搜档网
当前位置:搜档网 › 经典高考概率分布类型题归纳

经典高考概率分布类型题归纳

经典高考概率分布类型题归纳
经典高考概率分布类型题归纳

经典高考概率分布类型

题归纳

-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

经典高考概率分布类型题归纳

高考真题

一、超几何分布类型 二、二项分布类型

三、超几何分布与二项分布的对比 四、古典概型算法

五、独立事件概率分布之非二项分布(主要在于如何分类) 六、综合算法

高考真题 2010年

22、(本小题满分10分)(相互独立事件)

某工厂生产甲、乙两种产品,甲产品的一等品率为80%,二等品率为20%;乙产品的一等品率为90%,二等品率为10%。生产1件甲产品,若是一等品则获得利润4万元,若是二等品则亏损1万元;生产1件乙产品,若是一等品则获得利润6万元,若是二等品则亏损2万元。设生产各种产品相互独立。

(1)记X (单位:万元)为生产1件甲产品和1件乙产品可获得的总利润,求X 的分布

列;

(2)求生产4件甲产品所获得的利润不少于10万元的概率。

【解析】本题主要考查概率的有关知识,考查运算求解能力。满分10分。 (1)由题设知,X 的可能取值为10,5,2,-3,且

P (X=10)=0.8×0.9=0.72, P (X=5)=0.2×0.9=0.18, P (X=2)=0.8×0.1=0.08, P (X=-3)=0.2×0.1=0.02。 由此得X 的分布列为:

(2)设生产的4件甲产品中一等品有n 件,则二等品有4n -件。 由题设知4(4)10n n --≥,解得14

5

n ≥, 又n N ∈,得3n =,或4n =。

所求概率为3

344

0.80.20.80.8192P C =??+= 答:生产4件甲产品所获得的利润不少于10万元的概率为0.8192。

(2012年)22.(本小题满分10分)(古典概型)

设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,0ξ=;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,1ξ=. (1)求概率(0)P ξ=;

(2)求ξ的分布列,并求其数学期望()E ξ.

【命题意图】本题主要考查概率分布列、数学期望等基础知识,考查运算求解能力.

【解析】(1)若两条棱相交,则交点必为正方形8个顶点中的一个,过任意一个顶点恰有3条棱,

∴共有23

8C 对相交棱, ∴(0)P ξ==232128C C =4

11

.

(2)若两条棱平行,则它们的距离为1

的共有6

对,故

(P ξ==

2126C =111

, (1)1(0)(P P P ξξξ==-=-==4111111-

-=6

11

. ∴随机变量ξ的分布列是

∴6161111111

E ξ=?

=.

(2014?江苏)(古典概型)

盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同. (1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P ;

(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x 1,x 2,x 3,随机变量X 表示x 1,x 2,x 3中的最大数,求X 的概率分布和数学期望E (X ).

⑴2224322

9

518C C C P C ++==⑵

()4

4491

4126

C P X C ===

,()313145364

9

13

363C C C C P X C +===()()()11

214314

P X P X P X ==-=-==

所以随机变量X 的概率分布如下表:

X 234

P

111413631126

因此随机变量X 的数学期望:E(X)=2×

1114+3×13

63

+4×1126=

209

(2017年)23.(本小题满分10分)

已知一个口袋中有m 个白球,n 个黑球(,*,2m n n ∈N ≥),这些球除颜色外全部

相同.现将口袋中的球随机地逐个取出,并放入如图所示的编号为

1,2,3,

,m n +的抽屉内,其中第k 次取出的球放入编号为k 的抽屉

(1,2,3,

,)k m n =+.

(1)试求编号为2的抽屉内放的是黑球的概率p ;

(2)随机变量X 表示最后一个取出的黑球所在抽屉编号的倒数,()E X 是X

的数学期望,证明:()()(1)

n

E X m n n <

+-.

试题解析:(1)编号为2的抽屉内放的是黑球的概率p 为:

11C C n m n n m n n p m n

-+-+==+.

(2)随机变量X 的概率分布为 X 1

n

11

n + 12

n + … 1k

(1)

m n

+ P

11

C C n n n

m n

--+ 1C C n n

n

m n

-+ 11

C C n n n

m n

-++ …

11

C C n k n

m n --+ …

11

C C n n m n m n

-+-+ 随机变量X 的期望为1

1

C 111(1)!

()C C (1)!()!n m n

m n

k n n

k n k n

m n

m n k E X k k n k n -++-==++-=?=?--∑∑. 所以1(2)!1

(2)!

()C (1)!()!(1)C (2)!()!

m n

m n

n n k n k n m n

m n

k k E X n k n n n k n ++==++--<

=-----∑∑ 22

2

121(1C C C )(1)C n n n n n m n n

m n

n ----+-+=

++++-

122

2

1121(C C C C )(1)C n n n n n n n m n n

m n

n ------+-+=

++++-

12

2

21(C C C )(1)C n n n n n m n n

m n

n ---+-+=

+++-

12

221(C C )(1)C n n m n m n n

m n

n --+-+-+=

=

+- 11

C (1)C ()(1)

n m n n

m n n n m n n -+-+==-+-,

即()()(1)

n

E X m n n <

+-.

【考点】古典概型概率、排列组合、随机变量及其分布、数学期望

【名师点睛】求解离散型随机变量的数学期望的一般步骤为:

(1)“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;

(2)“探求概率”,即利用排列组合、枚举法、概率公式(常见的有古典概型公式、几何概型公式、互斥事件的概率和公式、独立事件的概率积公式,以及对立事件的概率公式等),求出随机变量取每个值时的概率; (3)“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或某事件的概率是否正确;

(4)“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值,对于有些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布(,)X

B n p ),则此随机变量的期望可直接利用这种典型

分布的期望公式(()E X np =)求得.因此,应熟记常见的典型分布的期望公式,可加快解题速度.

一、超几何分布

1.袋中有4个红球,3个黑球,从袋中随机取球,设取到一个红球得2分,取到一个黑球得1分,从袋中任取4个球.试求得分X 的分布列.

【提示】 从袋中随机摸4个球的情况为1红3黑,2红2黑,3红1黑,4红四种情况,分别得分为5分,6分,7分,8分,故X 的可能取值为5,6,7,8.

P(X =5)=C 14C 3

3C 47=435,P(X =6)=C 24C 2

3C 47=18

35

P(X =7)=C 34C 13C 47=1235,P(X =8)=C 44C 0

3C 47=1

35.

故所求的分布列为

2.PM2.5是指悬浮在空气中的空气动力学当量直径小于或等于 2.5微米的颗粒物,也称为可入肺颗粒物.根据现行国家标准GB3095-2012,PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.

从某自然保护区2013年全年每天的PM2.5监测数据中随机地抽取10天的数据作为样本,监测值频数如下表所示:

一级的概率;

(2)从这10天的数据中任取3天数据.记X 表示抽到PM2.5监测数据超标的天数,求X 的分布列.

【解析】(1)记“从10天的PM2.5日均值监测数据中,随机抽出3天,恰有一天空气质量达到一级”为事件A ,则P (A )=C 13·C 27C 310=21

40

.

(2)依据条件,X 服从超几何分布,其中N =10,M =3,n =3,且随机变量X 的可能取值为0,1,2,3.

P (X =k )=C k 3·C 3-

k

7

C 310(k =0,1,2,3),

所以P (X =0)=C 03C 37

C 310=724,

P (X =1)=C 13C 27C 310=21

40,

P (X =2)=C 23C 17

C 310=740,

P (X =3)=C 33C 07

C 310=1120

因此X 的分布列为

P

724 2140 740 1120

n 件”. 如果是有放回地抽取,就变成了 n 重伯努利试验,这时概率分布就是二项分布. 所以两个分布的区别就在于是不放回地抽样,还是有放回地抽样. 若产品总数N 很大时,那么不放回抽样可以近似地看成有放回抽样.

3.盒内有大小相同的9个球,其中2个红色球,3个白色球,4个黑色球.规定取出1个红色球得1分,取出1个白色球得0分,取出1个黑色球得-1分.现从盒内任取3个球.

(1)求取出的3个球中至少有一个红球的概率; (2)求取出的3个球得分之和恰为1分的概率;

(3)设ξ为取出的3个球中白色球的个数,求ξ的分布列. 【解】 (1)P =1-C 3

7C 39=7

12

.

(2)记“取出1个红色球,2个白色球”为事件B ,“取出2个红色球,1个黑色球”为事件C ,则P(B +C)=P(B)+P(C)=C 12C 2

3C 39+C 22C 1

4C 39=5

42

.

(3)ξ可能的取值为0,1,2,3,ξ服从超几何分布, 且P(ξ=k)=C k 3C 3-k

6

C 39,k =0,1,2,3.

故P(ξ=0)=C 36C 39=5

21,

P(ξ=1)=C 13C 2

6C 39=15

28,

P(ξ=2)=C 23C 16C 39=3

14,

P(ξ=3)=C 33C 39=1

84,

ξ的分布列为

ξ 0 1 2 3 P

521

1528

314

184

二、二项分布

1.某市医疗保险实行定点医疗制度,按照“就近就医、方便管理”的原则,参加保险人员可自主选择四家医疗保险定点医院和一家社区医院作为本人就诊的医疗机构.若甲、乙、丙、丁4名参加保险人员所在的地区附近有A ,B ,C 三家社区医院,并且他们对社区医院的选择是相互独立的.

(1)求甲、乙两人都选择A社区医院的概率;

(2)求甲、乙两人不选择同一家社区医院的概率;

(3)设4名参加保险人员中选择A社区医院的人数为X,求X的概率分布和数学期望.

2.某广场上有4盏装饰灯,晚上每盏灯都随机地闪烁红灯或绿灯,每盏灯出现红灯的概率都是23,出现绿灯的概率都是1

3.记这4盏灯中出现红灯的数量为X ,当这排装饰灯闪烁

一次时:

(1)求X =2时的概率; (2)求X 的数学期望.

解 (1)依题意知:X =2表示4盏装饰灯闪烁一次时,恰好有2盏灯出现红灯,而每盏灯出现红灯的概率都是23,

故X =2时的概率P =C 24? ????232? ????132

=827

.

(2)法一 X 的所有可能取值为0,1,2,3,4,依题意知

P(X =k)=C k 4? ????23k ? ??

??134-k

(k =0,1,2,3,4).

∴X 的概率分布列为

X 0 1 2 3 4 P

181

881

881

3281

1681

∴数学期望E(X)=0×18+1×881+2×881+3×3281+4×1681=8

3

.

3.羽毛球A 队与B 队进行对抗比赛,在每局比赛中A 队获胜的概率都是P (01)P ≤≤. (1)若比赛6局,且P

=

2

3

, 求A 队至多获胜4局的概率是多少?

(2)若比赛6局,求A 队恰好获胜 3局的概率的最大值是多少?

(3) 若采用“五局三胜”制,求A 队获胜时的比赛局数ξ的分布列和数学期望. 解析:(1)设“比赛6局,A 队至多获胜4局”为事件A

则[]66()1(5)(6)P A P P =-+=5

5

6

6

662

221()(1)()333C C ---=256473

1729729

-

=[来源:学。科。网Z 。X 。X 。K]

∴ A 队至多获胜4局的概率是

473

729

(2)设“若比赛6局,A 队恰好获胜3局”为事件B ,则333

6()(1)P B C p p =-

当P=0或P=1时,显然有P(B)=0 当0

3

3

3

6

()(1)P B C p p =-=()3

201p p -????≤203

212p p ??+-???? ???????

=206

15216??

= ??? 当且仅当11,2p p p =-=即时取等号.故A 队恰好获胜3局的概率的最大值是5

16

(3)若采用“五局三胜”制,A 队获胜时的比赛局数ξ=3,4,5

3(3)P p ξ==;)1(3)1()4(3323p p p p C P -=-==ξ;232324(5)(1)6(1)P C p p p p ξ==-=-

所以ξ的分布列为:

ξ 3 4 5

p

3p 33(1)p p - 326(1)p p -

323(102415)E P P P ξ∴=-+

三、超几何分布与二项分布的对比

(二项分布)有一批产品,其中有12件正品和4件次品,从中有放回地依次任取3件,若X 表示取到次品的次数,则P (X=2)= 变式辨析:

1. (超几何分布)有一批产品,其中有12件正品和4件次品,从中任取3件,若X 表示

取到次品的件数,则P (X )=

2. 有一批产品,其中有12件正品和4件次品,从中有放回地依次取件,第k 次取到次品的概率,则P (X )=

3.有一批产品,其中有12件正品和4件次品,从中不放回地依次取件,第k 次取到次品的概率,则P (X )=

4.有一批产品,其中有12件正品和4件次品,从中不放回地依次取k (6,5,4=k )件,恰好取到3件次品时停止,概率P (X )=

三、古典概型算法

1.甲、乙两人参加普法知识竞赛,共设有10个不同的题目,其中选择题6个,判断题4个.(1)若甲、乙二人依次各抽一题,计算:

①甲抽到判断题,乙抽到选择题的概率是多少?

②甲、乙二人中至少有一人抽到选择题的概率是多少?

(2)若甲从中随机抽取5个题目,其中判断题的个数为X,求X的概率分布和数学期望.

2.某校要进行特色学校评估验收,有甲、乙、丙、丁、戊五位评估员将随机去,,A B C 三个不同的班级进行随班听课,要求每个班级至少有一位评估员. (1)求甲、乙同时去A 班听课的概率;

(2)设随机变量ξ为这五名评估员去C 班听课的人数,求ξ的分布列和数学期望. (分配问题,典型例题,选与排)

解:(1)五名评估员随机去三个班级听课,要么一个班级有三个、其余两个班级各一个;要么两个班级各两个、另一个班级一个.故总共的听课可能性有

33

2253533150C A C C +=种,其中甲乙同时去A 班听课的可能性有12121322

23=+C C A C 种……………………2分 所以所求概率为122

15025

p =

=

……………………4分 (2)ξ可取值为1,2,3,

()()

157

150********=+?==C C C P ξ

()15

6

150221

325=??==C C P ξ,

()15

2

15031235===C C P ξ……………………8分

从而ξ分布列为:

76251231515153

E ξ=?

+?+?= ……………………10分

3.一个均匀的正四面体的四个面分别涂有1,2,3,4四个数字,现随机投掷两次,正四面体底面上的数字分别为21,x x ,记2

22

1)2()2(-+-=x x X . (1)分别求出X 取得最大值和最小值的概率;

(2)求X 的概率分布及方差.

解:ξ的取值为0,1,2,4,5,8,

P(ξ=0)=,

P(ξ=1)=4××=,

P(ξ=2)=4××=,

P(ξ=4)=2××=,

P(ξ=5)=4××=,

P(ξ=8)=,

∴ξ的分布列为

∴ξ的数学期望Eξ=0×+1×+2×+4×+5×+8×=3。

4.某市公租房的房源位于A,B,C三个片区,设每位申请人只申请其中一个片区的房源,且申请其中任一个片区的房源是等可能的,求该市的任4位申请人中:

(1)恰有2人申请A片区房源的概率;

(2)申请的房源所在片区的个数X的概率分布与期望.

5.设S 是不等式x 2

-x -6≤0的解集,整数m ,n ∈S.

(1)记“使得m +n =0成立的有序数组(m ,n)”为事件A ,试列举A 包含的基本事件;

(2)设ξ=m 2

,求ξ的概率分布表及其数学期望E(ξ).

解 (1)由x 2

-x -6≤0,得-2≤x ≤3, 即S ={x|-2≤x ≤3}.

由于m ,n ∈Z ,m ,n ∈S 且m +n =0,所以A 包含的基本事件为(-2,2),(2,-2), (-1,1),(1,-1),(0,0).

(2)由于m 的所有不同取值为-2,-1,0,1,2,3,

所以ξ=m 2

的所有不同取值为0,1,4,9,

且有P(ξ=0)=1

6,

P(ξ=1)=26=1

3,

P(ξ=4)=26=1

3,

P(ξ=9)=1

6

.

故ξ的概率分布表为

ξ 0 1 4 9

P 16 13 13 16

所以E(ξ)=0×16+1×3+4×3+9×6=6

.

6.在高中“自选模块”考试中,某考场的每位同学都选了一道数学题,第一小组选《数学

史与不等式选讲》的有1人,选《矩阵变换和坐标系与参数方程》的有5人,第二小组选《数学史与不等式选讲》的有2人,选《矩阵变换和坐标系与参数方程》的有4人,现从第一、第二两小组各任选2人分析得分情况 .

(1)求选出的4人均为选《矩阵变换和坐标系与参数方程》的概率;

(2)设X 为选出的4个人中选《数学史与不等式选讲》的人数,求X 的分布列和数学期望. (主要是选)

解 (1)设“从第一小组选出的2人均选《矩阵变换和坐标系与参数方程》”为事件A ,“从第二小组选出的2人均选《矩阵变换和坐标系与参数方程》”为事件B. 由于事件A 、B 相互独立, 所以P(A)=C 2

5C 26=23,P(B)=C 2

4C 26=2

5

所以选出的4人均选《矩阵变换和坐标系与参数方程》的概率为P(A ·B)=P(A)·P(B)=23×25=4

15

. (2)X 可能的取值为0,1,2,3,则

P(X =0)=415,P(X =1)=C 2

5C 26·C 1

2·C 1

4C 26+C 1

5C 26·C 2

4C 26=22

45,

P(X =3)=C 1

5C 26·1C 26=1

45

.

P(X =2)=1-P(X =0)-P(X =1)-P(X =3)=2

9.

故X 的分布列为

所以X 的数学期望E(X)=0×15+1×45+2×9+3×45=1 (人).

7.已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑

球.现在从甲、乙两个盒内各任取2个球.

(I)求取出的4个球均为黑色球的概率;

(II)求取出的4个球中恰有1个红球的概率;

(III)设ξ为取出的4个球中红球的个数,求ξ的分布列和数学期望.

8.袋中共有8个球,其中有3个白球,5个黑球,这些球除颜色外完全相同.从袋中随机取出一球,如果取出白球,则把它放回袋中;如果取出黑球,则该黑球不再放回,并且另补一个白球放入袋中.重复上述过程n 次后,袋中白球的个数记为n X . (1)求随机变量2X 的概率分布及数学期望()2E X ; (2)求随机变量n X 的数学期望)(n x E 关于n 的表达式.

五、独立事件概率分布之非二项分布(主要在于如何分类)

1.开锁次数的数学期望和方差有n 把看上去样子相同的钥匙,其中只有一把能把大门上的锁打开.用它们去试开门上的锁.设抽取钥匙是相互独立且等可能的.每把钥匙试开后不能放回.求试开次数ξ的数学期望和方差.

分析:求)(k P =ξ时,由题知前1-k 次没打开,恰第k 次打开.不过,一般我们应从简单的地方入手,如3,2,1=ξ,发现规律后,推广到一般.

解:ξ的可能取值为1,2,3,…,n .

;1

2112121)111()11()3(;1

11111)11()2(,1)1(n

n n n n n n n n P n n n n n n P n

P =-?--?-=-?--?-===-?-=-?-===

=ξξξ

n

k n k n k n n n n n n n k n k n n n n k P 1

11212312111)211()211()111()11()(=

+-?+-+---?--?-=+-?+----?--?-== ξ;所以ξ的分布列为:

2

31211=

?++?+?+?=n n n n n E ξ; n

n n n n k n n n n n n D 1

)21(1)21(1)213(1)212(1)211(22222?+-++?+-++?+-+?+-+?+-

= ξ ??

?????+++++++-++++=

n n n n n n 22222)21()321)(1()321(1 1214)1(2)1()12)(1(611222-=

??

????+++-++=n n n n n n n n n

2. 射击练习中耗用子弹数的分布列、期望及方差

某射手进行射击练习,每射击5发子弹算一组,一旦命中就停止射击,并进入下一组的练习,否则一直打完5发子弹后才能进入下一组练习,若该射手在某组练习中射击命中一次,并且已知他射击一次的命中率为0.8,求在这一组练习中耗用子弹数ξ 的分布列,并

求出ξ 的期望ξ E

与方差ξ D (保留两位小数). 分析:根据随机变量不同的取值确定对应的概率,在利用期望和方差的定义求解. 解: 该组练习耗用的子弹数ξ 为随机变量,ξ 可以取值为1,2,3,4,5.

高考概率大题及答案

高考概率大题及答案 【篇一:2015年高考数学概率与统计试题汇编】4.为了解某社区居民的家庭年收入所年支出的关系,随机调查了该 社区5户家庭,得到如下统计数据表: ??a??0.76,a? ,据此估计,??bx? ,其中b???根据上表可得回归 直线方程y 该社区一户收入为15万元家庭年支出为( ) a.11.4万元 b.11.8万元c. 12.0万元 d.12.2万元 【答案】b 考点:线性回归方程. 13.如图,点 a 的坐标为?1,0? ,点c 的坐标为?2,4? ,函数f?x??x2 ,若在矩 形abcd 内随机取一点,则此点取自阴影部分的概率等于. 【答案】5 12 【解析】 试题分析:由已知得阴影部分面积为4??x2dx?4?1275?.所以此 点取自阴影33 5 5部分的概率等于?. 412考点:几何概型. 16.某银行规定,一张银行卡若在一天内出现3次密码尝试错误, 该银行卡将被锁定,小王到银行取钱时,发现自己忘记了银行卡的 密码,但是可以确定该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束 尝试;否则继续尝试,直至该银行卡被锁定. (Ⅰ)求当天小王的该银 行卡被锁定的概率; (Ⅱ)设当天小王用该银行卡尝试密码次数为x,求x的分布列和数学 期望. 15【答案】(Ⅰ);(Ⅱ)分布列见解析,期望为. 22 【解析】 试题分析:(Ⅰ)首先记事件“当天小王的该银行卡被锁定”的事件为a.则银行 3卡被锁死相当于三次尝试密码都错,基本事件总数为a6?6?5?4,事件a包含

3的基本事件数为a5?5?4?3,代入古典概型的概率计算公式求解;(Ⅱ)列出随 机变量x的所有可能取值,分别求取相应值的概率,写出分布列求期望即可.试题解析:(Ⅰ)设“当天小王的该银行卡被锁定”的事件为a, 5431= 则p(a)=6542 (Ⅱ)依题意得,x所有可能的取值是1,2,3 151又p(x=1)=,p(x=2)=?6651542,p(x=3)= 1=. 6653 所以x的分布列为 所以e(x)=1?1122?3?6635. 2 考点:1、古典概型;2、离散型随机变量的分布列和期望. 2015江苏理科 5.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从 中一次随机摸出2只球,则这2只球颜色不同的概率为________. 【答案】5 . 6 考点:古典概型概率 2015年重庆理科 17.(本小题满分13分,(1)小问5分,(2)小问8分) 端午节吃粽子是我国的传统习俗,设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同,从中任意选取3个。 (1)求三种粽子各取到1个的概率; (2)设x表示取到的豆沙粽个数,求x的分布列与数学期望 【答案】(1)13;(2)分布列见解析,期望为. 45 【解析】 试题分析:(1)本题属于古典概型,从10个棕子中任取3个,基本事件的总数 3111为c10,其中事件“三种棕子各取1个”含基本事件的个数为 c2c3c5,根据古典概型概率计算公式可计算得所求概率;(2)由于10个棕子中有2个豆沙棕,因此x的可能分别为0,1,2,同样根据古典概型概率公式可得相应的概率,从而列 3出其分布列,并根据期望公式求得期望为. 5

高考数学之概率大题总结

1(本小题满分12分)某赛季, 甲、乙两名篮球运动员都参加了7场比赛, 他们所有比赛得分的情况用如图所示的茎叶图表示 (1)求甲、乙两名运动员得分的中位数; (2)你认为哪位运动员的成绩更稳定? (3)如果从甲、乙两位运动员的7场得分中各随 机抽取一场的得分, 求甲的得分大于乙的得分的概率. (参考数据:2222222981026109466++++++=, 236112136472222222=++++++) 2在学校开展的综合实践活动中, 某班进行了小制作评比, 作品上交时间为5月1日至30日, 评委会把同学们上交作品的件数按5天一组分组统计, 绘制了频率分布直方图(如图), 已知从左到右各长方形的高的比为2:3:4:6:4:1, 第三组的频数为12, 请解答下列问 题: (1)本次活动共有多少件作品参加评比? (2)哪组上交的作品数量最多?共有多少件? (3)经过评比, 第四组和第六组分别有10件、2件作品获奖, 问这两组哪组获奖率高? 3已知向量()1,2a =-r , (),b x y =r . (1)若x , y 分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1, 2, 3, 4, 5, 6)先后抛掷两次时第一次、第二次出现的点数, 求满足1a b =-r r g 的概率; (2)若实数,x y ∈[]1,6, 求满足0a b >r r g 的概率.

4某公司在过去几年内使用某种型号的灯管1000支, 该公司对这些灯管的使用寿命(单位:小时)进行了统计, 统计结果如下表所示: (1)将各组的频率填入表中; (2)根据上述统计结果, 计算灯管使用寿命不足1500小时的频率; (3)该公司某办公室新安装了这种型号的灯管2支, 若将上述频率作为概率, 试求恰有1支灯管的使用寿命不足1500小时的概率. 5为研究气候的变化趋势, 某市气象部门统计了共100个星期中每个星期气温的最高温度和最低温度, 如下表: (1)若第六、七、八组的频数t 、m 、 n 为递减的等差数列, 且第一组与第八组 的频数相同, 求出x 、t 、m 、n 的值; (2)若从第一组和第八组的所有星期 中随机抽取两个星期, 分别记它们的平均 温度为x , y , 求事件“||5x y ->”的概率. 6某校高三文科分为四个班.高三数学调研测试后,随机地在各班抽取部分学生进行测试成绩统计,各班被抽取的学生人数恰好成等差数列,人数最少的班被抽取了22人. 抽取出来的所有学生的测试成绩统计结果的频率分布条形图如图5 所示,其中120~130(包括120分但不包括130分)的频率为0.05,此分数段的人数为5人. (1)问各班被抽取的学生人数各为多少人? (2)在抽取的所有学生中,任取一名学生, 求分数不小于90分的概率. 频率 分数 90100110120130 0.05 0.100.150.200.250.300.350.4080 70

概率论中几种具有可加性的分布及其关系

目录 摘要 (1) 关键词 (1) Abstract (1) Key words (1) 引言 (1) 1 几种常见的具有可加性的分布 (1) 1.1 二项分布 (2) 1.2 泊松分布(Possion分布) (3) 1.3 正态分布 (4) 1.4 伽玛分布 (6) 1.5 柯西分布 (7) 1.6 卡方分布 (7) 2 具有可加性的概率分布间的关系 (8) 2.1 二项分布的泊松近似 (8) 2.2 二项分布的正态近似 (9) 2.3 正态分布与泊松分布间的关系 (10) 2.4 正态分布与柯西分布、卡方分布及卡方分布与伽玛分布的关系 (11) 3 小结 (12) 参考文献 (12) 致谢 (13)

概率论中几种具有可加性的分布及其关系 概率论中几种具有可加性的分布及其关系 摘要 概率论与数理统计中概率分布的可加性是一个十分重要的内容.所谓分布的可加性指的是同一类分布的独立随机变量和的分布仍属于此类分布.结合其特点,这里给出了概率论中几种具有可加性的分布:二项分布,泊松分布,正态分布,柯西分布,卡方分布以及伽玛分布.文章讨论了各类分布的性质及其可加性的证明,这里给出了证明分布可加性的两种方法,即利用卷积公式和随机变量的特征函数.除此之外,文章就可加性分布之间的各种关系,如二项分布的泊松近似,棣莫佛-拉普拉斯中心极限定理等,进行了不同层次的讨论. 关键词 概率分布 可加性 相互独立 特征函数 Several Kinds of Probability Dstribution and its Relationship with Additive Abstract Probability and mathematical statistics in the probability distribution of additivity is a very important content.The distribution of the so-called additivity refers to the distribution of the same kind of independent random variables and distribution are still belong to this kind of https://www.sodocs.net/doc/3016273169.html,bined with its characteristics, here given several has additivity distribution in probability theory: the binomial distribution, poisson distribution and normal distribution and cauchy distribution, chi-square distribution and gamma distribution.Article discusses the nature of all kinds of distribution and its proof of additivity, additive of proof distribution are also given two methods, namely using convolution formula and characteristic function of a random variable. In addition, this paper the relationships between the additive property distribution, such as the binomial distribution of poisson approximation, Di mo - Laplace's central limit theorem, and so on, has carried on the different levels of discussion. Key Words probability distribution additivity property mutual independence characteristic function 引言 概率论与数理统计是研究大量随机现象的统计规律性的学科,在概率论与数理统计中,有时候我们需要求一些随机变量的和的分布,在这些情形中,有一种求和类型比较特殊,即有限个相互独立且同分布的随机变量的和的分布类型不变,这一求和过程称为概率分布的“可加性”.概率分布中随机变量的可加性是一个相当重要的概念,本文给出了概率论中常见的六种具有可加性的分布,包括二项分布,泊松分布,正态分布,伽玛分布,柯西分布和卡方分布.文章最后讨论了几项分布之间的关系,如二项分布的泊松近似,正态近似等等. 1 几种常见的具有可加性的分布 在讨论概率分布的可加性之前,我们先来看一下卷积公式和随机变量的特征函数,首先来看卷积公式[1]: ①离散场合的卷积公式 设离散型随机变量ξζ,彼此独立,且它们的分布列分别是n k a k P k ,1,0,)(???===ζ和.,,1,0,)(n k b k P k ???===ξ则ξζ?+=的概率分布列可表示

(完整word版)2018年高考数学总复习概率及其计算

第十三章概率与统计本章知识结构图

第一节 概率及其计算 考纲解读 1.了解随机事件发生的不确定性、频率的稳定性、概率的意义、频率与概率的区别。 2.了解两个互斥事件的概率的加法公式。 3.掌握古典概型及其概率计算公式。 4.了解随机数的意义,能运用模拟方法估计概率。 5.了解几何概型的意义。 命题趋势探究 1.本部分为高考必考内容,在选择题、填空题和解答题中都有渗透。 2.命题设置以两种概型的概率计算及运用互斥、对立事件的概率公式为核心内容,题型及分值稳定,难度中等或中等以下。 知识点精讲 一、必然事件、不可能事件、随机事件 在一定条件下: ①必然要发生的事件叫必然事件; ②一定不发生的事件叫不可能事件; ③可能发生也可能不发生的事件叫随机事件。 二、概率 在相同条件下,做次重复实验,事件A 发生次,测得A 发生的频率为,当很大时,A 发生的频率总是在某个常数附近摆动,随着的增加,摆动幅度越来越小,这时就把这个常数叫做A 的概率,记作。对于必然事件A ,;对于不可能事件A ,=0. 三、基本事件和基本事件空间 在一次实验中,不可能再分的事件称为基本事件,所有基本事件组成的集合称为基本事件空间。 四、两个基本概型的概率公式 1、古典概型 条件:1、基本事件空间含有限个基本事件 2、每个基本事件发生的可能性相同 ()(A) = ()A card P A card = Ω包含基本事件数基本事件总数 2、几何概型 条件:每个事件都可以看作某几何区域Ω的子集A ,A 的几何度量(长度、面积、体积或时间)记为 A μ.

()P A = A μμΩ 。 五、互斥事件的概率 1、互斥事件 在一次实验中不能同时发生的事件称为互斥事件。事件A 与事件B 互斥,则 ()()() P A B P A P B =+U 。 2、对立事件 事件A,B 互斥,且其中必有一个发生,称事件A,B 对立,记作B A =或A B =。 ()() 1P A p A =- 。 3、互斥事件与对立事件的联系 对立事件必是互斥事件,即“事件A ,B 对立”是”事件A ,B 互斥“的充分不必要条件。 题型归纳及思路提示 题型176 古典概型 思路提示 首先确定事件类型为古典概型,古典概型特征有二:有限个不同的基本事件及各基本事件发生的可能性是均等的;其次计算出基本事件的总数及事件A 所包含的基本事件数;最后计算 ()A P A = 包含基本事件数 基本事件总数。 例13.1 设平面向量(),1m a m =,()2,n b n = ,其中{}, 1.2,3,4m n ∈ (1)请列出有序数组(),m n 的所有可能结果; (2) 若“使得()m m n a a b ⊥-成立的(),m n 为事件A ,求事件A 发生的概率。 分析:两向量垂直的充要条件是两向量的数量积为0,从而可得m 与n 的关系,再从以上 (),m n 的16个有序数组中筛选出符合条件的,即得事件A 包含的基本事件个数。 解析:(1)由{}, 1.2,3,4m n ∈,有序数组(),m n 的所有可能结果为()1,1 , ()()() 1,2,1,3,1,4, ()()()() 2,1,2,2,2,3,2,4, ()()()() 3,1,3,2,3,3,3,4, ()()()()4,1,4,2,4,3,4,4 共16个。 (2)因为(),1m a m =,()2,n b n =,所以()2,1m n a b m n -=-- .又()m m n a a b ⊥-,得 ()(),12,10m m n ?--= ,即22m 10m n -+-= ,所以()21n m =- 。故事件A 包含的

统计概率高考试题参考答案

统计、概率练习试题 1、【2012高考山东】 (4)在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据都加2后所得数据,则A ,B 两样本的下列数字特征对应相同的是 (A)众数 (B)平均数 (C)中位数 (D)标准差 【答案】D 2、【2012高考四川】交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查。假设四个社区驾驶员的总人数为N ,其中甲社区有驾驶员96人。若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N 为( ) A 、101 B 、808 C 、1212 D 、2012 【答案】B 3、某市有大型超市200家、中型超市400家、小型超市1400家。为掌握各类超市的营业情况,现按分层抽样方法抽取一个容量为100的样本,应抽取中型超市__________家。 4、【2012高考陕西】对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则改样本的中位数、众数、极差分别是 ( ) A .46,45,56 B .46,45,53 C .47,45,56 D .45,47,53 【答案】A. 5、【2012高考湖北】容量为20的样本数据,分组后的频数如下表 则样本数据落在区间[10,40]的频率为 A 0.35 B 0.45 C 0.55 D 0.65 2【答案】B 6、【2012高考广东】由正整数组成的一组数据1234,,,x x x x ,其平均数和中位数都是2,且标准差等于1,则这组数据为 .(从小到大排列) 【答案】1,1,3,3 7、【2012高考山东】右图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5],样本数据的分组为[20.5,21.5), [21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为____.

全国统考2022高考数学一轮复习高考大题专项六概率与统计学案理含解析北师大版

高考数学一轮复习: 概率与统计 高考大题专项(六) 概率与统计 考情分析 一、考查范围全面 概率与统计解答题对知识点的考查较为全面,近五年的试题考点覆盖了概率与统计必修与选修的各个章节内容,考查了抽样方法、统计图表、数据的数字特征、用样本估计总体、回归分析、相关系数的计算、独立性检验、古典概型、条件概率、相互独立事件的概率、独立重复试验的概率、离散型随机变量的分布列、数学期望与方差、超几何分布、二项分布、正态分布等基础知识和基本方法. 二、考查方向分散 从近五年的高考试题来看,对概率与统计的考查主要有四个方面:一是统计与统计案例,其中回归分析、相关系数的计算、独立性检验、用样本的数字特征估计总体的数字特征是考查重点,常与抽样方法、茎叶图、频率分布直方图、概率等知识交汇考查;二是统计与概率分布的综合,常与抽样方法、茎叶图、频率分布直方图、频率、概率以及函数知识、概率分布列等知识交汇考查;三是期望与方差的综合应用,常与离散型随机变量、概率、相互独立事件、二项分布等知识交汇考查;四是以生活中的实际问题为背景将正态分布与随机变量的期望和方差相结合综合考查. 三、考查难度稳定 高考对概率与统计解答题的考查难度稳定,多年来都控制在中等或中等偏上一点的程度,解答题一般位于试卷的第18题或第19题的位置.近两年有难度提升的趋势,位置有所后调. 典例剖析 题型一相关关系的判断及回归分析 【例1】近年来,随着互联网技术的快速发展,共享经济覆盖的范围迅速扩张,继共享单车、共享汽车之后,共享房屋以“民宿”“农家乐”等形式开始在很多平台上线.某创业者计划在某景区附近租赁一套农房发展成特色“农家乐”,为了确定未来发展方向,此创业者对该景区附近六家“农家乐”跟踪调查了100天.得到的统计数据如下表,x为收费标准(单位:元/日),t为入住天数(单位:天),以频率作为各自的“入住率”,收费标准x与“入住率”y的散点图如图. x50100150200300400 t906545302020

2020高考数学最可能考的50道题

高考数学历年考点框架 理科数学每年必考知识点: 复数、程序框图、三视图、函数与导数、三角函数、圆锥曲线、球的组合体、(计数原理、概率与统计模块)等。 理科数学每年常考的知识点: 常用逻辑用语、集合、线性规划、数列、平面向量、解三角形、定积分、直线与圆等。 最后冲刺指导(14个专题) 1、集合与常用逻辑用语小题 (1)集合小题 历年考情: 针对该考点,近9年高考都以交并补子运算为主,多与解不等式等交汇,新定义运算也有较小的可能,但是难度较低;基本上是每年的送分题,相信命题小组对集合题进行大幅变动的决心不大。 常见集合元素限定条件;对数不等式、指数不等式、分式不等式、一元二次不等式、绝对值不等式、对数函数的定义域、二次根式、、点集(直线、圆、方程组的解);补集、交集和并集;不等式问题画数轴很重要;指数形式永远大于0不要忽记;特别注意代表元素的字母是还是。 2020高考预测:

(2)常用逻辑用语小题 历年考情: 9年高考中2017年在复数题中涉及真命题这个概念.这个考点包含的小考点较多,并且容易与函数,不等式、数列、三角函数、立体几何交汇,热点就是“充要条件”;难点:否定与否命题;冷点:全称与特称(2015考的冷点),思想:逆否.要注意,这类题可以分为两大类,一类只涉及形式的变换,比较简单,另一类涉及命题真假判断,比较复杂。 简单叙述:小范围是大范围的充分不必要;大范围是小范围的必要不充分。 2020高考预测:

2、复数小题 历年考情: 9年高考,每年1题,考查四则运算为主,偶尔与其他知识交汇,难度较小.考查代数运算的同时,主要涉及考查概念有:实部、虚部、共轭复数、复数的模、对应复平面的点坐标、复数运算等。 无法直接计算时可以先设z=a+b i 2020高考预测: 3、平面向量小题 历年考情:

2019届理科数学高考中的概率与统计问题

2019届理科数学 高考中的概率与统计问题 一、选择题(每小题5分,共15分) 1.某市园林绿化局在名贵树木培埴基地种了一批红豆杉树苗,为了解这批红豆杉树苗的生长状况,随机抽取了15株进行检测,这15株红豆杉树苗的高度(单位:cm)的茎叶图如图6-1所示,利用样本估计总体的思想,求培埴基地种植的这批红豆杉树苗的高度在(140,145)内的概率为 () 图6-1 A.0.3 B.0.4 C.0.2 D.0.1 2.如图6-2,正方形BCDE和正方形ABFG的边长分别为2a和a,连接CE和CG,现将一把芝麻随机地撒在该图形中,则芝麻落在阴影部分的概率是() 图6-2 A. B. C. D. 3.日常生活中,常听到一些谚语、俗语,比如“三个臭皮匠,顶个诸葛亮”,这句话有没有道理呢?我们假设三个臭皮匠中的老大、老二、老三能独立解出同一道问题的概率依次是0.6,0.5,0.4,而诸葛亮能独立解出同一道问题的概率是0.9,则三个臭皮匠与诸葛亮解出同一道问题的概率较大的是() A.三个臭皮匠 B.诸葛亮 C.一样大 D.无法确定 二、填空题(每小题5分,共10分) 4.已知函数f(x)=log2x+2log4x,其中x∈(0,4],若在[,4]上随机取一个数x0,则f(x0)≤0的概率 为. 5.第十三届全运会于2017年8月27日在天津举行,在自由体操比赛中,5位评委给甲、乙两位体操运动员打分(满分为30分)的茎叶图如图6-3所示,则甲、乙两位体操运动员中,得分的方差较大的是.(填甲或乙) 图6-3

三、解答题(共36分) 6.(12分)已知鸡的产蛋量与鸡舍的温度有关.为了确定某一个时段鸡舍的控制温度,某企业需要了解鸡舍的时段控制温度x(单位:℃)对某种鸡的时段产蛋量y(单位:t)和时段投入成本z(单位:万元)的影响.为此,该企业选取了7个鸡舍的时段控制温度x i和产蛋量y i(i=1,2,…,7)的数据,对数据初步处理后得到了如图6-4所示的散点图及一些统计量的值.其中k i=ln y i,=k i. 图6-4 (1)根据散点图判断,y=bx+a与y=c1(e为自然对数的底数)哪一个适宜作为该种鸡的时段产蛋量y关于鸡舍的时段控制温度x的回归方程类型?(给出判断即可,不必说明理由) (2)根据(1)的判断及表中的数据,建立y关于x的回归方程; (3)已知时段投入成本z与x,y的关系为z=e-2.5y-0.1x+10,当鸡舍的时段控制温度为28 ℃时,鸡的时段产蛋量及时段投入成本的预报值是多少? 附:对于一组具有线性相关关系的数据(u1,v1),(u2,v2),…,(u n,v n),其回归直线v=βu+α的斜率和截 距的最小二乘估计分别为=(-)(-) (-) , ^ =-. 参考数据:

概率与统计高考题经典

2009年高考数学试题分类汇编——概率与统计 一、选择题 1.(2009山东卷理)某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的 产品净重(单位:克)数据绘制的频率分布直方图,其中产品 净重的范围是[96,106],样本数据分组为[96,98),[98,100), [100,102),[102,104),[104,106],已知样本中产品净重小于 100克的个数是36,则样本中净重大于或等于98克并且 小于104克的产品的个数是( ). A.90 B.75 C. 60 D.45 【解析】:产品净重小于100克的概率为(0.050+0.100)×2=0.300, 已知样本中产品净重小于100克的个数是36,设样本容量为n , 则300.036=n ,所以120=n ,净重大于或等于98克并且小于 104克的产品的概率为(0.100+0.150+0.125)×2=0.75,所以样本 中净重大于或等于98克并且小于104克的产品的个数是 120×0.75=90.故选A. 答案:A 【命题立意】:本题考查了统计与概率的知识,读懂频率分布直方图,会计算概率以及样本中有 关的数据. 2.(2009山东卷理)在区间[-1,1]上随机取一个数x ,cos 2x π的值介于0到21之间的概率为( ). A.31 B.π 2 C.21 D.32 【解析】:在区间[-1,1]上随机取一个数x,即[1,1]x ∈-时,要使cos 2x π的值介于0到2 1之间,需使223x πππ-≤≤-或322x πππ≤≤∴213x -≤≤-或213x ≤≤,区间长度为3 2,由几何概型知cos 2x π的值介于0到21之间的概率为31232 =.故选A. 答案:A 【命题立意】:本题考查了三角函数的值域和几何概型问题,由自变量x 的取值范围,得到函数96 98 100 102 104 106 0.150 0.125 0.100 0.075 0.050 克 频率/组距 第8题图

高考数学概率大题专项题型

高考数学概率大题专项题型 一.解答题 1.某年级星期一至星期五每天下午排3节课,每天下午随机选择1节作为综合实践课(上 午不排该课程),张老师与王老师分别任教甲、乙两个班的综合实践课程. (1)求这两个班“在星期一不同时上综合实践课”的概率; (2)设这两个班“在一周中同时上综合实践课的节数”为X,求X的概率分布表与数学期望E (X). 2.甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人都没 猜对,则“星队”得0分.已知甲每轮猜对的概率是,乙每轮猜对的概率是;每轮活动中甲、乙猜对与否互不影响.各轮结果亦互不影响.假设“星队”参加两轮活动,求: (I)“星队”至少猜对3个成语的概率; (II)“星队”两轮得分之和为X的分布列和数学期望EX. 3.某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别 为3,3,4,现从这10人中随机选出2人作为该组代表参加座谈会. (1)设A为事件“选出的2人参加义工活动次数之和为4”,求事件A发生的概率;

(2)设X为选出的2人参加义工活动次数之差的绝对值,求随机变量X的分布列和数学期望. 4.某商场一号电梯从1层出发后可以在2、3、4层停靠.已知该电梯在1层载有4位乘客,假设每位乘客在2、3、4层下电梯是等可能的. (Ⅰ)求这4位乘客中至少有一名乘客在第2层下电梯的概率; (Ⅱ)用X表示4名乘客在第4层下电梯的人数,求X的分布列和数学期望. 5.集成电路E由3个不同的电子元件组成,现由于元件老化,三个电子元件能正常工作的 概率分别降为,,,且每个电子元件能否正常工作相互独立,若三个电子元件中至少 有2个正常工作,则E能正常工作,否则就需要维修,且维修集成电路E所需费用为100元.(Ⅰ)求集成电路E需要维修的概率; (Ⅱ)若某电子设备共由2个集成电路E组成,设X为该电子设备需要维修集成电路所需的

概率论中几种常用重要分布

概率论中几种常用的重要的分布 摘要:本文主要探讨了概率论中的几种常用分布,的来源和他们中间的关系。其在实际中的应用。 关键词 1 一维随机变量分布 随机变量的分布是概率论的主要内容之一,一维随机变量部分要介绍六中常 用分布,即( 0 -1) 分布、二项分布、泊松分布、均匀分布、指数分布和正态分布. 下面我们将对这六种分布逐一地进行讨论. 随机事件是按试验结果而定出现与否的事件。它是一种“定性”类型的概念。为了进一步研究有关随机试验的问题,还需引进一种“定量”类型的概念,即,根据试验结果而定取什么值(实值或向量值)的变数。称这种变数为随机变数。本章内将讨论取实值的这种变数—— 一维随机变数。 定义1.1 设X 为一个随机变数,令 ()([(,)])([]),()F x P X x P X x x =∈-∞=-∞ +∞. 这样规定的函数()F x 的定义域是整个实轴、函数值在区间[0,1]上。它是一个普通的函数。成这个函数为随机函数X 的分布函数。 有的随机函数X 可能取的值只有有限多个或可数多个。更确切地说:存在着有限多个值或可数多个值12,,...,a a 使得 12([{,,...}])1P X a a ∈= 称这样的随机变数为离散型随机变数。称它的分布为离散型分布。 【例1】下列诸随机变数都是离散型随机变数。 (1)X 可能取的值只有一个,确切地说,存在着一个常数a ,使([])1P X a ==。称这种随机变数的分布为退化分布。一个退化分布可以用一个常数a 来确定。 (2)X 可能取的值只有两个。确切地说,存在着两个常数a ,b ,使 ([{,}])1P X a b ∈=.称这种随机变数的分布为两点分布。如果([])P X b p ==,那 么,([])1P X a p ===-。因此,一个两点分布可以用两个不同的常数,a b 及一个在区间(0,1)内的值p 来确定。 特殊地,当,a b 依次为0,1时,称这两点分布为零-壹分布。从而,一个零-壹分布可以用一个在区间(0,1)内的值p 来确定。 (3)X 可能取的值只有n 个:12,...,a a (这些值互不相同),且,取每个i a 值

2020年高考数学(理)热点题型:概率与统计(含答案)

概率与统计 热点一 常见概率模型的概率 几何概型、古典概型、相互独立事件与互斥事件的概率、条件概率是高考的热点,几何概型主要以客观题考查,求解的关键在于找准测度(面积,体积或长度);相互独立事件,互斥事件常作为解答题的一问考查,也是进一步求分布列,期望与方差的基础,求解该类问题要正确理解题意,准确判定概率模型,恰当选择概率公式. 【例1】现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏. (1)求这4个人中恰有2人去参加甲游戏的概率; (2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率; (3)用X ,Y 分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X -Y |,求随机变量ξ的分布列. 解 依题意,这4个人中,每个人去参加甲游戏的概率为1 3,去参加乙游戏的概率为23. 设“这4个人中恰有i 人去参加甲游戏”为事件A i (i =0,1,2,3,4). 则 P (A i )=C i 4? ??? ? 13i ? ?? ??234-i . (1)这4个人中恰有2人去参加甲游戏的概率 P (A 2)=C 24? ??? ? 132? ?? ??232=8 27. (2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏的人数”为事件B ,则B =A 3+A 4,且A 3与A 4互斥, ∴P (B )=P (A 3+A 4)=P (A 3)+P (A 4)=C 34? ??? ?133 ×23+C 44? ?? ??134=19. (3)依题设,ξ的所有可能取值为0,2,4. 且A 1与A 3互斥,A 0与A 4互斥.

经典高考概率分布类型题归纳

经典高考概率分布类型 题归纳 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

经典高考概率分布类型题归纳 高考真题 一、超几何分布类型 二、二项分布类型 三、超几何分布与二项分布的对比 四、古典概型算法 五、独立事件概率分布之非二项分布(主要在于如何分类) 六、综合算法 高考真题 2010年 22、(本小题满分10分)(相互独立事件) 某工厂生产甲、乙两种产品,甲产品的一等品率为80%,二等品率为20%;乙产品的一等品率为90%,二等品率为10%。生产1件甲产品,若是一等品则获得利润4万元,若是二等品则亏损1万元;生产1件乙产品,若是一等品则获得利润6万元,若是二等品则亏损2万元。设生产各种产品相互独立。 (1)记X (单位:万元)为生产1件甲产品和1件乙产品可获得的总利润,求X 的分布 列; (2)求生产4件甲产品所获得的利润不少于10万元的概率。 【解析】本题主要考查概率的有关知识,考查运算求解能力。满分10分。 (1)由题设知,X 的可能取值为10,5,2,-3,且 P (X=10)=0.8×0.9=0.72, P (X=5)=0.2×0.9=0.18, P (X=2)=0.8×0.1=0.08, P (X=-3)=0.2×0.1=0.02。 由此得X 的分布列为: (2)设生产的4件甲产品中一等品有n 件,则二等品有4n -件。 由题设知4(4)10n n --≥,解得14 5 n ≥, 又n N ∈,得3n =,或4n =。 所求概率为3 344 0.80.20.80.8192P C =??+= 答:生产4件甲产品所获得的利润不少于10万元的概率为0.8192。

概率经典例题及解析、近年高考题50道带答案解析

概率经典例题及解析、近年高考题50道带答 案解析 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

【经典例题】 【例1】(2012湖北)如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是 A .1- 2π B . 12 - 1π C . 2π D . 1π 【答案】A 【解析】令OA=1,扇形OAB 为对称图形,ACBD 围成面积为S 1,围成OC 为S 2,作对称轴OD ,则过 C 点.S 2即为以OA 为直径的半圆面积减去三角形OAC 的面积,S 2= π2 ( 12 )2- 12 × 12 × 12 = π-28 .在扇形 OAD 中 S 12 为扇形面积减去三角形OAC 面积和 S 22 , S 12 = 18 π×12- 18 - S 22 = π-216 ,S 1+S 2= π-2 4 ,扇形OAB 面积S= π 4 ,选A . 【例2】(2013湖北)如图所示,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为X ,则X 的均值E(X)=( ) A. 126125 B. 65 C. 168125 D. 75 【答案】B 【解析】X 的取值为0,1,2,3且P(X =0)=27125,P(X =1)=54125,P(X =2)=36125,P(X =3)=8 125,故E(X)=0×27125+1×54125+2×36125+3×8125=6 5,选B. 【例3】(2012四川)节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是( ) A. 14 B. 12 C. 34 D. 78 【答案】C

常用的概率分布类型其特征

常用的概率分布类型及其特征 3.1 二点分布和均匀分布 1、两点分布 许多随机事件只有两个结果。如抽检产品的结果合格或不合格;产品或者可靠的工作,或者失效。描述这类随机事件变量只有两个取值,一般取0和1。它服从的分布称两点分布。 其概率分布为: 其中 Pk=P(X=Xk),表示X取Xk值的概率: 0≤P≤1。 X的期望 E(X)=P X的方差 D(X)=P(1—P) 2、均匀分布 如果连续随机变量X的概率密度函数f(x)在有限的区间[a,b]上等于一

个常数,则X服从的分布为均匀分布。 其概率分布为: X的期望 E(X)=(a+b)/2 X的方差 D(X)=(b-a)2/12 3.2 抽样检验中应用的分布 3.2.1 超几何分布 假设有一批产品,总数为N,其中不合格数为d,从这批产品中随机地抽出n件作为被检样品,样品中的不合格数X服从的分布称超几何分布。 X的分布概率为: X=0,1,…… X的期望 E(X)=nd/N

X的方差 D(X)=((nd/N)((N-d)/N)((N-n)/N))(1/2)3.2.2 二项分布 超几何分布的概率公式可以写成阶乘的形式,共有9个阶乘,因而计算起来十分繁琐。二项分布就可以看成是超几何分布的一个简化。 假设有一批产品,不合格品率为P,从这批产品中随机地抽出n件作为被检样品,其中不合格品数X服从的分布为二项分布。 X的概率分布为: 0

高中数学概率大题(经典一)

高中数学概率大题(经典一) 一.解答题(共10小题) 1.在一次运动会上,某单位派出了有6名主力队员和5名替补队员组成的代表队参加比赛.(1)如果随机抽派5名队员上场比赛,将主力队员参加比赛的人数记为X,求随机变量X 的数学期望; (2)若主力队员中有2名队员在练习比赛中受轻伤,不宜同时上场;替补队员中有2名队员身材相对矮小,也不宜同时上场;那么为了场上参加比赛的5名队员中至少有3名主力队员,教练员有多少种组队方案? 2.某银行柜台设有一个服务窗口,假设顾客办理业务所需的时间互相独立,且都是整数分 (1)估计第三个顾客恰好等待4分钟开始办理业务的概率; (2)X表示至第2分钟末已办理完业务的顾客人数,求X的分布列及数学期望. 3.某单位举办2010年上海世博会知识宣传活动,进行现场抽奖.盒中装有9张大小相同的精美卡片,卡片上分别印有“世博会会徽”或“海宝”(世博会吉祥物)图案;抽奖规则是:参加者从盒中抽取卡片两张,若抽到两张都是“海宝”卡即可获奖,否则,均为不获奖.卡片用后放回盒子,下一位参加者继续重复进行. (1)有三人参加抽奖,要使至少一人获奖的概率不低于,则“海宝”卡至少多少张? (2)现有甲乙丙丁四人依次抽奖,用ξ表示获奖的人数,求ξ的分布列及Eξ的值. 4.一袋中有m(m∈N*)个红球,3个黑球和2个白球,现从中任取2个球. (1)当m=4时,求取出的2个球颜色相同的概率; (2)当m=3时,设ξ表示取出的2个球中黑球的个数,求ξ的概率分布及数学期望; (3)如果取出的2个球颜色不相同的概率小于,求m的最小值. 5.某商场为促销设计了一个抽奖模型,一定数额的消费可以获得一张抽奖券,每张抽奖券可以从一个装有大小相同的4个白球和2个红球的口袋中一次性摸出3个球,至少摸到一个红球则中奖. (Ⅰ)求一次抽奖中奖的概率; (Ⅱ)若每次中奖可获得10元的奖金,一位顾客获得两张抽奖券,求两次抽奖所得的奖金额之和X(元)的概率分布和期望E(X). 6.将一枚硬币连续抛掷15次,每次抛掷互不影响.记正面向上的次数为奇数的概率为P1,正面向上的次数为偶数的概率为P2. (Ⅰ)若该硬币均匀,试求P1与P2; (Ⅱ)若该硬币有暇疵,且每次正面向上的概率为,试比较P1与P2的大小. 7.某地位于甲、乙两条河流的交汇处,根据统计资料预测,今年汛期甲河流发生洪水的概率为0.25,乙河流发生洪水的概率为0.18(假设两河流发生洪水与否互不影响).现有一台大型设备正在该地工作,为了保护设备,施工部门提出以下三种方案:

概率大题题型总结(高三精华)

高考统计与概率理科大题类型总结 读表类型 1、(2012湖北卷)根据以往的经验,某工程施工期间的降水量X (单位:mm )对工期的影响如下表: 历年气象资料表明,该工程施工期间降水量X 小于300,700,900的概率分别为0.3,0.7,0.9. 求: (1)工期延误天数Y 的均值与方差; (2)在降水量X 至少是300的条件下,工期延误不超过6天的概率. 2、(2012陕西卷)某银行柜台设有一个服务窗口,假设顾客办理业务所需的时间互相独立,且都是整数分钟,对以往顾客办理业务所需的时间统计结果如下: 办理业务所需的时间(分) 1 2 3 4 5 频率 0.1 0.4 0.3 0.1 0.1 从第一个顾客开始办理业务时计时. (1)估计第三个顾客恰好等待4分钟开始办理业务的概率; (2)X 表示至第2分钟末已办理完业务的顾客人数,求X 的分布列及数学期望. 3、(2012湖南卷)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示. 一次购物量 1至4件 5至8件 9至12件 13至16件 17件及以上 顾客数(人) x 30 25 y 10 结算时间(分钟/人) 1 1.5 2 2.5 3 已知这100位顾客中的一次购物量超过8件的顾客占55% (1)确定,x y 的值,并求顾客一次购物的结算时间 X 的分布列与数学期望; (2)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过...2.5分钟的概率.(注:将频率视为概率) 降水量X 300X < 300700X ≤< 700900X ≤< 900X ≥ 工期延误天数Y 2 6 10

(完整)统计与概率高考真题试题

统计与概率高考真题练习 1.(2014全国1) (本小题满分12分)从某企业的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图: (I )求这500件产品质量指标值的样本平均数x 和样本方差2s (同一组数据用该区间的中点值作代表); (Ⅱ)由频率分布直方图可以认为,这种产品的质量指标值Z 服从正态分布2(,)N μδ,其中μ近似为样本平均数x ,2δ近似为样本方差2s . (i )利用该正态分布,求(187.8212.2)P Z <<; (ii )某用户从该企业购买了100件这种产品,记X 表 示这100件产品中质量指标值为于区间(187.8,212.2) 的产品件数,利用(i )的结果,求EX . 2.(2014全国2)(12分)某地区2007年至2013年农村居民家庭人均纯收入y (单位:千元)的数据如下表: 年份 2007 2008 2009 2010 2011 2012 2013 年份代号t 1 2 3 4 5 6 7 人均纯收入y 2.9 3.3 3.6 4.4 4.8 5.2 5.9 (Ⅰ)求y 关于t 的线性回归方程; (Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入. 附:回归直线的斜率和截距的最小二乘估计公式分别为:=,=﹣. 3.(2015全国1)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费i x 和年销售量(1,2,...,8)i y i =数据作了初步处理,得到下面的散点图及一些统计量的值。 x r y u r w u r 821()i i x x =-∑ 821()i i w w =-∑ 81()()i i i x x y y =--∑ 81()()i i i w w y y =--∑ 46.6 563 6.8 289.8 1.6 1469 108.8

相关主题