质中。已知无耗媒质的r μ=2、

r ε=18,求:反射波电场振幅和透射波电场振幅的比值;反射波和透射波的平均功率之比。

2

221

212113,,,11322

13

||||1:112()()11:332rm

rm im tm tm im

rm rav

rm tm tav

tm E E E E E E E S

E E S E ηηηηηηττηητηηηη?

==

=====Γ=-=-++Γ

?======?=210202121

12

解:.

反射波和透射波平均功率之比为:

2.在自由空间中,一均匀平面波垂直入射到半无限大的无耗介质平面上,已知自由空间中,合成波的驻波比为2,介质内传输波的波长是自由空间波长的1/4,且分界面上为驻波电场的最小点。求:介质的相对磁导率和相对介电常数。

电磁场实验

实验一 静电场边值问题 对于复杂边界的静电场边值问题,用解析法求解很困难,甚至是不可能的。在实际求解过程中,直接求出静电场的分布或电位又很困难,其精度也难以保证。本实验根据静电场与恒定电流场的相似性,用碳素导电纸中形成的恒定电流场来模拟无源区域的二维静电场,从而测出边界比较复杂的无源区域静电场分布。 一、 实验目的: 1、学习用模拟法测量静电场的方法。 2、了解影响实验精度的因素。 二、 实验原理: 在静电场的无源区域中,电场强度E '电位移矢量D '及电位Ф、满足下列方程: ▽×E 、= 0 ▽×D '= 0 D '=ε E 、 E 、 = - ▽φ 、 (1.1.1) 式中ε为静电场的介电常数。 在恒定电流场中,电场强度E 、电流密度J 及电位Ф满足下列方程: ▽×E = 0 ▽·J = 0 J = δE E =-▽Φ (1.1.2) 式中δ为恒定电流场中导电媒质的电导率。 因为方程组(1.1.1)与方程组(1.1.2)在形式上完全相似,所以φ、(静电场中的电位分布函数)与Φ(恒定电流场中的电位分布函数)应满足同样形式的微分方程。由方程组(1.1.1)和方程组(1.1.2)很容易求得: ▽·(ε▽φ、)= 0 (1.1.3) ▽·(δ▽Φ)= 0 (1.1.4) 式中ε与δ处于相应的位置,它们为对偶量。 若ε与δ在所讨论区域为均匀分布(即其值与坐标无关),则方程(1.1.3)、(1.1.4)均可简化为 拉普拉斯方程: 2?φ'= 0 02=Φ? 电位场解的唯一定理可知:满足相同微分方程的两个电位场,它们具有相同的边界电位值,因此,在保证边界电位值不变的情况下,我们可以用恒定电流场的模型来模拟无源区域的静电场,当静电场中媒质为均匀媒质时,其导电媒质也应为均匀媒质,这样测得的恒定电流场的电位分布就是被模拟的静电场的电位分布,不需要任何改动。 三、 实验内容及实验装置: 1、被测模型有两个:一个用来模拟无边缘效应的平行板电容器中的电位分布;另一个用来模拟有金属盖的无限长接地槽形导体内电位分布。被模拟的平行板电容器,加盖槽形导体及

《电磁场实验指导书》word版

电磁场实验指导书 北京信息科技大学

目录 实验一球形载流线圈的场分布与自感 (1) 实验二磁悬浮 (7) 实验三静电除尘 (10)

前 言 结合电磁场课程教学的电磁场实验课是完善教学效果,增进学生对电磁场现象和过程的感性认识,拓展有关电磁场工程应用知识面的重要环节。随着教学改革不断深化的进程, 电磁场教学实验在承接大学物理电磁学实验基础上的改进与提高势在必行。根据高等学校电磁场课程教学的基本要求,以电磁场系列实验课开设的需求为依据,我电磁场课程组设计、编写了电磁场实验教学的新内容,并在浙江大学求是公司的共同规划下,由该公司制作完成了第一阶段的三个实验的基本装置和设备,以应当前我国电磁场实验教学的实际需要。 实验一:球形载流线圈的场分布与自感 一、实验目的 1. 研究球形载流线圈(磁通球)的典型磁场分布及其自感参数; 2. 掌握工程上测量磁场的两种基本方法──感应电势法和霍耳效应法; 3. 在理论分析与实验研究相结合的基础上,力求深化对磁场边值问题、自感参数和磁场测 量方法等知识点的理解,熟悉霍耳效应高斯计的应用。 二、实验原理 (1)球形载流线圈(磁通球)的磁场分析 如图11所示,当在z 向具有均匀的匝数密度分布的球形线圈中通以正弦电流i 时,可等效看作为流经球表面层的面电流密度K 的分布。显然,其等效原则在于载流安匝不变,即如设沿球表面的线匝密度分布为W ′,则在与元长度d z 对应的球面弧元d R 上,应有 图1-1球形载流线圈(磁通球) i 图1-2 呈轴对称性的计算场域

()d d N W R θi=z i 2R ??' ??? 因在球面上,θcos R z =,所以 ()d d cos sin d z R R θθθ== 代入上式,可知对应于球面上线匝密度分布W ′,应有 2sin d sin d 2N R R N W R R θθθθ?'== 即沿球表面,该载流线圈的线匝密度分布W ′正比于θsin ,呈正弦分布。因此,本实验模拟的在球表面上等效的面电流密度K 的分布为 sin N i 2R K e φθ=?? 由上式可见,面电流密度K 周向分布,且其值正比于θsin 。 因为,在由球面上面电流密度K 所界定的球内外轴对称场域中,没有自由电流的分布, 所 以, 可采用标量磁位m 为待求场量,列出待求的边值问题如下: 上式中泛定方程为拉普拉斯方程,定解条件由球表面处的辅助边界条件、标量磁位的参考点,以及离该磁通球无限远处磁场衰减为零的物理条件所组成。 通过求解球坐标系下这一边值问题,可得标量磁位 m1和m2 的解答,然后,最终得磁通球内外磁场强度为 (1-1) 和 ()()32m22cos sin 6r Ni R - r>R R r θ?θθ??=?=+ ??? H e e (1-2)()()()()()()2m12m2t1t212n n1n20102m102m2,0,0sin 200r r r r r r r R r r R N H H H H K i r R R B B H H r R θθ?θ?θθμμ??=→∞→∞???=???????-=-===?????=→==???=??=-?=?? H 泛定方程: BC:()()1m1cos sin 3r Ni - - r

电磁场理论试卷(手动组卷3)

题目部分,(卷面共有98题,273.0分,各大题标有题量和总分) 一、是非题(98小题,共273.0分) 1.(3分)在平行平面场中,磁感应强度B B x y ,与磁矢位A 的关系为: B A y x z = ??,B A x y z =-?? 2.(3分)在应用安培环路定律I L =d l H ?? 求解场分布时,环路l 上的磁场强度值是由与环路l 交链的电流I 产生的,与其它电流无关。 3.(3分)在应用安培环路定律I L =d l H ??求解场分布时,环路l 上的磁场强度值与周围磁介质 (导磁媒质)分布情况无关,仅与场源情况有关。 4.(3分)在应用安培环路定律I L =d l H ?? 求解场分布时,环路l 上的磁场强度值不仅与闭合环 路交链的电流有关,还与周围磁介质(导磁媒质)的分布情况和场源情况有关。 5.(3分)静电场中电位差U ab 代表电场力所做的功,恒定磁场中磁位差U ab m 并不代表功。 6.(3分)根据静电场与恒定磁场的类比关系,电位差U ab 代表电场力移动电荷所做的功,磁位 差(即磁压)U ab m 也代表磁场力所做的功。 7.(3分)有一半径为a 通有电流I 的长直导线,在通过位函数求解导线内、外场分布时,因?m 是标量而 A 是矢量,故采用m H ?=-?比 B A =??更方便。 8.(3分)恒定磁场中,不同媒质分界面处,磁位满足??m 1m =2,如图所示两载流同轴导体间 有μ1与μ2两层媒质,在半径为ρ处,即μ1与μ2交界处必满足??m 1m =2。 9.(3分)试验小线圈面积为S ,通有电流I ,将此线圈放在空间某处,若线圈运动,说明此空 间存在磁场,若线圈不动,说明此空间不存在磁场。 I n 10.(3分)根据静电场与恒定磁场的类比关系,静电场中电位函数?满足的方程是 ?=-2?ρ ε(或=0),恒定磁场中磁位?m 满足的方程是?=- 2?μ m J (或=0)。 11.(3分)若在两个线圈之间插入一块铁板,则两线圈的自感都将增加。

电磁场实验指导书解读

电磁场与电磁波实验指导书 山东建筑大学信息与电气工程学院

前言 一、实验目的 《电磁场与电磁波》是一门理论性较强、概念抽象的重要的专业基础课程,也是一些交叉学科的生长点和新兴边缘学科发展的基础,通过本实验课程使学生们加深对“电磁场与电磁波”课程中基本理论和基本方法的理解,提高实验技能和基本操作技能。培养学生严谨的科学作风和科学方法、增强学生的创造能力。 二、实验前预习 每次实验前,学生须仔细阅读本实验指导书的相关内容,明确实验目的、要求;明确实验步骤、测试数据及需观察的现象;复习与实验内容有关的理论知识;预习仪器设备的使用方法、操作规程及注意事项;做好预习要求中提出的其它事项。 三、实验注意事项 1.实验开始前,应先检查本组的仪器设备是否齐全完备,了解设备使用方法及仪器的连接要求。 2.实验时每组同学应分工协作,轮流记录、操作等,使每个同学受到全面训练。 3.操作前应将仪器设备合理布置,然后按要求连接。 4.完成实验系统连接后,必须进行复查,逐项检查各设备、器件的位置、角度等是否正确。确定无误后,方可通电进行实验。 5.实验中严格遵循操作规程,绝对不允许带电操作。如发现异常声、味或其它事故情况,应立即切断电源,报告指导教师检查处理。 6.测量数据或观察现象要认真细致,实事求是。使用仪器仪表要符合操作规程,注意仪表的正确读数。 7.未经许可,不得动用其它组的仪器设备或工具等物。 8.实验结束后,实验记录交指导教师查看并认为无误后,方可拆除实验系统。最后,应清理实验桌面,清点仪器设备。

9.爱护公物,发生仪器设备等损坏事故时,应及时报告指导教师,按有关实验管理规定处理。 10.自觉遵守学校和实验室管理的其它有关规定。 四、实验总结 每次实验后,应对实验进行总结,即实验数据进行整理,绘制波形和图表,分析实验现象,撰写实验报告。实验报告除写明实验名称、日期、实验者姓名、同组实验者姓名外,还包括: 1.实验目的; 2.实验仪器设备(名称、型号); 3.实验原理; 4.实验主要步骤及相应的连接图; 5.实验记录(测试数据、波形、现象); 6.实验数据整理(按每项实验的"实验报告要求"进行计算、分析等); 7.回答每项实验的有关问答题。

电磁场理论试题

《电磁场理论》考试试卷(A 卷) (时间120分钟) 院/系 专业 姓名 学号 一、选择题(每小题2分,共20分) 1. 关于有限区域内的矢量场的亥姆霍兹定理,下列说法中正确的是 ( D ) (A )任意矢量场可以由其散度和旋度唯一地确定; (B )任意矢量场可以由其散度和边界条件唯一地确定; (C )任意矢量场可以由其旋度和边界条件唯一地确定; (D )任意矢量场可以由其散度、旋度和边界条件唯一地确定。 2. 谐变电磁场所满足的麦克斯韦方程组中,能反映“变化的电场产生磁场”和“变化的磁场产生电场”这一物理思想的两个方程是 ( B ) (A )ε ρ= ??=??E H ??,0 (B )H j E E j J H ρ? ρ??ωμωε-=??+=??, (C )0,=??=??E J H ? ??(D )ε ρ = ??=??E H ??,0 3.一圆极化电磁波从媒质参数为13==r r με的介质斜入射到空气中,要使电场的平行极化分量不产生反射,入射角应为 ( B ) (A )15° (B )30° (C )45° (D )60°

4. 在电磁场与电磁波的理论中分析中,常引入矢量位函数A ?,并令A B ?? ??=,其依据是 ( C ) (A )0=??B ? ; (B )J B ??μ=??; (C )0=??B ? ; (D )J B ??μ=??。 5 关于高斯定理的理解有下面几种说法,其中正确的是 ( C ) (A) 如果高斯面内无电荷,则高斯面上E ? 处处为零; (B) 如果高斯面上E ? 处处不为零,则该面内必有电荷; (C) 如果高斯面内有净电荷,则通过该面的电通量必不为零; (D) 如果高斯面上E ? 处处为零,则该面内必无电荷。 6.若在某区域已知电位移矢量x y D xe ye =+,则该区域的电荷体密度为 ( B ) ( A) 2ρε=- (B )2ρ= (C )2ρε= (D )2ρ=- 7.两个载流线圈之间存在互感,对互感没有影响的是 ( C ) (A )线圈的尺寸 (B ) 两个线圈的相对位置 (C )线圈上的电流 (D )线圈中的介质 8 .以下关于时变电磁场的叙述中,正确的是 ( B ) (A )电场是无旋场 (B )电场和磁场相互激发 (C )电场和磁场无关 (D )磁场是有源场

电磁场实验报告

实验一:静电场的分析与求解 1.求二维标量场u(r)=y^2-x的梯度 [x,y]=meshgrid(-2:.2:2,-2:.2:2); z=y.^2-x; [px,py]=gradient(z,.2,.2); contour(z) hold on quiver(px,py) hold off title('等值线与梯度'); 2.2个等量同号点电荷组成的点电荷系的电势分布图clear v='1./((x-3).^2+y.^2).^0.5+1./((x+3).^2+y.^2).^0.5'; xmax=10; ymax=10; ngrid=30; xplot=linspace(-xmax,xmax,ngrid); [x,y]=meshgrid(xplot); vplot=eval(v); [explot,eyplot]=gradient(-vplot); clf; subplot(1,2,1),meshc(vplot); xlabel('x'); ylabel('y'); zlabel('电位');

subplot(1,2,2),axis([-xmax xmax -ymax ymax]); cs=contour(x,y,vplot); clabel(cs); hold on quiver(x,y,explot,eyplot) xlabel('x'); ylabel('y'); hold off 3.电偶极子的场(等位线和梯度) clear; clf; q=2e-6; k=9e9; a=1.5; b=-1.5; x=-6:0.6:6; y=x; [X,Y]=meshgrid(x,y); rp=sqrt((X-a).^2+(Y-b).^2); rm=sqrt((X+a).^2+(Y+b).^2); V=q*k*(1./rp-1./rm); [Ex,Ey]=gradient(-V); AE=sqrt(Ex.^2+Ey.^2); Ex=Ex./AE; Ey=Ey./AE; cv=linspace(min(min(V)),max(max(V)),49);

工程电磁场实验报告

工程电磁场实验报告 姓名: 学号: 联系式: 指导老师:

实验一螺线管电磁阀静磁场分析 一、实验目的 以螺线管电磁阀静磁场分析为例,练习在 MAXWELL 2D 环境下建立磁场模型,并求解分析磁场分布以及磁场力等数据。 二、主要步骤 a) 建立项目:其中包括生成项目录,生成螺线管项目,打开新项目 与运行MAXWELL 2D。 b) 生成螺线管模型:使用MAXWELL 2D 求解电磁场问题首先应该选择求解 器类型,静磁场的求解选择Magnetostatic,然后在打开的新项目中定义画图平面,建立要求尺寸的螺线管几模型,螺线管的组成包括 Core 、Bonnet 、Coil 、Plugnut、Yoke。 c) 指定材料属性:访问材料管理器,指定各个螺线管元件的材料,其中部分 元件的材料需要自己生成,根据给定的BH 曲线进行定义。 图1 元件材料 图2 B-H曲线 d) 建立边界条件和激励源:给背景指定为气球边界条件,给线圈Coil 施加电 流源。 e) 设定求解参数:本实验中除了计算磁场,还需要确定作用在螺线管铁心上 的作用力,在求解参数中要注意进行设定。

f) 设定求解选项:建立几模型并设定其材料后,进一步设定求解项,在对话 框Setup Solution Options 进入求解选项设定对话框,进行设置。 三、实验要求 建立螺线管电磁阀模型后,对其静磁场进行求解分析,观察收敛情况,画各种收敛数据关系曲线,观察统计信息;分析 Core 受的磁场力,画磁通量等势线,分析P lugnut 的材料磁饱和度,画出其B H 曲线。通过工程实例的运行,掌握软件的基本使用法。 四、实验结果 1.螺线管模型 图3 2.自适应求解 图4 收敛数据

电磁场理论习题及答案

一. 1.对于矢量A u v,若A u v= e u u v x A+y e u u v y A+z e u u v z A, x 则: e u u v?x e u u v=;z e u u v?z e u u v=; y e u u v?x e u u v=;x e u u v?x e u u v= z 2.对于某一矢量A u v,它的散度定义式为; 用哈密顿算子表示为 3.对于矢量A u v,写出: 高斯定理 斯托克斯定理 4.真空中静电场的两个基本方程的微分形式为 和 5.分析恒定磁场时,在无界真空中,两个基本场变量之间的关系 为,通常称它为 二.判断:(共20分,每空2分)正确的在括号中打“√”,错误的打“×”。 1.描绘物理状态空间分布的标量函数和矢量函数,在时间为一定值的情况下,它们是唯一的。() 2.标量场的梯度运算和矢量场的旋度运算都是矢量。() 3.梯度的方向是等值面的切线方向。() 4.恒定电流场是一个无散度场。() 5.一般说来,电场和磁场是共存于同一空间的,但在静止和恒定的情况下,电场和磁场可以独立进行分析。() 6.静电场和恒定磁场都是矢量场,在本质上也是相同的。()

7.研究物质空间内的电场时,仅用电场强度一个场变量不能完全反映物质内发生的静电现象。( ) 8.泊松方程和拉普拉斯方程都适用于有源区域。( ) 9.静电场的边值问题,在每一类的边界条件下,泊松方程或拉普拉斯方程的解都是唯一的。( ) 10.物质被磁化问题和磁化物质产生的宏观磁效应问题是不相关的两方面问题。( ) 三.简答:(共30分,每小题5分) 1.用数学式说明梯无旋。 2.写出标量场的方向导数表达式并说明其涵义。 3.说明真空中电场强度和库仑定律。 4.实际边值问题的边界条件分为哪几类? 5.写出磁通连续性方程的积分形式和微分形式。 6.写出在恒定磁场中,不同介质交界面上的边界条件。 四.计算:(共10分)半径分别为a,b(a>b),球心距为c(c

电磁场与电磁波实验指导书

电磁场电磁波实验 实验一电磁感应定律的验证 一、实验目的 1、通过电磁感应装置的设计,了解麦克斯韦电磁感应定律的内容 2、了解半波天线感应器的原理及设计方法 ( 3、天线长短与电磁波波长的接收匹配关系 二、预习要求 1、麦克斯韦电磁理论的内容 2、什么是电偶极子 3、了解线天线基本结构及其特性 三、实验仪器 HD-CB-IV电磁场电磁波数字智能实训平台:1套 | 电磁波传输电缆:1套 平板极化天线:1副 半波振子天线:1副 感应灯泡:1个 四、实验原理 。 麦克斯韦电磁理论经验定律包括:静电学的库仑定律,涉及磁性的定律,关于电流的磁性的安培定律,法拉第电磁感应定律。麦克斯韦把这四个定律予以综合,导出麦克斯韦方程,该方程组系统而完整地概括了电磁场的基本规律,并预言了电磁波的存在。麦克斯韦提出的涡旋电场和位移电流假说的核心思想是:变化的磁场可以激发涡旋电场,变化的电场可以激发涡旋磁场;电场和磁场不是彼此孤立的,它们相互联系、相互激发组成一个统一的电磁场。下面我们通过制作感应天线体,来验证电磁场的存在。 如图示:电偶极子是一种基本的辐射单元,它是一段长度远小于波长的直线电流元,线上的电流均匀同相,一个作时谐振荡的电流元可以辐射电磁波,故又称为元天线,元天线是最基本的天线。电磁感应装置的接收天线可采用多种天线形式,相对而言性能优良,但又容易制作,成本低廉的有半波天线、环形天线、螺旋天线等。

本实验重点介绍其中的一种半波天线。 半波天线又称半波振子,是对称天线的一种最简单的模式。对称天线(或称对称振子)可以看成是由一段末端开路的双线传输线形成的。这种天线是最通用的天线型式之一,又称为偶极子天线。而半波天线是对称天线中应用最为广泛的一种天线,它具有结构简单和馈电方便等优点。 半波振子因其一臂长度为λ /4 ,全长为半波长而得名。其辐射场可由两根单线驻波天线的辐射场相加得到,于是可得半波振子(L= λ /4 )的远区场强有以下关系式: — │ E │ =[60 Im cos( π cos θ /2)]/R 。sin θ=[60 Im/R 。] │ f( θ ) │ 式中,f( θ ) 为方向函数。对称振子归一化方向函数为│ F( θ ) │ = │ f( θ ) │ / fmax=|cos( π cos θ /2)/sin θ | 其中fmax 是f( θ ) 的最大值。由上式可画出半波振子的方向图如下: 半波振子方向函数与ψ无关,故在H 面上的方向图是以振子为中心的一个圆,即为全方性的方向图。在 E 面的方向图为8 字形,最大辐射方向为θ = π /2 ,且只要一臂长度不超过λ,辐射的最大值始终在θ = π /2 方向上;若继续增大L ,辐射的最大方向将偏离θ = π /2 方向。 五、实验步骤 (一)测量电磁波发射频率 1、用N型电缆直接将“输出口1”连接至“功率频率检测口”。 ) 2、在液晶界面上同时显示出发射功率及频率。

电磁学试题(含答案)

一、单选题 1、 如果通过闭合面S 的电通量e Φ为零,则可以肯定 A 、面S 内没有电荷 B 、面S 内没有净电荷 C 、面S 上每一点的场强都等于零 D 、面S 上每一点的场强都不等于零 2、 下列说法中正确的是 A 、沿电场线方向电势逐渐降低 B 、沿电场线方向电势逐渐升高 C 、沿电场线方向场强逐渐减小 D 、沿电场线方向场强逐渐增大 3、 载流直导线和闭合线圈在同一平面内,如图所示,当导线以速度v 向 左匀速运动时,在线圈中 A 、有顺时针方向的感应电流 B 、有逆时针方向的感应电 C 、没有感应电流 D 、条件不足,无法判断 4、 两个平行的无限大均匀带电平面,其面电荷密度分别为σ+和σ-, 则P 点处的场强为 A 、02εσ B 、0εσ C 、0 2εσ D 、0 5、 一束α粒子、质子、电子的混合粒子流以同样的速度垂直进 入磁场,其运动轨迹如图所示,则其中质子的轨迹是 A 、曲线1 B 、曲线2 C 、曲线3 D 、无法判断 6、 一个电偶极子以如图所示的方式放置在匀强电场 E 中,则在 电场力作用下,该电偶极子将 A 、保持静止 B 、顺时针转动 C 、逆时针转动 D 、条件不足,无法判断 7、 点电荷q 位于边长为a 的正方体的中心,则通过该正方体一个面的电通量为 A 、0 B 、0εq C 、04εq D 、0 6εq 8、 长直导线通有电流A 3=I ,另有一个矩形线圈与其共面,如图所 示,则在下列哪种情况下,线圈中会出现逆时针方向的感应电流? A 、线圈向左运动 B 、线圈向右运动 C 、线圈向上运动 D 、线圈向下运动 9、 关于真空中静电场的高斯定理0 εi S q S d E ∑=?? ,下述说法正确的是: A. 该定理只对有某种对称性的静电场才成立; B. i q ∑是空间所有电荷的代数和; C. 积分式中的E 一定是电荷i q ∑激发的; σ - P 3 I

电磁场实验报告

电磁场实验报告 姓名:KZY 班级:自动化1405 学号:090114050X 时间:2016年10月23日

实验名称单缝衍射实验、自由空间中电磁波参量的测量 一、实验目的 1、了解电磁波的空间传播特性 2、通过对电磁波波长、波幅和波节的测量进一步了解和认识电磁 波。 3、利用电磁波的干涉原理,研究均匀无耗媒质εr的测量方法。 4、熟悉均匀无耗媒质分界面对电磁波的反射和透射特性。 二、实验仪器设备 1、单缝衍射仪器配置 2、单缝衍射板 3、半透射板 4、全反射板 三、实验原理 1、单缝衍射原理 查阅参考书籍可知,当一平面波入射到一宽度和波长可比拟的狭缝时,就要发生衍射的现象。在缝后面出现的衍射波强度并不是均匀的,中央最强,同时也最宽。在中央的两侧衍射波强度迅速减小,直至出现衍射波强度的最小值,即一级极小,此时衍射角为Фmin=sin-1λ/α。其中λ是波长,α是狭缝宽度。两者取同一长度单位,然后,随着衍射角增大,衍射波强度又逐渐增大,直至出现一级极大值,角

度为:Фmin=sin-1(3/2·λ/α)。 2、迈克尔逊干涉原理 由于两列波存在一定关系的波程差,两列波将发生干涉。而两列波发生干涉,存在合成振幅会出现最大与最小的情况。实验中,为了提高测量波长的精确度,测量多个极小值的位置,设S0为第一个极小值的位置吗,S n为第(n+1)个极小值的位置,L=|S n-S0|,则波长λ=2L/n。 三、实验内容与实验步骤 (1)单缝衍射实验 1、打开DH1121B的电源; 2、将单缝衍射版的缝宽α调整为70mm左右,将其安放在刻度盘上,衍射版的边线与刻度盘上两个90°对齐。

北邮电磁场与电磁波演示实验

频谱特性测量演示实验 1.ESPI 测试接收机所测频率范围为: 9KHz—3GHz 2.ESPI 测试接收机的RF输入端口 最大射频信号: +30dbm,最大直流:50v 3.是否直观的观测到电磁波的存在?(回答是/否) 否 4.演示实验可以测到的空间信号有哪些,频段分别为: 广播:531K~1602KHz GSM900:上行:890~915 MHz 下行:935~960 MHz GSM1800:上行:1710~1755 MHz 下行:1805~1850 MHz WCDMA:上行:1920~1980MHz 下行:2110~2170MHz CDMA2000:上行:1920~1980MHz 下行:2110~2170MHz TD-SCDMA:2010~2025MHz 5.课堂演示的模拟电视和数字电视频谱图:如何判断是模拟还是数字电视? 模拟信号以残留边带调幅方式频分复用传输,有明确的载波频率,不同频道的图像有不同的载波频率。模拟信号频谱为:每8MHz带宽即一个频道内,能量集中分布在图像载频上,在该载频附近有一个跳动的峰,为彩色副载波所在,再远一点(在8MHz内)还有一个峰,为伴音副载波的峰。 数字信号:一个数字频道的已调信号像一个抬高了的噪声平台, 均匀地平铺于整个带宽之内, 它的能量是均匀分布在整个限定带宽内的。 6.课堂演示GSM900上下行频谱图,CDMA下行频谱图,3G下行频谱图: GSM900上行:

GSM900下行:

CDMA下行: 3G下行:

7.该频谱仪能检测的频谱范围,是否能观察到WIFI、电磁炉、蓝牙等频谱?(请 分别说明,并指出其频率) 可以 该频谱仪能检测的频谱范围为9KHz—3GHz 所以,能够观察到:WIFI:2.4G 电磁炉:20KHz—30KHz 蓝牙:2.4G 网络参量测量演示实验 1矢量网络分析仪所测频段:300KHz—3GHz 2端口最大射频信号: 10DBM 3矢量网络分析仪为何要校准: 首先,仪器的硬件电路需要校正,即消除仪器分析的系统误差;其次,分析仪的测量精度很大程度上受分析仪外部附件的影响,测试的组成部分如连接电缆和适配器幅度和相位的变化会掩盖被测件的真实响应,必须通过用户校准去除这些附件的影响。 4默认校准和用户校准的区别: 默认校准通过网络分析仪的套包的一系列校准标准来完成,对系统误差进行校准;用户校准时校准标准由用户制定,由用户定义的标准来完成,用于对参考面等进行精确校准。 5使用矢量网络分析仪的注意事项: 1、检查电源: 分析仪加电前,必须确认供电电源插座的保护地线已经可靠接地; 2、供电电源要求: 为防止或减少由于多台设备通过电源产生的相互干扰,特别是大功率设备产生的尖峰脉冲干扰可能造成分析仪硬件的毁坏,最好用220V交流稳压电源为分析仪供电; 3、电源线的选择: 使用随机携带的电源线,更换电源线时,最好使用同类型的电源线;

《工程电磁场》实验指导书

实验一 矢量分析 一、实验目的 1.掌握用matlab 进行矢量运算的方法。 二、基础知识 1. 掌握几个基本的矢量运算函数:点积dot(A,B)、叉积cross(A,B)、求模运算norm(A)。等 三、实验内容 通过调用函数,完成下面计算 内容1. 给定三个矢量A 、B 和C 如下: 23452x y z y z x z A e e e B e e C e e =+-=-+=- 求(1)A e ;(2)||A B -; (3)A B ?; (4)AB θ (5)A 在B 上的投影 (6)A C ?; (7)()A B C ??和()C A B ??; (8)()A B C ??和()A B C ?? A=[1,2,-3]; B=[0,-4,1]; C=[5,0,-2]; y1=A/norm(A) y2=norm(A-B) y3=dot(A,B) y4=acos(dot(A,B)/(norm(A)*norm(B))) y5=norm(A)*cos(y4) y6=cross(A,C) y71=dot(A,cross(B,C)) y72=dot(C,cross(A,B)) y81=cross(cross(A,B),C) y82=cross(A,cross(B,C)) 运行结果为: y1 =0.2673 0.5345 -0.8018 y2 = 7.2801 y3 =-11 y4 = 2.3646 y5 =-2.6679 y6 = -4 -13 -10 y71 =-42 y72 = -42 y81 = 2 -40 5 y82 = 55 -44 -11

参考答案:(1)[0.2673,0.5345,0.8018]A e =-; (2)||7.2801A B -=; (3)11A B ?=-; (4) 2.3646(135.4815)AB θ=;(5) 2.6679-;(6)[4,13,10]A C ?=---; (7)()()42A B C C A B ??=??=-;(8)()[2,40,5]A B C ??=-;()[55,44,11]A B C ??=-- 内容2. 三角形的三个顶点位于A(6,-1,2), B(-2,3,-4), C(-3, 1,5)点,求(1)该三角形的面积;(2)与该三角形所在平面垂直的单位矢量。 (答案S=42.0119, [0.2856,0.9283,0.238]n =±); A=[6 -1 2]; B=[-2 3 -4]; C=[-3 1 5]; Y1=norm(A-C); Y2=norm(B-C); Y3=dot(A-C,B-C); Y4=Y3/(Y1*Y2); Y5=sqrt(1-Y4*Y4); Y=0.5*Y5*Y1*Y2 n1=cross(A-C,B-C)/Y1*Y2*Y5 n=n1/norm(n1) 结果: Y =42.0119 n1 =21.4529 69.7219 17.8774 n =0.2856 0.9283 0.2380 三、实验报告 求解上面的的题目,把实验原理(数学计算过程)、仿真内容(程序与结果)写成实验报告。

电磁学试题库试题及答案

电磁学试题库 试题3 一、填空题(每小题2分,共20分) 1、带电粒子受到加速电压作用后速度增大,把静止状态下的电子加速到光速需要电压是( )。 2、一无限长均匀带电直线(线电荷密度为λ)与另一长为L ,线电荷密度为η的均匀带电直线AB 共面,且互相垂直,设A 端到无限长均匀带电线的距离为a ,带电线AB 所受的静电力为( )。 3、如图所示,金属球壳内外半径分别为a 和b ,带电量为Q ,球壳腔内距球心O 为r 处置一电量为q 的点电荷,球心O 点的电势( % 4、两个同心的导体薄球壳,半径分别为b a r r 和,其间充满电阻率为ρ的均匀介质(1)两球壳之间的电阻( )。(2)若两球壳之间的电压是U ,其电流密度( )。 5、载流导线形状如图所示,(虚线表示通向无穷远的直导线)O 处的磁感应强度的大小为( ) 6、一矩形闭合导线回路放在均匀磁场中,磁场方向与回路平 % 面垂直,如图所示,回路的一条边ab 可以在另外的两条边上滑 动,在滑动过程中,保持良好的电接触,若可动边的长度为L , 滑动速度为V ,则回路中的感应电动势大小( ),方向( )。 7、一个同轴圆柱形电容器,半径为a 和b ,长度为L ,假定两板间的电压 t U u m ω=sin ,且电场随半径的变化与静电的情况相同,则通过半径为r (a

电磁场实验一报告

电磁场与电磁波测量 实验报告 电磁波的反射和折射实验 2016年03月7日 姓名 学号 班级 班内序号 米靳隆 2013211004 7 16 岳志恒 2013211005 7 17 王力 2013211006 7 18

实验一电磁波反射和折射实验 1 实验目的 熟悉S426型分光仪的使用方法 掌握分光仪验证电磁波反射定律的方法 掌握分光仪验证电磁波折射定律的方法 2 实验设备 S426型分光仪 图1 S426型分光仪 3 实验原理 电磁波在传播过程中如遇到障碍物,必定要发生反射,本处以一块大的金属板作为障碍物来研究当电磁波以某一入射角投射到此金属板上所遵循的反射定律,即反射线在入射线和通过入射点的法线所决定的平面上,反射线和入射线分居法线两侧,反射角等于入射角。 电磁波斜入射到两种不同媒质分界面上时会发生反射和折射现象,同时,分界面对电磁波的反射和折射现象与入射波的极化方向有关。 4 实验内容与步骤 4.1 熟悉分光仪的结构和调整方法 4.2 连接仪器,调整系统 仪器连接时,两喇叭口面应相互正对,它们各自的轴线应在一条直线上,指示两喇叭的位置的指针分别指于工作平台的90刻度处,将支座放在工作平台上,

并利用平台上的定位销和刻线对正支座,拉起平台上的四个压紧螺钉旋转一个角度后放下,即可压紧支座。 4.3 测量入射角和反射角 反射金属板放到支座上时,应使金属板平面与支座下面的小圆盘上的某一对刻线一致。而把带支座的金属反射板放到小平台上时,应使圆盘上的这对与金属板平面一致的刻线与小平台上相应90度的一对刻线一致。这是小平台上的0刻度就与金属板的法线方向一致。转动小平台,使固定臂指针指在某一角度处,这角度读数就是入射角,然后转动活动臂在表头上找到一最大指示,此时活动臂上的指针所指的刻度就是反射角。如果此时表头指示太大或太小,应调整衰减器、固态振荡器或晶体检波器,使表头指示接近满量程。 做此项实验,入射角最好取30至65度之间。因为入射角太大接受喇叭有可能直接接受入射波。做这项实验时应注意系统的调整和周围环境的影响。 5 实验数据处理与误差分析 5.1 金属板全反射实验 5.1.1 实验数据 表1 金属全反射实验结果记录 5.1.2 数据分析 理论上的反射角应等于入射角,实验测得的反射角在与入射角接近的角度附近有两个不同的峰值,但与入射角值,验证了电磁波的反射定律。但是随着入射角的增大,入射角和反射角的差值有逐渐增大的趋势。 5.1.3 误差分析 1. 实验仪器本身存在系统误差,两个喇叭天线、反射板之间无法实现绝对的平行或垂直。 2. 环境影响产生误差,分光仪的一侧是墙壁,而另一侧是实验室内空间,两侧环境带来不同的且不稳定的漫反射,从而干扰了电磁波。随着入射角的增大,两个喇叭天线之间的距离越大,环境影响产生的误差也就越显著。

电磁场实验指导书及实验报告

CENTRAL SOUTH UNIVERSITY 题目利用Matlab模拟点电荷电场的分布姓名xxxx 学号xxxxxxxxxx 班级电气xxxx班 任课老师xxxx 实验日期2010-10

电磁场理论 实验一 ——利用Matlab 模拟点电荷电场的分布 一.实验目的: 1.熟悉单个点电荷及一对点电荷的电场分布情况; 2.学会使用Matlab 进行数值计算,并绘出相应的图形; 二.实验原理: 根据库伦定律:在真空中,两个静止点电荷之间的作用力与这两个电荷的电量乘积成正比,与它们之间距离的平方成反比,作用力的方向在两个电荷的连线上,两电荷同号为斥力,异号为吸力,它们之间的力F 满足: R R Q Q k F ? 212 = (式1) 由电场强度E 的定义可知: R R kQ E ? 2 = (式2) 对于点电荷,根据场论基础中的定义,有势场E 的势函数为 R kQ U = (式3) 而 U E -?= (式4) 在Matlab 中,由以上公式算出各点的电势U ,电场强度E 后,可以用Matlab 自带的库函数绘出相应电荷的电场分布情况。 三.实验内容: 1. 单个点电荷 点电荷的平面电力线和等势线 真空中点电荷的场强大小是E=kq /r^2 ,其中k 为静电力恒量, q 为电量, r 为点电荷到场点P(x,y)的距离。电场呈球对称分布, 取电量q> 0, 电力线是以电荷为起点的射线簇。以无穷远处为零势点, 点电荷的电势为U=kq /r,当U 取

常数时, 此式就是等势面方程.等势面是以电荷为中心以r 为半径的球面。 平面电力线的画法 在平面上, 电力线是等角分布的射线簇, 用MATLAB 画射线簇很简单。取射线的半径为( 都取国际制单位) r0=, 不同的角度用向量表示( 单位为弧度) th=linspace(0,2*pi,13)。射线簇的终点的直角坐标为: [x,y]=pol2cart(th,r0)。插入x 的起始坐标x=[x; *x].同样插入y 的起始坐标, y=[y; *y], x 和y 都是二维数组, 每一列是一条射线的起始和终止坐标。用二维画线命令plot(x,y)就画出所有电力线。 平面等势线的画法 在过电荷的截面上, 等势线就是以电荷为中心的圆簇, 用MATLAB 画等势 线更加简单。静电力常量为k=9e9, 电量可取为q=1e- 9; 最大的等势线的半径应该比射线的半径小一点 r0=。其电势为u0=k8q /r0。如果从外到里取7 条等势线, 最里面的等势线的电势是最外面的3 倍, 那么各条线的电势用向量表示为: u=linspace(1,3,7)*u0。从- r0 到r0 取偶数个点, 例如100 个点, 使最中心点的坐标绕过0, 各点的坐标可用向量表示: x=linspace(- r0,r0,100), 在直角坐标系中可形成网格坐标: [X,Y]=meshgrid(x)。各点到原点的距离为: r=sqrt(X.^2+Y.^2), 在乘方时, 乘方号前面要加点, 表示对变量中的元素进行乘方计算。各点的电势为U=k8q. /r, 在进行除法运算时, 除号前面也要加点, 同样表示对变量中的元素进行除法运算。用等高线命令即可画出等势线 contour(X,Y,U,u), 在画等势线后一般会把电力线擦除, 在画等势线之前插入如下命令hold on 就行了。平面电力线和等势线如图1, 其中插入了标题等等。越靠近点电荷的中心, 电势越高, 电场强度越大, 电力线和等势线也越密。

北邮电磁场与电磁波实验报告

信息与通信工程学院 电磁场与电磁波实验报告 题目:校园信号场强特性的研究 姓名班级学号序号薛钦予2011210496 201121049621

一、实验目的 1.掌握在移动环境下阴影衰落的概念以及正确的测试方法; 2.研究校园内各种不同环境下阴影衰落的分布规律; 3.掌握在室内环境下场强的正确测量方法,理解建筑物穿透损耗的概念; 4.通过实地测量,分析建筑物穿透损耗随频率的变化关系; 5.研究建筑物穿透损耗与建筑材料的关系。 二、实验原理 1、电磁波的传播方式 无线通信系统是由发射机、发射天线、无线信道、接收机、接收天线所组成。对于接受者,只有处在发射信号的覆盖区内,才能保证接收机正常接受信号,此时,电波场强大于等于接收机的灵敏度。因此基站的覆盖区的大小,是无线工程师所关心的。决定覆盖区的大小的主要因素有:发射功率,馈线及接头损耗,天线增益,天线架设高度,路径损耗,衰落,接收机高度,人体效应,接收机灵敏度,建筑物的穿透损耗,同播,同频干扰等。 电磁场在空间中的传输方式主要有反射﹑绕射﹑散射三种模式。当电磁波传播遇到比波长大很多的物体时,发生反射。当接收机和发射机之间无线路径被尖锐物体阻挡时发生绕射。当电波传播空间中存在物理尺寸小于电波波长的物体﹑且这些物体的分布较密集时,产生散射。散射波产生于粗糙表面,如小物体或其它不规则物体﹑树叶﹑街道﹑标志﹑灯柱。 2、尺度路径损耗 在移动通信系统中,路径损耗是影响通信质量的一个重要因素。大尺度平均路径损耗:用于测量发射机与接收机之间信号的平均衰落,即定义为有效发射功率和平均接受功率之间的(dB)差值,根据理论和测试的传播模型,无论室内或室外信道,平均接受信号功率随距离对数衰减,这种模型已被广泛的使用。对任意的传播距离,大尺度平均路径损耗表示为: ()[]()() =+(式1) 010log/0 PL d dB PL d n d d 即平均接收功率为: ()[][]()()()[]() =--=- Pr010log/0Pr010log/0 d dBm Pt dBm PL d n d d d dBm n d d (式2)其中,定义n为路径损耗指数,表明路径损耗随距离增长的速度,d0为近地参考距离,d为发射机与接收机之间的距离。公式中的横杠表示给定值d的所有可能路径损耗的综合平均。坐标为对数-对数时,平均路径损耗或平均接收功率可以表示为斜率10ndB /10 倍程的直线。n依赖于特定的传播环境,例如在自由空间,n为2;当有阻挡物时,n比2大。

电磁学试题大集合(含答案)

长沙理工大学考试试卷 一、选择题:(每题3分,共30分) 1. 关于高斯定理的理解有下面几种说法,其中正确的是: (A)如果高斯面上E 处处为零,则该面内必无电荷。 (B)如果高斯面内无电荷,则高斯面上E 处处为零。 (C)如果高斯面上E 处处不为零,则该面内必有电荷。 (D)如果高斯面内有净电荷,则通过高斯面的电通量必不为零 (E )高斯定理仅适用于具有高度对称性的电场。 [ ] 2. 在已知静电场分布的条件下,任意两点1P 和2P 之间的电势差决定于: (A)1P 和2P 两点的位置。 (B)1P 和2P 两点处的电场强度的大小和方向。 (C)试验电荷所带电荷的正负。 (D)试验电荷的电荷量。 [ ] 3. 图中实线为某电场中的电力线,虚线表示等势面,由图可看出: (A)C B A E E E >>,C B A U U U >> (B)C B A E E E <<,C B A U U U << (C)C B A E E E >>,C B A U U U << (D)C B A E E E <<,C B A U U U >> [ ] 4. 如图,平行板电容器带电,左、右分别充满相对介电常数为ε1与ε2的介质, 则两种介质内: (A)场强不等,电位移相等。 (B)场强相等,电位移相等。 (C)场强相等,电位移不等。 (D)场强、电位移均不等。 [ ] 5. 图中,Ua-Ub 为: (A)IR -ε (B)ε+IR (C)IR +-ε (D)ε--IR [ ] 6. 边长为a 的正三角形线圈通电流为I ,放在均匀磁场B 中,其平面与磁场平行,它所受磁力矩L 等于: (A) BI a 221 (B)BI a 234 1 (C)BI a 2 (D)0 [ ]

相关主题