搜档网
当前位置:搜档网 › 工程热力学-热力学发展简史

工程热力学-热力学发展简史

工程热力学-热力学发展简史
工程热力学-热力学发展简史

科学思维的发展

自然科学溯源于古希腊,十五世纪时勃兴于欧洲,当时欧洲刚经历千年「黑暗时代」,文艺复兴开始,而地中海沿岸贸易兴旺,为开拓市场需要,遂推动天文、地理、数学和力学的发展。而波兰人哥白尼(Nicolas Copernicus),在一五四三年提出「日心说」,其理论经伽利略(Galileo Galilei)、开普勒(Johann Kepler)的论证与发展,使西方的自然观,由笼统、模糊的认识,进入到深入、细致的研究。十六、十七世纪,英国人培根(Roger Bacon)大力提倡「科学方法」,即通过实验、列表、比较、排除、归纳而逐步上升到公理,奠定了西方科学严谨的研究方法和传统。

与培根同时代的法国人笛卡儿(Rene Descartes),把整个自然界看作一架大机器,试图以机械运动说明自然界的一切,并且主张要从错综复杂的事物中区别出最简单事物,然后予以有秩序的研究。他的《方法谈》标示了西方知识传统的「分析还原原理」,认为总体可以分解为部分;复杂、非线性系统,也可以分解为简单线性系统来理解。故奠定了追求简单性和线性解的西方科学及人文思维基础。

英国人牛顿(Sir Issac Newton)在一六八六年提出《自然哲学的数学原理》巨著,创立了以「万有引力」及「运动三定律」为基础的古典力学。他把整个自然界描述成一个秩序井然的大机械钟,只要这个钟上紧发条,便能自动运转,但这机械论仍要请上帝做「第一推动」,为这大钟上紧发条。到十八世纪下半叶,由国家支持的科学机构已在欧美各国普遍建立,故自然科学分门别类而迅速发展,十九世纪自然科学由分门别类的材料收集,进到对经验材料的综合整理和理论概括。

在牛顿的古典力学基础上,热力学大师克劳修斯(Rudolf Julius Emmanuel Clausius)在一八六七年提出热力学第二定律,说明一个孤立系统,总由有序而朝向均匀、简单、消灭差别的无序方向发展,即「熵」(entropy)增加,从而得出「宇宙总体走向退化、死亡」的结论。

热力学的基本定律

热力学是专门探讨能量内涵、能量转换以及能量与物质间交互作用的科学,尤其专注在系统与外在环境间能量的交互作用,是结合工程、物理与化学的一门学问。早期物理中,把研究热现象的部分称为热物理,后来称为热学,近代则称之为热力学,被许多理工相关科系列为必修的基础课程。许多工程科学都是由热力学所衍生的或与其有密切关联,例如热传学、流体力学、材料科学等。

顾名思义,热力学和「热」有关,和「力」也有关。广义而言,热力学主要是研究有关能量的科学,因此物质的特性也是其必须探讨的范围。热力学的应用范围很广,主要包括:引擎、涡轮机、压缩机、帮浦、发电机、推进器、燃烧系统、冷冻空调系统、能源替代系统、生命支持系统及人工器官等。

热是一种传送中的能量。物体的原子或分子透过随机运动,把能量由较热的物体传往较冷的物体。

●热力学第零定律──把两物体放在一绝热系统中,亦即在没有热量的进入及流出下,经过一段时间后,两物体必达到温度相同的状态,也就是热平衡的状态。

热力学第一定律(能量守恒定律)──能量既不会凭空消失,也不会凭空产生,只能从一种形式转化成另一种形式,或者从一个物体转移到另一个物体,而总量保持不变。

●热力学第二定律(方向定律)──单向不可逆过程,亦即无法靠着环境的微小变化就能反向的过程,就是在系统历经刺激,朝着熵增加的方向变化的过程。熵是系统的状态函数,亦即与系统的状态有关,而与如何到达此状态的过程无关,虽然在封闭系统内的某个部分的熵也许会减少,但在系统另一部分的熵永远会增加相同的量或更多,因此整个系统的总熵绝不减少,只会往最大的乱度方向进行。

●热力学第三定律──完美晶体在绝对零度时,其熵为零。

热力学的萌芽

人类很早就对热有所认识,并加以应用,例如在相当早的年代,就知道加热岩石,再泼冷水让它爆裂,从而制造出石头工具。但是将热力学当成一门科学且定量地研究,则是由十七世纪末开始,也就是在温度计制造技术成熟,并知道如何精密地测量温度以后,才真正开启了热力学的研究。

十七世纪时伽利略曾利用气体膨胀的性质制造气体温度计,博伊尔(Robert Boyle)在一六六二年发现在定温下,定量气体的压力与体积成反比;十八世纪,经由准确的实验建立了摄氏及华氏温标,其标准目前我们仍在使用;一七八一年查理发现了在定压下气体体积会随着温度改变的现象,但对于热本质的了解则要等到十九世纪以后。

焦耳自一八四三年起经过一连串的实验,证实了热是能量的另一种形式,并定出了热能与功两种单位换算的比值,此一能量守恒定律被称为热力学第一定律,自此人类对于热的本质才算了解。一八五○年凯尔文(William Thompson Baron Kelvin)及克劳修斯(Rudolf Julius Emmanuel Clausius)说明热机输出的功一定少于输入的热能,称为热力学第二定律。这两条定律再加上能士特(Hermann Walter Nernst)在一九○六年所提出的热力学第三定律:即在有限次数的操纵下无法达到绝对零度,构成了热力学的基本架构。热学在十九世纪的另外一个发展方向是一八五○年前后,由焦耳及克劳修斯所推广的气体动力论,这个理论把热学的微观基础建立了起来。

综观而言,所谓热力学发展史,其实就是热力学与统计力学的发展史,基本上约可划分成四个阶段,分别叙述如下:

第一个阶段:十七世纪末到十九世纪中叶

实质上是热学的早期史,开始于十七世纪末到十九世纪中叶,这个时期累积了大量的实验和观察,并制造出蒸汽机,关于「热」的本质展开了研究和争论,为热力学理论的建立做了准备。在十九世纪前半叶首先出现的卡诺理论、热机理论(第二定律的前身)和热功相当互换的原理(第一定律的基础)已经包含了热力学的基本思想,这一阶段的热力学还留在热力学

的现象描述,并未引进任何数学算式。

温度计的发展

一五九三年:意大利伽利略制造了第一支温度计,以空气为测温物质,由玻璃泡内空气的热胀冷缩来指示冷暖。

一六三二年:法国珍.雷(Jean Rey),将伽利略的温度计倒转过来,并注入水,以水为测温物质,利用水的热胀冷缩来表示温度高低,但管子是开口的,因而水会不断蒸发。

一六五七年:意大利佛罗伦萨的西门图科学院的院士,改用酒精为测温物质,并将玻璃管的开口封闭,制造出除了避免酒精蒸发,也不受大气压力影响的温度计,同时选择了最高和最低的温度固定点。

一六五九年:巴黎天文学家布利奥(Boulliau)把西门图院士传到法国的温度计充以水银,而制造出第一支水银温度计。

一六六○年到一七○○年期间:博伊尔和其助理虎克(Robert Hooke),甚至牛顿本人均体认到制定温标的重要性,虽然他们没有对温度计制定温标,但对温度计发展的贡献却是非常重要的。

一七○二年:阿蒙顿(Guillaumel Amontons)仿伽利略的方法制出一个装有水银的U型且与大气压力无关的气体温度计,与现今标准气体温度计相近。

一七一四年:荷兰气象学家华伦海特(Gabriel Danniel Fahrenheit)制作出第一批刻度可靠的温度计(有水银的,也有酒精的)。他选定三个温度固定点:(1)零度是冰水和氯化铵混合物的温度,(2)32 度是冰水混合的温度,(3)96 度是人体的温度。这就是华氏温标℉。一七二四年他测量水的沸点为212 度,同时他还证明了沸点会随大气压力变化,现代人把标准气压下水的冰点和沸点之间标以180 刻度,就是华氏温标。

一七四二年:瑞典天文学家摄耳修斯(Anders Celsius)引进百分刻度法,他把水的沸点定为零度,水的冰点定为100 度,此即所谓摄氏温标,其同事斯特莫(Stromer)把这两温度值倒过来即成为近代所用的摄氏温标,到此为止,温度计算是定型了。

热量概念的演进

人们长久以来对温度和热量的概念混淆不清,多数人以为物体冷热的程度代表着物体所含热的多寡。

首先德国斯塔尔(Georg Ernst Stahl)教授提出热是一种燃素,后来荷兰波哈维(Hermann Boerhaave)教授甚至说热是一种物质。虽然热是一种物质的说法不正确,但波哈维教授把华氏40 度的冷水与同质量华氏80 度的热水相混而得华氏60 度的水,却隐约地得到热量守恒的一个简单定则;不过对于不同质量,甚至不同物质的冷热物体的混合,他就难以解释了。

另一类的人如虎克,认为热是物质各部分激烈的运动,牛顿也认为热是粒子的运动。一七四○年左右,俄国圣彼得堡科学院院士克拉夫特(Baron Richard von Krafft-Ebing)提出冷水、热水混合的公式。一七五○年由德国移民到圣彼得堡的理奇蒙(Richmann)院士也做了一系列热量测的研究,他将不同温度的水混合,研究热量的损失,并改进克拉夫特的公式。此公式虽不正确,但他却指出混合前后,热量要相等的概念。(插曲,理奇蒙在重复富兰克林的实验时,不幸被闪电电死。)一七五五年,兰勃特(Johann Heinrich Lambert)院士才将热量与温度的概念加以区别和澄清。

真正对热量测量工作有巨大贡献的是英国化学教授布雷克(Joseph Black),他不仅成功地澄清了温度和热量这两个概念,同时提出相变时潜热的概念,并暗示出不同物质具有不同的「热容量」,而他的学生尔湾(W. Irvine)更是正确地提出热容量的概念。

一七七七年化学家拉瓦锡(Antoine Laurent Lavoisier)和拉普拉斯(Pierre Simon Marquisde Laplace)设计了一个所谓「拉普拉斯冰量热器」,可以正确测出热容量和潜热。一七八四年麦哲伦(Ferdinand Magellan)引进比热的术语,同一时期威尔克(Wilcke)提出若把水的比热定为1,则可以定出其它物质的比热,但是在这段期间人们依然认为热是一种物质是正确的。

一七八九年出生于美国后到英国又到德国而受封的伦福伯爵(Count Rumford)(原名Benjamin Thompson)在慕尼黑兵工厂监督大炮钻孔,发现热是因摩擦而产生,因而断言,热不是物质而是来自运动。

一七九九年英国化学家,即后来的首任皇家研究院院长戴维(Sir Humphry Davy)在维持冰点的真空容器中进行摩擦的实验,发现即使是两块冰相互摩擦也有些冰熔化成水,所以他认为摩擦引起物体微粒的振动,而这种振动就是热。

虽然有伦福和戴维教授极力否定热是一种物质说法,但是仍无法改变人们认为热是一种物质的概念。直到十九世纪中叶后,卡诺(Nicolas Leonard Sadi Carnot)死后50 年其理论才被人们重视,加上德国梅耶(Julius Bobert Mayer)医师和英国物理学家焦耳的努力才改变了人们的观念,促使了第一定律和第二定律成熟地产生。

第二个阶段:十九世纪中到十九世纪七○年代末

这个时期发展了热力学和分子运动论,这些理论的诞生与热功相当原理有关。热功相当原理奠定了热力学第一定律的基础,而第一定律和卡诺理论结合,又导致热力学第二定律的形成;热功相当原理跟微粒说结合则导致了分子运动论的建立,另一方面,以牛顿力学为基础的气体动力论也开始发展,而在这段时期内人们并不了解热力学与气体动力论之间的关连,热力学和分子运动论彼此还是隔绝的。

能量守恒与功能互换──著名的卡诺循环

卡诺(Nicolas Leonard Sadi Carnot,1796.6.1-1832.8.24)是法国拿破仑时代末期人,享年36 岁。他自小矢志科学,进理工科学校,再进工兵科。一八一九年,卡诺退伍,专心研究科学

及艺术,一八三二年他先罹患猩红热,又得了脑膜炎,最后死于霍乱,因此所有研究数据几乎都被烧毁了。

卡诺是以「卡诺循环」留名于科学史的,这件事在一八二四年出版的《关于火的动力考察》里面有详细的说明。开始时,卡诺研究促进蒸汽机发展所需要的理论,他的理论基础是「热素的保存」和「永动机械不可能」这两个原理,他指出热从高温物体移到低温物体时才会产生动力,并认为最理想的机械应该具备:由带着活塞的汽缸里面的气体所产生的等温膨胀、绝热膨胀、等温压缩、绝热压缩等四种循环过程(又称卡诺循环)。关于这个过程和相反过程合并的系统,他用永动机械不可能的原理证明了「在理想的机械,由于同量热素的移动会产生同量的工作,而其量只由温度决定」,这个「卡诺定律」成为热力学的基础。

在这些研究的备忘录中,卡诺放弃热素说,转为热的运动说,几乎到达「能量守恒定律」。但可能因为他不属于物理学家集团,故直到一八三四年,其研究才由克莱培伦(Benoit Pierre Emile Clapeyron)介绍于世。十年后,英国的凯尔文(William Thompson Baron Kelvin)利用他的研究提倡绝对温度的观念。接着由克劳修斯完成了热力学的基础。其弟在卡诺死后46 年(即一八七八年)将其部分手稿交给法国科学院,这些数据显示他还计算了热功当量的数值,约每千卡365 kgw.m(凯尔文计算的数值每卡约为3.577 焦耳,与现今用的数值每卡4.187 焦耳,误差约14.6%)。

卡诺明白指出热不是一种物质而是一种能量的形式,虽然他是最早有热力学能量守恒概念的人,但由于晚了近五十年,其间又有梅耶(Julius Robert Mayer, 1814-1878)和焦耳提出功能互换的原理,故一般都不把卡诺视为能量守恒定律的创始人,况且在一八七八年时,第一定律和第二定律皆已完成了。

梅耶是德国的医生,但对行医兴趣不大,他没有实验设备,更没有从当代物理学家取得任何帮助,是一个独立的研究工作者。一八四○年左右,他的第一篇论文寄给德国物理年鉴,文中提出能量守恒和转换的概念,认为运动、热、电等都可以归结为一种力的现象,它们有一定的规律转换,但此论文被退回未能发表。一八四二年他不死心又投稿到化学和药学年鉴上,除了重述能量守恒的概念,并提出热可以作功,功也可以产生热的能量等价观念,并根据比热实验推出热功当量为 1 千卡约为365 kgw.m,此文也未受重视。于是在一八四五年他自费印发了第三篇论文,且明确指出,热功当量即是气体在等压膨胀过程中所作的功,其值等于定压下所吸收的热量与定容下所吸收的热量之差,后来称为梅耶公式。

因为他所用的推理方法无法为当代人所接受,同时又与焦耳发生谁才是第一个能量守恒定律发现者的争议,再加上两个小孩先后夭折,一连串打击导致其精神失常,在精神病院受尽折磨。

焦耳奠定热力学基础

英国物理学家焦耳奠定了「能量守恒定律」,为热力学的发展确立基础,同时,其理论亦造就了冷冻系统的发展,改善了普罗大众的生活素质。焦耳花了将近四十年的时间来证明功转换成热时,功和所产生热的比是一个恒定的值,即热功当量。他是第一位研究热能、机械能与电能的相互关系的科学家,也是第一位发现气体自由膨胀时四周温度会随之下降的科学家。

焦耳在一八一八年出生于英国曼彻斯特一个酿酒厂家庭,自小体弱,虽然没有上过小学,但他极为好学,在家自学化学及物理学,十六岁上剑桥大学与著名的英国化学家道耳吞(John Dalton)学习,在完成教育后,回到家中即开始建立专属的实验室,并进行独立的研究。在一八四○年发表的论文中,他率先把热能与其它能量连上关系,指出电流所生的热,跟电阻和电流平方的乘积成正比,这称为「焦耳效应」。

一八五二年,他又发现气体迅速自由膨胀时,温度会下降,这效应被后人广泛用以建立冷冻系统,促成了日后冷气机与电冰箱的发明。焦耳最为人称颂的成就是:能量的测定与各种能量间相互转换关系的研究。他最初的研究兴趣是电学,制造了许多不同形式的发电机,希望能改善发电机的效率,由于这项企图,他开始思索电能、热能与机械能间的转换关系。一八四八年,他透过实验证明,当物体所含的力学能转换为热能时,整体能量会保持不变,能的形式可以互相转变,但是总能量永远不变。在这个基础上逐渐发展出「能量守恒定律」,这是物理学的基本定律之一,焦耳可说是主要的贡献者。他从一八四三年发表了一系列论文描述如何测热功当量,在一八七八年得到当量值为每千卡423.85 kgw.m,可换算得每卡4.154 焦耳,此值与现今的标准值误差在1%之内。

与焦耳同时期的德国著名数学和物理学家赫姆霍滋(Helmholtz)也对能量守恒和转换定律有重要贡献,他亦将能量形式及守恒的概念做了一些整合。

第一定律的形成

因为功能互换及能量守恒的概念在一八四五年左右已形成,故第一定律的数学式也呼之欲出。克劳修斯(Rudolf Julius Emmanuel Clausius)是第一位把热力学第一定律用数学形式表达出来的人,接着又提出热力学第二定律,一八五四年首次引入「熵」的概念,一八六五年发现「熵增加原理」,一八五一年第一次运用统计概念导出气体的压力公式,一八五八年又引进自由程概念,导出了平均自由程公式,一八七九年获英国皇家学会的科普利奖。

卡诺的热机理论与第二定律的发现

热力学第二定律的发现与提高热机效率的研究有密切的关系。蒸汽机在十八世纪就已发明了,一七六五和一七八二年瓦特(James Watt, 1736-1819)两次改进蒸汽机的设计,但效率不高。

一八二四年,二十四岁的卡诺发表著名的卡诺定理,对于第二定律的热机理论有重要影响,此论文提出可逆的理想引擎,及所谓的「卡诺循环」,得知理想引擎效率取决于热质在转移时与两个温度的差有关,同时推论出永动机械是不可能实现的,并证明卡诺循环是具有最大效率的循环。

一八五○年克劳修斯在揭示第一定律的论文中,他也以能量守恒和转换的观点重新验证了卡诺定理,而提出第二定律。在其一八五四年的论文中提到「如果没有外界作功,热永远不能由冷的物体传向热的物体」,到了一八六五年第二定律概念更加成熟,熵的概念被克劳修斯提出,而写出另一种形式的第二定律,即在所有可逆循环过程中,热能变化对温度的商的积分值为零。

第三个阶段:十九世纪七○年末到二十世纪初

这个时期内,波兹曼(Ludwig Edward Boltzmann)结合热力学与分子动力学的理论,而导致统计热力学的诞生,同时他也提出非平衡态的理论基础,至二十世纪初吉布斯(J. Willard Gibbs)提出系统理论建立了统计力学。

热力学之父──威廉?汤姆逊(凯尔文勋爵)

有人说,上帝要给人类科学,于是「牛顿」走上了历史的舞台;又有人说,上帝要给人类工程,于是来了「凯尔文」,从此产生了电机工程、资讯工程与机械工程。凯尔文又称为「热力学之父」,一八二四年生于北爱尔兰,父亲詹姆士是贝尔法斯特皇家学院的数学教授。

威廉?汤姆逊(William Thomson;授勋时改名为凯尔文Baron Kelvin)一家在威廉八岁时迁往苏格兰的格拉斯哥,而詹姆士则任教格拉斯哥大学。汤姆逊10 岁便入格拉斯哥大学,在14 岁开始学习大学程度的课程,15 岁时凭一篇题为〈地球形状〉的文章获得大学的金奖章,文章论及的一些重要概念,汤姆逊在往后还常常用到。汤姆逊后来到剑桥大学升学,以全级第二名的成绩毕业,毕业后到了巴黎,在勒尼奥的指导下进行了一年实验研究。

一八四六年,汤姆逊再回到格拉斯哥大学担任自然哲学(即现在的物理学)教授,直到一八九九年退休为止。他在学校建立起全英国大学中第一个物理研究实验室,他认为物质和电动力学的理论结果,必须用实验来证明。他带领学生进行各种实验来检定和发展新的物理理论。此外,他还利用实验室的精密测量结果协助拟定大西洋海底电缆的铺设工程,使英国与美洲之间的通讯得到突破性的发展,他可说是第一代的电讯工程师呢!

汤姆逊也是热力学的开创者之一,他对热力学第一及第二定律的建立做出重大的贡献。在十九世纪,物理学界仍然普遍相信热是一种不生不灭的物质,汤姆逊本来也坚信这种说法,他研究过焦耳多篇关于电流生热的论文后,便改变想法,并和焦耳合作研究,他们的研究结果为热力学第一定律(即能量守恒定律)提供有力的实验支持;汤姆逊对热力学第二定律的贡献更大,几乎与克劳修斯同时间,凯尔文(即汤姆逊)研究卡诺循环也提出第二定律,同时更由此订定绝对温标,又称凯氏温标K。他利用卡诺循环建立绝对温标,他重新设定水的冰点为273.7 度;沸点为373.7 度,为了纪念他的贡献,绝对温度的单位以凯尔文来命名。他在一八五一年发表题为〈热动力理论〉的论文,写出热力学第二定律的凯尔文表述:我们不可能从单一热源取热,使它完全变为有用的功而不产生其它影响。近代物理虽然修正了很多古典物理理论的错误,但是热力学定律仍然是正确而普遍的宏观物理定律。

凯尔文这位天才,十岁进大学,二十二岁剑桥大学就想礼聘他去当物理系主任,绝对温度K 就来自于他姓氏的缩写,热力学第二定律是他提出的,液态氮是他首先压缩制出的,环球信息的第一条电缆是他铺的,电子检流器是他发明的,同位素放射理论是他先想出来的。因为他的发现,世界上每一个要念工程与理科的学生,打开课本,就会发现「能量」的观念贯穿了每一个物理与化学的公式,解释了每一个热、电、磁的运动,成为近代科技的基石。

一九○○年初,凯尔文在英国物理学界最权威的皇家学会的新年致辞中,发表了题为〈笼罩在热和光的动力理论上的十九世纪之云〉的著名演讲,他认为物理世界晴空万里,动力理论

可以解释一切物理问题;唯有两个小问题:即以太理论和黑体辐射理论,尚待解决。正是这两朵小乌云所引起的讨论和研究,发展出二十世纪物理学两个最重要的范畴:相对论和量子力学。

热力学发展史

火的发明是人类文明史上重要的里程碑.人类从此告别茹毛饮血的原始生活走向文明.在古代各民族的语言里,火与热几乎是同义语.热学这一门科学就起源于人类对冷与热本质的思考.

18世纪的欧洲,资本主义日益扩张,生产大革命的到来导致对动力机械的需要,蒸气机由此发明。1695年法国人巴本第一个发明了有气缸有活塞的蒸气机,英国工程师瓦特对蒸气机进行改造,增添了冷凝器,飞轮与离心节速器,发明了活塞阀,使机器由断续动作改为连续作用,第一部现代蒸气机问世。

蒸气机的发明,促进了对热学理论的研究,如热机的效率问题,热量与功的关系的研究,首先发展的是热学的一些基本概念。

热学中最核心的概念是温度,它来自于日常生活,冷热的感觉靠肢体的触摸.当物体的温度发生变化时,物体的性质(力学、电学、化学性质)会发生变化,物体的状态(固态、液态、气态)也可以在一定条件下发生转变(即相变).这些通称为热现象.

温度的测量需要温度计,历史上,伽利略、波义耳、阿蒙顿、华伦海特等人对此都作过贡献。关于热的本性,当时有两种观点,一种认为热是一种物质,即热质说。另一种认为热是物体粒子的内部运动。代表人物有笛卡尔、胡克、罗蒙诺索夫,伦福德等。他们认为:“尽管看不到,也不能否定分子运动是存在的。”随着人们进一步的研究,发现与热质说矛盾的事实越来越多,当能量守恒定律发现后,人们进一步认识到热量实际上是一种能量。

能量守恒定律无疑是19世纪最伟大的发现之一,它不仅适用于无机界,也适用于生命过程,是自然界中最为普遍的规律。尽管在历史上能量及其守恒的思想有悠久的渊源,目前科学界公认,能量守恒定律的奠基人是迈耶(1842)、焦耳(1843)和亥姆霍兹(1847)。

德国的迈尔(1814-1878) 曾是一位随船医生,在一次驶往印度尼西亚的航行中,给生病的船员做手术时,发现海员静脉中血的颜色要比在德国时看到的鲜红的多,这引起了迈尔的沉思。迈耶从拉瓦锡那里得知,人的体温是靠血液的氧化来维持的。在热带,人体散热少,血液氧化少,故静脉血与动脉血的颜色差别小。他知道,动脉中的血含有许多氧,因而非常鲜红。他认为,食物中含有的化学能,可转化为热能,在热带情况下,机体中燃烧过程减慢,因而留下了较多的氧。迈尔的结论是:“因此力(能量)是不灭的,而是可转化的…”

迈尔在1841年、1842年撰文发表了他的观点,在1845年的论文中,更明确写道:“无不能生有,有不能变无。”“在死的或活的自然界中,这个力(能)永远处于循环和转化之中。”1842年迈耶在《化学与药学年鉴》杂志上发表一篇短文,给出了365 kg·m/Cal的热功当量值(合3.57.J/cal)。尽管此数值比正确值小了17%,且文中对如何得来未作说明,但它却比焦耳早了一年,算得上是世界上发表热功当量值的第一篇文章。迈耶在1845年自行刊印了一本小册子,对自己的观点作了较详细的说明。从这里人们得知,他是根据气体的定体热容和定压热容推算出热功当量的。他的计算方法完全正确,但由于缺乏准确的数据,致使计算的结果误差很大。

在19世纪40年代和50年代,除少数人外,迈耶的贡献长期未得到科学界的承认,他深邃的能量守恒思想也未获得理解。一些人的嘲笑和讥讽给了他巨大的精神压力,:1850年他跳楼自杀未遂,在精神病院疗养了三年。19世纪60年代以后科学界开始给予迈耶公正的评价,方使他晚年聊以自慰。

亥姆霍兹是德国科学家,他认为,大自然是统一的,自然力(即能量)是守恒的。 1847年,发表著名论文《力的守恒》,在此文中亥姆霍兹总结了许多人的工作,一举把能量的概念从机械运动推广到热、电、磁,乃至生命过程,提出了普遍的能量守恒原理,为深人地理解自然界的统一性提供了有力的理论武器。

焦耳是英国著名的实验物理学家,家境富裕。16岁在名家道尔顿处学习,使他对科学产生浓厚兴趣。当时电机刚出现,焦耳在1841年发表文章指出:“热量与导体电阻和电流平方成正比。”这就是著名的焦耳——楞次定律。

1845年,焦耳为测定机械功和热之间的转换关系,设计了各种“热功当量实验仪”,并反复改进,反复实验。 1849年发表《论热功当量》。 1878年发表《热功当量的新测定》,最后得到的数值为423.85公斤?米/千卡。焦耳测热功当量用了三十多年,实验了400多次,付出大量的辛勤劳动。

能量守恒定律这样一条自然界普遍规律的确立,是许多人、多学科共同完成的。除了物理学家的严谨,这里还需要与其它学科,特别是生命科学的配合,以开拓广阔的思维,有生物学背景的科学家在此处起了不可磨灭的作用。

能量守恒定律的确立与热量是能量的一种的概念导致热力学第一定律的建立,人们有时说,热力学第一定律就是能量守恒定律。细推敲起来,二者还有些区别。更确切地说,热力学第一定律是能量守恒定律在涉及热现象宏观过程中的具体表述。要将热力学第一定律精确地表述出来,需要内能、功和热量的概念。

虽然热力学第一定律是能量守恒定律在涉及热现象宏观过程中的具体表述。但在实际情况中,并不是所有满足热力学第一定律的过程都能实现,比如热不会自动地由低温传向高温,过程具有方向性。这就导致了热力学第二定律的出台。克劳修斯、开尔文、玻尔兹曼等科学家为此做了重要贡献。1917年,能斯特进一步提出“绝对零度是不可能达到的”热力学第三定律

(完整版)哈工大工程热力学习题答案——杨玉顺版

第二章 热力学第一定律 思 考 题 1. 热量和热力学能有什么区别?有什么联系? 答:热量和热力学能是有明显区别的两个概念:热量指的是热力系通过界面与外界进行的热能交换量,是与热力过程有关的过程量。热力系经历不同的过程与外界交换的热量是不同的;而热力学能指的是热力系内部大量微观粒子本身所具有的能量的总合,是与热力过程无关而与热力系所处的热力状态有关的状态量。简言之,热量是热能的传输量,热力学能是能量?的储存量。二者的联系可由热力学第一定律表达式 d d q u p v δ=+ 看出;热量的传输除了可能引起做功或者消耗功外还会引起热力学能的变化。 2. 如果将能量方程写为 d d q u p v δ=+ 或 d d q h v p δ=- 那么它们的适用范围如何? 答:二式均适用于任意工质组成的闭口系所进行的无摩擦的内部平衡过程。因为 u h pv =-,()du d h pv dh pdv vdp =-=-- 对闭口系将 du 代入第一式得 q dh pdv vdp pdv δ=--+ 即 q dh vdp δ=-。 3. 能量方程 δq u p v =+d d (变大) 与焓的微分式 ()d d d h u pv =+(变大) 很相像,为什么热量 q 不是状态参数,而焓 h 是状态参数? 答:尽管能量方程 q du pdv δ=+ 与焓的微分式 ()d d d h u pv =+(变大)似乎相象,但两者 的数学本质不同,前者不是全微分的形式,而后者是全微分的形式。是否状态参数的数学检验就是,看该参数的循环积分是否为零。对焓的微分式来说,其循环积分:()dh du d pv =+???蜒? 因为 0du =??,()0d pv =?? 所以 0dh =??, 因此焓是状态参数。 而对于能量方程来说,其循环积分: q du pdv δ=+???蜒?

2015年工程热力学简答题

2015年工程热力学简答题

2015 年工程热力学简答题 第1 章基本概念 1.闭口系与外界无物质交换,系统内质量将保持恒定,那么,系统内质量保持恒定的热力系一定是闭口系统吗? 答:否。当一个控制质量的质量入流率与质量出流率相等时 (如稳态稳流系统) ,系统内的质量将保持恒定不变。 2.有人认为,开口系统中系统与外界有物质交换,而物质又与能量不可分割,所以开口系不可能是绝热系。这种观点对不对,为什么? 答:不对。“绝热系”指的是过程中与外界无热量交换的系统。热量是指过程中系统与外界间以热的方式交换的能量,是过程量,过程一旦结束就无所谓“热量”。物质并不“拥有”热量。一个系统能否绝热与其边界是否对物质流开放无关。 3.平衡状态与稳定状态有何区别和联系,平衡状态与均匀状态有何区别和联系? 答:“平衡状态”与“稳定状态”的概念均指系统的状态不随时间而变化,这是它们的共同点;但平衡状态要求的是在没有外界作用下保持不变;而平衡状态则一般指在外界作用下保持不变,这是它们的区别所在。 4.倘使容器中气体的压力没有改变,试问安装在该容器上的压力表的读数会改变吗?在绝对压力计算公式 P P b P e (P P b); P P b P v (P P b ) 中,当地大气压是否必定是环境大气压? 答:可能会的。因为压力表上的读数为表压力,是工质真实压力与环境介质压力之差。环境介质压力,譬如大气压力,是地面以上空气柱的重量所造成的,它随着各地的纬度、高度和气候条件不同而有所变化,因此,即使工质的绝对压力不变,表压力和真空度仍有可能变化。 “当地大气压”并非就是环境大气压。准确地说,计算式中的P b 应是“当地环境介质”的压力,而不是随便任何其它意义上的“大气压力” ,或被视为不变的“环境大气压力”。 5.温度计测温的基本原理是什么?答:温度计对温度的测量建立在热力学第零定律原理之上。它利用了“温度是相互热平衡的系统所具有的一种同一热力性质” ,这一性质就是“温度”的概念。 6.经验温标的缺点是什么?为什么?

工程热力学作业.

1-1 一立方形刚性容器,每边长1m ,将其中气体的压力抽至1000Pa ,问其真空度为多少毫米汞柱?容器每面受力多少牛顿?已知大气压力为0.1MPa 。 解:p = 1 000 Pa = 0.001 MPa 真空度mmHg Pa MPa MPa MPa p p p b V 56.74299000099.0001.01.0===-=-= 容器每面受力F =p V A = 9 900 Pa×1m 2 =9.9×104 N 1-2 试确定表压力为0.01 MPa 时U 形管压力计中液柱的高度差。(1)U 形管中装水,其密度为1 000 kg/m 3;(2) U 形管中装酒精,其密度为789 kg/m 3。 解: 因为表压力可以表示为p g =ρgΔz ,所以有 g p z g ρ= ? 既有(1)mm m s m m kg Pa g p z g 72.101901972.1/80665.9/10001001.02 36==??=?=水ρ (2) mm m s m m kg Pa g p z g 34.129729734.1/80665.9/7891001.02 36==??=?=酒精 ρ 1-7 从工程单位制热力性质查得,水蒸气在500℃、100at 时的比体积和比焓分别为v =0.03347m 3/kg 、h =806.6kcal/kg 。在国际单位制中,这时水蒸气的压力和比热力学能各为多少? 解: 水蒸气压力p =100at×9.80665×104Pa/at = 9.80665×106Pa=9.80665MPa 比热力学能u=h-pv=806.6kcal ×4.1868kJ/kcal)/kg-9806.65kPa ×0.03347m 3/kg = 3377.073kJ-328.228kJ =3048.845kJ 2-1 冬季,工厂某车间要使室内维持一适宜温度。在这一温度下,透过墙壁和玻璃等处,室内向室外每一小时传出0.7×106kcal 的热量。车间各工作机器消耗的动力为是500PS(认为机器工作时将全部动力转变为热能)。另外,室内经常点着50 盏100W 的电灯,要使该车间的温度保持不变,问每小时需供给多少kJ 的热量? 解:要使车间保持温度不变,必须使车间内每小时产生的热量等散失的热量 Q = Q 机+Q 灯+Q 散+Q 补 = 0 Q 机 = 500PSh = 500×2.647796×103 kJ = 1.32×106 kJ Q 灯 = 50×100W×3600s = 1.8×107J = 1.8×104 kJ Q 散 = -0.7×106kcal =- 0.7×106×4.1868kJ = -2.93×106 kJ Q 补 = -Q 机-Q 灯+Q 散 = -1.32×106 kJ-1.8×104 kJ+2.93×106 kJ = 1.592×106 kJ

工程热力学简答题

1.何谓状态何谓平衡状态何为稳定状态 状态:热力学系统所处的宏观状况 平衡状态:在不受外界影响的条件下,系统的状态不随时间而变化 稳定状态:系统内各点参数不随时间而变化 2.说明状态参数的性质。 (1)状态参数是状态的函数。对应一定的状态。状态参数都有唯一确定的数位。 (2)状态参数的变化仅与初、终状态有关,而与状态变化的途径无关。当系统经历一系列状态变化而恢复到初态时。其状态参数的变化为零,即它的循环积分为零 (3)状态参数的数学特征为点函数,它的微分是全微分。 3.何谓热力过程 热力学状态变化的历程 4.何谓准静态过程实现准静态过程的条件是什么 准静态过程:热力学系统经历一系列平衡状态,每次状态变化时都无限小的偏离平衡状态。 条件:状态变化无限小,过程进行无限慢。 5.非准静态过程中,系统的容积变化功可否表示为 ?=-21 2 1 d v p w 为什么 不可以。在非准静态过程中pv的关系不确定,没有函数上的联系。 6.何谓可逆过程 经历一个热力学过程后,热力学系统逆向沿原过程逆向进行,系统和有关的外界都返回到原来的初始状态,而不引起其他的变化。 7.何谓热力循环 系统由初始状态出发,经过一系列中间状态后重新回到初始状态所完成的一个封闭式的热力过程称为热力循环。 8.何谓正循环,说明其循环特征。 在状态参数坐标图上,过程按照顺时针循环的为正循环,其目的是利用热产生机械功,动力循环,顺时针,循环净功为正。 9.何谓逆循环,说明其循环特征。 在状态参数坐标图上,过程按照逆时针循环的为逆循环,其目的是付出一定代价使热量从低温区传向高温区,制冷循环,逆时针,循环净功为负。 10.何谓热量何谓功量 热量:仅仅由于温度不同,热力学系统与外界之间通过边界所传递的能量 功量:热力学系统和外界间通过边界而传递的能量,且其全部效果可表现为举起重物。 11.热量和功量有什么相同的特征两者的区别是什么 相同特征:都是系统与外界间通过边界传递的能量,都是过程量,瞬时量。

工程热力学答案

第一章 1. 平衡状态与稳定状态有何区别?热力学中为什幺要引入平衡态的概念? 答:平衡状态是在不受外界影响的条件下,系统的状态参数不随时间而变化的状态。而稳定状态则是不论有无外界影响,系统的状态参数不随时间而变化的状态。可见平衡必稳定,而稳定未必平衡。热力学中引入平衡态的概念,是为了能对系统的宏观性质用状态参数来进行描述。 2. 表压力或真空度能否作为状态参数进行热力计算?若工质的压力不变,问测量其压力的压力表或真空计的读数是否可能变 化? 答:不能,因为表压力或真空度只是一个相对压力。若工质的压力不变,测量其压力的压力表或真空计的读数可能变化,因为测量所处的环境压力可能发生变化。 3. 当真空表指示数值愈大时,表明被测对象的实际压力愈大还是愈小? 答:真空表指示数值愈大时,表明被测对象的实际压力愈小。 4. 准平衡过程与可逆过程有何区别? 答:无耗散的准平衡过程才是可逆过程,所以可逆过程一定是准平衡过程,而准平衡过程不一定是可逆过程。 5. 不可逆过程是无法回复到初态的过程,这种说法是否正确? 答:不正确。不可逆过程是指不论用任何曲折复杂的方法都不能在外界不遗留任何变化的情况下使系统回复到初态,并不是不能回复到初态。 6. 没有盛满水的热水瓶,其瓶塞有时被自动顶开,有时被自动吸紧,这是什幺原因? 答:水温较高时,水对热水瓶中的空气进行加热,空气压力升高,大于环境压力,瓶塞被自动顶开。而水温较低时,热水瓶中的空气受冷,压力降低,小于环境压力,瓶塞被自动吸紧。 7. 用U 形管压力表测定工质的压力时,压力表液柱直径的大小对读数有无影响? 答:严格说来,是有影响的,因为U 型管越粗,就有越多的被测工质进入U 型管中,这部分工质越多,它对读数的准确性影响越大。 1-3解: bar p p p a b 07.210.197.01=+=+= bar p p p b 32.005.107.212=-=-= bar p p p b C 65.032.097.02=-=-= 第二章 1.绝热刚性容器,中间用隔板分为两部分,左边盛有空气,右边为真空,抽掉隔板,空气将充满整个容器。问:⑴ 空气的热力学能如何变化? ⑵ 空气是否作出了功? ⑶ 能否在坐标图上表示此过程?为什么?答:(1)空气向真空的绝热自由膨胀过程 的热力学能不变。(2)空气对外不做功。 (3)不能在坐标图上表示此过程,因为不是准静态过程。 2. 下列说法是否正确? ⑴ 气体膨胀时一定对外作功。 错,比如气体向真空中的绝热自由膨胀,对外不作功。 ⑵ 气体被压缩时一定消耗外功。 对,因为根据热力学第二定律,气体是不可能自压缩的,要想压缩体积,必须借助于外功。 ⑶ 气体膨胀时必须对其加热。 错,比如气体向真空中的绝热自由膨胀,不用对其加热。 ⑷ 气体边膨胀边放热是可能的。 对,比如多变过程,当n 大于k 时,可以实现边膨胀边放热。 ⑸ 气体边被压缩边吸入热量是不可能的。 错,比如多变过程,当n 大于k 时,可以实现边压缩边吸热。 ⑹ 对工质加热,其温度反而降低,这种情况不可能。 错,比如多变过程,当n 大于1,小于k 时,可实现对工质加热,其温度反而降低。 3“任何没有体积变化的过程就一定不对外作功”的说法是否正确?

工程热力学习题解答

1. 热量和热力学能有什么区别?有什么联系? 答:热量和热力学能是有明显区别的两个概念:热量指的是热力系通过界面与外界进行的热能交换量,是与热力过程有关的过程量。热力系经历不同的过程与外界交换的热量是不同的;而热力学能指的是热力系内部大量微观粒子本身所具有的能量的总合,是与热力过程无关而与热力系所处的热力状态有关的状态量。简言之,热量是热能的传输量,热力学能是能量?的储存量。二者的联系可由热力学第一定律表达式 d d q u p v δ=+ 看出;热量的传输除了可能引起做功或者消耗功外还会引起热力学能的变化。 2. 如果将能量方程写为 d d q u p v δ=+ 或 d d q h v p δ=- 那么它们的适用范围如何? 答:二式均适用于任意工质组成的闭口系所进行的无摩擦的内部平衡过程。因为 u h p v =-,()du d h pv dh pdv vdp =-=-- 对闭口系将 du 代入第一式得 q dh pdv vdp pdv δ=--+ 即 q dh vdp δ=-。 3. 能量方程 δq u p v =+d d (变大) 与焓的微分式 ()d d d h u pv =+(变大) 很相像,为什么热量 q 不是状态参数,而焓 h 是状态参数? 答:尽管能量方程 q du pdv δ=+ 与焓的微分式 ()d d d h u pv =+(变大)似乎相象,但两者的数学本 质不同,前者不是全微分的形式,而后者是全微分的形式。是否状态参数的数学检验就是,看该参数的循环积分是否为零。对焓的微分式来说,其循环积分:()dh du d pv =+??? 因为 0du =?,()0d pv =? 所以 0dh =?, 因此焓是状态参数。 而对于能量方程来说,其循环积分: q du pdv δ=+??? 虽然: 0du =? 但是: 0pdv ≠? 所以: 0q δ≠? 因此热量q 不是状态参数。 4. 用隔板将绝热刚性容器分成A 、B 两部分(图2-13),A 部分装有1 kg 气体,B 部分为高度真空。将隔板抽去后,气体热力学能是否会发生变化?能不能用 d d q u p v δ=+ 来分析这一过程?

工程热力学简答题汇总汇编

工程热力学简答题汇 总

1热力系统:被人为分割出来作为热力学分析对象的有限物质系统。 开口系统:热力系统和外界不仅有能量交换而且有物质交换。 闭口系统:热力系统和外界只有能量交换而无物质交换。 孤立系统:热力系统和外界即无能量交换又无物质交换。 2平衡状态:一个热力系统如果在受外界影响的条件下系统的状态能够始终保持不变,则系统的这种状态叫平衡状态。 准平衡过程:若过程进行的相对缓慢,工质在被平衡破坏后自动回复平衡的时间,即所谓弛豫时间又很短,工质有足够的时间来恢复平衡,随时都不致显著偏离平衡状态,那么这样的过程就叫做准平衡过程。 可逆过程:当完成了某一过程之后,如果有可能使工质沿相同的路径逆行而回复到原来状态,并且相互作用中所涉及到的外界亦回复到原来状态而不留下任何改变。 3汽化潜热:即温度不变时,单位质量的某种液体物质在汽化过程中所吸收的热量。 4比热的定义和单位:1kg物质温度升高1k所需热量称为质量热容,又称比热容,单位为 J/(kg·K),用c表示,其定义式为c=δq/dT或c=δq/dt。 5湿空气的露点:露点是在一定的pv下(指不与水或湿物料相接触的情况),未饱和湿空气冷却达到饱和湿空气,即将结出露珠时的温度,可用湿度计或露点仪 测量,测的td相当于测定了 pv。 6平衡状态与稳定状态有何区 别和联系,平衡状态与均匀状 态有何区别和联系? 答:“平衡状态”与“稳定状态” 的概念均指系统的状态不随时 间而变化,这是它们的共同 点;但平衡状态要求的是在没 有外界作用下保持不变;而平 衡状态则一般指在外界作用下 保持不变,这是它们的区别所 在。 7卡诺定理:定理一:在相同 温度的高温热源和相同温度的 低温热源之间工作的一切可逆 循环,其热效率都相等,与可 逆循环的种类无关,与采用哪 一种工质也无关。 定理二:在温度同为T1的热 源和同为T2的冷源间工作的 一切不可逆循环,其热效率必 小于可逆循环。 推论一:在两个热源间工作的 一切可逆循环,他们的热效率 都相同,与工质的性质无关, 只决定于热源和冷源的温度, 热效率都可以表示为ηc=1— T2/T1 推论二:温度界限相同,但具 有两个以上热源的可逆循环, 其热效率低于卡诺循环 推论三:不可逆循环的热效率 必定小于同样条件下的可逆循 环 8气体在喷管中流动,欲加速 处于超音速区域的气流,应采 取什么形式的喷管,为什么: 因为Ma>1超声速流动,加速 dA>0气流截面扩张,喷管截面 形状与气流截面形状相符合, 才能保证气流在喷管中充分膨 胀,达到理想加速度过程,采 用渐扩喷管。 9压气机,实际过程与理想过 程的关系,在压气机采取多级 压缩和级间冷却有什么好处: 每级压气机所需功相等,这样 有利于压气机曲轴平衡。每个 汽缸气体压缩后达到的最高温 度相同,这样每个汽缸的温度 条件相同。每级向外排出的热 量相等,而且每级的中间冷却 器向外排除的热量也相等。 (避免压缩因比压太高而影响 容积效率,有利于气体压缩以 等温压缩进行,对容积效率的 提高也有利) 10逆向循环:把热量从低温热 源传给高温热源。 11绝热节流:在节流过程中, 流体与外界没有热量交换就称 绝热节流。 14简述功和热量的区别与联 系:都是过程量,作功有宏观 移动,传热无宏观移动,作功 有能量转化,传热无能量转 化,功变热无条件,热变功有 条件。 12喷管的形状选择与哪些因素 有关?背压对喷管性能有何 影响?温度有何变化规律和 影响?进口截面参数(滞止 压力P0)和背压(P b);Pb ≥Pcr选渐缩喷管,Pb<Pcr 选缩放喷管。 13蒸汽压缩式制冷和空气压缩式制 冷的联系与区别。蒸汽压缩式制冷 的优点,装置上的区别及原因。 答:都是利用压缩气体来制冷,制 冷装置不用,使用的气体不同,前 者使用的是低沸点的水蒸气,后者 使用的是空气。蒸汽压缩式制冷的 优点:1,更接近于同温限的逆向卡 诺循环,提高了经济性;2,单位质 量工质制冷量较大。为了简化设 备,提高装置运行的可靠性,实际 应用的蒸汽压缩制冷循环常采用节 流阀代替膨胀机。 14湿空气温度与吸湿能力的关系 湿含量一定时,温度升高,空气中 水蒸气密度变大,吸湿能力下降 15朗肯循环在T-S图上表示 1-2,绝热膨胀做功 2-3,冷却放热,冷凝的饱和水 3-4,在水泵里绝热压缩 4-1,加热,汽化 循环吸热量q1=h1-h4;循环放热量 q2=h2-h3 对外做功w1=h1-h2;消耗功w2=h4- h3 热效率ηt=Wnet/q1=(h1-h2)-(h4- h3)/h1-h4 16R和Rg的意义及关系:Rg是气体 常数,仅与气体种类有关而与气体 的状态无关;R是摩尔气体常数,不 仅与气体状态无关,也与气体的种 类无关,R=8.3145J(mol·K)。若气 体的摩尔质量为M,则R=MRg 17热量(可用能)的概念:在温 度为T0的环境条件下,系统(T> T0)所提供的热量中可转化为有用 功的最大值是热量,用EX,Q表 示。 18热力学第二定律的表述 仅供学习与交流,如有侵权请联系网站删除谢谢2

工程热力学习题集与答案

工程热力学习题集及答案 一、填空题 1.能源按使用程度和技术可分为 常规 能源和 新 能源。 2.孤立系是与外界无任何 能量 和 物质 交换的热力系。 3.单位质量的广延量参数具有 强度量 参数的性质,称为比参数。 4.测得容器的真空度48V p KPa =,大气压力MPa p b 102.0=,则容器内的绝对压力为 54kpa 。 5.只有 准平衡 过程且过程中无任何 耗散 效应的过程是可逆过程。 6.饱和水线和饱和蒸汽线将压容图和温熵图分成三个区域,位于三区和二线上的水和水蒸气呈现五种状态:未饱和水 饱和水 湿蒸气、 干饱和蒸汽 和 过热蒸汽 。 7.在湿空气温度一定条件下,露点温度越高说明湿空气中水蒸气分压力越 高 、水蒸气含量越 多 ,湿空气越潮湿。(填高、低和多、少) 8.克劳修斯积分/Q T δ? 等于零 为可逆循环。 9.熵流是由 与外界热交换 引起的。 10.多原子理想气体的定值比热容V c = g 7 2R 。 11.能源按其有无加工、转换可分为 一次 能源和 二次 能源。 12.绝热系是与外界无 热量 交换的热力系。 13.状态公理指出,对于简单可压缩系,只要给定 两 个相互独立的状态参数就可以确定它的平衡状态。 14.测得容器的表压力75g p KPa =,大气压力MPa p b 098.0=,则容器

内的绝对压力为 173a KP 。 15.如果系统完成某一热力过程后,再沿原来路径逆向进行时,能使 系统和外界都返回原来状态而不留下任何变化,则这一过程称为可逆过程。 16.卡诺循环是由两个 定温 和两个 绝热可逆 过程所构成。 17.相对湿度越 小 ,湿空气越干燥,吸收水分的能力越 大 。(填大、小) 18.克劳修斯积分/Q T δ? 小于零 为不可逆循环。 19.熵产是由 不可逆因素 引起的。 20.双原子理想气体的定值比热容p c = 72g R 。 21.基本热力学状态参数有:( 压力)、(温度 )、(体积)。 22.理想气体的热力学能是温度的(单值 )函数。 23.热力平衡的充要条件是:(系统内部及系统与外界之间各种不平衡的热力势差为零 )。 24.不可逆绝热过程中,由于不可逆因素导致的熵增量,叫做(熵产)。 25.卡诺循环由(两个可逆定温和两个可逆绝热 )热力学过程组成。 26.熵增原理指出了热力过程进行的(方向 )、(限度)、(条件)。 31.当热力系与外界既没有能量交换也没有物质交换时,该热力系为_孤立系_。 32.在国际单位制中温度的单位是_开尔文_。 33.根据稳定流动能量方程,风机、水泵的能量方程可简化为_-ws=h2-h1_。 34.同样大小的容器内分别储存了同样温度的氢气和氧气,若二个容器内气体的压力相等,则二种气体质量q a 的大小为2 H m _小于2 O m 。 35.已知理想气体的比热C 随温度的升高而增大,当t 2>t 1时, 2 1 2t t t 0 C C 与的大小关系为_2 21 t t t C C _。 36.已知混合气体中各组元气体的质量分数ωi 和摩尔质量M i ,则各组 元气体的摩尔分数χi 为_∑=ω ωn 1i i i i i M /M /_。 37.由热力系与外界发生_热量__交换而引起的熵变化称为熵流。 38.设有一卡诺热机工作于600℃和30℃热源之间,则卡诺热机的效

高等工程热力学——第六章 (2)

第六章管内气体流动的热力学 工程上经常遇到的管内流动有以下三类:第一类为喷管和扩压管等管内流动;第二类为输送管内的流动;第三类为换热器管内的流动和可燃混合气在管内燃烧时的流动等。第一类流动的轴功为零,且由于管道短、流速高可看作绝热流动,因而可先略去壁面摩擦,简化成无摩擦、无能量效应的变截面等熵流,待得出流动规律后,再考虑摩擦的影响,加以修正。可以说,截面积变化是影响这类管内流动状况的主要因素。第二类流动中的输送管道都是等截面的。输送过程中,流体对外界不作轴功,外界对流体也投有加热或冷却,因而无能量效应。第三类流动中的管道也是等截面的。流动无轴功输出,外界对流体有热的作用,因而有熊量效应,但摩擦作用与能量效应相比可忽略不计。所以说,能量效应是促使第三类流动状况变化的主要因素。 1基本概念与基本方程 在与外界无轴功,无热量交换的情况下,流动的流体达到静止(c=O)时的状态称为滞止状态。该状态的参数称为滞止参数,以下角标“0”表示。流场中密度变化不能忽略的流体称为可压缩流体。多数情况下,斌体密度的变化主要由压力变化引起。 a==(6-1) s 式中p v s ρ 、、、分别为压力、密度、比容和熵。对于理想气体 a==(6-1a)式中k为比热比,R为气体常数。 某一点的流体流动速度c和统一点的当地声速a之比称为马赫数M,即 c M =(6-2) a 可压缩流可以分成以下几类: 1 M<亚声速流 M=声速流 1

1M > 超声速流 根据稳态稳流能量方程,滞流焓0h 为 2 02 c h h =+ 对于理想气体,上式为 2 0()2 p c c T T -= 因为 1 p R k c k = - M = 代入上式得 2 01(1)2 k T T M -=+ (6-3) 把式(6-3)代入可逆绝热过程方程,则有 2 101(1)2 k k k p p M --=+ (6-4) 如果压力波通过时气体参数发生突然的急剧变化,则这种波称为激波。垂直于流动方向的激波称为正激波。 可压缩流体流动的研究基于质量守恒定律、牛顿第二运动定律、热力学第一定律和热力学第二定律四个基本定律: 1. 质量守恒定律——一维稳态稳流的连续方程 ()0A c A x αραρατ α+ = (6-5) 2.牛顿第二运动定律——动量方程 在流动方向上,作用在物体上的外力由作用于控制面内流体上所有力的x 向分量的代数和组成。这些力可分为两类:作用于全部流体质量上的力和作用于边界上的力。 运动方向上的剪切力= w dx τ-×湿周= 2 42 Ac f dx D ρ-,于是,作用在运动 方向上的净功力为 2 4(c o s )2 x p A c f F F A A d x x D αρραα=- -∑

工程热力学复习重点及简答题

工程热力学复习重点2012. 3 绪论 [1]理解和掌握工程热力学的研究对象、主要研究内容和研究方法 [2]理解热能利用的两种主要方式及其特点 [3]了解常用的热能动力转换装置的工作过程 1.什么是工程热力学 从工程技术观点出发,研究物质的热力学性质,热能转换为机械能的规律和方法,以及有效、合理地利用热能的途径。 2.能源的地位与作用及我国能源面临的主要问题 3. 热能及其利用 [1]热能:能量的一种形式 [2]来源:一次能源:以自然形式存在,可利用的能源。 如风能,水力能,太阳能、地热能、化学能和核能等。 二次能源:由一次能源转换而来的能源,如机械能、机械能等。 [3]利用形式: 直接利用:将热能利用来直接加热物体。如烘干、采暖、熔炼(能源消耗比例大) 间接利用:各种热能动力装置,将热能转换成机械能或者再转换成电能, 4..热能动力转换装置的工作过程 5.热能利用的方向性及能量的两种属性 [1]过程的方向性:如:由高温传向低温 [2]能量属性:数量属性、,质量属性(即做功能力) [3]数量守衡、质量不守衡 [4]提高热能利用率:能源消耗量与国民生产总值成正比。 第1章基本概念及定义 1. 1 热力系统 一、热力系统 系统:用界面从周围的环境中分割出来的研究对象,或空间内物体的总和。 外界:与系统相互作用的环境。 界面:假想的、实际的、固定的、运动的、变形的。 依据:系统与外界的关系 系统与外界的作用:热交换、功交换、质交换。 二、闭口系统和开口系统 闭口系统:系统内外无物质交换,称控制质量。 开口系统:系统内外有物质交换,称控制体积。 三、绝热系统与孤立系统 绝热系统:系统内外无热量交换(系统传递的热量可忽略不计时,可认为绝热) 孤立系统:系统与外界既无能量传递也无物质交换

工程热力学课后作业答案(第七章)第五版

7-1当水的温度t=80℃,压力分别为、、、及1MPa时,各处于什么状态并求出该状态下的焓值。 解:查表知道t=80℃时饱和压力为。 因此在、、、及1MPa时状态分别为过热、未饱和、未饱和,未饱和、未饱和。焓值分别为kg,kJ/kg,335 kJ/kg,kJ/kg,kJ/kg。 7-2已知湿蒸汽的压力p=1MPa干度x=。试分别用水蒸气表和h-s图求出hx,vx,ux,sx。解:查表得:h``=2777kJ/kg h`= kJ/kg v``=kg v`=m3/kg u``= h``-pv``= kJ/kg u`=h`-pv`= kJ/kg s``= kJ/ s`=kJ/ hx=xh``+(1-x)h`= kJ/kg vx=xv``+(1-x)v`= m3/kg ux=xu``+(1-x)u`=2400 kJ/kg sx=xs``+(1-x)s`= kJ/ 7-3在V=60L的容器中装有湿饱和蒸汽,经测定其温度t=210℃,干饱和蒸汽的含量mv=,试求此湿蒸汽的干度、比容及焓值。 解:t=210℃的饱和汽和饱和水的比容分别为: v``=kg v`=m3/kg h``=kg h`= kJ/kg 湿饱和蒸汽的质量: 解之得: x= 比容:vx=xv``+(1-x)v`= m3/kg 焓:hx=xh``+(1-x)h`=1904kJ/kg 7-4将2kg水盛于容积为的抽空了的密闭刚性容器中,然后加热至200℃试求容器中(1)压力;(2)焓;(3)蒸汽的质量和体积。 解:(1)查200℃的饱和参数 h``=kg h`= kJ/kg v``=kg v`=kg 饱和压力。 刚性容器中水的比容: =m3/kg

工程热力学部分简答题

1.均匀系统和单相系统的区别? 答:如果热力系统内部个部分化学成分和物理性质都均匀一致,则该系统成为均匀系统。如果热力系统由单相物质组成,则该系统称为单相系统。可见,均匀系统一定是单相系统,反之则不然。2.试说明稳定、平衡和均匀的区别与联系? 答:稳定状态是指状态参数不随时间变化,但这种不变可能是靠外界影响来维持的。 平衡状态是指不受外界影响时状态参数不随时间变化。 均匀状态是指不受外界影响时不但状态参数不随时间变化,而且状态参数不随空间变化。 均匀→平衡→稳定 3.实现可逆过程的充分条件。 答:(1)过程是准静态过程,即过程所涉及的有相互作用的各物体之间的不平衡势差为无限小。(2)过程中不纯在耗散效应,即不存在用于摩擦、非弹性变形、电流流经电阻等使功不可逆地转变为热的现象。 4.膨胀功、流动功、技术功、轴功有何区别与联系。 答:气体膨胀时对外界所做的功称为膨胀功。 流动功是推动工质进行宏观位移所做的功。 技术功是膨胀功与流动功的差值。 系统通过机械轴与外界所传递的机械功称为轴功。 5.焓的物理意义是什么,静止工质是否也有焓这个参数?

答:焓的物理意义为,当1kg 工质流进系统时,带进系统与热力状态有关的能量有内能u 和流动功pv ,而焓正是这两种能量的总和。因此焓可以理解为工质流动时与外界传递的与其热力状态有关的总能量。但当工质不流动时,pv 不再是流动功,但焓作为状态参数仍然存在。 6.机械能向热能的转变过程、传热过程、气体自由膨胀过程、混合过程、燃烧反应过程都是自发的、不可逆的。 热力学第二定律的克劳修斯表述:热量不可能自动地、无偿地从低温物体传至高温物体。 7.循环热效率公式12 1q q q -=η和121T T T -=η是否完全相同? 答:前者用于任何热机,后者只用于可逆热机。 8.若系统从同一始态出发,分别经历可逆过程和不可逆过程到达同一终态,两个过程的熵变相同吗? 答:对系统来说,熵是状态参数,只要始态和终态相同,过程的熵变就相等。所谓“可逆过程的熵变必然小于不可逆过程的熵变”中的熵变是指过程的总熵变,它应该包括系统的熵变和环境的熵变两部分。在始态和终态相同的情况下,系统的熵变相同,而不可逆过程中环境的熵变大于可逆过程中环境的熵变。 9.g f dS dS dS +=;熵可能大于零,可能等于零,也可能小于零。 T Q dS f δ=----熵流,表示系统与外界交换的热量与热源温差的比 值。 0≥g dS (大于时为不可逆过程,等于时为可逆过程)----熵产,表

工程热力学,课后习题答案

工程热力学(第五版)习题答案 工程热力学(第五版)廉乐明 谭羽非等编 中国建筑工业出版社 第二章 气体的热力性质 2-2.已知2N 的M =28,求(1)2N 的气体常数;(2)标准状 态下2N 的比容和密度;(3)MPa p 1.0=,500=t ℃时的摩尔容积Mv 。 解:(1)2N 的气体常数 2883140==M R R =296.9)/(K kg J ? (2)标准状态下2N 的比容和密度 1013252739.296?==p RT v =0.8kg m /3 v 1 =ρ=1.253/m kg (3)MPa p 1.0=,500=t ℃时的摩尔容积Mv Mv =p T R 0=64.27kmol m /3 2-3.把CO2压送到容积3m3的储气罐里,起始表压力 301=g p kPa ,终了表压力3.02=g p Mpa ,温度由t1=45℃增加到t2=70℃。试求被压入的CO2的质量。当地大气压B =101.325 kPa 。 解:热力系:储气罐。 应用理想气体状态方程。 压送前储气罐中CO2的质量

11 11RT v p m = 压送后储气罐中CO2的质量 22 22RT v p m = 根据题意 容积体积不变;R =188.9 B p p g +=11 (1) B p p g +=22 (2) 27311+=t T (3) 27322+=t T (4) 压入的CO2的质量 )1122(21T p T p R v m m m -=-= (5) 将(1)、(2)、(3)、(4)代入(5)式得 m=12.02kg 2-5当外界为标准状态时,一鼓风机每小时可送300 m3的 空气,如外界的温度增高到27℃,大气压降低到99.3kPa ,而鼓风机每小时的送风量仍为300 m3,问鼓风机送风量的质量改变多少? 解:同上题 1000)273325.1013003.99(287300)1122(21?-=-=-=T p T p R v m m m =41.97kg

工程热力学经典例题-第六章_secret

6.4 典型题精解 例题6-1利用水蒸气表判断下列各点的状态,并确定其h ,s ,x 的值。 ()()()()()113223344 35 51 2 MPa,300 C 29MPa,0.017m /kg 30.5MPa,0.94 1.0MPa,175C 5 1.0MPa,0.2404m /kg p t p v p x p t p v ==?======?== 解 (1)由饱和水和饱和蒸汽表查得 p =2MPa 时,s 212.417C t =?显然s t t >,可知该状态为过热蒸汽。查未饱和水过热蒸汽表,得 2MPa p =,300C t =?时3022.6kJ/kg, 6.7648kJ/(kg K)h s ==?,对于过热蒸汽, 干度x 无意义。 (1) 查饱和表得p =9MPa 时,' 3 '' 3 0.001477m /kg,0.020500m /kg,v v ==可见 '"v v v <<,该状态为湿蒸汽,其干度为 '3" '3(0.0170.001477)m /kg 0.8166(0.0205000.001477)m /kg v v x v v --===-- 又查饱和表得9MPa p = 时 '''' '' 1363.1kJ/kg,2741.9kJ/kg 3.2854kJ/(kg K), 5.6771kJ/(kg K) h h s s ===?=? 按湿蒸汽的参数计算式得 ' " ' ()h h x h h =+- 1363.1kJ/kg 0.8166(2741.91361.1)kJ/kg =+- =2489.0kJ/kg '"'()s s x s s =+- 3.2854k J /(k g K )0.8166(5.6771 3.28 K)=?+-? 5.238k J / (k g =? ( 3 ) 显然,该状态为湿蒸汽状态。由已知参数查饱和水和饱和蒸汽表得 '''' '' 640.35kJ/kg,2748.6kJ/kg 1.8610kJ/(kg K), 6.8214kJ/(kg K) h h s s ===?=?

工程热力学简答题汇总

循环吸热量q 仁h1-h4 ;循环放热量 q2=h2-h3 对外做功w 仁h1-h2 ;消耗功w2=h4-h3 热效率 n =Wnet/q 1=(h1-h2)-(h4-h3)/h1-h4 16R 和Rg 的意义及关系:Rg 是气体常数, 仅与气体种类有关而与气体的状态无关; R 是摩尔气体常数,不仅与气体状态无关, 也与气体的种类无关,R=8.3145J(mol K)。 若气体的摩尔质量为 M 则R=MRg 17热量 (可用能)的概念:在温度为T0 的环境条件下,系统(T >T0)所提供的热 量中可转化为有用功的最大值是热量 , 用EX, Q 表示。 18热力学第二定律的表述 克劳休斯从热量传递方向性的角度提出 : 热不可能自发地、不付出代价地从低温物 体传至高温物体。 热能转化为机械能的开尔文说法:不可能 制造出从单一热源吸热,使之全部转化为 功而不留下其他任何变化的热力发动机。 19熵定义式,及其适用条件 ds= S Q re /T(熵的变化等于可逆过程中系 统与外界交换的热量与热力学温度的比 值) 熵产由(△ S=A Sg+ △ Sf )得熵产△ Sg=A S-A Sf >0 在孤立系统内,一切实际过程(不可逆过 程)都朝着是系统熵增加的方向进行或在 极限情况下(可逆过程)维持系统的熵不 变,而任何使系统熵减少的过程是不可能 发生的。孤立系熵越大,不可逆过程越大。 1热力系统:被人为分割出来作为热力 学分析对象的有限物质系统。 开口系统:热力系统和外界不仅有能 量交换而且有物质交换。 闭口系统:热力系统和外界只有能量 交换而无物质交换。 孤立系统:热力系统和外界即无能量 交换又无物质交换。 2平衡状态:一个热力系统如果在受外 界影响的条件下系统的状态能够始终保 持不变,则系统的这种状态叫平衡状态。 准平衡过程:若过程进行的相对缓慢, 工质在被平衡破坏后自动回复平衡的时 间,即所谓弛豫时间又很短,工质有足 够的时间来恢复平衡,随时都不致显著 偏离平衡状态,那么这样的过程就叫做 准平衡过程。 可逆过程:当完成了某一过程之后, 如果有可能使工质沿相同的路径逆行而 回复到原来状态,并且相互作用中所涉 及到的外界亦回复到原来状态而不留下 任何改变。 3汽化潜热:即温度不变时, 单位质量 的某种液体物质在汽化过程中所吸 收的热量。 4比热的定义和单位:1kg 物质温度升高 1k 所需热量称为质量热容,又称比热 容,单位为J/(kg ? K),用c 表示,其定 义式为 c= S q/dT 或 c= S q/dt 。 5湿空气的露点:露点是在一定的pv 下 (指不与水或湿物料相接触的情况), 未饱和湿空气冷却达到饱和湿空气,即 将结出露珠时的温度,可用湿度计或露 点仪测量,测的td 相当于测定了 pv 。 6平衡状态与稳定状态有何区别和联 系,平衡状态与均匀状态有何区别和联 系? 答:“平衡状态”与“稳定状态”的概 念均指系统的状态不随时间而变化,这 是它们的共同点;但平衡状态要求 的是在没有 外界作用下保持不变; 而平衡状态则一般指在外界作用下 保持不变,这是它们的区别所在。 7卡诺定理:定理一:在相同温度的 高温热源和相同温度的低温热源之 间工作的一切可逆循环,其热效率 都相等,与可逆循环的种类无关, 与采用哪一种工质也无关。 定理二:在温度同为T1的热源和同 为T2的冷源间工作的一切不可逆 循环,其热效率必小于可逆循环。 推论一:在两个热源间工作的一切 可逆循环,他们的热效率都相同, 与工质的性质无关,只决定于热源 和冷源的温度,热效率都可以表示 为加=1 — T2/T1 推论二:温度界限相同,但具有两 个以上热源的可逆循环,其热效率 低于卡诺循环 推论三:不可逆循环的热效率必定 小于同样条件下的可逆循环 8气体在喷管中流动,欲加速处于 超音速区域的气流,应采取什么形 式的喷管,为什么: 因为Ma>1超声速流动,加速 dA>0 气流截面扩张,喷管截面形状与气 流截面形状相符合,才能保证气流 在喷管中充分膨胀,达到理想加速 度过程,采用渐扩喷管。 9压气机,实际过程与理想过程的 关系,在压气机采取多级压缩和级 间冷却有什么好处: 每级压气机所需功相等,这样有利 于压气 机曲轴平衡。每个汽缸气体 压缩后达到的 最高温度相同,这样 每个汽缸的温度条件相同。每级向 外排出的热量相等,而且每级的中 间冷却器向外排除的热量也相等。 (避免压缩因比压太高而影响容积 效率,有利于气体压缩以等温压缩进 行,对容积效率的提高也有利) 10逆向循环:把热量从低温热源传 给高温热源。 11绝热节流:在节流过程中,流体 与外界没有热量交换就称绝热节流。 14简述功和热量的区别与联系 :都 是过 程量,作功有宏观移动,传热无 宏观移动,作功有能量转化,传热无 能量转化,功变热无条件,热变功有 条件。 12喷管的形状选择与哪些因素有 关?背压对喷管性能有何影响? 温度有何变化规律和影响? 进口 截面参数(滞止压力 P °)和背压 (P b ); Pb>Per 选渐缩喷管,Pb v Per 选缩放喷管。 13蒸汽压缩式制冷和空气压缩式制 冷的联系与区别。蒸汽压缩式制冷 的优点,装置上的区别及原因。 答: 都是利用压缩气体来制冷,制冷装置 不用,使用的气体不同,前者使用的 是低沸点的水蒸气,后者使用的是空 气。蒸汽压缩式制冷的优点: 1,更 接近于同温限的逆向卡诺循环, 提高 了经济性;2,单位质量工质制冷量 较大。为了简化设备,提高装置运行 的可靠性,实际应用的蒸汽压缩制冷 循环常采用节流阀代替膨胀机。 14湿空气温度与吸湿能力的关系 湿含量一定时,温度升高,空气中水 蒸气密度变大,吸湿能力下降 15朗肯循环在T-S 图上表示 1- 2,绝热膨胀做功 2- 3,冷却放热,冷凝的饱和水 3- 4,在水泵里绝热压缩 4- 1,加热,汽化

工程热力学简答题电子版

工程热力学习题A 一、简要问答题 1.工程热力学的研究对象主要是什么? 答:工程热力学的研究对象主要是能量转换,特别是热能转化为机械能的规律和方法,以及提高转化效率的途径,以提高能源利用的经济性。 2.热能的利用有哪两种基本的利用形式,并举例说明? 答:一种是热能的直接利用,如冶金,化工,食品等工业和生活上的应用,另一种是热能的间接利用,如把热能转化成机械能或电能为人们提供动力。 3.何为工质?如何采用气体而不采用液体或固体作为热机的工质? 答:工质是指在热机中工作的借以实现将热能转化成机械能的媒介物质,因气体的膨胀性与压缩性远比液体、固体要好,所以热机中的工质是采用气体,而不采用液体,更不能采用固体。 4.功量与热量有何不同和相同之处? 答:相同之处:(1)都是过程量,而不是状态参数;(2)都是工质与外界交换的能量;(3)可逆过程都可图示。 不同之处:(1)功量是有序能(机械能)即功量是有规则的宏观运动能量的传递,在做功过程中往往伴随着能量形态的转化,而热量是无序能(热能)即热量是大量微粒子热运动的能量传递,传热过程中不出现能量形态的转化。(2)有功转换的动力是压差,而有热交换的动力是温差,(3)功量与热量的计算表达式不同。(4)功量可在p-vt图上图示,而热量是在T-s图上图示。 5.写出热力系统第一定律的文字表达? 答:热力学第一定律的文字表述:热可以变为功,功也可以变为热,一定量的热消失时,必产生相应量的功,消耗一定量的功时,必出现与之对应的一定量的热。 6.写出1Kg工质的焓的符号与定义式及其能量含义,并指出焓是过程量还是状态参数。答:焓的符号是h,其定义式是h=u+pv,其能量含义是系统中因引进1kg工质而获得的总能量是热力学能u与推动功pv之和,焓是状态参数,而不是过程量。 7.何为理想气体,并举例指出什么气体可视为理想气体?什么气体不能视为理想气体? 答:理想气体是指其分子是具有弹性的,而不具有体积的质点,分子间没有相互作用力的假想气体。工质中常用的氧气、氮气、氢气等及空气,燃气,烟气等在通常使用的温度,压力下都可作为理想气体。而水蒸气,制冷装置中的工质,如氟利昂汽等不能看做理想气体。 8.指出Rg,R的名称,单位,以及其值是否与气体种类及气体的状态有关? 答:Rg称为气体参数,其单位是J/Kg*K,其值取决于气体种类,而与气体所处状态无关,R称为摩尔气体常数,也成为通用气体常数,其单位是J/mol*K,其值即于气体种类也与气体所处状态无关。 9.为何说四个基本的热力过程是多变的过程的特例? 答:四个基本的热力过程,是指1定容过程,其过程表达式是V=c;2定压过程,其过程表达式是P=c;3定温过程,其过程表达式是T=c;4定熵过程,又称绝热过程,其过程表达式S=c。 因多变过程方程式是PV n=常数,当n=0时,pv0=常数→p=常数,这是定压过程方程式。 n=1时,pv1=常数→pv=常数,这是定温过程方程式。n=k时,pv k=常数,这是绝热过程方程式(即定熵过程方程式);n→±∞时,P1/n*v=常数→v=常数,这是定容过程方程式。所以说,四个基本的热力过程是多变过程的特例。 10.为何说可逆绝热过程一定是定熵过程?

相关主题