搜档网
当前位置:搜档网 › 5.2 微积分基本公式-习题

5.2 微积分基本公式-习题

5.2 微积分基本公式-习题
5.2 微积分基本公式-习题

1.设函数0

cos x

y tdt =

?,求'(0)y ,'()4

y π。 【解】由题设得'()cos y x x =,

于是得 '(0)cos01y ==,'()cos

4

4

2

y ππ

==

。 2.计算下列各导数:

⑴20x d dx

?;

【解】20x d dx

?2)x =2= ⑵

1t

d dt dx ;

【解】1t

d dt dx 1

()t d

dt dx =-=-=。 ⑶

cos 2

sin cos()x x d t dt dx

π?; 【解】cos 2sin cos()x x d t dt dx π?0cos 2

2sin 0[cos()cos()]x x

d t dt t dt dx ππ=+?? 》

0cos 22

sin 0cos()cos()x x d d t dt t dt dx dx ππ=

+??

sin cos 2200

[cos()]cos()x x

d d t dt t dt dx dx ππ=-+?? 22cos(sin )(sin )cos(cos )(cos )d d

x x x x dx dx ππ=-+

22cos(sin )cos cos[(1sin )](sin )x x x x ππ=-+--

22cos(sin )cos cos(sin )sin x x x x πππ=---

22cos(sin )cos cos(sin )sin x x x x ππ=-+

2cos(sin )(sin cos )x x x π=-。

⑷2ln 1

x x d dt dx t

?。 【解】

2ln 1x x d dt dx t ?21ln 11

1[]x x d dt dt dx t

t =+?? 21ln 111x x d d dt dt dx t dx t

=+?? …

2ln 1111

[]x x d d dt dt dx t dx t =-+??

2

211(ln )()ln d d x x x dx x dx =-+

21112ln x x x x =-?+?

12ln x x x =-+11(2)ln x x

=-。

3.设函数()y y x =由方程0

cos 0y

x

t e dt tdt +=?

?所确定,求

dy

dx

。 【解法一】方程

0cos 0y

x

t e dt tdt +=?

?中完成积分即为 0

sin 0t

y x e t

+=,

亦即为 (1)sin 0y

e x -+=,得知1sin y

e x =-,

解出y ,得ln(1sin )y x =-, 于是得

1cos (1sin )1sin 1sin dy d x x dx x dx x -=-=

--cos sin 1

x x =-。 【解法二】在方程

cos 0y

x

t e dt tdt +=?

?两边对x 求导,注意到()y y x =,得

00[cos ](0)y x t d d

e dt tdt dx dx

+=??

即得 ()cos 0y d e y x dx

+=, 亦即cos 0y dy e

x dx +=,解出dy dx ,得cos y dy x dx e

=-, 方程

0cos 0y

x

t

e dt tdt +=?

?中完成积分即为 0

sin 0t

y

x e t

+=,

亦即为 (1)sin 0y

e x -+=,得知1sin y

e x =-,

再将1sin y

e x =-代入

cos y dy x

dx e

=-中, 得cos cos 1sin sin 1dy x x dx x x =-=--。 4.设0sin t x udu =?,0cos t y udu =?,求dy

dx

【解】问题是由参数方程求导

【解法一】dy dy dt dx dx dt =0

cos sin t

t

d udu dt d udu dt =??cos cot sin t t t ==。 ~

【解法二】

dy dx 00

cos sin t

t

d udu

d udu =??

cos sin tdt tdt =cos cot sin t

t t

==。

5.求下列极限: ⑴20

cos lim

x

x t dt x

→?

【解】这是“

”未定型极限,应用洛必达法则,得 20

0cos lim

x

x t dt x

→?2

0cos lim 1

x x →=2cos 01==。 ⑵0

2

arctan lim

x

x tdt x →?;

【解】这是“

”未定型极限,应用洛必达法则,得 0

2

arctan lim

x

x tdt x →?0arctan lim

2x x

x

→= ---- 应用洛必达法则

2

01

1lim 2

x x →+= ---- 再次应用洛必达法则 $

21112102

=?=+。

⑶2

2

lim

x x x

→?

【解】这是“

”未定型极限,应用洛必达法则,得

2

2

lim

x x x →

?0x →= ---- 应用洛必达法则

0x →= ---- 完成求导2()'x

x →= ---- 整理

1=。

⑷2

2

2

00

20

()lim

x

t x

x t e dt te dt

→??

【解】这是“

”未定型极限,应用洛必达法则,得 2

2

2

00

20

()

lim

x

t x

x t e dt te dt

→??

2

2

2

020

2lim

x

x t t x

x d e dt e dt dx xe →?

=?? ---- 应用洛必达法则

22

2

20

2lim

x

t x

x

x e dt e xe →?=? ---- 完成求导

2

0x t d e dt dx

? 2

2

2lim

x

t x

x e dt

xe →=? ---- 分子分母同消去2

x e

2

2

2

20

2lim

2x x

x x e

e x e

→=+ ---- 再次应用洛必达法则

2

02lim 12x x →=+ ---- 分子分母同消去2

x e 222120

==+?。 6.当x 为何值时,函数2

()x

t I x te dt -=?

有极值。

【解】由给定的函数2

()x

t I x te dt -=

?

可见,其定义域为(,)-∞+∞,

由于2

'()x I x xe -=,可得()I x 有唯一驻点0x =,无不可导点, 显见,当0x <时,'()0I x <,当0x >时,'()0I x >, 可知,函数()I x 在点0x =处取得极小值。

,

7.计算下列定积分:

2

241

1

()x dx x +

?; 【解】22

411()x dx x +?32

1

311()

33x x

=-33111

(21)(1)332

=---218=。

4

dx +?

【解】

4

dx +?

1

9

2

4()x x dx =+?32924

21

()

32

x x =+33

222221

(94)(94)32

=-+- 21

(278)(8116)32

=-+-2716=。

21

1dx x +;

【解】

21

1dx x +

arctan

==36ππ=-6

π=。

2201

dx a x +;

【解】2201dx a x +

2

21

11()dx x a a =+

02111()x

d x a a a

=+ (

1a

=

1arctan 0)a =

-

1

a

=

13a π=?3a π=。

⑸420

21331

1

x x dx x -+++?; 【解】420

213311x x dx x -+++?02211(3)1

x dx x -=++?3

1

(arctan )x x -=+

30(1)arctan 0arctan(1)=--+--

10arctan1=++14

π

=+

1

01

1e dx x -+?;

【解】1011e dx x

-+?101

(1)1e d x x -=++?1

ln(1)e x -=+ln ln1e =-1=。

240

tan xdx π

?

【解】2

40

tan xdx π

?

2

40

(sec 1)x dx π=-?40

(tan )

x x π

=-tan

4

4

π

π

=-

14

π

=-

240

cos ()2

x

dx π

?

【解】2

40cos ()2x dx π

?4

01cos 2x dx π

+=?4

1

(sin )2

x x π=+1(sin )244ππ=

+84

π=+

。 ⑼

2

1

2x dx -?

【解】

2

1

2x dx -?

021022x dx x dx -=+??02

10(2)2x dx xdx -=-+??2

2

21

x x -=-+

22[0(1)](20)=---+-5=。

20

sin x dx π

?

【解】

20

sin x dx π

?

20

sin sin x dx x dx ππ

π

=+??

20

sin (sin )xdx x dx ππ

π

=+-??

20

cos cos x

x

π

π

π

=-+(cos cos0)(cos 2cos )πππ=--+-

(11)[1(1)]=---+--4=。

<

【解】

=

340

cos x dx π=

324

2

cos cos ]x dx x dx π

ππ=+?

?324

2

cos cos )xdx xdx π

ππ=-??

3240

2

sin )x

x

π

ππ

=

-3sin 0)(sin

sin )]2

42

π

ππ=---

0)(

1)]2

=--

-1=。 ⑿

2

()f x dx ?

,其中21, 1()1, 12

x x f x x x +≤??

=?>??。

【解】

2

()f x dx ?

12

1

()()f x dx f x dx =+??1

2

2

011(1)2

x dx x dx =++??

213

2

1

11()26

x x x =++11

(1)(81)26

=++-83=。

8.设2, [0,1)

(), [1,2]

x x f x x x ?∈=?∈?,求0

()()x x f t dt Φ=?在[0,2]上的表达式,并讨论()x Φ在

(0,2)内的连续性。

【解】当0x =时,0

()()0x f t dt Φ=

=?

30

13

x x ==

当(0,1)x ∈时,0

()()x

x f t dt Φ=

?

20x

t dt =?3

1

3x t =31

3

x =; [

当1x =时,1

(1)()f t dt Φ=

?

120t dt =?3

1

1

13

3t ==

3113

x x ==21

11()26

x x ==-;

当(1,2)x ∈时,0

()()x

x f t dt Φ=

?

1

1

()()x

f t dt f t dt =+??1

20

1

x t dt tdt =+??

3120

1

1

13

2

x t t =+211(1)32x =+-21126

x =-, 当2x =时,2

(2)()f t dt Φ=

?

12

1

()()f t dt f t dt =+??1

2

20

1

t dt tdt =+??

31

220

1

1132

t t =+211(21)32=+-116=22

11

()

26

x x ==-,

于是,3

21, [0,1)3

()11, [1,2]2

6x x x x x ?∈??Φ=??-∈??,

由于初等函数

313x 在[0,1)内连续,初等函数211

26

x -在(1,2]内连续,故要讨论()x Φ在(0,2)内的连续性,仅须讨论()x Φ在1x =处的连续性,

由于31111lim ()lim 33x x x x --

→→Φ==,211111

lim ()lim()263

x x x x ++

→→Φ=-=, 且(1)Φ2111

()26

x x ==-13=,

可知()x Φ在1x =处连续,

从而,()x Φ在(0,2)内连续。

9.设1sin , 0()20, 0x x f x x x π

π

?≤≤?=??<>?或,求0()()x x f t dt Φ=?在(,)-∞+∞内的表达式。

【解】当0x <时,0

()()x

x f t dt Φ=

?

00x

dt ==?,

当0x π≤≤时,0()()x

x f t dt Φ=

?01sin 2x

tdt =?

01cos 2

x t =-1cos 2x -=, 当x π>时,0()()x x f t dt Φ=?01sin 02x tdt dt ππ=+??01

cos 02

t π=-+ 1

(11)2

=---1=,

于是得0, 01cos (), 021, x x x x x ππ

Φ=≤≤??>??。

10.设13

2

01()()1f x x f x dx x =++?,求10()f x dx ?。

【解】对13

201()()1f x x f x dx x

=++?等号两端在区间[0,1]上积分,注意10()f x dx ?为常数, 得11132

0001()[()]1f x dx x f x dx dx x =++??? ~

1

1132000

1

[()]1dx f x dx x dx x =+?+???

1141

000

1arctan [()]4

x f x dx x =+?? 101

[()]44

f x dx π=+??

即有 11

00

1()()44f x dx f x dx π=+??,

移项,整理即得

1

()3

f x dx π

=

?

11.已知2

12

()()2()f x x x f x dx f x dx =-+?

?,求()f x 。

【解】问题在于求出

1

()f x dx ?

和20

()f x dx ?,可应用上题的方法,

对2

1

20

()()2()f x x x

f x dx f x dx =-+?

?等号两端在区间[0,2]上积分,注意

1

()f x dx ?

和2

()f x dx ?均为常数,

2

()f x dx ?

22212

20

[()][2()]x dx f x dx xdx f x dx dx =-?+??????

2

1

322

22

00

1

1

[()][2()]3

2

x f x dx x f x dx x =-?+??

?

~

21008

2()4()3

f x dx f x dx =-+??

即有 2210008

()2()4()3

f x dx f x dx f x dx =--???,

移项、整理得 21

00

84()()93f x dx f x dx =+??,将其代入题目已知式,得

112

084()[()]2()93f x x x f x dx f x dx =-++??,

12084

(2)()93

x x x f x dx =---?,

再对上式的等号两端在区间[0,1]上积分,得

1

1

1

112

0000084()[()](2)93f x dx x dx xdx f x dx x dx =--?-?????

13121210000142

()(2)393

x x f x dx x x =--?-? 10142

(2)()393

f x dx =---?

即有 11

00

14()()93f x dx f x dx =-+??

移项、整理得

1

1

()3

f x dx =?, 最后得 2

841()(2)933

f x x x x =---?24233x x =-+。

12.设1ln(1)()x

t f x dt t +=

?(0x >),求1

()()f x f x +。 【解】由题设1ln(1)()x t f x dt t +=?,得ln(1)

'()x f x x +=,且11ln(1)(1)0t f dt t +==? 于是又得 1ln(1)1'()1x f x

x +=

1ln x x x +=, 从而有 1[()()]'f x f x +211'()'()f x f x x

-=+2ln(1)11

ln x x x x x x ++-=

+? 11[ln(1)ln ]x x x x +=+-11ln 1x x x

x

+=+1

ln x x =, 这时有 1()()f x f x +1ln xdx x =?2

1ln 2

x c =+,

代入1x =,得 2(1)0f c =+,即0c =,

得到 1()()f x f x +2

1ln 2

x =

。 13.设()f x 连续,若()f x 满足1

()()x f xt dt f x xe =+?

,求()f x 。

【解】设

()()x

f t dt F x c =+?

,则00

(0)()0F f t dt ==?,'()()F x f x =,

于是,1

100

1()()()f xt dt f xt d xt x =??1

01()F xt x =1[()(0)]F x F x =-1()F x x =,

再由题设10()()x f xt dt f x xe =+?,得1()()x

F x f x xe x

=+,

即得2()()x

F x xf x x e =+,

两边求导得 2()()'()2x

x

f x f x xf x xe x e =+++, 即有 '()(2)x

f x x e =-+,

从而 ()(2)x f x x e dx =-+?

(1)x

x e c =-++,

14.设函数()f x 在区间[,]a b 上连续,在(,)a b 内可导且'()0f x ≤,

1()()x

a F x f t dt x a

=

-?, 证明:在(,)a b 内有'()0F x ≤。

【证明】任取(,)x a b ∈,则由题设有,函数()f t 在区间[,]a x 上连续,在(,)a x 内可导且

'()0f t ≤,

那么对于函数1()()x

a F x f t dt x a =-?, 有2

11

'()()()()x

a

F x f t dt f x x a x a

-=

+

--?

2

1

[()()()]()x a x a f x f t dt x a =---?,

令()()()()x

a

g x x a f x f t dt =--

?

,则由已知()f x 在(,)a x 内可导且'()0f t ≤,

得'()()()'()()()'()0g x f x x a f x f x x a f x =+--=-≤恒成立,

可知,()()()()x

a

g x x a f x f t dt =--

?

在(,)a x 上单调递减,

由于()()()()0a

a

g a a a f a f t dt =--=?,

得知()()()()0x

a

g x x a f x f t dt =--≤?

在(,)a x 上成立,

从而21

'()[()()()]0()

x a F x x a f x f t dt x a =

--≤-?在(,)a x 上成立。 再因(,)x a b ∈的任意性,知在(,)a b 内有'()0F x ≤。证毕。

大一微积分公式

有关高等数学计算过程中所涉及到的数学公式(集锦) 一、0 101101lim 0n n n m m x m a n m b a x a x a n m b x b x b n m --→∞?=??+++? =??? (系数不为0的情况) 二、重要公式(1)0sin lim 1x x x →= (2)()1 0lim 1x x x e →+= (3 ))1n a o >= (4 )1n = (5)lim arctan 2x x π→∞= (6)lim tan 2 x arc x π →-∞=- (7)lim arc cot 0x x →∞ = (8)lim arc cot x x π→-∞ = (9)lim 0x x e →-∞ = (10)lim x x e →+∞ =∞ (11)0 lim 1x x x + →= 三、下列常用等价无穷小关系(0x →) sin x x tan x x a r c s i n x x arctan x x 2 11c o s 2 x x - ()ln 1x x + 1x e x - 1l n x a x a - ()11x x ? +-? 四、导数的四则运算法则 ()u v u v '''±=± ()uv u v uv '''=+ 2u u v uv v v '''-??= ??? 五、基本导数公式 ⑴()0c '= ⑵1 x x μμμ-= ⑶()sin cos x x '= ⑷()cos sin x x '=- ⑸()2 tan sec x x '= ⑹()2 cot csc x x '=- ⑺()sec sec tan x x x '=? ⑻()csc csc cot x x x '=-? ⑼()x x e e '= ⑽()ln x x a a a '= ⑾()1 ln x x '=

最新大学各种微积分公式

大学各种微积分公式 考务论坛-考巴精修版 关于高等数学计算中涉及的数学公式(集) 一、 (如果系数不是0) 二、重要公式(1) (2)(3)(4)(5)(6)(7)(8)(9)(10)(11)3 、以下常见等价无穷小关系() 四、导数的四种算法 五、基本导数公式 (1)(2)(4)(5)(6)(7)(9)(10)(11)(13)(14)(16)(18)(6 、高阶导数算法) (1) (2) (3) (4)七的N阶导数公式、基本初等函数 (1) (2) (3) (4) (5) (6) (7) 8 、微分公式和微分算法 (1)(2)(4)(5)(6)(7)(9)(10)(11)(13)(14)(9 、微分算法) (1) (2) (3) (4)十、基本积分公式 (1) (2) (3) (5) (6) (7) (9) (10) (11 、下列常用的微分方程 积分变换公式12 、补充了以下积分公式 十三、零件公式积分 (1)形式,秩序,形式,秩序,(2)形式,秩序,形式,秩序,(3)形式,秩序。第二代换积分法中的14 、三角代换公式 (1) (2) (3) 特殊角度的[三角函数值] (1)(2) (3)(4)(5) (1)(2)(3)(4)(5)(1)(2)(3)(4)不存在(5)(1)不存在

(2)(3)(4)(5)不存在15 、三角函数公式 1. 2角求和公式 2.双角度公式 3.半角公式 4.和微分积公式 5.乘积和差公式 6.通用公式 7.平方关系 8.倒数关系 9.商关系 十六、几个常见的微分方程 1.可分离变量的微分方程; , 2.齐次微分方程: 3.一阶线性非齐次微分方程;解为:

《高等数学教程》第十一章重积分习题参考答案

《高等数学教程》第十一章 重积分 习题参考答案 习题11-1 1.(,)D Q x y d μσ=??. 3.(1)0; (2)0; (3)124I =I 4.(1)12I ≥I ; (2) 12I ≤I ; (3)12I ≥I ; (4) 12I ≤I . 5.(1)02≤I ≤; (2)20π≤I ≤; (3)28≤I ≤; (4)36100ππ≤I ≤. 习题11-2(A) 1. (1)4 0(,)x dx f x y dy ?? 或240 4 (,)y y dy f x y dx ??; (2)122 20 1 2 2 (,)(,)x x x x dx f x y dy dx f x y dy +????或2122 1 2 2 (,)(,)y y y y dy f x y dx dy f x y dx +????; (3)2 2 4 (,)x x f x y dy -?或240 2 (,)(,)dy f x y dx dy f x y dx +??. 2. (1)4 2 (,)x dx f x y dy ??; (2) 10 1(,)y dy f x y dx ?? ; (3)1 10 2(,)y dy f x y dx -?? ; (4) 1 (,)y e e dy f x y dx ? ?. 3. (1) 203; (2)32π-; (3)655; (4)64 15; (5)1e e -- 4. (1)92; (2)211 22e e -+. 5. 335. 6. (1)20 (cos ,sin )b a d f r r rdr π θθθ??; (2)2cos 20 2 (cos ,sin )d f r r rdr π θ πθθθ- -?? ; (3)1 (cos sin )20 (cos ,sin )d f r r rdr π θθθθθ-+?? ; (4)3sec tan cot 44 4 (cos ,sin )(cos ,sin )d f r r rdr d f r r rdr π πθθ θ πθθθθθθ+++?? ??

大学高数常用公式大全

高等数学公式 导数公式: 基本积分表: 三角函数的有理式积分: 2 22212211cos 12sin u du dx x tg u u u x u u x += =+-=+=, , ,  a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(2 2 = '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 ππ

5.2 微积分基本公式-习题

1.设函数0 cos x y tdt = ?,求'(0)y ,'()4 y π。 【解】由题设得'()cos y x x =, 于是得 '(0)cos01y ==,'()cos 4 4 2 y ππ == 。 2.计算下列各导数: ⑴20x d dx ?; 【解】20x d dx ?2)x =2= ⑵ 1t d dt dx ; 【解】1t d dt dx 1 ()t d dt dx =-=-=。 ⑶ cos 2 sin cos()x x d t dt dx π?; 【解】cos 2sin cos()x x d t dt dx π?0cos 2 2sin 0[cos()cos()]x x d t dt t dt dx ππ=+?? 》 0cos 22 sin 0cos()cos()x x d d t dt t dt dx dx ππ= +?? sin cos 2200 [cos()]cos()x x d d t dt t dt dx dx ππ=-+?? 22cos(sin )(sin )cos(cos )(cos )d d x x x x dx dx ππ=-+ 22cos(sin )cos cos[(1sin )](sin )x x x x ππ=-+-- 22cos(sin )cos cos(sin )sin x x x x πππ=--- 22cos(sin )cos cos(sin )sin x x x x ππ=-+ 2cos(sin )(sin cos )x x x π=-。 ⑷2ln 1 x x d dt dx t ?。 【解】 2ln 1x x d dt dx t ?21ln 11 1[]x x d dt dt dx t t =+?? 21ln 111x x d d dt dt dx t dx t =+?? …

常用微积分公式大全

常用微积分公式大全 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

常用微积分公式 基本积分公式均直接由基本导数公式表得到,因此,导数运算的基础好坏直接影响积分的能力,应熟记一些常用的积分公式. 因为求不定积分是求导数的逆运算,所以由基本导数公式对应可以得到基本积分公式.。 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

对这些公式应正确熟记.可根据它们的特点分类来记. 公式(1)为常量函数0的积分,等于积分常数. 公式(2)、(3)为幂函数的积分,应分为与. 当时,, 积分后的函数仍是幂函数,而且幂次升高一次. 特别当时,有. 当时, 公式(4)、(5)为指数函数的积分,积分后仍是指数函数,因为 ,故(,)式右边的是在分母,不在分子,应记清. 当时,有. 是一个较特殊的函数,其导数与积分均不变. 应注意区分幂函数与指数函数的形式,幂函数是底为变量,幂为常数;指数函数是底为常数,幂为变量.要加以区别,不要混淆.它们的不定积分所采用的公式不同. 公式(6)、(7)、(8)、(9)为关于三角函数的积分,通过后面的学习还会增加其他三角函数公式.

公式(10)是一个关于无理函数的积分 公式(11)是一个关于有理函数的积分 下面结合恒等变化及不定积分线性运算性质,举例说明如何利用基本积分公式求不定积分. 例1 求不定积分. 分析:该不定积分应利用幂函数的积分公式. 解: (为任意常数) 例2 求不定积分. 分析:先利用恒等变换“加一减一”,将被积函数化为可利用基本积分公式求积分的形式. 解:由于,所以 (为任意常数) 例3 求不定积分.

微积分基本教程48502

微积分教程 微积分(Calculus)是高等数学中研究函数的微分、积分以及有关概念和应用的数学分支。它是数学的一个基础学科。内容主要包括极限极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。 微积分的基本介绍 微积分学基本定理指出,求不定积分与求导函数互为逆运算[把上下限代入不定积分即得到积分值,而微分则是导数值与自变量增量的乘积],这也是两种理论被统一成微积分学的原因。我们可以以两者中任意一者为起点来讨论微积分学,但是在教学中,微分学一般会先被引入。 微积分学是微分学和积分学的总称。它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。十七世纪后半叶,牛顿和莱布尼茨完成了许多数学家都参加过准备的工作,分别独立地建立了微积分学。他们建立微积分的出发点是直观的无穷小量,但是理论基础是不牢固的。因为“无限”的概念是无法用已经拥有的代数公式进行演算,所以,直到十九世纪,柯西和维尔斯特拉斯建立了极限理论,康托尔等建立了严格的实数理论,这门学科才得以严密化。 学习微积分学,首要的一步就是要理解到,“极限”引入的必要性:因为,代数是人们已经熟悉的概念,但是,代数无法处理“无限”的概念。所以,必须要利用代数处理代表无限的量,这时就精心构造了“极限”的概念。在“极限”的定义中,我们可以知道,这个概念绕过了用一个数除以0的麻烦,相反引入了一个过程任意小量。就是说,除的数不是零,所以有意义,同时,这个小量可以取任意小,只要满足在德尔塔区间,都小于该任意小量,我们就说他的极限为该数——你可以认为这是投机取巧,但是,他的实用性证明,这样的定义还算比较完善,给出了正确推论的可能性。这个概念是成功的。 微积分是与实际应用联系着发展起来的,它在天文学、力学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学等多个分支中,有越来越广泛的应用。特别是计算机的发明更有助于这些应用的不断发展。 客观世界的一切事物,小至粒子,大至宇宙,始终都在运动和变化着。因此在数学中引入了变量的概念后,就有可能把运动现象用数学来加以描述了。 由于函数概念的产生和运用的加深,也由于科学技术发展的需要,一门新的数学分支就继解析几何之后产生了,这就是微积分学。微积分学这门学科在数学发展中的地位是十分重要的,可以说它是继欧氏几何后,全部数学中的最大的一个创造。 微积分的本质 【参考文献】刘里鹏.《从割圆术走向无穷小——揭秘微积分》,长沙:湖南科学技术出版社,2009 1.用文字表述: 增量无限趋近于零,割线无限趋近于切线,曲线无限趋近于直线,从而以直代曲,以线性化的方法解决非线性问题,这就是微积分理论的精髓所在。 2.用式子表示:

微积分公式与运算法则

微积分公式与运算法则 1.基本公式 (1)导数公式(2)微分公式 (xμ)ˊ=μxμ-1d(xμ)=μxμ-1dx (a x)ˊ=a x lnad(a x)=a x lnadx (loga x)ˊ=1/(xlna)d(loga x)=1/(xlna)dx (sinx)ˊ=cosxd(sinx)=cosxdx (conx)ˊ=-sinxd(conx)=-sinxdx (tanx)ˊ=sec2xd(tanx)=sec2xdx (cotx)ˊ=-csc2xd(cotx)=-csc2xdx (secx)ˊ=secx·tanxd(secx)=secx·tanxdx (cscx)ˊ=-cscx·cotxd(cscx)=-cscx·cotxdx (arcsinx)ˊ=1/(1-x2)1/2d(arcsinx)=1/(1-x2)1/2dx (arccosx)ˊ=-1/(1-x2)1/2d(arccosx)=-1/(1-x2)1/2dx (arctanx)ˊ=1/(1+x2)d(arctanx)=1/(1+x2)dx (arccotx)ˊ=-1/(1+x2)d(arccotx)=-1/(1+x2)dx (sinhx)ˊ=coshxd(sinhx)=coshxdx (coshx)ˊ=sinhxd(coshx)=sinhxdx 2.运算法则(μ=μ(x),υ=υ(x),α、β∈R)(1)函数的线性组合积、商的求导法则 (αμ+βυ)ˊ=αμˊ+βυˊ(μυ)ˊ=μˊυ+μυˊ(μ/υ)ˊ=(μˊυ-μυˊ)/υ2

(2)函数和差积商的微分法则 d(αμ+βυ)=αdμ+βdυ d(μυ)=υdμ+μdυ d(μ/υ)=(υdμ-μdυ)/υ2 3.复合函数的微分法则 设y=f(μ),μ=ψ(x),则复合函数y=f[ψ(x)]的导数为 dy/dx=fˊ[ψ(x)]·ψˊ(x) 所以复合函数的微分为 dy=fˊ[ψ(x)]·ψˊ(x)dx 由于fˊ[ψ(x)]=fˊ(μ),ψˊ(x)dx=dμ,因此上式也可写成dy=fˊ(μ)dμ 由此可见,无论μ是自变量,还是另一变量的可微函数,微分形式dy=fˊ(μ)dμ保持不变,这一性质称为微分形式不变性。

《高等数学》视频教程 蔡高厅教授主讲

《高等数学》视频教程蔡高厅教授主讲 中文名称:蔡高厅高等数学上下册RM压缩清晰版本 地区:大陆 语言:普通话 简介: 高等数学辅导讲座(蔡高厅) 分189讲上册95讲下册94讲!赠送与之配套的电子书课文! 本教程讲解之细致,容量之庞大令人叹为观止!适合任何程度的朋友学习。即使只有高中数学水平,凭此讲座可在一月内快速成为高数高手,也可作为复习后期查缺补漏之用。本教程是目前国内水平最高的高等数学长期教程,影音俱佳,强烈推荐!! 第一章函数第二章极限第三章导数与微分第四章导数的应用第五章不定积分 第六章定积分第七章空间解析几何与矢量代数第八章多元函数微积分第九章重积分 第十章曲线积分及曲面积分第十一章级数第十二章微分方程

适合人群: 1、在校大学生 2、自考人 3、考研人士(高数一,二) 4、其它想学习数学的人士 [点评][天津大学][高数](蔡高厅) 我来谈谈对天津大学蔡高厅高数的一些看法。这部高等数学教程应该是现在名气最大的,也是好评最高的。原因我认为有这么些,首先,整部教程体积很小(全部一起不到3G),而北航柳重堪高等数学加起来超过10G,对硬盘空间不是很大的用户是个不小的负担,这点使的很多人选择了它(包括我本人),在着,一共189讲的超大 容量,整个高等数学的全部知识,无论巨细,无一遗漏,是其他教程所不能及的(北航柳重堪高等数学),其次,本科学校的正规教程也是个很诱人的地方。以上说的是它的优点,下面说说我自己的体会。我是在看完北航柳重堪高等数学第一章时再看的,对比而言,蔡高厅高数给我感受就是蔡高厅本人一直在黑板上不停的版书,对知识本身的讲解很机械,这点我很不喜欢。既然是本科学校的教程,就应该讲究对知识本身和思维的沟通,重点应该是放上创造性上,而不只是知识的简单堆砌,蔡高厅的讲课完全是教科书的移植,加上一点做题的技巧,对基本概念的理解讲解很生硬,缺少沟通性。跟真正的数学教学相差很远“蔡高厅的讲课完全是教科书的移植”,这点我很同意。他的例题基本上都是他与别人合写的那本高数上的。[点评][天津大学][数学]【蔡教授讲】 提起蔡教授的数学,想想我干瘪的荷包真是感慨呀!那时想考试,看到网上无数的同志推荐这门课程,在购回后,白天在办公室偷偷看,晚上回家接着看,整整花了偶2月光阴才大功告成。因此,昨天看了网友对蔡教授的批评,本人对此是不同意的,数学是一门逻辑性很强的课程,讲究环环紧密相扣,因此,学习的风 格也以稳重为主,正是基于这一点,本人是十分推崇蔡教授的课的,别的不说,光是他老人家,诺高的身材弯腰板书,这种敬业精神与师德,就强过了许多年轻后辈。就以课程的本身而言,蔡教授讲得条理清晰,对每个定理都进行了详细的证明,辅以充足的示例,让你想不学好这门课都难。个人认为,蔡教授的这门课,无论下 载还是购买都值得!

微积分基本公式

微积分公式

tan -1 x = x-33x +55x -7 7 x +…+)12()1(12+-+n x n n + … (1+x)r =1+r x+!2)1(-r r x 2+! 3)2)(1(--r r r x 3 +… -1

微积分公式大全

微積分公式

希臘字母 (Greek Alphabets) 倒數關係: sin ?csc ?=1; tan ?cot ?=1; cos ?sec ?=1 商數關係: tan ?= θθcos sin ; cot ?= θ θ sin cos 平方關係: cos 2?+ sin 2?=1; tan 2?+ 1= sec 2?; 1+ cot 2?= csc 2? 順位低 順位高 ; ? 順位高d 順位低 ;

1 000 000 000 000 000 000 000 1021 zetta Z 1 000 000 000 000 000 000 1018 exa E 1 000 000 000 000 000 1015 peta P 1 000 000 000 000 101 2 tera T 兆 1 000 000 000 109 giga G 十億 1 000 000 106 mega M 百萬 1 000 103 kilo K 千 100 102 hecto H 百 10 101 deca D 十 0.1 10-1 deci d 分,十分之一 0.01 10-2 centi c 厘(或寫作「厘」),百分之一 0.001 10-3 milli m 毫,千分之一 0.000 001 10-6 micro ? 微,百萬分之一 0.000 000 001 10-9 nano n 奈,十億分之一 0.000 000 000 001 10-12 pico p 皮,兆分之一 0.000 000 000 000 001 10-15 femto f 飛(或作「費」),千兆分之一0.000 000 000 000 000 001 10-18 atto a 阿 0.000 000 000 000 000 000 001 10-21 zepto z 0.000 000 000 000 000 000 000 001 10-24 yocto y

大学高数公式大全

高等数学公式导数公式: (tgx)’ =sec x (ctgx)' = -CSC x (secx) '=secx tgx (cscx) ‘ = -cscx ctgx (a v vi vii viii ix x r = a x l na (log a xr — xl na (arcsin x),= . 1 2 J1-X2 1 (arccos x)'= —一’ V1—x2 1 (arctgx)'= __2 1 +x (arcctgx),= -— 1 + x 基本积分表: Jtanxdx = -In cos^C Jcotxdx=ln sinx +C Jsecxdx= In secx+tgx +C Jcscxdx = In |cscx -ctg* +C dx J _2 a +x 「dx J 巴 =fsec xdx =tgx +C ' cos x 、 dx 2 J ——=fcsc xdx = -ctgx + C 'sin X ‘ fsecx tgxdx = secx + C J cscx ctgxdx =-cscx+C x fa x d^-^ +C In a f shxdx = chx + C 2 2 x -a dx —2 2 a -x dx I n 2 =Jsin n xdx = Jcos n xdx = jJ x2 +a2dx f J x2 -a2dx jV a2-x2dx 1 x =— arctg — a 丄In 2a 丄In 2a a g +( X +a 匕 +C a -x x = arcsi n- +C a Jchxdx = shx + C

三角函数的有理式积分: □1 I nd n __________ 2 , _________ =—V x^a^ — In(x + V x2+ a2) +C 2 2 __________ 2 L X I 2 2 a.『 =—v x -a ........... 2 2 ________ 2 2 -x2+ "^arcsin- + C 2 -一In X + V x2 -a2+C 2u sin X = ---------- 7c os x=Wy, dx 2du = 2 1 +u

高等数学教程(电子版)

目录 一、函数与极限 (2) 1、集合的概念 (2) 2、常量与变量 (3) 2、函数 (4) 3、函数的简单性态 (4) 4、反函数 (5) 5、复合函数 (6) 6、初等函数 (6) 7、双曲函数及反双曲函数 (7) 8、数列的极限 (9) 9、函数的极限 (10) 10、函数极限的运算规则 (12)

一、函数与极限 1、集合的概念 一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。比如“身材较高的人”不能构成集合,因为它的元素不是确定的。 我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a?A。 ⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N ⑵、所有正整数组成的集合叫做正整数集。记作N+或N+。 ⑶、全体整数组成的集合叫做整数集。记作Z。 ⑷、全体有理数组成的集合叫做有理数集。记作Q。 ⑸、全体实数组成的集合叫做实数集。记作R。 集合的表示方法 ⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合 ⑵、描述法:用集合所有元素的共同特征来表示集合。 集合间的基本关系 ⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A?B(或B?A)。。 ⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。 ⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。 ⑷、空集:我们把不含任何元素的集合叫做空集。记作?,并规定,空集是任何集合的子集。 ⑸、由上述集合之间的基本关系,可以得到下面的结论: ①、任何一个集合是它本身的子集。即A?A ②、对于集合A、B、C,如果A是B的子集,B是C的子集,则A是C的子集。 ③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。 集合的基本运算 ⑴、并集:一般地,由所有属于集合A或属于集合B的元素组成的集合称为A与B的并集。记作A ∪B。(在求并集时,它们的公共元素在并集中只能出现一次。) 即A∪B={x|x∈A,或x∈B}。 ⑵、交集:一般地,由所有属于集合A且属于集合B的元素组成的集合称为A与B的交集。记作A ∩B。 即A∩B={x|x∈A,且x∈B}。 ⑶、补集: ①全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集。通常记作U。

大学高数公式大全

高 等数学公式 导数公式: 基本积分表: 三角函数的有理式积分: 一些初等函数: 两个重要极限: 三角函数公式: a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22= '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 ππ

高数微积分公式大全

高等数学微积分公式大全 一、基本导数公式 ⑴()0c '= ⑵1 x x μ μμ-= ⑶()sin cos x x '= ⑷()cos sin x x '=- ⑸()2 tan sec x x '= ⑹()2 cot csc x x '=- ⑺()sec sec tan x x x '=? ⑻()csc csc cot x x x '=-? ⑼()x x e e '= ⑽()ln x x a a a '= ⑾()1 ln x x '= ⑿( )1 log ln x a x a '= ⒀( )arcsin x '= ⒁( )arccos x '= ⒂()21arctan 1x x '= + ⒃()2 1arccot 1x x '=-+⒄()1x '= ⒅ '=二、导数的四则运算法则 ()u v u v '''±=± ()uv u v uv '''=+ 2u u v uv v v '''-??= ??? 三、高阶导数的运算法则 (1)()()() () () ()()n n n u x v x u x v x ±=±???? (2)()() ()()n n cu x cu x =???? (3)()()() ()n n n u ax b a u ax b +=+???? (4)()()() ()()()()0 n n n k k k n k u x v x c u x v x -=?=????∑ 四、基本初等函数的n 阶导数公式 (1)() () !n n x n = (2)() () n ax b n ax b e a e ++=? (3)() () ln n x x n a a a = (4)()() sin sin 2n n ax b a ax b n π??+=++??? ??? ?? (5) ()()cos cos 2n n ax b a ax b n π??+=++??? ????? (6)() () () 1 1! 1n n n n a n ax b ax b +??? =- ?+?? + (7) ()() () ()() 1 1! ln 1n n n n a n ax b ax b -?-+=-???? + 五、微分公式与微分运算法则 ⑴()0d c = ⑵()1 d x x dx μ μμ-= ⑶()sin cos d x xdx = ⑷()cos sin d x xdx =- ⑸()2 tan sec d x xdx = ⑹()2 cot csc d x xdx =- ⑺()sec sec tan d x x xdx =? ⑻()csc csc cot d x x xdx =-?

大学高等数学公式汇总大全(珍藏版)

大学高等数学公式汇总大全(珍藏版) 常用导数公式: 常用基本积分表: 三角函数的有理式积分: 2 22212211cos 12sin u du dx x tg u u u x u u x +==+-=+=, , ,  a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1 )(log ln )(csc )(csc sec )(sec csc )(sec )(22= '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

《高等数学教程》第三章 习题答案

《高等数学教程》第三章 习题答案 习题3-1 (A) 1. 34= ξ 2. 14 -= π ξ 习题3-2 (A) 1. (1)31 (2) 8 1 - 1)12()11()10(1)9(31)8(21)7()6(21)5(1)4(3)3(31 e e --∞ 习题3-2 (B) 1. n a a a e e 21)8(1 )7(0)6(2)5(21)4(32)3(1281)2(41) 1(-- 2. 连续 4. )(a f '' 5. )0()1(g a '= ??? ??? ?=+''≠--+'='0 ] 1)0([210 ]c o s )([]s i n )([)()2(2 x g x x x x g x x g x x f (3) 处处连续. 习题3-3 1. 432)4()4(11)4(37)4(2156)(-+-+-+-+-=x x x x x f 2. 193045309)(23456+-+-+-=x x x x x x x f 3. )40(, ) (cos 3]2)()[sin sin(31tan 4 523<<+++=θθθθx x x x x x x 4. )10()] 4(4[16!4)4(15)4(5121)4(641)4(41243 2<<-+-- -+---+=θθx x x x x x

5. )10() (! )1(2132 <<+-++++=θn n x x O n x x x x xe 6. 645.1≈e 7. 430533103.1;3090.018sin )2(1088.1;10724.330)1(--?<≈?<≈R R 8. 12 1)3(2 1) 2(2 3 ) 1(- 习题3-4 (A) 1. 单调减少 2. 单调增加 3. .),2 3()23 ,()1(内单调下降在内单调上升;在+∞-∞ .),2[]2,0()2(内单调增加在内单调减少;在+∞ .),()3(内单调增加在+∞-∞ .),2 1()21,()4(内单调增加在内单调减少;在+∞-∞ .),[]0[)5(内单调下降 在上单调上升;,在+∞n n 7. (1) 凸 (2) 凹 (3)内凸内凹,在在),0[]0,(+∞-∞ (4)凹 8. ),(内凹,拐点内凸,在)在(82),2[]2,(1-+∞-∞ ),(内凹,拐点内凸,在)在(22 2),2[]2,(2e +∞-∞ 内凹,无拐点)在(),(3+∞-∞ ),(),(:内凹,拐点,内凸,在),,)在(2ln 1;2ln 1]11[1[]1,(4--∞+--∞ ) ,(内凸,拐点内凹,在)在(3arctan 2 1),21[]21,(5e +∞-∞ ),(凹,拐点),、凸,在、)在(001[]0,1[]1,0[]1,(6∞+---∞ 9. 2 9,32 = -=b a 10. a = 3, b = -9, c = 8 11. a = 1, b = -3, c = 24, d = 16

证明微积分基本公式

定义(定积分) 设函数f (x )是定义在闭区间[a ,b ]上的连续函数,用n + 1个分点 a = x 0 < x 1 < x 2 < … < x n – 1 < x n = b 把闭区间[a ,b ]划分成n 个小区间 [x 0,x 1],[x 1,x 2],…,[x i – 1,x i ],…,[x n – 1,x n ] 记各小区间[x i – 1,x i ](i = 1,2,…,n )的长度为Δx i = x i - x i – 1,在各小区间[x i – 1,x i ]内任取一点ξi ,取函数值f (ξi )与小区间长度Δx i 的乘积 f (ξi )Δx i ,作和式 n n i i n i i i x f x f x f x f x f Δ)(Δ)(Δ)(Δ)(Δ)(22111 ξξξξξ+++++=∑= 称为函数f (x )在区间[a ,b ]上的积分和。记各小区间的最大长度为d = max{Δx i },如果对于区间[a ,b ]任意的划分和点ξi 在[x i – 1,x i ]上的任意取法,当d → 0时,积分和的极限存在,则称此极限为函数f (x )在区间[a ,b ]上的定积分,简称积分,记为 ∑? =→=n i i i d b a x x f x x f 1 Δ)(lim d )( 其中?为积分号,[a ,b ]称为积分区间,f (x )称为被积函数,x 称为积分变量,a 称为积分下限,b 称为积分上限。如果函数f (x )在区间[a ,b ]上的积分存在,则称f (x )在[a ,b ]上可积。

上述定义中的积分限要求a < b ,实际上这个限制可以解除,补充两条规定: (1)当a = b 时,规定0d )(=?a a x x f ; (2)当a > b 时,规定??-=a b b a x x f x x f d )(d )(。 可以看出,这两条规定是合理的,其中第一条规定也可以根据第二条推出。 定理1(可积的必要条件) 如果函数f (x )在闭区间[a ,b ]上的可积,则f (x )在[a ,b ]上有界。 定理2(可积的充分条件) 1.如果函数f (x )在闭区间[a ,b ]上的连续,则f (x )在[a ,b ]上可积。 2.如果函数f (x )在闭区间[a ,b ]上的单调,则f (x )在[a ,b ]上可积。 3.如果在闭区间[a ,b ]内除去有限个不连续点外,函数f (x )有界,则f (x )在[a ,b ]上可积。 引理(微分中值定理) 设函数f (x )在闭区间[a ,b ]内连续,在开区间(a ,b )内可导,则至少存在一点ξ(a ,b ),成立等式 f (b ) ? f (a ) = f'(ξ)(b ? a )

大学高数公式总结计划大全.doc

高等数学公式 高等数学公式 导数公式: (tgx) sec 2 x (arcsin x) 1 1 x 2 (ctgx) csc 2 x (arccos x) 1 (secx) secx tgx 1 x 2 (csc x) csc x ctgx ( arctgx ) 1 (a x ) a x ln a 1 x 2 (log a x) 1 ( arcctgx ) 1 2 1 x x ln a 基本积分表: 三角函数的有理式积分: tgxdx ln cos x C dx 2 tgx C cos 2 x sec xdx ctgxdx ln sin x C dx csc 2 xdx ctgx C secxdx ln secx tgx C sin 2 x csc xdx ln csc x ctgx C secx tgxdx secx C dx 1 x cscx ctgxdx cscx C a 2 x 2 a arctg a C a x dx a x C dx 1 x a ln a C x 2 a 2 ln 2a x a shxdx chx C dx 1 ln a x C chxdx shx C a 2 x 2 2a a x dx arcsin x C dx a 2 ln( x x 2 a 2 ) C a 2 x 2 a x 2 2 2 n 1 I n I n sin n xdx cos n xdx 2 n x 2 a 2 dx x x 2 a 2 a 2 ln( x x 2 a 2 ) C 2 2 x 2 a 2 dx x x 2 a 2 a 2 ln x x 2 a 2 C 2 2 a 2 x 2 dx x a 2 x 2 a 2 arcsin x C 2 2 a sinx 2u ,cosx 1 u 2 u x 2du u 2 1 2 , tg , dx 1 2 1 u 2 u

相关主题