搜档网
当前位置:搜档网 › 1.6 三角函数模型简单应用练习题(解析版)

1.6 三角函数模型简单应用练习题(解析版)

1.6  三角函数模型简单应用练习题(解析版)
1.6  三角函数模型简单应用练习题(解析版)

1.6 三角函数模型简单应用

1.函数的2cos 3cos 2y x x =-+最小值为( ) A .2 B .0 C .4

1

- D .6

2.2sin 5cos )(+-?=x x x x f ,若a f =)2(,则)2(-f 的值为( ). A .-a B .2+a C .2-a D .4-a

3.设A 、B 都是锐角,且cosA >sinB 则A+B 的取值是 ( ) A .??

?

??ππ,2 B .()π,0 C .??? ??2,0π

D .??

?

??2,4ππ

4.若函数)(x f 是奇函数,且当0x 时,

)(x f 的表达式为( )

A .x x 2sin 3cos +

B .x x 2sin 3cos +-

C .x x 2sin 3cos -

D .x x 2sin 3cos --

5.下列函数中是奇函数的为( )

A .y=x

x x x cos cos 22-+

B .y=

x

x x x cos sin cos sin -+ C .

y=2cosx

D .y=lg(sinx+x 2sin 1+)

6.在满足

x

x

4

πtan 1πsin +=0的x 中,在数轴上求离点6最近的那个整数值是 . 7.已知()3s i n 4

f

x a x b x =

++(其中a 、b 为常数),若()52=f ,则()2f -=__________.

8.若?>30cos cos θ,则锐角θ的取值范围是_________. 9.由函数??

? ??≤≤=6563sin 2ππ

x x y 与函数y =2的图象围成一个封闭图形,

这个封闭图形的面积是_________.

10.函数1sin(2)2

y x θ=

+的图象关于y 轴对称的充要条件是

11.如图,表示电流强度I 与时间t 的关系式),0,0)(sin(>>+=ω?ωA t A I 在一个周期内的图象.

①试根据图象写出)sin(?ω+=t A I 的解析式 ②为了使)sin(?ω+=t A I 中t 在任意一段

1100

秒的时间内I 能同时取最大值|A|和最小值-|A|, 那么正整数ω的最小值为多少?

12.讨论函数y=lgcos2x 的的定义域、值域、奇偶性、周期性和单调性等函数的基本性质

13.函数2

()122cos 2sin f x a a x x =---的最小值为()()g a a R ∈,

(1)求g a ()的表达式;(2)若1

()2

g a =

,求a 及此时()f x 的最大值

14.已知f(x)是定义在R 上的函数,且1()(2)1()

f x f x f x ++=

-

(1)试证f(x)是周期函数. (2)若f(3)=3-,求f(2005)的值.

15.已知函数)0,0)(sin()(π?ω?ω≤≤>+=x x f 是R 上的偶函数,其图象关于点

??

??????? ??2π0,对称,且在,043πM 上是单调函数,求?ω和的值.

1.6 三角函数模型简单应用

1.B 2.D 3.C 4.B 5.D 6.1 7.3 8.?<

π34 10.,2

k k Z π

θπ=+∈

11.(1))3

100sin(300π

π+=t I (2)629=ω

12.定义域:(kπ-

4π,kπ+4π

),k ∈Z;值域]0,(-∞;奇偶性:偶函数;周期性:周期函数,且T=π;单调性:在(kπ-4π,kπ] (k ∈Z)上递增,在[kπ,kπ+4

π

)上递减

13.2()122cos 2sin f x a a x x =--- 2122cos 2(1cos )a a x x =----

2

2cos 2cos 12x a x a =---2

2

2(cos )12()22

a

a x a a R =----

∈ (1)函数()f x 的最小值为()g a

1.122a a <-<-当时即时,cos 1x =-由得 2

2()2(1)12122a a g a a =-----=

2.11222a a -≤≤-≤≤当时即时,cos 2a x =由得 2

()122

a g a a =---

3.122a a >>当时即时,cos 1x =由,2

2()2(1)1222

a a g a a =----得=14a -

综上所述得 21

(2)()12(22)214(2)

a a g a a a a a <-??

?

=---≤≤??

->??- (2) g a a ()=∴-≤≤1222有 221

1243022

a a a a -=++=-

-得 13()a a ∴=-=-或舍

2

21()2(cos )1222

a a a f x x a =-=----将代入 211()2(cos )22f x x =++得

cos 1x =当 2()x k k Z π=∈即时得 max ()5f x =

14.(1)由1()(2)1()

f x f x f x ++=

-,故f(x+4)=

)

2(1)

2(1+-++x f x f =1()f x -

f(x+8)=f(x+4+4)=1

(4)

f x -

+=f(x),即8为函数()f x 的周期

(2)由 f(x+4) =1()f x -

,得f(5) =13(1)3

f -= ∴f(2005)=f(5+250×8)=f(5)=33 15. 由f (x )为偶函数,知|f (0)|=1,结合π?≤≤0,可求出2

π

?=

又由图象关于???

??0,43πM 对称,知043=??

?

??πf ,即043cos =ωπ 又0>ω及

()()()2,1,0123

2

,,2,1,0243=+=∴=+=k k k k ωππωπ . 当k=0,1即32=

ω,2时,易验证f (x )在??????2,0π上单减;k≥2时,f (x )在??

?

???2,0π上不是单调的函数.综上所述22,32

π

ω?==或

1.6 三角函数模型的简单应用

1.6 三角函数模型的简单应用 课堂训练 一、选择题 1.函数的2cos 3cos 2y x x =-+最小值为( ) A .2 B .0 C .4 1- D .6 2. 2sin 5cos )(+-?=x x x x f ,若a f =)2(,则)2(-f 的值为( ) . A .-a B .2+a C .2-a D .4-a 3.设A 、B 都是锐角,且cosA >sinB 则A+B 的取值是 ( ) A .??? ??ππ,2 B .()π,0 C .?? ? ??2,0π D .?? ? ??2,4ππ 4.若函数 )(x f 是奇函数,且当0x 时,) (x f 的表达式为( ) A .x x 2sin 3cos + B .x x 2sin 3cos +- C .x x 2sin 3cos - D .x x 2sin 3cos -- 5.下列函数中是奇函数的为( ) A .y=x x x x cos cos 22-+ B .y=x x x x cos sin cos sin -+ C .y=2cosx D .y=lg(sinx+x 2sin 1+) 二、填空题 6.在满足 x x 4 πtan 1πsin +=0的x 中,在数轴上求离点6最近的那个整数值是 . 7.已知( )sin 4f x a x =+(其中a 、b 为常数),若()52=f ,则()2f -=__________. 8.若?>30cos cos θ ,则锐角θ的取值范围是_________. 9.由函数??? ??≤≤=656 3sin 2ππx x y 与函数y =2的图象围成一个封闭图形,这个封闭图形 的面积是_________. 10.函数1 sin(2)2 y x θ=+的图象关于y 轴对称的充要条件是_________. 三、解答题 11.如图,表示电流强度I 与时间t 的关系式),0,0)(sin(>>+=ω?ωA t A I 在一个周期 内的图象. ①试根据图象写出)sin(?ω+=t A I 的解析式

三角函数模型的简单应用

课题(章节)1.6 三角函数模型的简单应用(二) 教学目标 能正确分析收集到的数据,选择恰当的三角函数模型刻画数据所蕴含的规律; 能根据问题的实际意义,利用模型解决有关实际问题; 通过三角函数模型的简单应用,培养学生应用数学知识解决问题的能力。 教学重点用三角函数模型解决具有周期变化规律的实际问题 教学难点将某些实际问题抽象为三角函数模型,对实际意义的数学解释 课的类型新授课时间45分钟 教学时数1课时教具几何画板课件,计算器 板书设计 (提纲)三角函数模型的简单应用(二) 将实际问题抽象为三角函数模型:建模的基本思路: 例题:1.根据数据作散点图 2.根据图像进行函数拟合 3.选择恰当的函数模型 本题小结:4.利用函数模型解决实际问题 教学过程: 新课引入: 问题:对于三角函数模型,我们都学习了哪几个方面的应用? 引入:利用三角函数模型我们还可以解决哪些问题呢? 教学情景: 将实际问题抽象为三角函数模型: 例:海水受日月的引力,在一定时候发生涨落的现象叫潮。一般地,早潮叫潮,晚潮叫汐。在通常情况下,船在涨潮时驶进航道,靠近码头;在落潮时返回海洋。下面是某港口在某季节每天的时间与水深关系表: 时刻水深/米时刻水深/米时刻水深/米 0:00 5.0 9:00 2.5 18:00 5.0 3:00 7.5 12:00 5.0 21:00 2.5 6:00 5.0 15:00 7.5 24:00 5.0 选用一个函数来近似描述这个港口的水深与实间的函数关系,给出整点时的水深的近似数值(精确到0.001); 一条货船的吃水深度(船底与水面的距离)为4米,安全条例规定至少要有1.5米的安全间隙(船底与洋底的距离),该船何时能进入港口?在港口能呆多久? 若某船的吃水深度为4米,安全间隙为1.5米,该船在2:00开始卸货,吃水深度以每小时0.3米的速度减少,那么该船在什么时候必须停止卸货,将船驶向较深的水域? 分析:1.观察表格中的数据,你发现了什么规律?(从所给数据中发现周期性变化规律); 2.要求学生根据数据作出散点图,观察徒刑,你认为可以用怎样的函数模型来刻画其中的规律?(引导学生根据散点图的特点选择函数模型); 3.引导学生与“五点法”联系,求出函数模型的解析式; 4.根据所得的函数模型,求出整点时的水深;(利用计算器) 5.引导学生正确理解题意,利用函数模型解决实际问题,求出第(2)问,并对答案进行合理地解释;(利用计算器进行计算) 6.引导学生正确理解第(3)问,用函数模型刻画安全水深,并对答案做出合理地解释 解:(1)以时间为横坐标,水深为纵坐标,在直角坐标系中画出散点图: 根据图像,可以考虑用函数 sin() y A x h ω? =++刻画水深与时间之间的对应关系。从数据和图象可以得出: 2.5,5,12,0 A h T? ====,由 2 12 T π ω == ,得6 π ω= 。所以,这个港口的水深与时间的关系可用 2.5sin5 6 y x π =+ 近似描述。 由上述关系式,易得港口在整点时水深的近似值: 时刻0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 水深5.000 6.250 7.165 7.500 7.165 6.250 5.000 3.754 时刻8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 水深2.835 2.500 2.835 3.754 5.000 6.250 7.165 7.500 时刻16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 水深7.165 6.250 5.000 3.754 2.835 2.500 2.835 3.754 (2)货船需要的安全水深为4+1.5=5.5(米),所以 5.5 y≥时就可以进港。

用锐角三角函数概念解题的常见方法(含答案11页)

用锐角三角函数概念解题的常见方法 1.锐角三角函数 (1)锐角三角函数的定义 我们规定: sinA=a c ,cosA= b c ,tanA= a b ,cotA= b a . 锐角的正弦、余弦、正切、余切统称为锐角的三角 函数. (2)用计算器由已知角求三角函数值或由已知三 角函数值求角度 对于特殊角的三角函数值我们很容易计算,甚至可 以背诵下来,但是对于一般的锐角又怎样求它的三角函数值呢?用计算器可以帮我们解决大问题. ①已知角求三角函数值; ②已知三角函数值求锐角. 2 直角三角形中,30°的锐角所对的直角边等于斜边的一半. 3.锐角三角函数的性质 (1)0

(2)tan α·cot α=1或tan α=1 cot α ; (3)tan α= sin cos αα,cot α=cos sin α α . (4)sin α=cos (90°-α),tan α=cot (90°-α). 有关锐角三角函数的问题,常用下面几种方法: 一、设参数 例1. 在ABC ?中,?=∠90C ,如果125 tan = A ,那么sin B 的值等于( ) 5 12.12 5. 13 12. 13 5. D C B A 解析:如图1,要求sinB 的值,就是求 AB AC 的值,而已知的12 5 tan =A ,也就是12 5 =AC BC 可设k AC k BC 125==, 则k k k AB 13)12()5(22=+= 13 12 1312sin == ∴k k B ,选B 二、巧代换 例2. 已知3tan =α,求 α αα αcos sin 5cos 2sin +-的值。 解析:已知是正切值,而所求的是有关正弦、余弦的值,我们可以利用关系式 3cos sin tan == α α α,作代换ααcos 3sin =,代入即可达到约分的目的,也可以把所求的分式的分子、分母都除以αcos 。 图1

三角函数常用公式以及证明

三角函数公式和相关证明 倒数关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 商的关系: sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系: sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α) 平常针对不同条件的常用的两个公式 sin^2(α)+cos^2(α)=1 tan α *cot α=1 一个特殊公式 (sina+sinθ)*(sina-sinθ)=sin(a+θ)*sin(a-θ) 证明:(sina+sinθ)*(sina-sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2] =sin(a+θ)*sin(a-θ) 坡度公式 我们通常半坡面的铅直高度h与水平高度l的比叫做坡度(也叫坡比),用字母i表示, 即i=h / l, 坡度的一般形式写成l : m 形式,如i=1:5.如果把坡面与水平面的夹角记作 a(叫做坡角),那么i=h/l=tan a. 锐角三角函数公式 正弦:sin α=∠α的对边/∠α 的斜边 余弦:cos α=∠α的邻边/∠α的斜边 正切:tan α=∠α的对边/∠α的邻边 余切:cot α=∠α的邻边/∠α的对边 二倍角公式 正弦 sin2A=2sinA·cosA 余弦 1.Cos2a=Cos^2(a)-Sin^2(a) 2.Cos2a=1-2Sin^2(a) 3.Cos2a=2Cos^2(a)-1 即Cos2a=Cos^2(a)-Sin^2(a)=2Cos^2(a)-1=1-2Sin^2(a) 正切 tan2A=(2tanA)/(1-tan^2(A)) 三倍角公式

三角函数在实际生活中的应用

三角函数在实际生活中的应用 目录 摘要:1 关键词:3 1引言3 1.1三角函数起源3 2三角函数的基础知识4 2.1下列是关于三角函数的诱导公式5 2.2两角和、差的正弦、余弦、正切公式7 2.3二倍角的正弦、余弦、正切公式7 3.三角函数与生活7 3.1火箭飞升问题7 3.2电缆铺设问题8 3.3救生员营救问题9 3.4足球射门问题10 3.5食品包装问题10 3.6营救区域规划问题11 3.7住宅问题12 3.8最值问题13 4 总结14 Abstract

Trigonometric function in the course of historical development of continuous improvement, has formula, rich thoughts, flexible, permeability is strong and so on。The characteristic is not only an important part of scientific research, or in mathematics learning to key and difficult. In a word it in teaching and other fields has important role. In this paper, we will make a brief discussion about the application of trigonometric functions in solving practical problems. Keywords:mathematics trigonometric function Application of trigonometric function 摘要: 三角函数在历史的发展过程中不断完善,具有公式多、思想丰富、变化灵活、渗透性强等特点,不仅是科学研究的重要组成部分,还是数学学习中得重点难点,

三角函数-模型解题法

模型解题法:三大核心:理清概念,抓住本质,寻找联系。三大思想:数形结合,分类讨论,方程-函数-不等式转化 专题一:角与角函数 模型一:边-角互化解三角形模型 本质:运用正余弦定理,边角互化。转化成角关系,走三角变形之路;转化成边关系,走代数变形之路。 边-角联系: 题型一:边化角 三角函数模型 一;三角函数值模型 本质;用三角函数有界性,主要将表达式变形为,然后借助有界性求取值范围或构造不等式(求解参数范围)。 求以下函数的值

则M应满足什么条件。 二,三角函数对称性模型 对称性包括中心对称和轴对称 本质:将表达式变形为或,正弦函数:对称轴 对称中心:。对称轴是在最大值或最小值取得。对称中心是在平衡位置取得。 三,三角函数单调性模型 本质:将表达式整理成或,然后将带入单调区间。 四,三角函数图象 本质:理解,各参数的含义,,, 以及函数图像的变换 平移变换:口诀,左右平移变换(左加右减) (针对自变量),上下平移变换(上加下减)(针对函数值整体). 伸缩变换 对称变换:包括中心对称和轴对称 ①y=f(x)与y=-f(x)关于x轴对称;②y=f(x)与y=f(-x)关于y轴对称; ③y=f(x)与y=-f(-x)关于原点对称;④y=f(x)与y=f -1(x)关于y=x对称; ⑤y=f(x)与y=-f -1(x)关于y=-x对称;⑥y=f(x)与y=f(2a-x)关于x=a对称; ⑦y=f(x)与y=|f(x)|,保留x轴上方的图象,将x轴下方的图象沿x轴翻折上去,x轴下方图象删去; ⑧y=f(x)与y=f(|x|),保留y轴右方的图象,将y轴右方的图象沿y轴翻折到左边,原来y轴左方图象删去. 角模型:1单角模型

三角函数模型的简单应用教案

三角函数模型的简单应用一、教学目标 1 、基础知识目标: a 通过对三角函数模型的简单应用的学习,使学生初步学会由图象求解析式的方法; b 根据解析式作出图象并研究性质; c 体验实际问题抽象为三角函数模型问题的过程; d 体会三角函数是描述周期变化现象的重要函数模型. 2、能力训练目标:让学生体验一些具有周期性变化规律的实际问题的数学“建模”思想从而培养学生的建模、分析问题、数形结合、抽象概括等能力. 3、个性情感目标:让学生切身感受数学建模的过程,体验数学在解决实际问题中的价值和作用,让学生切身感受数学建模的过程,体验数学在解决实际问题中的价值和作用从而激发学生的学习兴趣,培养锲而不舍的钻研精神;培养学生勇于探索、勤于思考的精神。 二、教学重点:精确模型的应用——即由图象求解析式,由解析式研究图象及性质 三、教学难点: a 、分析、整理、利用信息,从实际问题中抽取基本的数学关系来建立数学模型,并调动相关学科的知识来解决问题. b 、由图象求解析式时的确定。 四、教学过程及设计意图 教学过程 设计意图 (一)课题引入 情景展示,引入课题(多媒体显示) 同学们看过海宁潮吗?……?今天我就带大家去看一看天下奇观一一海宁潮. 在潮起潮落中

也蕴含着数学知识. 又如大家熟悉的“物理中单摆对平衡位置的位移与时间的关系”、“交流电的电流与时间的关系”、“声音的传播”等等也都蕴含着三角函数知识。 通过上面的例子引发学生的兴趣,贴近生活,可以告诉学生生活离不开数学,身边充满了数学;同时可以让学生知道数学的重要性,不仅仅是课本上的内容,还有生活都可以用到数学,所以学生更应该努力学习,才能更懂得生活。 这样的例子还有很多,比如: 二.由图象探求三角函数模型的解析式 例1 ?如图,某地一天从6?14时的温度变化曲线近似满足函数. (1 )求这一天6?14时的最大温差; (2 )写出这段曲线的函数解析式. 解:( 1 )由图可知:这段时间的最大温差是; (2)从图可以看出:从6?14 是的 半个周期的图象, 又… - ??? 将点代入得: ??,取,??。 问题的反思】

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的几种常用方法 一、定义法 当已知直角三角形的两条边,可直接运用锐角三角函数的定义求锐角三角函数的值. 例1 如图1,在△ABC 中,∠C =90°,AB =13,BC =5,则sin A 的值是( ) (A )513 (B )1213 (C )512 (D )13 5 对应训练: 1.在Rt △ABC 中,∠ C =90°,若BC =1,AB 5,则tan A 的值为 ( ) A . 5 B 25 C .1 2 D .2 二、参数(方程思想)法 锐角三角函数值实质是直角三角形两边的比值,所以解题中有时需将三角函数转化为线 段比,通过设定一个参数,并用含该参数的代数式表示出直角三角形各边的长,然后结合相关条件解决问题. 例2 在△ABC 中,∠C =90°,如果tan A =5 12,那么sin B 的值是 . 对应训练: 1.在△ABC 中,∠C =90°,sin A=5 3,那么tan A 的值等于( ). A .35 B . 45 C . 34 D . 43 2.已知△ ABC 中, ο 90=∠C ,3cosB=2, AC=5 2 ,则 AB= . 3.已知Rt △ABC 中,,12,4 3 tan ,90==?=∠BC A C 求AC 、AB 和cos B .

4.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?=∠4 3sin AOC 求:AB 及OC 的长. 三、等角代换法 当一个锐角的三角函数不能直接求解或锐角不在直角三角形中时,可将此角通过等 角转换到能够求出三角函数值的直角三角形中,利用“两锐角相等,则三角函数值也相等” 来解决. 例3 在Rt △ABC 中,∠BCA =90°,CD 是AB 边上的中线,BC =5,CD =4,则cos ∠ACD 的值为 . 对应训练 1.如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径, 若O ⊙的半径为32,2AC =,则sin B 的值是( )A .2 3

高中数学三角函数公式大全全解

三角函数公式 1.正弦定理: A a sin = B b sin =C c sin = 2R (R 为三角形外接圆半径) 2.余弦定理:a 2=b 2+c 2-2bc A cos b 2=a 2+c 2-2ac B cos c 2=a 2+b 2-2ab C cos bc a c b A 2cos 2 22-+= 3.S ⊿= 21a a h ?=21ab C sin =21bc A sin =21ac B sin =R abc 4=2R 2A sin B sin C sin =A C B a sin 2sin sin 2=B C A b sin 2sin sin 2=C B A c sin 2sin sin 2=pr=))()((c p b p a p p --- (其中)(2 1 c b a p ++=, r 为三角形内切圆半径) 4.诱导公试 注:奇变偶不变,符号看象限。 注:三角函数值等于α的同名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限 注:三角函数值等于α的 异名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:

函数名改变,符号看象限 5.和差角公式 ①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos( =± ③β αβ αβαtg tg tg tg tg ?±= ± 1)( ④)1)((βαβαβαtg tg tg tg tg ?±=± 6.二倍角公式:(含万能公式) ①θ θ θθθ2 12cos sin 22sin tg tg += = ②θ θ θθθθθ2 22 2 2 2 11sin 211cos 2sin cos 2cos tg tg +-=-=-=-= ③θθθ2122tg tg tg -= ④22cos 11sin 222θθθθ-=+=tg tg ⑤22cos 1cos 2 θθ+= 7.半角公式:(符号的选择由 2 θ 所在的象限确定) ①2cos 12 sin θθ -± = ②2 cos 12sin 2θ θ-= ③2cos 12cos θθ+±= ④2cos 12 cos 2 θθ += ⑤2sin 2cos 12θθ=- ⑥2 cos 2cos 12θθ=+ ⑦2 sin 2 cos )2 sin 2 (cos sin 12θ θθθθ±=±=± ⑧θ θ θθθθθ sin cos 1cos 1sin cos 1cos 12 -=+=+-± =tg 8.积化和差公式: [])sin()sin(21cos sin βαβαβα-++=[] )sin()sin(21 sin cos βαβαβα--+=[])cos()cos(21cos cos βαβαβα-++= ()[]βαβαβα--+-=cos )cos(2 1 sin sin 9.和差化积公式:

三角函数模型的简单应用试题含答案

一、选择题 1.函数的2cos 3cos 2y x x =-+最小值为( ) A .2 B .0 C .4 1 - D .6 2.2sin 5cos )(+-?=x x x x f ,若a f =)2(,则)2(-f 的值为( ). A .-a B .2+a C .2-a D .4 -a 3.设A 、B 都是锐角,且cosA >sinB 则A+B 的取值是 ( ) A .?? ? ??ππ,2 B .()π,0 C .?? ? ? ?2,0π D .?? ? ??2,4ππ 4.若函数)(x f 是奇函数,且当0x 时,)(x f 的表达式为( ) A .x x 2sin 3cos + B .x x 2sin 3cos +- C .x x 2sin 3cos - D .x x 2sin 3cos -- 5.下列函数中是奇函数的为( )

A .y=x x x x cos cos 22-+ B .y= x x x x cos sin cos sin -+ C .y=2cosx D .y=lg(sinx+x 2sin 1+) 二、填空题 6.在满足 x x 4 πtan 1πsin +=0的x 中,在数轴上求离点6最近的那个整数值是 . 7.已知( )sin 4f x a x =+(其中a 、b 为常数),若()52=f ,则 ()2f -=__________. 8.若?>30cos cos θ,则锐角θ的取值范围是_________. 9.由函数?? ? ??≤ ≤=656 3sin 2ππ x x y 与函数y =2的图象围成一个封闭图形,这个封闭图形的面积是_________. 10.函数1sin(2)2 y x θ=+的图象关于y 轴对称的充要条件是 三、解答题 11.如图,表示电流强度I 与时间t 的关系式

三角函数推导公式及公式大全

锐角三角函数 锐角三角函数三角关系 倒数关系:tanα2cotα=1 sinα2cscα=1 cosα2secα=1 商的关系: 平方关系:

三角函数公式 2公式相关 编辑 两角和公式 cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ -cosαsinβ tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)cot(A+B) = (cotAcotB-1)/(cotB+cotA) cot(A-B) = (cotAcotB+1)/(cotB-cotA)

三角和公式 sin(α+β+γ)=sinα2cosβ2cosγ+cosα2sinβ2cos γ+cosα2cosβ2sinγ-sinα2sinβ2sinγ cos(α+β+γ)=cosα2cosβ2cosγ-cosα2sinβ2sin γ-sinα2cosβ2sinγ-sinα2sinβ2cosγ 诱导公式 三角函数的诱导公式(六公式)[1] 公式一: sin(α+k*2π)=sinα cos(α+k*2π)=cosα tan(α+k*π)=tanα 公式二: sin(π+α) = -sinα

cos(π+α) = -cosα tan(π+α)=tanα 公式三: sin(-α) = -sinα cos(-α) = cosα tan (-α)=-tanα 公式四: sin(π-α) = sinα cos(π-α) = -cosα tan(π-α) =-tanα 公式五: sin(π/2-α) = cosα cos(π/2-α) =sinα 由于π/2+α=π-(π/2-α),由公式四和公式五可得

(必修4)第一章三角函数

三角函数 一、基本内容串讲 本章主干知识:三角函数的定义、图象、性质及应用,函数()?ω+=x A y sin 的图象,三角函数模型在解决具有周期变化规律问题中的应用。 1.任意角和弧度制 从运动的角度,在旋转方向及旋转圈数上引进负角及大于3600的角。在直角坐标系中,当角的终边确定时,其大小不一定(通常使角的顶点与原点重合,角的始边与x 轴非负半轴重合)。为了把握这些角之间的联系,引进终边相同的角的概念,凡是与终边α相同的角,都可以表示成α+k ·3600 (k ∈Z )的形式,特例,终边在x 轴上的角的集合为{α|α=k ·1800 ,k ∈Z},终边在y 轴上的角的集合为{α|α=900 +k ·18000 ,k ∈Z},终边在坐标轴上的角的集合为{α|α=k ·900,k ∈Z}。另外,角的终边落在第几象限,就说这个角是第几象限的角。 弧度制是角的度量的重要表示法,能正确地进行弧度与角度的换算,熟记特殊角的弧度制。在弧度制下,扇形弧长公式=|α|R ,扇形面积公式||R 2 1R 2 1S 2α== ,其中α为 弧所对圆心角的弧度数。 2.任意角的三角函数 利用直角坐标系,可以把直角三角形中的三角函数推广到任意角的三角函数。设P(x ,y)是角α终边上任一点(与原点不重合),记22y x |OP |r +==,则r y sin =α,r x cos = α,x y tan = α。 3.同角三角函数的基本关系式 (1)平方关系:22sin cos 1αα+= (2)商数关系:sin tan cos α αα = 4.三角函数的诱导公式 利用三角函数定义,可以得到诱导公式:即πα2 k +与α之间函数值的关系(k ∈Z ), 其规律是“奇变偶不变,符号看象限”。 5.三角函数的图象与性质 函数 y=sinx y=cosx y=tanx 图象 定义域 R R },2 |{Z k k x x ∈+ ≠π π

最全高中数学三角函数公式

定义式 ) ct 函数关系 倒数关系:;; 商数关系:;. 平方关系:;;.诱导公式

公式一:设为任意角,终边相同的角的同一三角函数的值相等: 公式二:设为任意角,与的三角函数值之间的关系: 公式三:任意角与的三角函数值之间的关系: 公式四:与的三角函数值之间的关系: 公式五:与的三角函数值之间的关系: 公式六:及与的三角函数值之间的关系:

记背诀窍:奇变偶不变,符号看象限.即形如(2k+1)90°±α,则函数名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。形如2k×90°±α,则函数名称不变。 诱导公式口诀“奇变偶不变,符号看象限”意义: k×π/2±a(k∈z)的三角函数值.(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作 锐角时原三角函数值的符号; (2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。 记忆方法一:奇变偶不变,符号看象限:

记忆方法二:无论α是多大的角,都将α看成锐角. 以诱导公式二为例: 若将α看成锐角(终边在第一象限),则π十α是第三象限的角(终边在第三象限),正弦函数的函数值在第三象限是负值,余弦函数的函数值在第三象限是负值,正切函数的函数值在第三象限是正值.这样,就得到了诱导公式二. 以诱导公式四为例: 若将α看成锐角(终边在第一象限),则π-α是第二象限的角(终边在第二象限),正弦函数的三角函数值在第二象限是正值,余弦函数的三角函数值在第二象限是负值,正切函数的三角函数值在第二象限是负值.这样,就得到了诱导公式四. 诱导公式的应用: 运用诱导公式转化三角函数的一般步骤: 特别提醒:三角函数化简与求值时需要的知识储备:①熟记特殊角的三角函数值;②注意诱导公式的灵活运用;③三角函数化简的要求是项数要最少,次数要最低,函数名最少,分母能最简,易求值最好。

三角函数10道大题(带答案)

三角函数大题转练 1.已知函数()4cos sin()16 f x x x π =+-. (Ⅰ)求 ()f x 的最小正周期; (Ⅱ)求()f x 在区间[,]64 ππ -上的最大值和最小值. 2、已知函数.,1cos 2)3 2sin()32sin()(2R x x x x x f ∈-+-++=π π · (Ⅰ)求函数)(x f 的最小正周期; (Ⅱ)求函数)(x f 在区间]4 ,4[ππ-上的最大值和最小值. 3、已知函数()tan(2),4 f x x =+π (Ⅰ)求()f x 的定义域与最小正周期; (II )设0,4?? ∈ ? ? ? πα,若()2cos 2,2 f =αα求α的大小 : 4、已知函数x x x x x f sin 2sin )cos (sin )(-= . (1)求)(x f 的定义域及最小正周期; (2)求)(x f 的单调递减区间.

5、 设函数2())sin 4 f x x x π = ++. (I )求函数()f x 的最小正周期; ; (II )设函数()g x 对任意x R ∈,有()()2 g x g x π+=,且当[0,]2 x π ∈时, 1 ()()2 g x f x = -,求函数()g x 在[,0]π-上的解析式. 6、函数()sin()16 f x A x π ω=-+(0,0A ω>>)的最大值为3, 其图像相 邻两条对称轴之间的距离为2 π, (1)求函数()f x 的解析式; (2)设(0,)2 πα∈,则()22 f α =,求α的值. ' 7、设426 f (x )cos(x )sin x cos x π =ω- ω+ω,其中.0>ω (Ⅰ)求函数y f (x )= 的值域 (Ⅱ)若y f (x )=在区间322,ππ?? -???? 上为增函数,求 ω的最大 值.

锐角三角函数的题型及解题技巧

锐角三角函数的题型及解题技巧 锐角三角函数是三角函数的基础,它应用广泛,解题技巧性强,下面归纳 出 锐角三角函数的常见题型,并结合例题介绍一些解题技巧。 、 化简或求值 例1 (1) 已知tan 2cot 1,且 是锐角,求乙tan 2 cot 2 2的值。 (2) 化简 a sin bcos ? acos bsin ?。 分析 (1)由已知可以求出tan 的值,化简?、tan 2 cot 2 2可用 1 tan cot ; (2)先把平方展开,再利用sin 2 cos 2 1化简 解(1)由tan 2cot 1得tan 2 2 tan ,解关于tan 的方程得 tan 2或 tan 1。又是锐角,二 tan 2。二、tan 2 cot 2 2 = 1 2 2 2,「 tan cot 2 = tan cot (2) a sin bcos ? acos bsin 2 -2 ? 2 2 cos b sin cos = a 、已知三角函数值,求角 求C 的度数。 分析 几个非负数的和为0,则这几个数均为0。由此可得cosA 和sin B 的 值,进而求出 代B 的值,然后就可求出 C 的值。 \ tan 2 2tan cot cot 2 = : (tan cot )2 tan cot 由tan 得cot a 2 sin 2 2ab sin cos b 2 cos 2 + a 2 cos 2 2ab cos sin b 2s in 2 2 2 a sin 2 b 2 tan 说明 在化简或求值问题中,经常用到 cot 1 等。 “ 1” 的代换, 即 sin 2 2 cos J 2 例2在厶ABC 中,若cosA — 2 .3 2 sin B 0 A, B 均为锐角,

1.6 三角函数模型简单应用练习题(解析版)

1.6 三角函数模型简单应用 1.函数的2cos 3cos 2y x x =-+最小值为( ) A .2 B .0 C .4 1 - D .6 2.2sin 5cos )(+-?=x x x x f ,若a f =)2(,则)2(-f 的值为( ). A .-a B .2+a C .2-a D .4-a 3.设A 、B 都是锐角,且cosA >sinB 则A+B 的取值是 ( ) A .?? ? ??ππ,2 B .()π,0 C .??? ??2,0π D .?? ? ??2,4ππ 4.若函数)(x f 是奇函数,且当0x 时, )(x f 的表达式为( ) A .x x 2sin 3cos + B .x x 2sin 3cos +- C .x x 2sin 3cos - D .x x 2sin 3cos -- 5.下列函数中是奇函数的为( ) A .y=x x x x cos cos 22-+ B .y= x x x x cos sin cos sin -+ C . y=2cosx D .y=lg(sinx+x 2sin 1+) 6.在满足 x x 4 πtan 1πsin +=0的x 中,在数轴上求离点6最近的那个整数值是 . 7.已知()3s i n 4 f x a x b x = ++(其中a 、b 为常数),若()52=f ,则()2f -=__________. 8.若?>30cos cos θ,则锐角θ的取值范围是_________. 9.由函数?? ? ??≤≤=6563sin 2ππ x x y 与函数y =2的图象围成一个封闭图形, 这个封闭图形的面积是_________.

《三角函数模型的简单应用》练习

《三角函数模型的简单应用》练习 一、选择题 1.函数f(x)的部分图象如图所示,则f(x)的解析式可以是( ) (x)=x+sinx (x)= (x)=xcosx (x)=x·· 2.如图,某港口一天6时到18时的水深变化曲线近似满足函数y=3sin+k,据此函数可知, 这段时间水深(单位:m)的最大值为( ) B.6 3.如图,小明利用有一个锐角是30°的三角板测量一棵树的高度,已知他与树之间的水平距离BE为5m, AB为1.5m(即小明的眼睛距地面的距离),那么这棵树高是( ) 4.电流强度I(安)随时间t(秒)变化的函数I=Asin(ωt+φ)的图 象如图所示,则当t=秒时,电流强度是( ) 安安 安安 5.已知函数y=f(x)的图象如图所示,则函数y=f(-x)sinx的大致图象是( )

二、填空题 6.某城市一年中12个月的平均气温与月份的关系可近似地用三角函数y=a+Acos(x=1,2, 3,…,12)来表示,已知6月份的平均气温最高,为28℃,12月份的平均气温最低,为18℃,则10月份的平均气温值为________℃. 7.某时钟的秒针端点A到中心点O的距离为5cm,秒针均匀地绕点O旋转,当时间t=0时,点A与钟面上 标12的点B重合,将A,B两点的距离d(cm)表示成t(s)的函数,则d=________,其中t∈[0,60]. 8.国际油价在某一时间内呈现出正弦波动规律:P=Asin+60(美元)(t(天),A>0,ω>0),现 采集到下列信息:最高油价80美元,当t=150(天) 时达到最低油价,则ω的最小值为__________. 三、解答题 9.某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系: f(t)=10-cos t-sin t,t∈[0,24).(1)求实验室这一天上午8时的温度; (2)求实验室这一天的最大温差. 10.如图,某动物种群数量1月1日低至700,7月1日高至900,其总量在此两值之间依正弦型曲线变化. (1)求出种群数量y关于时间t的函数表达式(其中t以年初以来的月为计量单位,如t=1表示2月1日). (2)估计当年3月1日动物种群数量. 《三角函数模型的简单应用》巩固练习 一、选择题 1.如图,为了研究钟表与三角函数的关系,建立如图所示的坐标系,设秒针

三角函数公式大全

三角函数公式大全 三角函数定义 锐角三角函数任意角三角函数 图形 直 任 角三角形 意角三角函数 正弦(sin) 余弦(cos) 正切(tan或 tg) 余切(cot 或ctg) 正割(sec) 余割(csc) 函数关系 倒数关系: 商数关系: 平方关系: . 诱导公式 公式一:设为任意角,终边相同的角的同一三角函数的值相等:

公式二:设为任意角,与的三角函数值之间的关系: 公式三:任意角与的三角函数值之间的关系: 公式四:与的三角函数值之间的关系: 公式五:与的三角函数值之间的关系: 公式六:及与的三角函数值之间的关系:

记背诀窍:奇变偶不变,符号看象限.即形如(2k+1)90°±α,则函数名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。形如2k×90°±α,则函数名称不变。 诱导公式口诀“奇变偶不变,符号看象限”意义: k×π/2±a(k∈z)的三角函数值.(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号; (2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。 记忆方法一:奇变偶不变,符号看象限: 其中的奇偶是指的奇偶倍数,变余不变试制三角函数的名称变化若变,则是正弦变余弦,正切变余切------------------奇变偶不变 根据教的围以及三角函数在哪个象限的争锋,来判断三角函数的符号-------------符号看象限 记忆方法二:无论α是多大的角,都将α看成锐角. 以诱导公式二为例: 若将α看成锐角(终边在第一象限),则π十α是第三象限的角(终 边在第三象限),正弦函数的函数值在第三象限是负值,余弦函数的函数 值在第三象限是负值,正切函数的函数值在第三象限是正值.这样,就得 到了诱导公式二. 以诱导公式四为例: 若将α看成锐角(终边在第一象限),则π-α是第二象限的角(终 边在第二象限),正弦函数的三角函数值在第二象限是正值,余弦函数的 三角函数值在第二象限是负值,正切函数的三角函数值在第二象限是负 值.这样,就得到了诱导公式四. 诱导公式的应用:运用诱导公式转化三角函数的一般步骤: 特别提醒:三角函数化简与求值时需要的知识储备:①熟记特殊角 的三角函数值;②注意诱导公式的灵活运用;③三角函数化简的要项数要 最少,次数要最低,函数名最少,分母能最简,易求值最好。

三角函数模型及简单应用1说课稿

§1.6.1三角函数模型的简单应用(一)说课稿 熊罴 一、教材分析 本节课是在学习了三角函数图象和性质的前提下来学习三角函数模型的简单应用,进一步突出函数来源于生活应用于生活的思想,让学生体验一些具有周期性变化规律的实际问题的数学“建模”思想,从而培养学生的创新精神和实践能力 二、教学目标 1、通过对三角函数模型的简单应用的学习,使学生初步学会由图象求解析式的方法; 2、根据解析式作出图象并研究性质; 重点:由图象求解析式,由解析式研究图象及性质 难点:由图象求解析式时 的确定,体验解析式含绝对值的三角函数的图象作法与周期的 变化。 三、学法分析 本节课是在学习了三角函数的性质和图象的基础上来学习三角函数模型的简单应用,而本节内容重在两个方面的学习:一、由三角函数的图象求函数的解析式,二、由三角函数的解析式作三角函数的图象。 在课堂教学中,应该把以教师为中心转向以学生为中心,把学生自身的发展置于教育的中心位置,为学生创设宽容的课堂气氛,帮助学生确定适当的学习目标和达到目标的最佳途径,指导学生形成良好的学习习惯、掌握学习策略和发展原认知能力,激发学生的学习动机,培养学习兴趣,充分调动学生的学习积极性,倡导学生采用自主、合作、探究的方式学习。四、教法分析 数学是一门培养人的思维、发展人的思维的重要学科,本节课的内容是三角函数的应用,所以应让学生多参与,让其自主探究分析问题,然后由老师启发、总结、提炼,升华为分析和解决问题的能力。 五、教学程序及设计意图 (一)创设情境、激活课堂(多媒体引入) 在我们现实生活中有很多现象在进行周而复始地变化,用数学语言可以说这些现象具有周期性,而我们所学的三角函数是刻画周期变化数量的典型函数模型,比如下列现象就可以用正弦型函数模型来研究: 1、物理情景 ①简谐运动 ②星体的环绕运动 2、地理情景 ①气温变化规律 ②月圆与月缺 3、心理、生理现象 ①情绪的波动 ②智力变化状况 ③体力变化状况 4、日常生活现象 ①涨潮与退潮 ②股票变化

锐角三角函数的解题技巧

锐角三角函数的解题技巧 一、知识点回忆 (一)锐角的三角函数的意义 1、正切 在Rt△ABC中,∠C=90°,我们把锐角A的对边与邻边的比,叫做∠A的正切,记作tanA. 2、正弦和余弦 如图,在Rt△ABC中,∠C=90°,锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,即 3、三角函数:在直角三角形中,锐角A的正切(tanA)、正弦(sinA)、余弦(cosA),都叫做∠A的三角函数. (二)同角的三角函数之间的关系 (1)平方关系:sin2α+cos2α=1 (2)商数关系: (三)两角的关系 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值,任意锐角的正切值与它的余角的正切值的积等于1.即若A+B=90°,则sinA=cosB,cosA=sinB,tanA·tanB=1.

(四)特殊锐角的三角函数值 (五)锐角三角函数值解法 1、用计算器 求整数度数的锐角三角函数值. 在计算器的面板上涉及三角函数的键有和键,当我们计算整数度数的某三角函数值时,可先按这三个键之一,然后再从高位向低位按出表示度数的整数,然后按,则屏幕上就会显示出结果. 例如:计算sin44°. 解: 按键,再依次按键. 则屏幕上显示结果为0.69465837. 求非整数度数的锐角三角函数值. 若度数的单位是用度、分、秒表示的,在用计算器计算三角函数值时,同样先按 和三个键之一,然后再依次按度分秒键,然后按键,则屏幕上就会显示出结果. 2、已知三角函数值,用计算器求角度

已知三角函数值求角度,要用到、键的第二功能“sin-1,cos-1,tan-1”和键.具体操作步骤是:先按键,再按键之一,再依次按三角函数值,最后按键,则屏幕上就会显示出结果. 值得注意的是:型号不同的计算器的用法可能不同。 (六)直角三角形的解法 解直角三角形既是初中几何的重要内容,又是今后学习解斜三角形,三角函数等知识的基础,同时,解直角三角形的知识又广泛应用于测量、工程技术和物理之中,解直角三角形的应用题还有利于培养学生空间想象的能力。因此,通过复习应注意领会以下几个方面的问题: 解直角三角形的重点是锐角三角函数的概念和直角三角形的解法。前者又是复习解直角三角形的难点,更是复习本部分内容的关键。 掌握锐角三角函数和解直角三角形是进行三角运算解决应用问题和进一步研究任意角三角函数的重要基础。因此,解直角三角形既是各地中考的必考内容,更是热点内容。题量一般在4%~10%。分值约在8%~12%题型多以中、低档的填空题和选择题为主。个别省市也有小型综合题和创新题。几乎每份试卷都有一道实际应用题出现。 二、重点难点疑点突破 1、(1)sinA和cosA都是一个整体符号,不能看成sin·A或cos·A. (2)是一个比值,没有单位,只与角的大小有关,而与三角形的大小无关. (3)sinA+sinB≠sin(A+B)sinA·sinB≠sin(AB) (4)sin2A表示(sinA)2,cos2A=(cosA)2 (5)0<sinA<1,0<cosA<1 2、同名三角函数值的变化规律 当角α在0°~90°间变化时,它的正切和正弦三角函数值随着角度的增大而增大; 余弦三角函数值随着角度的增大而减少. 三、解题方法技巧点拨 1、求锐角三角函数的值 例1、(1)在Rt△ABC中,∠C=90°,若,求cosB,tanB的值.

相关主题