搜档网
当前位置:搜档网 › 组织芯片及其应用

组织芯片及其应用

组织芯片及其应用
组织芯片及其应用

组织芯片及其应用

【综述】组织芯片(tissue chip),也称组织微阵列(tissue microarrays),是生物芯片技术的一个重要分支,是将许多不同个体组织标本以规则阵列方式排布于同一载玻片上,进行同

一指标的原位组织学研究。该技术自1998年问世以来,以其大规模、高通量、标准化等

优点得到大范围的推广应用。

【优势】它克服了传统病理学方法中存在的某些缺陷,使人类第一次有可能利用成百上千份自然或处于疾病状态下的组织标本来研究特定基因及其所表达的蛋白质与疾病之间的相关

关系,同时克服了传统方法操作复杂、自动化程度低、检测效率低等缺点,既可以进行基础

研究,也可以进行临床研究。

【特点】准确、平行、快速、高通

【应用领域】疾病诊断、药物研究筛选、基因表达分析、基因突变的确认、基因分型、新

基因的发现

具体来看,可从以下几点详述:

1 对形态学的贡献:形态比较、特殊形态的提取,将病理切片的不同部位、不同结构同时

平行地呈现于一张芯片中,可进行较为精细的比较。

2 对分子生物学的贡献:e.g. PCR技术复杂昂贵,利用组织芯片可一次完成数百例的检测,方便快捷,也可使PCR结果更为可靠。

3 对遗传信息学的贡献:方便准确地进行DNA和RNA的定位提取:可以相对准确地提取

纯度较高的细胞群,提高DNA和RNA的丰度。

【简述操作步骤】

1 每个组织标本制作一个HE染色切片,显微镜定位标记病变部位,比较切片和石蜡切块。

2 制作空白蜡块接受供体取得的样本。

3 芯片微阵列的设计:计划好研究样本的数量。

4 构建微阵列。

5 使组织芯片表面平整,均匀压平。

【展望】组织芯片技术是一项新兴技术,涉及临床医学、分子生物学、机械制造、计算机

软件的诸多学科。需要各学科人才的通力合作,也对全科人才,全能人才提出了要求。

工厂组织架构图

xxxxxxxxxxxxxx有限公司 工厂组织框架图及岗位职责说明制定: 审核: 批准:

1 目的 为了质量管理体系的有效运行,规定组织内部各职能部门和各级人员的岗位职责和适任条件,以便于对人力资源的管理、信息的交流、加强沟通、增进理解、协调行动。 2 适用范围 适用于公司内对质量管理体系的管理层、各职能部门和各级有关人员的岗位质量职责、权限的规定,以及各岗位的适任条件。

3职责 总经理及副总经理主持公司生产工作,对所承担的工作全面负责。 厂长 协助副总经理及总经理完成整个生产系统的管理,优化流程,完善制度。 1.抓好生产技术管理,组织制定和完善和生产技术方面的各项管理制度,技术标准和操作规程,并抓好落实,提高生产技术管理水平, 全面完成公司下达的各项生产任务和技术经济指标,定期向总经理汇报工作。 2.搞好生产调度指挥,协调平衡好全厂的生产,做到安全稳定长期经济运行。对长期影响生产的薄弱环节和关键问题要组织技术攻关. 3.抓好安全工作,确保完全生产无事故。对生产中发生的各类事故,要及时组织有关人员进行分析,查清原因,分清责任,拿出合理的 处理意见,定出防范措施。 4.抓好质量和产量工作,严格工艺指标,提高优质合格品率。 6.抓好技术改造,积极采用先进技术,发动职工广提合理化建议和技术革新项目。 7.主持开好生产调度会、专题会、和各种例会,检查督促会议指令的落实情况,经常深入车间、岗位监督检查工作,抓好车间内部管理, 落实好每月生产工作计划,抓好车间成本核算和考核工作。 8.抓好工艺纪律和生产区的现场管理。 9.依照制度对检查中发现的问题实施考核的权力。 10.生产系统员工聘任、解聘的建议权。 11.要求相关部门配合相关工作的权力. 工程部的工作职责: 上级主管总经理;厂长。部门人员:软件工程师, 生产工程师,售后维修. 1.负责产品生产工艺文件的编制及工艺流程的规范。 2.负责产品改进及新产品打样。 3.负责技术资料的整理、保管、保密工作。 4.负责产品技术标准的编制。 5.负责制定产品质量等级标准及产品质量等级判定. 6.负责生产过程的技术指导,解决生产过程中存在的技术问题. 7.负责编写产品质量分析报告. 8.负责软件系统的开发,设计,测试确认及后续工作的跟进. 9.负责测试夹具的制作及维护. 10.按要求组织生产,保证生产工人严格按生产工艺规程和岗位操作法进行生产。 11.生产现场出现的技术问题要及时汇报,有责任协助和督促工艺规程的贯彻。 12.生产工艺规程的收集整理、归档保管。 13.负责售后维修的日计划,及产量.维修报表归档. 14.完成公司交给的其他工作. 品质部的职责:

组织芯片

组织芯片初步学习 13临七卓医 韦卢鑫 1330705103 组织芯片是将数十至上千个小组织整齐地排放在一张载玻片上而制成的组织切片。它分为多组织片,组织阵列和组织微阵列。组织芯片的特点是:体积小, 信息含量大, 一次性实验即可获大量结果。组织芯片可用于组织中的DNA 、RNA 和蛋白质的定位分析和检测。像普通组织切片一样, 可做HE 染色、特殊染色、免疫组织化学染色、DNA 和RNA 原位杂交、荧光原位杂交。组织芯片蜡块可做100 ~ 200 张连续切片。这样用同一套组织芯片即可迅速的对上百种生物分子标记(如抗原, DNA 和RNA)进行分析、检测。因此组织芯片技术是建立疾病, 特别是肿瘤的生物分子文库的强有力的工具。 图1 组织阵列由41 例淋巴瘤组织组成, 组织的直径是2.0 mm 图2 组织微阵列由200 多不同发展时期的膀胱癌组织组成,组织的直径是0.6 mm 组织芯片的基本制作方法:通过组织芯片制作机细针打孔的方法, 从众多的组织蜡块中采集到数十至上千的圆柱形小组织, 并将其整齐排放到另一个空白蜡块中而制成组织芯片蜡块。然后, 对组织芯片蜡块进行切片, 再将切片转移到载玻片上而制成组织芯片。 组织芯片的应用有: (1)寻找疾病基因::组织芯片与基因芯片配合使用在寻找疾病基因中有很好的互补作用。具有强大的检测基因的功能利用这些新技术,但是, 这些技术不能将原发改变的基因和继发改变的基因区分开来。换句话说, 在这些改变的基因H &E 染色部分从乙醇固定多肿瘤阵列(A ) 四个数组元素:肾癌(B ),鳞状细胞癌 肺(C )中,小叶浸润性乳腺癌(D )和结 肠癌(E )。 B-E ,x400。

基因芯片技术的应用现状及展望

基因芯片技术的应用现状及展望 1基因芯片 1.1基本概念和原理 又称DNA 微阵列、DNA 芯片, 通过微加工技术和微电子技术在固体芯片表面构建成的微型生物化学分析系统,能够通过检测 基因的丰度来确定基因的表达模式和表达水平。由于常用硅芯片或玻片作为固相支持物, 并且在制备过程中运用了计算机芯片的制备技术, 所以称为基因芯片技术。基因芯片的工作原理与核酸分子杂交的方法是一致的, 都是运用已知核酸序列作为探针与互补的靶核苷酸序列进行杂交, 然后通过信号检测进行定性和定量分析。与传统的核酸杂交不同的是基因芯片是在一微小的片基如硅片、玻片和塑料片等表面上集成了大量的核酸分子识别探针, 能够在同一时间内平行分析大量的基因, 进行大量信息的筛选与检测, 实现对生物样品快速、并行、高效地进行检测或医学诊断。 1.2研究背景 80 年代初, 科学家提出了固相核酸杂交的设想, Bains等首 先对固相杂交DNA 测序进行了有益的探索; 其后, 俄罗斯、美国及英国的科学家分别报道了用杂交测定核酸序列的方法。1991 年, Affymetrix公司Fodor 等建立了原位光刻合成技术, 为寡核苷酸在片原位合成制作高密度基因芯片奠定了基础, 标志着核酸检测技术已发展到了一个新的阶段。1994年, 俄美科学家共同研制了用于B- 地中海贫血基因突变筛查的基因芯片, 测序的速度提高

了近1 000 倍, 被认为是一种全新的快速测序方法。鉴于基因芯片潜在的巨大商业价值, 90年代中期开始, 国外更多的商业公司加入了芯片开发的行列。1996 年底, Affymetr ix 公司推出可应用的基因芯片和较完整的芯片制造、杂交、扫描及数据分析系统, 其它如GeneralScanningInc、Telechem、Cartesian 等公司亦相继研制出芯片用激光共聚焦扫描仪及分析软件。到目前为止, 芯片技术在基础研究, 尤其是在基因表达方面已得到应用, 而在医学应用方面也已开发出少数基因诊断等相关芯片。但由于芯片和检测系统价格昂贵、专利及许多技术问题还有待解决, 因此目前尚未大规模的应用。在我国, 较早从事基因芯片研究的机构有清华大学、复旦大学、东南大学等。其中, 清华大学处于领先地位, 并得到国家重点支持。其它如东南大学在分子印章法制备高密度基因芯片、复旦大学在硅导电玻璃介质生物芯片制备、西安超群公司在三维立体基因芯片制造等方面也都取得了一定成果。 1.3基因芯片的分型 视分类方法不同可以分为以下几种主要类型: a.无机片基和有机合成物片基的基因芯片 b.原位合成和预先合成然后点样的基因芯片 c.基因表达芯片和DNA测序芯片 另外根据所用探针的类型不同分为cDNA微阵列(或cDNA微阵列芯片)和寡核苷酸阵列(或芯片),根据应用领域不同而制备的专用芯片如毒理学芯片(Toxchip)、病毒检测芯片(如肝炎病

组织芯片与临床病理

组织芯片与临床病理 首都医科大学附属北京天坛医院张丽敏 1998 年, Konoen 等在美国 NatureMedicine 上发表了制作组织芯片用于乳腺癌 p53 基因扩增及其表达蛋白水平的研究,并首次提出了组织芯片的概念。随后 Moch 等对肾癌,Scharan 等对不同类型肿瘤, Richter 等对尿道膀胱癌的组织芯片进行了免疫组织化学和原位分子杂交等研究,使得世人对组织芯片有了进一步的认识。 一、组织芯片的概念和特点 (一)组织芯片的概念:组织芯片 (tissuechip) ,又叫组织微阵列(tissuemicroarrays , TMA), 是将许多不同个体组织标本以规则阵列方式排布于同一载玻片上,进行同一指标的原位组织学研究。组织芯片是生物芯片技术的一个重要分支。 组织芯片与基因芯片和蛋白质芯片一起构成了生物芯片系列,使人类第一次能够有效利用成百上千份组织标本,在基因组、转录组和蛋白质组三个水平上进行研究,被誉为医学、生物学领域的一次革命。组织芯片技术作为一项新兴的生物学研究技术,正以它绝对的优越性展示着自己的潜力。( ppt5 )图表显示的是组织芯片与基因芯片、蛋白芯片的区别。 (二)组织芯片的特点:体积小,信息含量大,获得大量结果,减少试验误差。省时、省力、经济,有利于原始蜡块的保存。 二、组织芯片的分类 (一)根据芯片上样本含量的多少:可分为低密度芯片 (<200 点 ) 、中密度芯片(200 ~ 600 点 ) 和高密度芯片 (>600 点 ) 。 目前国际上常用的 TMA 的标本量多为 60-100 个,组织片的直径在 2mm 左右。一般情况下,在直径 2mm 的组织片上有约 100000 个细胞,而直径 0.6mm 的组织片上仅有约30000 个细胞。 (二)按组织来源:可分为人类组织芯片、动物组织芯片和肿瘤组织芯片。

工厂组织架构图及岗位职责说明

工厂组织框架图及岗位职责说明

1 目的 为了质量管理体系的有效运行,规定组织内部各职能部门和各级人员的岗位质量职责和适任条件,以便于对人力资源的管理、信息的交流、加强沟通、增进理解、协调行动。 2 适用范围 适用于公司内对质量管理体系的管理层、各职能部门和各级有关人员的岗位质量职责、权限的规定,以及各岗位的适任条件。 3职责 总经理: 1. 贯彻执行国家有关法律、法规和有关质量方面的方针政策; 2. 主持制订公司质量方针和质量目标,对质量承诺并确保实施; 3. 坚持满足顾客要求的重要观念,建立质量管理体系; 4. 任命企业相关负责人,确定各级机构和人员并明确规定各级职责、权限和相互关系,确保组织内的沟通有效性; 5. 负责定期组织管理评审、确保质量管理体系持续的适宜、充分和有效; 6. 审批重大质量政策及质量改进决策; 7. 授权质管部质量管理人员独立行使对产品质量进行监视、测量和报告的职能和权限。 业务副总 一、管理工作 1、负责制订年度、月度营销目标计划; 2、负责跟进目标计划的实施; 3、负责营销实绩的管理,并督导所属文员进行统计、归类并存档; 4、负责监督所属部门对于营销目标的执行情况,并制订月度营销实绩报告; 二、市场信息管理 1、负责市场调查及预测工作的实施,制订应对准备策略; 2、负责做好交易往来客户名簿的登记管理制度,并指导实施; 3、负责做好竞争对手调查名簿的登记管理制度,并指导实施; 4、负责依据市场状况和公司发展宗旨,对本行业市场信息及营销进行整合;

三、绩效管理 1、根据营销目标计划,制订月度考核计划,并配合行政部进行考核的实施; 2、负责制订本部门的岗位责任制,辅助提升全体营销人员的业务素质水平; 3、负责按计划完成每月货款回笼; 4、负责收集产品信息,不定期征求客户对产品质量要求和其他质量信息,并反馈给公司质检部; 5、负责监控营销项目的实施,督导下属工作的高效达成; 6、负责在本部门推行目标管理模式,以推动公司经营的发展; 四、对外、公关管理 1、负责制订营销外务公关的管理制度,并推行; 2、负责根据市场状况,整合市场信息,并提出相关措施; 3、负责加强完善经销商合同,监控各类合约的签订、建档工作; 4、负责对大中型客户的沟通与管理,做好服务跟踪; 五、其他管理 1、参与或主持相关的工作会议; 2、负责在本部门推行企业文化管理体制; 3、负责处理营销杂务,并做好营销策略参谋; 4、负责所属人员的考核考评工作的实施; 财务副总 1.根据国家财务制度和财经法规,结合公司实际情况,制定适用的财务管理办法。 2.按照国家统一的会计制度设置和使用会计科目。除会计制度允许变动的以外,不得任意增减或者合并会计科目。 3.围绕公司的经营发展规划和工作计划,负责编制公司财务计划和费用预算,有效地筹划和运用公司资金。 4.做好公司各项资金的收取与支出管理。 5.定期汇总管理处的经济运作情况,提出合理化建议,为公司发展决策提供参考依据。 6.做好财务统计和会计账目、报表及年终结算工作,并妥善保管会计凭证,账簿、报表和其他档案资料。 7.定期检查财务计划、费用预算执行情况,监督各部门的财务活动,分析存在问题,查明原因,及时解决。 8.统一归口管理公司各种票据和账目,杜绝管理处资金流失。 9.负责财务人员的业务培训和考核监督工作。 10.保守公司管理处机密,维护公司利益。

组织芯片技术简述

组织芯片技术简述 摘要:组织芯片技术是近年来基因芯片(DNA芯片)技术的发展和延伸,属于一种特殊生物芯片技术。组织芯片技术可以将数十个甚至上千个不同个体的临床组织标本按预先设计的顺序排列在一张玻片进行分析研究,是一种高通量、多样本的分析工具。本文就组织芯片技术的原理、发展、特点及应用进行一个简单介绍 关键词:组织芯片原理发展特点应用 正文 一.原理 组织芯片(tissue microarray,TMA)是一种新型生物芯片技术,又叫组织微阵列。由Konanen等人于1998年建立,它建立的初衷是为了在一次实验中对大量组织样品进行平行研究。它将大量组织样本集成在一张固相载体(如石蜡块)上,可以按照预定的数量来“扩增”组织,可以结合其他技术,例如组织芯片技术可以与DNA、RNA、蛋白质、抗体等技术相结合,在基因组、转录组和蛋白质组等三个水平上进行研究。 TMA构建原理可以概括为以下四个步骤: 1.选取待研究的组织。现在人们利用组织芯片技术对人体各组织均有研究,包括肝脏,前列腺,心脏,乳房等等,据相关数据显示,在大脑组织中的应用最多。医学上常选取一些病变器官进行研究。根据制作方法来分,微阵列主要有石蜡包埋的组织微阵列和冰冻微阵列两种。 2. 经检测后标记出待研究的区域。组织微阵列的检测仪主要是高性能显微镜、荧光显微镜或共聚焦荧光显微镜。适用的检测技术有苏木精—HE染色,免疫组织化学(IHC)染色,原位杂交(ISH),荧光原位杂交(FISH),原位PCR,寡核苷酸启动的原位DNA合成(PRINS)等。 3. 使用组织芯片点样仪将标记好的组织按设计排列在空白蜡块上。首先要利用打孔机在已经标记好的靶位点上进行打孔,将组织芯转入蜡块孔中,重复操作可转入上千个样品组织芯。 4. 使用切片机对阵列蜡块进行连续切片即获得组织芯片。根据制作方法来分,微阵列主要有石蜡包埋的组织微阵列和冰冻微阵列两种。后者可以克服上述前者的多种缺陷(含醛基的化合物(可能损伤RNA或使目标抗原结构断裂或破坏抗原——抗体结合位点,另外,石蜡包埋乙醇固定过的组织也无法避免RNA降解)。 二.发展

基因芯片技术的应用和发展趋势

基因芯片技术的应用和发展趋势 随着基因芯片技术的日渐成熟, 在功能基因组、疾病基因组、系统生物学等领域中得到了广泛的应用, 已经发表了上万篇研究论文, 每年发表的论文呈现增长的趋势. 芯片制备技术极大地推进了生物芯片的发展, 从实验室手工或机械点制芯片到工业化原位合成制备, 从几百个点的芯片到几百万点的高密度芯片, 生物芯片从一项科学成为一项技术, 被越来越多的研究者广泛运用. 各个实验室不断产生海量的杂交数据, 相同领域的研究者需要比较不同实验平台产生的数据, 作为基于分子杂交原理的高通量技术, 芯片实验的标准化、可信度、重现性和芯片结果是否能作为定量数据等问题成为所有的芯片使用者关心的课题. 迈阿密原则和微阵列质量控制系列研究回答了这两个问题. 迈阿密原则(Minimum Information About a Micro- array Experiment, MIAME, 微阵列实验最小信息量)提出了生物芯片标准化的概念, 该原则的制定使世界各地实验室的芯片实验数据可以为所有的研究者共享. 同 时, 美国国家生物信息学中心(NCBI)和位于英国的欧洲生物信息学研究所(EBI)也建立了GEO ( https://www.sodocs.net/doc/3111476897.html,/geo/)和ArryExpress (http:// ;https://www.sodocs.net/doc/3111476897.html,/arrayexpress/)公共数据库, 接受和储存全球研究者根据迈阿密原则提交的生物芯片数据, 对某项研究感兴趣的研究人员可以下载到相关课题的芯片原始数据进行分析. 2006年美国FDA联合多个独立实验室进行了MAQC系列实验(micro array quality control, MAQC), 旨在研究目前所使用的芯片平台的质量控制. 该研究的12篇系列文章发表在2006年9月份的Nature Biotechnology 上, 用严格的实验分析了目前主流芯片平台数据质量, 芯片数据和定量PCR结果之间的相关性, 芯片数据均一化方法, 不同芯片平台之间的可重现性. 证明了不同芯片平台产生的数据具有可比性和可重现性, 各种芯片平台之间的系统误差远远小于人为操作和生物学样品之间本身的差异, 肯定了芯片数据的可信性, 打消了以往对芯片数据的种种猜疑, 明确了基于杂交原理的芯片同样可以作为一种定量的手段. 推动了生物芯片技术在分子生物学领域更广泛的应用. 生物信息学和统计学是在处理基因芯片产生的海量数据中必不可少的工具. 随着芯片应用的推进, 芯片数据分析的新理论和新算法不断地被开发出来, 这些方法帮助生物学家从海量的数据里面快速筛选出差异表达的基因. 一次芯片实验获得的是成千上万个基因的表达信息, 任何一种单一的分析方法都很难将所有蕴含在数据中的生物学信息全部提取出来, 从近年来生物信息学研究的趋势来看, 目前研究的重点开始转向芯片数据储存、管理、共享和深度信息挖掘, 旨在从芯片数据中获得更多的生物学解释, 而不再停留在单纯的差异表达基因筛选上。 目前基因芯片的制备向两个主要方向发展. 第一, 高密度化, 具体表现为芯片密度的增加, 目前原位合成的芯片密度已经达到了每平方厘米上千万个探针. 一张芯片上足以分析一个物种的基因组信息. 第二, 微量化, 芯片检测样品的微量化, 目前芯片检测下限已经能达到纳克级总RNA水平, 这为干细胞研究中特别是IPS干细胞对单个细胞的表达谱研究提供了可能. 另一方面, 微量化也体现芯片矩阵面积的微量化, 即在同一个芯片载体上平行的进行多个矩阵的杂交, 大大减少系统和批次可能带来的差异, 同时削减实验费用. 微阵列技术改变了生物学研究的方法, 使得微量样品快速高通量的分析成为可能, 从单个基因的研究迅速扩展到全基因组的系统生物学研究. 微阵列技术帮助生物学研究进入后基因组时代, 研究成果层出不穷。 2001年国家人类基因组南方研究中心韩泽广博士研究小组利用cDNA芯片对肝癌和正常组织中的12393个基因和EST序列进行了表达谱筛查, 其中发现了2253个基因和EST在肝癌中发生了差异表达, 并对这些差异基因的信号通路进行了分析, 发现WNT信号通路在肝癌的发生中出现了表达异常. 2002年中国科学院神经科学研究所张旭博士研究组利用表达谱芯片对大鼠外周神经损伤模型背根神经节的基因表达进行了研

小企业组织架构图以及各部门职

中小企业组织架构图以及各部门职 一、组织架构: 董事会 总经理 财务部、系统集成部、人事行政部、市场营销部、技术部。 二、各部门职责: (一)总经理: 1.根据董事会提出的战略目标,组织制定公司中长期发展战略与经营方案,并推动实施。 2.拟定公司内部管理机构设置方案和签发公司高层人事任命书。 3.审定公司工资奖金分配方案和经济责任挂钩办法并组织实施。 4.审核签发以公司名义(盖公章)发出的文件。 5.主持公司的全面经营管理工作。 6.向董事会提出企业的更新改造发展规划方案、预算外开支计划。 7.处理公司重大突发事件和重大对外关系问题。 8.推进公司企业文化的建设工作,树立良好的企业形象。 9.从事经营管理的全局开创性工作,为公司发展做出艰巨的探索和尝试。召集、主持总经理办公会议、专题会议等,总结工作、听取汇报,检查工作、督促进度和协调矛盾等。 (二)财务部: 1.负责公司日常财务核算,参与公司的经营管理。 2.根据公司资金运作情况,合理调配资金,确保公司资金正常运转。 3.搜集公司经营活动情况、资金动态、营业收入和费用开支的资料并进行分析,提出建议。 4.严格财务管理,加强财务监督,与外包财务公司做好接洽工作。 5.做好有关的收入单据之审核及账务处理;各项费用支付审核及账务处理;应收账款、应付账款账务处理;总分类账、日记账等账簿处理;财务报表的编制。 6..加强企业所有税金的核算及申报、税务事务处理、资金预算、财务盘点。 7.做好每个月的员工工资的核对与发放工作。 (二)系统集成部: 1.根据项目部立项书,负责集成项目与布线项目的具体实施: 1)项目实施准备 2)项目具体施工 3)项目初验 4)及时向项目部报告项目变更,以便项目部的变更商务谈判 5)准备项目技术资料,协助项目部进行项目验收 2.协助项目部进行集成项目与布线项目的售前技术支持: 1)协助技术可行性判断 2)协助标书技术方案编写 3)协助合同中技术条款的拟订 3.部门项目资料管理。 4.公司内部网络维护与设计。 5.总经理办公室指派的其他任务。

组织芯片及其应用

组织芯片及其应用 【综述】组织芯片(tissue chip),也称组织微阵列(tissue microarrays),是生物芯片技术的一个重要分支,是将许多不同个体组织标本以规则阵列方式排布于同一载玻片上,进行同 一指标的原位组织学研究。该技术自1998年问世以来,以其大规模、高通量、标准化等 优点得到大范围的推广应用。 【优势】它克服了传统病理学方法中存在的某些缺陷,使人类第一次有可能利用成百上千份自然或处于疾病状态下的组织标本来研究特定基因及其所表达的蛋白质与疾病之间的相关 关系,同时克服了传统方法操作复杂、自动化程度低、检测效率低等缺点,既可以进行基础 研究,也可以进行临床研究。 【特点】准确、平行、快速、高通 【应用领域】疾病诊断、药物研究筛选、基因表达分析、基因突变的确认、基因分型、新 基因的发现 具体来看,可从以下几点详述: 1 对形态学的贡献:形态比较、特殊形态的提取,将病理切片的不同部位、不同结构同时 平行地呈现于一张芯片中,可进行较为精细的比较。 2 对分子生物学的贡献:e.g. PCR技术复杂昂贵,利用组织芯片可一次完成数百例的检测,方便快捷,也可使PCR结果更为可靠。 3 对遗传信息学的贡献:方便准确地进行DNA和RNA的定位提取:可以相对准确地提取 纯度较高的细胞群,提高DNA和RNA的丰度。 【简述操作步骤】 1 每个组织标本制作一个HE染色切片,显微镜定位标记病变部位,比较切片和石蜡切块。 2 制作空白蜡块接受供体取得的样本。 3 芯片微阵列的设计:计划好研究样本的数量。 4 构建微阵列。 5 使组织芯片表面平整,均匀压平。 【展望】组织芯片技术是一项新兴技术,涉及临床医学、分子生物学、机械制造、计算机 软件的诸多学科。需要各学科人才的通力合作,也对全科人才,全能人才提出了要求。

工厂组织架构图及岗位职责说明

工厂组织架构图及岗位职责说明 业务副总经理行政部财务副总总经理出纳厂长市场资材部工程部生产部品质部生管物控采购辅料仓硬件工程软件工程生产工程包装组测试组组装组I Q C Q E I P Q C 电子仓仓库成品仓总务前台内保后勤售后会计Q A 电子料塑胶件包材 1 目的为了质量管理体系的有效运行规定组织内部各职能部门和各级人员的岗位职责和适任条件以便于对人力资源的管理、信息的交流、加强沟通、增进理解、协调行动。 2 适用范围适用于公司内对质量管理体系的管理层、各职能部门和各级有关人员的岗位质量职责、权限的规定以及各岗位的适任条件。 3 职责总经理及副总经理主持公司生产经营及管理工作对所承担的工作全面负责。厂长协助副总经理及总经理完成整个生产系统的管理优化流程完善制度。 1.抓好生产技术管理组织制定和完善和生产技术方面的各项管理制度技术标准和操作规程并抓好落实提高生产技术管理水平全面完成公司下达的各项生产任务和技术经济指标定期向总经理汇报工作。 2.搞好生产调度指挥协调平衡好全厂的生产做到安全稳定长期经济运行。对长期影响生产的薄弱环节和关键问题要组织技术攻关. 3.抓好安全工作确保完全生产无事故。对生产中发生的各类事故要及时组织有关人员进行分析查清原因分清责任拿出合理的处理意见定出防范措施。 4.抓好质量和产量工作严格工艺指标提高优质合格品率。 6.抓好技术改造积极采用先进技术发动职工广提合理化建议和技术革新项目。7.主持开好生产调度会、专题会、和各种例会检查督促会议指令的落实情况经常深入车间、岗位监督检查工作抓好车间内部管理落实好每月生产工作计划抓好车间成本核算和考核工作。8.抓好工艺纪律和生产区的现场管理。9.依照制度对检查中发现的问题实施考核的权力。10.生产系统员工聘任、解聘的建议权。11.要求相关部门配合相关工作的权力. 工程部的工作职责上级主管总经理厂长。部门人员软件工程师生产工程师售后维修. 1.负责产品生产工艺文件的编制及工艺流程的规范。 2. 负责产品改进及新产品 打样。3. 负责技术资料的整理、保管、保密工作。4. 负责产品技术标准的编 制。5. 负责制定产品质量等级标准及产品质量等级判定. 6. 负责生产过程的技 术指导解决生产过程中存在的技术问题. 7. 负责编写产品质量分析报告. 8. 负 责软件系统的开发设计测试确认及后续工作的跟进. 9. 负责测试夹具的制作及 维护. 10.按要求组织生产保证生产工人严格按生产工艺规程和岗位操作法进行 生产。11.生产现场出现的技术问题要及时汇报有责任协助和督促工艺规程的 贯彻。12.生产工艺规程的收集整理、归档保管。13.负责售后维修的日计划及 产量.维修报表归档. 14.完成公司交给的其他工作. 2. 3.品质部的职责上级主管厂长。部门人员QEIQCIPQCOQCQA。一.QE工程师 职责1.负责从样品到量产整个生产过程的产品质量控制寻求通过测试、控制及 改进流程以提升产品质量 2.负责解决产品生产过程中所出现的质量问题处理 品质异常及品质改善 3.产品的品质状况跟进处理客户投诉并提供解决措施 4. 制定各种与品质相关的检验标准与文件. 5.指导外协厂的品质改善分析与改良 不良材料二.部门职责 1.建立健全质量管理体系制定并组织实施质量管理体系 的认证和审核工作完善质量目标责任制确保产品质量的稳定提高及时解决质量 管理体系中存在的不足与隐患。 2. 定期向上级主管部门进行质量工作汇报。 3. 编制检验规程并监督实施。 4. 负责测试夹具的管理有问题及时向工程部反 应并解决. 5. 负责原辅材料、半成品、成品的监视和测量拒收原辅材料中的不 合格材料放行经检验合格的材料。控制不合格的成品入库及出厂放行经检验合

基因芯片技术及其应用简介(精)

基因芯片技术及其应用简介 生物科学学院杨汝琪 摘要:随着基因芯片技术的发展,基因芯片越来越多的被人们利用,它可应用于生活中的方方面面,如:它可以应用于医学、环境科学、微生物学和农业等多个方面,基因技术的发展将有利于社会进一步的发展。 关键词:基因芯片;技术;应用 基因(gene是载有生物体遗传信息的基本单位,存在于细胞的染色体(chromosome上。将大量的基因片段有序地、高密度地排列在玻璃片或纤维膜等载体上,称之为基因芯片(又称DNA 芯片、生物芯片。在一块1 平方厘米大小的基因芯片上,根据需要可固定数以千计甚至万计的基因片段,以此形成一个密集的基因方阵,实现对千万个基因的同步检测。基因芯片技术是近年来兴起的生物高新技术,把数以万计的基因片段以显微点阵的方式排列在固体介质表面,可以实现基因检测的快速、高通量、敏感和高效率检测,将可能为临床疾病诊断和健康监测等领域,带来全新的技术并开拓广阔的市场。 1 基因芯片技术原理及其分类 1.1基因芯片的原理: 基因芯片属于生物芯片的一种"其工作原理是:经过标记的待测样本通过与芯片上特定位置的探针杂交,可根据碱基互补配对的原则确定靶序列[1],经激光共聚集显微镜扫描,以计算机系统对荧光信号进行比较和检测,并迅速得出所需的信息"基因芯片技术比常规方法效率高几十到几千倍,可在一次试验中间平行分析成千上万个基因,是一种进行序列分析及基因表达信息分析的强有力工具。 1.2基因芯片分类: 1.2.1根据其制造方法可分原位合成法和合成后点样法;

1.2.2根据所用载体材料不同分为玻璃芯片!硅芯片等; 1.2.3根据载体上所固定的种类可分为和寡核苷酸芯片两种; 1.2.4根据其用途可分测序芯片!表达谱芯片!诊断芯片等 2 基因芯片技术常规流程 2.1 芯片设计根据需要解决的问题设计拟采用的芯片,包括探针种类、点阵数目、片基种类等。 2.2 芯片制备将DNA, cDNA或寡核昔酸探针固定在片基上的过程。从本质上可分为两大类fz} ,一类是在片基上直接原位合成,有光蚀刻法、压电印刷法和分子印章多次压印法三种;另一类是将预先合成的探针固定于片基表面即合成点样法。 2.3 样品制备常规方法提取样品总RNA,质检控制。再逆转录为。DNAo 2.4 样品标记在逆转录过程中标记荧光素等。 2.5 芯片杂交标记的cDNA溶于杂交液中,与芯片杂交。 2.6 芯片扫描一用激光扫描仪扫描芯片。 2.7 图像采集和数据分析专用软件分析芯片图像,然后对数据进行归一化,最后以差异为两倍的标准来确定差异表达基因。 2.8 验证用定量PCR或原位杂交验证芯片结果的可信性。 3基因芯片合成的主要方法 目前已有多种方法可以将基因片段(寡核苷酸或短肽固定到固相支持物上。这些方法总体上有两种: 3.1原位合成:

组织芯片的概念及原理

组织芯片的概念及原理 关键词:细胞株肿瘤细胞菌种保藏中心 ATCC 中国微生物菌种网北京标准物质网 组织芯片(tissue chip),也称组织微阵列(tissuemmroarray),该技术是将数十个甚至上千个不同个体组织标本以规则阵列方式排 布于同一载体上,进行同一指标的原位组织学研究,是一种高通量、大样本以及快速的分子水平分析工具。组织芯片的制作原理与单个切片相同,只是样本数量增加。 组织芯片的种类包括人的常规石蜡包埋样本的组织芯片、各种实验动物的组织芯片、细胞株及一些病原微生物的芯片等。在已有的石蜡包埋组织芯片的基础上,Feizo等创建了冷冻组织微阵列技术。近年来出现了一种新技术,称为下一代组织芯片技术(next-generation tissue。microarray,ngTMA),该技术将组织学专业知识与数字化病理技术及自动化组织芯片技术相结合,能精准定位所需要的组织区域或细胞类型,避免无效组织的出现,有助于肿瘤微环境中的病理学研究。 组织芯片主要用于各种原位组织技术实验中,包括常规形态学观察、各种特殊染色、免疫组织化学染色、核酸原位杂交、原位PCR、荧光原位杂交、原位RT-PCR和寡核苷酸启动的DNA合成(PRINS)等;

其次用于临床和基础的研究,如分子诊断、预后指标筛选、治疗靶点定位、抗体和药物筛选、基因和表达分析等。 组织芯片的设计应考虑组织的种类及芯片上每一样本组织片的大小。此外,组织片的大小对某一器官或组织所存在病变的代表程度如何也是考量因素。一般而言,芯片上组织样本数量越大,组织的面积越小,细胞数量也越少。在直径约为2mm的组织芯片上有约100000个细胞,而在直径为0.6mm的组织片上只有约30 000个细胞,故在组织芯片的设计中并不是组织片的数量越多越好,最常用的组织芯片的样本含量仍以60~100个为主,组织片的直径可为2mm,这样既可提供较大面积的组织进行形态学观察,又可定位和半定量观察免疫组化或原位杂交等的检测信号(图9-7-1)。

工厂组织架构图知识讲解

乐迪鞋业有限公司组织结构示意图及相关工作职责 1 目的 为了质量管理体系的有效运行,规定组织内部各职能部门和各级人员的岗位职责和适任条件,以便于对人力资源的管理、信息的交流、

加强沟通、增进理解、协调行动。 2 适用范围 适用于公司内对质量管理体系的管理层、各职能部门和各级有关人员的岗位质量职责、权限的规定,以及各岗位的适任条件。 3职责 总经理及副总经理主持公司生产经营及管理工作,对所承担的工作全面负责。 厂长 协助副总经理及总经理完成整个生产系统的管理,优化流程,完善制度。 1.抓好生产技术管理,组织制定和完善和生产技术方面的各项管理制度,技术标准和操作规程,并抓好落实,提高生产技术管理水平, 全面完成公司下达的各项生产任务和技术经济指标,定期向总经理汇报工作。 2.搞好生产调度指挥,协调平衡好全厂的生产,做到安全稳定长期经济运行。对长期影响生产的薄弱环节和关键问题要组织技术攻关. 3.抓好安全工作,确保完全生产无事故。对生产中发生的各类事故,要及时组织有关人员进行分析,查清原因,分清责任,拿出合理的 处理意见,定出防范措施。 4.抓好质量和产量工作,严格工艺指标,提高优质合格品率。 6.抓好技术改造,积极采用先进技术,发动职工广提合理化建议和技术革新项目。 7.主持开好生产调度会、专题会、和各种例会,检查督促会议指令的落实情况,经常深入车间、岗位监督检查工作,抓好车间内部管理, 落实好每月生产工作计划,抓好车间成本核算和考核工作。 8.抓好工艺纪律和生产区的现场管理。 9.依照制度对检查中发现的问题实施考核的权力。 10.生产系统员工聘任、解聘的建议权。 11.要求相关部门配合相关工作的权力. 工程部的工作职责: 上级主管总经理;厂长。部门人员:软件工程师, 生产工程师,售后维修. 1.负责产品生产工艺文件的编制及工艺流程的规范。 2.负责产品改进及新产品打样。 3.负责技术资料的整理、保管、保密工作。 4.负责产品技术标准的编制。 5.负责制定产品质量等级标准及产品质量等级判定. 6.负责生产过程的技术指导,解决生产过程中存在的技术问题. 7.负责编写产品质量分析报告.

工厂组织架构图

乐迪鞋业有限公司组织结构示意图及相关工作职责

1 目的 为了质量管理体系的有效运行,规定组织内部各职能部门和各级人员的岗位职责和适任条件,以便于对人力资源的管理、信息的交流、加强沟通、增进理解、协调行动。 2 适用范围 适用于公司内对质量管理体系的管理层、各职能部门和各级有关人员的岗位质量职责、权限的规定,以及各岗位的适任条件。 3职责 总经理及副总经理主持公司生产经营及管理工作,对所承担的工作全面负责。 厂长 协助副总经理及总经理完成整个生产系统的管理,优化流程,完善制度。 1.抓好生产技术管理,组织制定和完善和生产技术方面的各项管理制度,技术标准和操作规程,并抓好落实,提高生产技术管理水平, 全面完成公司下达的各项生产任务和技术经济指标,定期向总经理汇报工作。 2.搞好生产调度指挥,协调平衡好全厂的生产,做到安全稳定长期经济运行。对长期影响生产的薄弱环节和关键问题要组织技术攻关. 3.抓好安全工作,确保完全生产无事故。对生产中发生的各类事故,要及时组织有关人员进行分析,查清原因,分清责任,拿出合理的 处理意见,定出防范措施。 4.抓好质量和产量工作,严格工艺指标,提高优质合格品率。 6.抓好技术改造,积极采用先进技术,发动职工广提合理化建议和技术革新项目。 7.主持开好生产调度会、专题会、和各种例会,检查督促会议指令的落实情况,经常深入车间、岗位监督检查工作,抓好车间内部管理, 落实好每月生产工作计划,抓好车间成本核算和考核工作。 8.抓好工艺纪律和生产区的现场管理。 9.依照制度对检查中发现的问题实施考核的权力。 10.生产系统员工聘任、解聘的建议权。 11.要求相关部门配合相关工作的权力. 工程部的工作职责: 上级主管总经理;厂长。部门人员:软件工程师, 生产工程师,售后维修. 1.负责产品生产工艺文件的编制及工艺流程的规范。 2.负责产品改进及新产品打样。 3.负责技术资料的整理、保管、保密工作。

基因芯片技术及其应用(精)

基因芯片技术及其应用 李家兴1001080728 园艺107 基因芯片( gene chip, DNA chip, DNA microarray 又被称为DNA芯片、DNA微阵列和生物芯片, 是指以大量人工合成的或应用常规分子生物学技术获得的核酸片段作为探针, 按照特定的排列方式和特定的手段固定在硅片、载玻片或塑料片上, 一个指甲盖大小的芯片上排列的探针可以多达上万个[1- 3]。在使用时,先将所研究的样品标记, 然后与芯片上的寡聚核苷酸探针杂交,再用激光共聚焦显微镜等设备对芯片进行扫描, 配合计算机软件系统检测杂交信号的强弱, 从而高效且大规模地获得相关的生物信息。此项技术将大量的核酸分子同时固定在载体上, 一次可检测分析大量的DNA和RNA, 解决了传统核酸印迹杂交技术复杂、自动化程度低、检测目标分子数量少、成本高、效率低等的缺点[4]。此外, 通过设计不同的探针阵列( array , 利用杂交谱重建DNA序列, 还可实现杂交测序( sequencing by hybridization,SBH [5]。目前, 该技术在基因表达研究、基因组研究、序列分析及基因诊断等领域已显示出重要的理论和应用价值[6]。 1 基因芯片技术的产生和发展 21 世纪将是生命科学的世纪, 基因芯片技术是近年产生的一项生物高新技术, 它将像计算机一样成为21 世纪即将来临的又一次新兴革命的奠基石[7,8]。基因芯片技术的产生与发展与人类基因组计划(Human Genome Project, HGP 的研究密不可分[9]。人类基因组的大量信息需要有一种快速、敏感、平行检测的技术,随着越来越多的基因被解码, 基因的功能研究成为迫切需要解决的课题。在这一背景下, 以基因芯片技术为主体的生物芯片诞生了, 它被誉为是20 世纪90 年代中期以来影响最深远的重大科技进展之一。基因芯片技术充分结合灵活运用了寡核苷酸合成、固相合成、PCR 技术、探针标记、分子杂交、大规模集成电路制造技术、荧光显微检测、生物传感器及计算机控制和图像处理等多种技术, 体现了生物技术与其他学科相结合的巨大潜力。基因芯片技术的理论基础是核酸杂交理论, Southern 印迹可以看作是生物芯片的雏形; 其后, 人们又发明了一个以膜片为介质基础的克隆库扫描

基因芯片数据功能分析

生物信息学在基因芯片数据功能分析中的应用2009-4-29 随着人类基因组计划(Human Genome Project)即全部核苷酸测序的即将完成,人类基因组研究的重心逐渐进入后基因组时代(PostgenomeEra),向基因的功能及基因的多样性倾斜。 通过对个体在不同生长发育阶段或不同生理状态下大量基因表达的平行分析,研究相应基因在生物体内的功能,阐明不同层次多基因协同作用的机理,进而在人类重大疾病如癌症、心血管疾病的发病机理、诊断治疗、药物开发等方面的研究发挥巨大的作用。它将大大推动人类结构基因组及功能基因组的各项基因组研究计划。生物信息学在基因组学中发挥着重大的作用,而另一项崭新的技术——基因芯片已经成为大规模探索和提取生物分子信息的强有力手段,将在后基因组研究中发挥突出的作用。基因芯片与生物信息学是相辅相成的,基因芯片技术本身是为了解决如何快速获得庞大遗传信息而发展起来的,可以为生物信息学研究提供必需的数据库,同时基因芯片的数据分析也极大地依赖于生物信息学,因此两者的结合给分子生物学研究提供了一条快捷通道。 本文介绍了几种常用的基因功能分析方法和工具: 一、GO基因本体论分类法 最先出现的芯片数据基因功能分析法是GO分类法。Gene Ontology(GO,即基因本体论)数据库是一个较大的公开的生物分类学网络资源的一部分,它包含38675个Entrez Gene注释基因中的17348个,并把它们的功能分为三类: 分子功能,生物学过程和细胞组分。在每一个分类中,都提供一个描述功能信息的分级结构。这样,GO中每一个分类术语都以一种被称为定向非循环图表(DAGs)的结构组织起来。研究者可以通过GO分类号和各种GO数据库相关分析工具将分类与具体基因联系起来,从而对这个基因的功能进行描述。在芯片的数据分析中,研究者可以找出哪些变化基因属于一个共同的GO功能分支,并用统计学方法检定结果是否具有统计学意义,从而得出变化基因主要参与了哪些生物功能。

基因芯片技术及其应用

基因芯片技术及其应用摘要: DNA芯片技术是指在固相支持物上原位合成寡核苷酸,或者直接将大量的DNA探针以显微打印的方式有序地固化于支持物表面,然后与标记的样品杂交,通过对杂交信号的检测分析,即可获得样品的遗传信息。由于常用计算机硅芯片作为固相支持物,所以称为DNA芯片。 关键词 DNA芯片制备检测应用 随着人类基因组计划的逐步实施以及分子生物学相关学科的迅猛发展,越来越多的动植物、微生物基因组测序得以测定,基因序列数据正在以前所未有的速度迅速增长。DNA芯片的出现是科学发展的必然产物。本文就DNA芯片的制备及其在医学领域的应用予以阐述。 1 基因芯片的制备及检测技术[1-4] 1.1 基因芯片的制备方法 1.1.1 原位合成法其中最具代表的是原位光刻合成法。该法是利用分子生物学、微电光刻技术及计算机技术等直接在基片上合成所需的DNA探针。除原位光刻合成法外,原位合成法还包括原位喷印合成和分子印章在片合成法。 1.1.2 直接点样法该法是将制备好的DNA(cDNA)片段直接点在芯片上。近来有人提出用电定位捕获法和选择性沉淀法制备芯片。 1.1.3 电定位捕获法是将生物素标记的探针在电场的作用下快速地固定在含有链霉素亲和素的琼脂糖凝胶膜上。由于生物素与链霉素亲和素的强亲合力,使得探针的固定更加容易和牢固。在电场的作用下,靶基因能快速地在杂交部位积聚,大大缩短了杂交时间,提高了杂交的效率,且改变电场电极的方向可以除去未杂交或低效率杂交的靶基因。 1.1.4 选择性沉淀法该技术是用金属纳米粒标记探针的方法来制备微阵列,靶基因在芯片上与探针杂交后发生选择性沉淀,通过检测沉淀物的电化学值等来获取相应的生物信息。

组织芯片的应用

组织芯片应用 细胞表型分析 用组织芯片技术可以对细胞进行高通量免疫表型分析。用标准的免疫组化法对组织芯片上的数百甚至上千例各种不同的肿瘤组织标本进行各种指标的检测,不但可用于发现这些指标与肿瘤的诊断、鉴别诊断和预后密切相关,而且与完整的大组织切片相比,不同部位点样构建的组织芯片便可以提供一个可靠的高通量免疫组化表型分析系 统。 与基因芯片联合应用 用组织芯片技术也可以同时进行数种或数十种基因扩增、表达的检测,可用于发现各种组织样本中各种基因的调控,再根据这些不同的调控情况得出有价值的实验结果。 用于新基因靶点筛选 组织芯片技术亦可用于寻找治疗肿瘤的新靶点。用组织芯片对每个候选基因进行分析可以发现最有潜力成为新药或抑制剂的靶基因,或发现原癌基因或编码信号转导分子的新基因。如果某种特殊基因过度表达或在许多肿瘤中表达增强,则此基因即可作为一种重要的靶基因,那么干扰这种基因的表达或其表达产物功能的物质可能就是极有潜力的新药。所以,肿瘤组织芯片特别适合于研制抗肿瘤药物时先对靶基因进行选择。 缩微组织学和病理学图谱 根据需要可制备各种缩微组织学和病理学图谱。如制备各种正常组织芯片、各种病理类型的肿瘤组织芯片、同一系统中的各种肿瘤组织芯片、少见肿瘤组织芯片、疑难病例组织芯片、各种炎症组织芯片、各种寄生虫组织芯片以及胚胎发育组织芯片。可用于进修、学习、存储和进行对比研究等。 基因扩增分析 用组织芯片技术也可以同时进行数种或数十种基因扩增、表达的检测,可用于发现各种组织样本中各种基因的调控,再根据这些不同的调控情况得出有价值的实验结果。 抗体筛选 在各种疾病研究中,疾病相关抗体和探针是必不可少的研究工具,其特异性敏感性对研究结果影响巨大。对抗体和探针测试的基本方法就是用大量不同来源的阳性和阴性组织进行检查。对此,传统病理学方法需做大量单一切片。如果采用组织芯片技术,一次实验即可完成。现在组织芯片技术已经成为生物制品公司、病理医生和研究者筛选抗体和探针的必备工具。 用于个体化肿瘤治疗 组织芯片可用于筛选大量的肿瘤组织标本来确定哪些肿瘤应采取何种治疗方式。如对乳腺癌进行HER-2基因的筛选,高表达或者扩增的患者Herceptin 治疗将有良好的效果。 图表 1食道癌免疫组化胞核染色图 图表 2免疫组化胞浆染色图 图表 3免疫组化胞核染色图 图表 4肿瘤HE 染色图 图表 5乳腺癌FISH 图 图表 6前列腺免疫组化胞膜染色图 图表 7肺癌免疫组化胞 膜染色图

相关主题