搜档网
当前位置:搜档网 › 电力系统仿真分析技术的发展趋势.doc

电力系统仿真分析技术的发展趋势.doc

电力系统仿真分析技术的发展趋势.doc
电力系统仿真分析技术的发展趋势.doc

电力系统仿真分析技术的发展趋势

0 引言

随着化石能源逐渐枯竭,发展利用清洁能源和可再生能源成为世界各国的必然选择,也是新能源变革的主要内容。中国新能源变革的目标可以归纳为:以可再生能源逐步替代化石能源,提高化石能源的清洁高效利用水平,实现可再生能源(水能、风能、太阳能、地热能、生物质能)和核能利用在一次能源消耗占较大份额。在新能源变革形势下,电网的使命也将发生变化,智能电网是适应新能源变革和承担电网新使命的新一代电网。

中国自 21 世纪初就提出了建设特高压电网的设想,并逐步加以实施,近两年根据国际电力系统发展的最新动向,又进一步提出了建设智能电网的宏伟蓝图。中国的智能电网是以特高压电网为骨干网架、各级电网协调发展的坚强网架为基础,以通信信息平台为支撑,具有信息化、自动化、互动化特征,包含电力系统的发电、输电、变电、配电、用电和调度各个环节的现代电网。与此同时,随着电网规模的不断扩大,新能源、新设备的不断加入,当今电力系统已经日益变得复杂,这使得运行人员更加难于对其进行监视、分析和控制。近些年,国内外不断发生大规模的停电事故,这些事故都造成了很大的经济损失和社会影响,不断地为人们敲响警钟,也给电网的安全稳定运行提出了更高的要求。

在上述的大停电事故中,电力系统从第一次元件故障,到整个系统崩溃,一般会有一个较长的过程,如果这期间运行人员能够进行正确的处理,大停电是可以避免的。换言之,电网缺乏有效的在线监测和预警系统,不能及时掌握实时电网稳定情况并采取有效的控制措施是导致大停电事故发生的重要原因。

电力系统仿真分析是电力系统规划设计和调度运行的基础,涵盖的范围非常广泛,包括从稳态分析、动态分析到暂态分析的各个方面。根据实时电力系统动态过程响应时间与系统仿真时间的关系,可分为非实时仿真和实时仿真;根据仿真的数据来源,又可分为离线仿真、在线仿真。其中在线仿真是实现在线预警和决策支持的必要手段。

电力系统仿真分析涵盖电力系统、数学、计算机、通信等多学科技术领域,面对智能电网建设提出的要求,需要不断地引入先进的计算机和通信技术以及数学方法等,推动仿真分析技术在仿真的准确性、快速性、灵活性等方面的发展。具体体现在以下几个方面:1)可实现更大规模电网的仿真计算,同时仿真数据的粗细程度可根据需要自动调整。

2)仿真计算应具有更快的速度及更高的准确性。

3)仿真计算应具备更多的效用,并与环境、经济等相关领域相结合。

4)仿真建模应具备更大的灵活性,以适应智能电网中层出不穷的新元件、新设备建模的需要。

5)需加强对电力系统智能建模方法的应用以及仿真结果的智能化分析。

6)电网自愈对实时决策控制的要求。要求能实时跟踪评价电力系统行为,一旦发生故障,立即进行快速仿真并提供决策控制支持,防止大面积停电,并快速从紧急状态恢复到正常状态。

7)仿真试验应具备更大的灵活性。未来的仿真试验将可实现对多个异地试验设备的同步测试。

8)仿真计算应适应新的计算模式,如云计算、协同计算等。

9)可实现智能人机交互仿真,显著提高用户操作的便捷性和仿真系统的使用效率。

10)数据融合技术在仿真分析中应用,提高对仿真分析中对多源海量数据的整合能力。

本文将依据计算机、网络、通信等技术当前和未来可能的发展,探讨和预测新的先进计算技术(如云计算等)及其在电力系统仿真分析中的应用。

1 发展现状

1.1 电力系统仿真分析技术概述

如图 1 所示,电力系统仿真分析技术可分为电力系统建模、电力系统数字仿真分析方法、电力系统在线仿真分析和电力系统实时仿真等4项技术,其中电力系统建模技术包括建模方法和模型研究技术,电力系统数字仿真分析方法主要指针对各类仿真应用的基础方法,后2种技术则分别针对在线应用和实时应用。其中先进计算技术包括计算机及网络、与电力系统仿真分析相关的计算数学和计算模式这3项技术。下文分别描述上述各项技术的发展现状。

图1 电力系统仿真分析和先进计算技术分类

2)相关计算数学。

与电网仿真分析相关的计算数学领域既有传统的数值计算方法,也包括新兴的人工智能、模糊数学和概率类等方法。

1.2 电力系统建模技术

1)建模方法。

目前,电力系统建模方法研究以机理分析法为主,结合统计学、运筹学及人工智能等理论,又发展了数据分析法、层次分析法、智能建模法等方法。作为机理分析法的重要补充,模型实测是指导建模、进行模型校验及修正的主要手段。目前,模型实测主要在发电机及其调节系统建模、负荷建模、新能源发电建模等方面有所应用。数据分析法主要用于建立电力系统可靠性分析模型及功率预测模型、电力市场分析模型等。层次分析法主要用于负荷预测建模等。

近年来,随着人工智能技术的发展,智能建模方法如专家系统法、神经网络系统法、模糊辨识法以及基于遗传算法的非线性系统辨识法等,在同步机建模、负荷建模、电网规划建模中得到应用。

电力系统模型参数的获取,主要采用取典型值和实际测量 2 种方法。

2)模型研究。

①传统发输配用电系统模型

传统发电系统模型包括同步机、励磁系统、调速系统、电力系统稳定器(power system stabilizer,PSS)等模型,均较为成熟,全国范围内绝大部分机组励磁系统和 PSS 模型已采用实测参数,调速系统模型实测工作正在开展。

交流输电系统模型以等效电路为基础,根据仿真要求的不同进行相应处理。直流输电系统模型包括主电路模型和控制系统模型,可分为机电暂态仿真模型和电磁暂态仿真模型,前者一般为准稳态模型。直流输电系统控制系统模型目前大都采用典型结构和参数,迫切需要建立与实际工程相一致的控制系统模型和参数。

②灵活交流输电元件模型、新型电力系统元件模型。

③新能源发电系统、分布式电源及微电网模型。

3)建模技术中尚待解决的问题。

①电力系统模型的精确度有待进一步提高,特别是如何利用 WAMS、WASA 技术进行模型的校验与修正。

②风光发电系统、储能系统等各种新元件的模型有待进一步研究并实用化。

③智能建模方法有待进一步发展,或与传统方法相结合,提升模型的精确性和适应性。

④目前各类仿真软件中模型各自独立,重复建模工作时有发生,有待建立模块化、通用化、标准化程度较高的模型,实现模型的“即插即用”和共享。

1.3 电力系统数字仿真分析方法

电力系统数字仿真分析方法,包括稳态分析(潮流、网损分析、最优潮流、静态安全分析、谐波潮流)、动态和暂态分析(电磁暂态仿真、机电暂态仿真、中长期动态仿真、小干扰稳定计算、电压稳定计算等)等。电力系统潮流计算主要是非线性方程组求解问题,现有算法有牛顿–拉夫逊法、PQ 分解法、保留非线性潮流算法和最优因子法等。其中,牛顿–拉夫逊法因其具有较好的收敛性和较快的收敛速度,应用较为广泛。为提高潮流计算的收敛性,有时将 2 种方法相结合,如 PQ 分解转牛顿法。此外,还提出了潮流计算中的自动调整方法、适合实时计算的直流潮流算法、考虑不确定性因素的随机(概率)潮流方法、适合系统参数不对称情况的三相潮流算法,以及应用于电力系统电压稳定计算的多种病态潮流算法。

电力系统最优潮流计算实质是一个非线性规划问题,主要算法有线性规划法、牛顿法、内点法以及遗传算法、人工神经网络法等智能算法。其中内点法在可行域的内部寻优,收敛性好、收敛速度快,适用于大规模电网的优化计算。智能算法由于具有全局收敛性和擅长处理离散变量而日益得到重视,但还处在发展阶段。研究小扰动电压稳定问题的电力系统静态电压稳定计算方法常用的有奇异值分解法、灵敏度法、崩溃点法、非

线性规划法、连续潮流法、非线性动力学方法等,其中连续潮流法应用较多。电压稳定的动态分析方法,包括小干扰分析法和对大扰动电压稳定的时域仿真分析法、能量函数法等。电力系统暂态稳定计算需要求解系统的网络方程和微分方程,一般采用数值积分方法交替迭代求解,有时也采用直接法,应用最多的直接法为扩展等面积准则法。

电力系统小干扰稳定计算的主要方法有特征值分析法、小干扰频域响应分析、小干扰时域响应分析,其中特征值分析法应用最为广泛。

电力系统中长期动态过程仿真要计入在一般暂态稳定过程仿真中不考虑的电力系统长过程和慢速的动态特性,采用数值积分的方法,主要有隐式梯形积分法和 Gear 类方法,为避免计算时间过长,一般还采用自动变步长计算技术。电力系统电磁暂态仿真通常采用时域瞬时值计算,多采用隐式梯形积分法,计算规模一般不超过百余条母线,计算步长通常为 20~200s。为提高仿真精度,有学者提出了电磁暂态与机电暂态混合仿真方法。近年来,随着分网并行算法的提出和电磁-机电接口的完善,混合仿真已实现了实用化。

综上,上述针对输电网的电力系统仿真分析方法都较为成熟,为提高仿真分析速度,近年来,并行和分布式计算方法逐渐在电力系统潮流计算、最优潮流、静态安全分析、电磁暂态仿真、机电暂态仿真、小干扰稳定计算等分析方法中得到应用。

1.4 电力系统在线仿真分析

随着电网大停电事故的不断发生,各国对电网安全愈加重视,电力系统在线仿真分析也成为了研究的重点。2005 年的调研报告表明,当时国际上已有 6 个电力系统在线软件生产厂家,可以提供不同程度的在线暂态稳定评估软件。

国内在智能电网建设的新环境下,为确保电网安全稳定运行,建立和健全电网安全防御体系,中国电力科学研究院、国网电力科学研究院、清华大学等单位就在线仿真分析开展了研究与应用工作。

1.5 电力系统实时仿真

电力系统实时仿真的发展经历了从物理实时仿真、数模混合式实时仿真到全数字实时仿真的3个历史阶段。物理实时仿真由于其仿真规模不大和建模工作复杂,主要用于设备级的仿真和试验,如继电保护装置、安全自动装置、电力电子设备及新技术、新设备的基本原理验证和性能指标检验等。数模混合式实时仿真系统(如 HYPERSIM目前主要用于直流输电控制保护系统试验。RTDS等全数字实时仿真限于仿真算法和计算能力,只能进行小规模系统的实时仿真,主要用于继电保护装置、安全自动装置验证试验,近年来也有应用于电力电子设备验证试验、直流输电控制保护系统试验等方面,加拿大 Opal-RT 公司的 RT-LAB 全数字实时仿真软件在高频电力电子的精确仿真以及分布式并行计算等方面具有优良的性能;新近出现的全数字实时仿真装置 ADPSS,因其具有大电网实时仿真的能力,因此用途较为广泛。

2 先进计算技术发展趋势

2.1 计算机及网络

未来的计算机和网络的发展趋势将是通信技术、网络与计算机技术的进一步融合,朝着超高速、超小型、高性能、平行处理和智能化方向发展。发展高性能计算技术有 2 条途径:一条是通过多核、多机并行计算或分布式计算技术来实现;另一条途径是发展非传统的新技术,包括超导计算、光计算、量子计算、生物计算与纳米计算等。

2.2 相关计算数学

数值计算方法未来的发展主要集中在提高算法效率、计算结果精度和非线性方程求解的收敛性等方面。人工智能方法将与仿真环境结合得更为紧密,从而提高仿真自动化程度和仿真精度。概率类算法在仿真计算领域的进一步发展,主要是增强各种与现有数值仿真计算方法相结合的衍生算法的实用性,降低对参数的要求,提高计算结果的质量,以及计算结果的进一步分析应用。模糊数学将与人工智能技术的各分支进一步结合,求解用经典数值计算方法难以求解的问题,并进一步实用化。

2.3 计算模式

未来高性能计算的发展将呈现以下趋势:一是并行计算和分布式计算 2 种形态共存并互相结合、相互补充;二是从高性能计算走向高效能计算,提高计算性能、可编程性、可移植性和鲁棒性,降低系统的开发、运行及维护成本随着中国智能电网的建设和发展,分布式计算技术在仿真分析领域的应用将不断深入,分布式计算以及网格计算的应用,可以有效解决电力系统实时、复杂的计算问题。

3 先进计算技术在电力系统仿真分析中应用预测

3.1 概述

先进计算技术(计算机及网络、计算数学、计算模式)的发展和应用,将为电力系统仿真分析技术带来巨大发展变化。本节预测 2050 年电力系统仿真分析技术的发展趋势。

3.2 电力系统建模技术

1)电力系统的建模方法和工具得到长足发展。形成完备的混合仿真建模和智能建模理论。基于WAMS 和 WASA 数据进行仿真模型的修正成为建模的重要手段。

2)建立丰富、精确、模块化和标准化的各类元件模型。模型的模块化、标准化使得系统建模可在任一仿真软件的建模环境下进行,采用通用的输入输出格式,并可在其他仿真软件中进行调用,使模型具备“即插即用”的效用。

3)未来的智能电力设备中可自带标准化的模型并具备对局部模型进行仿真的能力,其结构和参数自行维护更新,模型可以是异地分布的。3.3 电力系统数字仿真分析方法

1)电力系统仿真计算方法在计算的收敛性和鲁棒性、结果的准确性以及对最优结果的搜索等方面都取得较大进步。

2)建立灵活的仿真数据平台和异地分布式仿真分析平台,结合智能电力设备中自带的标准化模型,模型数据的云存储和标准化技术,WAMS、WASA 等先进测量技术,云计算技术,实现仿真数据的自动调整和对电网的按需灵活仿真。根据研究目的不同,电网数据可以不同的精细程度自动组合和调整,形成计算用数据,用户无需关心具体数据的存放位置和获取方式。

3)开辟新的仿真计算领域,如与环境保护、新型电力市场运营相结合。

4)建立高度智能化的面向用户、面向问题、面向实验的建模与仿真环境,实现智能人机交互仿真和仿真结果的智能化分析。

5)不同时间尺度的混合仿真技术逐步成熟,实现电磁暂态–机电暂态–中长期动态过程的连续仿真,可获得系统从仿真开始后微秒级到分钟级,甚至小时级时间尺度的动态特性,仿真结果更加贴近系统的实际表现。

6)协同计算将在电力系统仿真分析中逐步应用,使离线仿真分析从以往单地区单人工作的独立模式向多人联合协同计算模式转变,大幅度提高工作效率。

7)人工智能、概率和模糊数学方法将会被更多地引入和研究。人工智能算法是大规模非线性系统求解、优化的有效方法,为电力系统计算分析开辟了一条新的路径,而概率算法和模糊数学方法则可以更好地处理仿真计算中的各种随机性和模糊性问题。

8)量子计算机具有应用可能,仿真分析方法将发生重大变革。

3.4 电力系统在线仿真分析

1)建立在线仿真专家系统,挖掘在线数据与系统稳定性之间的联系,根据历史运行数据和电网运行状况找出薄弱环节。

2)将 WAMS 数据引入到数据整合、参数校核和辨识、动态仿真等各个环节,以提高在线仿真结果与实际系统响应的吻合程度。

3)构建描述电网各类不确定性特征(如天气,间歇性能源接入等)的系统模型,建立在线风险评估系统,采用统一的风险评估指标体系,将确定性安全评价拓展到风险评估。

4)应用数据融合技术,提高对调度自动化系统、广域量测系统、继电保护稳控系统、离线方式数据等多系统多信息的整合能力和利用水平。

5)实现基于超实时仿真的在线控制和云控制,利用大规模电力系统的超实时仿真技术,在故障发生后快速判别系统稳定性,并给出控制措施,解决连锁故障期间电网运行状况瞬息变化导致控制措施失效的问题。云控制是云计算技术与基于超实时仿真的在线控制技术的完美结合,是未来在线控制技术的发展方向。

3.5 电力系统实时仿真

1)采用新的并行仿真方法或对既有方法进行改进,结合计算机软硬件技术的发展,实现风力发电、太阳能发电、电压源直流输电、新型 FACTS、储能等新能源新设备的电磁暂态实时仿真。

2)实现机电暂态–电磁暂态–中长期动态一体化实时仿真,建立超大规模电力系统数模混合实时仿真平台,实现超大规模电力系统与数十条直流输电、电力电子装置、新能源新设备等的物理仿真设备或物理设备的联合实时仿真。

3)建立电网–电厂–变电站联合实时仿真平台,

可灵活接入实际的电网二次设备、电厂和变电站监

控设备进行仿真试验分析。

4)分布式实时仿真全面应用,开展远程试验。通过异地多个实时仿真装置的配合和高速的通信网络支持,实现多个物理装置的分布式仿真试验,解决带通道保护的继电保护装置、多个 HVDC 或FACTS 控制器等异地试验设备的同步测试和控制器协调问题。远程试验是分布式实时仿真的特殊应用模式,即大电网的实时仿真在异地高性能服务器上进行,而现场仅需要配备与物理待测设备的输入输出接口,需要高速的通信网络支持。

5)建立真实电力系统的影子系统——大电网在线实时仿真系统,通过实时信息采集与传递系统,实时接受电网运行数据,使系统仿真模型能够及时跟踪大电网运行状态特别是灾害情况下的迅速变化。

4 结束语

随着化石能源逐渐枯竭,发展利用清洁能源和可再生能源成为世界各国的必然选择,也是新能源变革的主要内容。在新能源变革形势下,电网的使命也将发生变化,智能电网是适应新能源变革和承担电网新使命的新一代电网。为适应智能电网的发展,未来的电力系统仿真分析技术在准确性、快速性、灵活性等方面将得到极大发展。本文依据计算机、网络、通信等技术当前和未来可能的发展,探讨和预测了新的先进计算技术的发展趋势,以及新的先进计算技术在电力系统仿真分析中的应用趋势。

知识改变命运

电力电子技术与电力系统分析matlab仿真

电气2013级卓班电力电子技术与电力系统分析 课程实训报告 专业:电气工程及其自动化 班级: 姓名: 学号: 指导教师:

兰州交通大学自动化与电气工程学院 2016 年 1 月日

电力电子技术与电力系统分析课程实训报告 1 电力电子技术实训报告 1.1 实训题目 1.1.1电力电子技术实训题目一 一.单相半波整流 参考电力电子技术指导书中实验三负载,建立MATLAB/Simulink环境下三相半波整流电路和三相半波有源逆变电路的仿真模型。仿真参数设置如下: (1)交流电压源的参数设置和以前实验相关的参数一样。 (2)晶闸管的参数设置如下: R=0.001Ω,L =0H,V f=0.8V,R s=500Ω,C s=250e-9F on (3)负载的参数设置 RLC串联环节中的R对应R d,L对应L d,其负载根据类型不同做不同的调整。 (4)完成以下任务: ①仿真绘出电阻性负载(RLC串联负载环节中的R d= Ω,电感L d=0,C=inf,反电动势为0)下α=30°,60°,90°,120°,150°时整流电压U d,负载电流L 和晶闸管两端电压U vt1的波形。 d ②仿真绘出阻感性负载下(负载R d=Ω,电感L d为,反电动势E=0)α=30°,60°,90°,120°,150°时整流电压U d,负载电流L d和晶闸管两端电压U vt1的波形。 ③仿真绘出阻感性反电动势负载下α=90°,120°,150°时整流电压U d,负载电流L d和晶闸管两端电压U vt1的波形,注意反电动势E的极性。 (5)结合仿真结果回答以下问题: ①该三项半波可控整流电路在β=60°,90°时输出的电压有何差异?

541032动画建模与仿真技术

动画建模与仿真技术(541032)教学大纲 01.教学单位:软件学院 02.课程编号:541032 03.课程名称:动画建模与仿真技术 04.课程英文名称:Technology of animation modeling and simulation 05.课程学时: 32学时,其中含实验0学时 06.课程学分: 2学分 07.课程类别:专业教育课 08.课程性质:选修 09.开课学期:第6学期 10.面向专业:软件工程 11.选用教材 1、侯鹏志等,《3ds Max 2010中文版从入门到精通》,电子工业出版社,2010年 2、杨丽等,《城市仿真建模工具:Creator软件教程》,同济大学出版社,2007年 3、王孝平等,《Vega Prime实时三维虚拟现实开发技术》,西南交通大学出版社,2012年 12.主要参考书 1、鲍虎军等,《计算机动画的算法基础》,浙江大学出版社,2000年。 2、Robert Bridson,《Fluid Simulation for Computer Graphics》,A K Peters,2007. 13.课程教学目的与任务 课程目的:主要讲授利用三维建模软件3ds Max 2010和Multigen Creator 3.0进行三维物体和场景建模的基本方法,利用实时视景仿真软件Multigen Vega Prime提供的Lynx Prime软件和Vega API进行视景仿真的基本方法。 课程任务:一、掌握利用3ds Max创建三维模型的方法 二、掌握利用Multigen Creator 创建三维模型及生成地形的方法 三、掌握利用Multigen Vega Prime进行实时视景仿真的方法。

【完整版】仿真软件在机械系统设计中的应用

机械系统中仿真软件的使用现状分析 1.计算机仿真概述 所谓计算机仿真就是建立系统模型的仿真模型进而在电子计算机上对该仿真模型进行模拟实验(仿真实验)研究的过程。计算机仿真方法即以计算机仿真为手段,通过仿真模型模拟实际系统的运动来认识其规律的一种研究方法。计算机仿真作为分析和研究系统运行行为、揭示系统动态过程和运动规律的一种重要手段和方法, 随着系统科学研究的深入、计算机技术的发展,而成为一门新兴的学科。近年来, 随着信息处理技术的突飞猛进, 使仿真技术得到迅速发展。计算机仿真主要有以下三种仿真形式: (1)物理仿真:按照实际系统的物理性质构造系统的物理模型,并在物理模型上进行试验研究。直观形象,逼真度高,但代价高,周期长。在没有计算机以前,仿真都是利用实物或者它的模型来进行研究的。 (2)半物理仿真:即物理数学仿真,一部分以数学模型描述,并把它仿真计算模型,一部分以实物方式引入仿真回路。针对存在建立数学模型困难的子系统的情况,必须使用此类仿真,如航空航天、武器系统等研究领域。 (3)数字仿真(计算机仿真):首先建立系统的数学模型,并将数学模型转化为仿真计算模型,通过仿真模型的运行达到对系统运行的目的。现代计算机仿真由仿真系统的软件/硬件环境,动画与图形显示、输入/输出等设备组成。作为新兴的技术方法,与传统的物理实验相比较,计算机仿真有着很多无可替代的优点: 1)模拟时间的可伸缩性由于计算机仿真受人的控制,整个过程可控性比较强,仿真的时间可以进行人为的设定,因此时间上有着很强的伸缩性,也可以节约实验的时间,提高实验的效率。 2)模拟运行的可控性由于计算机仿真以计算机为载体,整个实验过程由计算机指令控制进程,所以可以进行认为的设定和修改,这个实验模拟过程有较强的可控性。 3)模拟试验的优化性由于计算机仿真技术可以重复进行无限次模拟实验,因此可以得出不同的结果,各种结果相互比较,可以找到一个更理想更优的问题的解决方案,可以作为优化实验,选择相应的方案。

控制系统仿真

5.2设222(x,y,z)4y z f x x y z =+++,求函数f 在(0.5,0.5,0.5)附近的最小值。 解: >> fun=inline('x(1)+x(2)^2/(4*x(1))+x(3)^2/x(2)+2/x(3)','x'); >> x0=[0.5,0.5,0.5]; >> [x fval]=fminsearch(fun,x0) x = 0.5000 1.0000 1.0000 fval = 4.0000 → 函数f 在(0.5,0.5,0.5)附近的最小值为:4.0000 6.8求方程组1221x y z x y z x y z ++=??-+=??--=? 的解。 解: >> A=[1 1 1;1 -1 1;2 -1 -1]; >> b=[1;2;1]; >> B=[A,b]; >> rank(A),rank(B) ans = 3 ans = 3 >> X=A\b X = 0.6667 -0.5000 0.8333 → 方程组的解为:0.6667x =,=-0.5000y ,=0.8333z 6.11求函数3()sin t f t e t -=的拉普拉斯变换。 解: >> syms t; >> ft=exp(-3*t)*sin(t); >> Fs=laplace(ft) Fs = 1/((s + 3)^2 + 1) → 函数3()sin t f t e t -=的拉普拉斯变换为:21(s 3)1 ++

7.11单位负反馈系统的开环传递函数为 1000(s)(0.1s 1)(0.001s 1) G s =++ 应用Simulink 仿真系统构建其阶跃响应曲线。 解: 模型仿真图 1 单位阶跃响应曲线图 1 7.7用S 函数创建二阶系统0.20.40.2(t)y y y u =+=,0y y ==,()u t 为单位阶跃信号,使用Simulink 创建和仿真系统的模型。 解: function [sys,x0,str,ts] = sfun1(t,x,u,flag) switch flag, case 0 [sys,x0,str,ts]=mdlInitializeSizes; case 3 sys=mdlOutputs(t,x,u); case {1,2,4,9} sys=[]; end function [sys,x0,str,ts]=mdlInitializeSizes() sizes=simsizes;

三维建模与三维动画的仿真技术研究

摘要:随着科学技术的不断进步,在很多工程建筑和很多的媒体技术中,三维建模和三维动画的仿真技术被人们广泛运用,本文就三维建模和三维动画仿真技术的概念特点等进行分别介绍,集体研究。 关键词:三维建模;三维动画;仿真技术 中图分类号:j218.7 文献标识码:a文章编号:1005-5312(2012)17-0043-01 一、关于三维建模 (一)三维模型 所谓的三维模型就是一个物体用三维的多边形表示出来,然后用计算机或者其他的设备用视频的形式进行显示。现实的物体可以使在现实世界里存在的实际物体,也可以是设计者虚构出的,总之就是不管是有的没得,只要是能想出来的都能用三维模型表示出来。 (二)三维建模的应用范围 三维建模在现在这个科技发展迅猛的时代已经被运用在各个领域,其中在视频游戏中,三维建模是作为计算机和视频游戏中的资源被运用,而在医疗行业中,三维建模被使用于器官的制作模型等,在电影电视行业中,他们被用于特技手段和活动的人物制作,在建筑业中,三维建模用来展示所要表达的建筑物和地貌风景等。 (三)三维建模的方法 1、软件建模 现在市场上有很多比较先进的建模软件,比如3dmax、maya、autocad等等,这些软件的共性是用一些较基本的几何体,如长方体、正方体、立方体和球体等,构建一系列的平移、旋转、拉伸和一些较复杂的几何场景来实现的。能够用团建来进行三维建模的主要是屋里建模、几何建模和行为建模等等,而其中尤几何建模的创建和描述是三维建模之间的重点。 2、仪器设备测量建模 三维建模中重要的工具就是三维扫描仪,又被叫做三维数字化仪。这种仪器能够将现实世界中的彩色努力提的信息快速的转换成计算机能够识别和处理的数字信号,并且能够为三维建模实现数字化提供了有效的方法。 3、图像或者视频建模 在现在的计算机图形学的研究领域,用图像或者是视频来进行三维建模是很多学者比较感兴趣的,这种方法同那些比较传统的建模方法相比,具有很多特别的优势,比如,用图像或者视频创建的模型会比别的方法更加真实和自然,并且,运用这种方法创建模型会变得更方便,速度也会大大提升。质量和速度的提高,是图像或视频建模最大的特色。 二、关于三维动画的仿真技术 (一)动画 借用人的视觉暂留原理,一系列的静态图像播出之后,会在人的视网膜上留下动态的效果,而利用计算机设计的动画效果,就是用计算机中比较高效的图像处理的功能,用一连串的关键帧来对物体的关键时刻进行描述,准确的几率物体关键时刻的位置结构和其他的参数,并且自动的形成中间的图像,然后创建出一幅流畅的画面。 (二)三维动画的的仿真应用 三维动画的仿真技术能够将真实的物体模拟成一个虚拟的动画,但是这个动画会产生一定的价值。三维动画的真实和精确,可操作性,三维动画在教育、军事、建筑和医学、娱乐等领域都有很大的发展性。 在影视制作方面,三维动画能够制作出比较有创意的特效和3d动画,还能够制作出精良的后期效果和特效动画,应用这项技术,吸引了越来越多人的眼球,得到很多客户的青睐,剧中的爆炸,烟雾,下雨和光效还有撞车,变形和很绚丽的片头片尾等等的出现,都得益于

电力系统仿真

如图所示为一无穷大功率供电的三相对称系统,短路发生前系统处于稳定运行状态。假设a 相电流为)sin(i |0|0?αω-+=t (1-1) 式中, 2 22|0|m )'()'(L L R R U I m +++= ω,) '()'(arct an R R L L ++=ω? 假设t=0s 时刻,f 点发生三相短路故障。此时电路被分成俩个独立回路。由无限大电源供电的三相电路,其阻抗由原来的)'()'(L L j R R +++ω突然减小为L j R ω+。由于短路后的电路仍然是三相对称的,依据对称关系可以得到a 、b 、c 相短路全电流的表达式 []a T t m m m e I I t I ----+-+=)sin()sin()sin(i |0||0|a ?α?α?αω [ ] α ?α?α?αωT t m e I I t I - -----+--+=)120sin()120sin()120sin(i m |0||0|m b 。 。。 [ ] α ?α?αααωT t m m m c e I I t I - -+--++-++=)120sin()120sin()120sin(i |0||0|。 。。 式中, 2 2m )(L R U I m ω+= 为短路电流的稳态分量的幅值。 短路电流最大可能瞬时值称为短路电流的冲击值,以m i 表示。冲击电流主要用于检验电气设备和载流导体在短路电流下的受力是否超过容许值,即所谓的动稳定度。由此可得冲击电流的计算式为 m m 01.001 .0m )e 1(i I K I e I I im T T m m =+=+≈α α 式中,im K 称为冲击系数,即冲击电流值对于短路电流周期性分量幅值的倍数;αT 为时间常数。 短路电流的最大有效值m I 是以最大瞬时值发生的时刻(即发生短路经历约半个周期)为中心的短路电流有效值。在发生最大冲击电流的情况下,有 22 2m 2 1(21)1(m 2) -+= -+= im I im I im K K I I m 短路电流的最大有效值主要用于检验开关电器等设备切断短路电流的能力。 无穷大功率电源供电系统仿真模型构建 假设无穷大功率电源供电系统如图所示,在0.02s 时刻变压器低压母线发生三相短路故障,仿真其短路电流周期分量幅值和冲击电流的大小。线路参数为 ;km 17.0,km 4.0,5011Ω=Ω==r x km L 变压器额定容量A MW S N ?=20,电压 U s %=10.5,短路损耗KW P s 135=?,空载损耗KW P 220=?,空载电流I 0%=0.8,变比 11110=T K ,高低压绕组均为Y 形联结;并设供点电压为110KV 。其对应的Simulink 仿真

系统建模与仿真课程简介

系统建模与仿真 开课对象:工业工程开课学期:6 学分:2学分;总学时:48学时;理论课学时:40学时; 实验学时:0 学时;上机学时:8学时 先修课程:概率论与数理统计 教材:系统建模与发展,齐欢,王小平编著,清华大学出版社,2004.7 参考书: 【1】离散事件系统建模与仿真,顾启泰,清华大学出版社 【2】现代系统建模与仿真技术,刘兴堂,西北工业大学出版社 【3】离散事件系统建模与仿真,王维平,国防科技大学出版社 【4】系统仿真导论,肖田元,清华大学出版社 【5】建模与仿真,王卫红,科学出版社 【6】仿真建模与分析(Simulaton Modeling and Analysis)(3rd eds.),Averill M. Law, W.David Kelton,清华大学出版社/McGraw-Hill 一、课程的性质、目的和任务 建模与仿真是当代现代科学技术的主要内容,其技术已渗透到各学科和工程技术领域。本课程以一般系统理论为基础,让学生掌握适用于任何领域的建模与仿真的一般理论框架和基本方法。 本课程的目的和任务是使学生: 1.掌握建模基本理论; 2.掌握仿真的基本方法; 3.掌握一种仿真语言及仿真软件; 4.能够运用建模与仿真方法分析、解决工业工程领域的各种常见问题。 二、课程的基本要求 1.了解建模与仿真的作用和发展,理解组成要素。 2.掌握建模的几种基本方法,及模型简化的技术手段。 3.掌握建模的一般系统理论,认识随机数的产生的原因及统计控制方式。 4.能对离散事件进行仿真,并能分析运行结果。 三、课程的基本内容及学时分配 第一章绪论(3学时) 1.系统、模型、仿真的基本概念

对汽车控制系统建模与仿真

对汽车控制系统建模与仿真 摘要:PID 控制是生产过程中广泛使用的一种最基本的控制方法,本文分别采用用简单的比例控制法和用PID控制来控制车速,并用MATLAB对系统进行了动态仿真,具有一定的通用性和实用性。 关键词:MATLAB 仿真;比例控制;PID 控制 1 MATLAB和PID概述 MATLAB是matrix和laboratory两个词的组合,意为矩阵工厂(矩阵实验室)。是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。 在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。即当我们不完全了解一个系统和被控对象,或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。PID控制,实际中也有PI和PD控制。PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。 2车辆行驶过程车速的数学模型 对行驶在斜坡上的汽车的车速进行动态研究,可以分析车辆的性能,指导车辆的设计。MATLAB软件下的SIMULILNK模块是功能强大的系统建模和动态仿真的软件,为车辆行驶过程车速控制分析提供了一种有效的手段。 汽车行驶如图7.4.1所示的斜坡上,通过受力分析可知在平行于斜面的方向上有三个力作用于汽车上:发动机的力、空气阻力和重力沿斜面的分量下滑力。

计算机仿真实验-基于Simulink的简单电力系统仿真参考资料

实验七 基于Simulink 的简单电力系统仿真实验 一. 实验目的 1) 熟悉Simulink 的工作环境及SimPowerSystems 功能模块库; 2) 掌握Simulink 的的powergui 模块的应用; 3) 掌握发电机的工作原理及稳态电力系统的计算方法; 4)掌握开关电源的工作原理及其工作特点; 5)掌握PID 控制对系统输出特性的影响。 二.实验内容与要求 单机无穷大电力系统如图7-1所示。平衡节点电压044030 V V =∠?。负荷功率10L P kW =。线路参数:电阻1l R =Ω;电感0.01l L H =。发电机额定参数:额定功率100n P kW =;额定电压440 3 n V V =;额定励磁电流70 fn i A =;额定频率50n f Hz =。发电机定子侧参数:0.26s R =Ω,1 1.14 L mH =,13.7 md L mH =,11 mq L mH =。发电机转子侧参数:0.13f R =Ω,1 2.1 fd L mH =。发电机阻尼绕组参数:0.0224kd R =Ω,1 1.4 kd L mH =,10.02kq R =Ω,11 1 kq L mH =。发电机转动惯量和极对数分别为224.9 J kgm =和2p =。发电机输出功率050 e P kW =时,系统运行达到稳态状态。在发电机输出电磁功率分别为170 e P kW =和2100 e P kW =时,分析发电机、平衡节点电源和负载的电流、电磁功率变化曲线,以及发电机转速和功率角的变化曲线。

G 发电机节点 V 负 荷 l R l L L P 图 7.1 单机无穷大系统结构图 输电线路 三.实验步骤 1. 建立系统仿真模型 同步电机模块有2个输入端子、1个输出端子和3个电气连接端子。模块的第1个输入端子(Pm)为电机的机械功率。当机械功率为正时,表示同步电机运行方式为发电机模式;当机械功率为负时,表示同步电机运行方式为电动机模式。在发电机模式下,输入可以是一个正的常数,也可以是一个函数或者是原动机模块的输出;在电动机模式下,输入通常是一个负的常数或者是函数。模块的第2个输入端子(Vf)是励磁电压,在发电机模式下可以由励磁模块提供,在电动机模式下为一个常数。 在Simulink仿真环境中打开Simulink库,找出相应的单元部件模型,构造仿真模型,三相电压源幅值为4403,频率为50Hz。按图连接好线路,设置参数,建立其仿真模型,仿真时间为5s,仿真方法为ode23tb,并对各个单元部件模型的参数进行修改,如图所示。

数值建模与仿真在日常生活中的应用

数值建模与仿真在日常生活和娱乐行业的应用首先,先概述一下数值建模与仿真技术的发展趋势。 经过半个多世纪的发展,数值建模与仿真技术已经成为对人类社会发展进步具有重要影响的一门综合性技术学科。仿真建模方法更加丰富,更加需要仿真模型具有互操作性和可重用性,仿真建模VV&A 与可信度评估成为仿真建模发展的重要支柱;数值建模与仿真体系结构逐渐形成标准,仿真系统层次化、网络化已成为现实,仿真网格将是下一个重要发展方向;仿真应用领域更加丰富,向复杂系统科学领域发展,并将更加贴近人们的生活。 如今,数值建模与仿真的应用领域已不仅仅局限于在国防工业、军事、航空航天工程、土木工程、船舶水利、机械制造等领域进行科学研究与分析,也逐渐开始在人们日常生活娱乐中发挥着日益重要的作用,此之谓技术的发展是为了更好的服务于人类。 本文将对数值建模与仿真技术在交通影响分析、城市生活垃圾处理、污水处理、娱乐行业等与人们日常生活息息相关的典型例子中的应用情况进行介绍。 典型案例一:数值建模与仿真技术在交通影响分析中的应用情况。 随着经济的发展、城市建设规模之扩大及速度之加快和城市人口数量的急剧增加啊,交通问题凸显,交通问题已经关乎到每个人的生命安全。专家以数值建模仿真技术为手段,对交通问题进行了有效仿真,并提出了有效处理方法,这对交通安全问题的解决是很有帮助的。 交通仿真技术特别是TransCAD的OD (Origin2Destination) 反推技术以及VISSIM 的动态仿真技术,是进行交通规划和交通影响分析的重要技术手段。近年来,随着人们生活水平的提高和消费观念的改变,城市大型公建项目越来越多。

由于建筑规模大和土地利用性质特殊,大型公建吸引和产生的交通量势必对周围乃至整个城市的路网造成冲击,导致路网局部的交通供求不平衡,引发交通拥堵、交通事故、环境恶化、能源消耗等问题。因此,在项目方案实施前对其进行交通影响分析非常必要。以下以购物广场为例,设计出项目交通影响分析的仿真流程,为交通影响评价提出了一种新的较为实用的方法。 交通仿真所依赖的技术主要主要有两种:基于TransCAD 软件的OD反推技术和基于VISSIM软件的动态交通仿真。前者是具备交通规划地理信息功能的软件,为交通需求预测准备了一整套完善且又能随时更新的工具,包括数字化地图、地理数据管理、地理坐标显示以及复杂的交通规划应用、操作研究以及统计模型。后者,VISSIM 是德国PTV公司的产品,它是一个离散的、随机的、以10 - 1 s 为时间步长的微观仿真模型。VISSIM 还提供了图形化的界面,用2D 和3D动画向用户直观显示车辆运动,运用动态交通仿真进行路径选择。 案例背景:市银座购物广场五里桥店位于人民路与西六路交叉口处,总建筑面积2. 8 万m2 ,营业面积1. 8万m2 。基地周围有齐赛科技城、齐鲁证券、富尔玛、长城医院等大型公建,向南可以辐射到共青团路,向北可以辐射到华光路,西至世纪路,东至柳泉路,这些道路都是城区的主干路,如下所示。

自动控制系统仿真教案

控制系统仿真技术实验指导书 实验课程 专业班级 学生姓名 学生学号 指导教师 年月日

实验报告须知 实验的最后一个环节是实验总结与报告,即对实验数据进行整理,绘制波形和图表,分析实验现象,撰写实验报告。每次实验,都要独立完成实验报告。撰写实验报告应持严肃认真、实事求是的科学态度。实验结果与理论有较大出入时,不得随意修改实验数据结果,不得用凑数据的方法来向理论靠拢,而要重新进行一次实验,找出引起较大误差的原因,同时用理论知识来解释这种现象。并作如下具体要求: 1. 认真完成实验报告,报告要用攀枝花学院标准实验报告册,作图要用坐标纸。 2. 报告中的电路图、表格必须用直尺画。绘制电路图要工整、选取合适比例,元件参数标 注要准确、完整。 3. 应在理解的基础上简单扼要的书写实验原理,不提倡大段抄书。 4. 计算要有计算步骤、解题过程,要代具体数据进行计算,不能只写得数。 5. 绘制的曲线图要和实验数据吻合,坐标系要标明单位,各种特性曲线等要经过实验教师 检查,曲线图必须经剪裁大小合适,粘附在实验报告相应位置上。 6. 应结合具体的实验现象和问题进行讨论,不提倡纯理论的讨论,更不要从其它参考资料 中大量抄录。 7. 思考题要有自己理解实验原理后较为详尽的语言表述,可以发挥,有的要画图说明, 不能过于简单,不能照抄。 8. 实验报告的分数与报告的篇幅无关。 9. 实验报告页眉上项目如实验时间、实验台号、指导教师、同组学生等不要漏填。

目录 目录 实验一:MATLAB语言的基本命令实验二:控制系统模型与转换 实验三:Simulink 仿真应用 实验四:控制系统工具箱的使用实验五:磁盘驱动系统综合分析实验六:单级倒立摆控制仿真设计

卫星单机仿真系统及方法与制作流程

本技术提供了一种卫星单机仿真系统及方法,一种卫星单机仿真系统,所述卫星单机仿真系统与星上软件、动力分系统和能源分系统连接,所述卫星单机仿真系统模拟卫星单机进行建模,所述卫星单机包括传感器和执行器,所述卫星单机仿真系统将所述卫星单机建模为读数据操作或写数据操作,并按指令设定的算法,做相应的数据处理,所述卫星单机仿真系统包括可配置单元、编码单元和配置文件,其中:所述可配置单元中的设计参数和产生数据根据配置文件进行初始化;所述编码单元中的指令动作通过代码固定为函数,所述函数发送、接受或处理所述产生数据。 权利要求书 1.一种卫星单机仿真系统,所述卫星单机仿真系统与星上软件、动力分系统和能源分系统连接,其特征在于,所述卫星单机仿真系统模拟卫星单机进行建模,所述卫星单机包括传感器和执行器,所述卫星单机仿真系统将所述卫星单机建模为读数据操作或写数据操作,并按指令设定的算法,做相应的数据处理; 所述卫星单机仿真系统包括可配置单元、编码单元和配置文件,其中: 所述可配置单元中的设计参数和产生数据根据配置文件进行初始化; 所述编码单元中的指令动作通过代码固定为函数,所述函数发送、接受或处理所述产生数

据。 2.如权利要求1所述的卫星单机仿真系统,其特征在于,所述传感器包括星敏感器、太阳敏感器和陀螺,所述执行器包括飞轮和推力器。 3.如权利要求1所述的卫星单机仿真系统,其特征在于,所述可配置单元包括单机指令与算法模块、单机发送数据包格式模块、单机数据库模块与单机分系统数据包模块,其中: 所述单机指令与算法模块用于接收配置文件配置的单机指令与算法的初始化值,形成单机指令与算法; 所述单机发送数据包格式模块用于接收配置文件配置的单机发送数据包格式的初始化值,形成单机发送数据包格式; 所述单机数据库模块用于接收配置文件配置的单机数据库的初始化值,形成单机数据库; 所述单机分系统数据包模块用于接收配置文件配置的单机分系统数据包的初始化值,形成单机分系统数据包。 4.如权利要求3所述的卫星单机仿真系统,其特征在于,所述编码单元包括指令数据接收函数模块、指令数据处理函数模块、单机数据发送函数模块和定时器交互接口模块,其中: 所述指令数据接收函数模块用于接收所述单机指令与算法,以及所述星上软件发送的数据,并将所述单机指令与算法和星上软件发送的数据发送至所述指令数据处理函数模块; 所述指令数据处理函数模块处理所述单机指令与算法和星上软件发送的数据,并将处理结果发送至所述单机数据发送函数模块; 所述单机数据发送函数模块接收所述处理结果、所述单机发送数据包格式和所述单机数据库中的数据,并发送至所述星上软件;

系统仿真技术

系统仿真技术 摘要:介绍了我国仿真技术的发展过程及美国科学局为建立集成的综合仿真环境和仿真系统归纳的五个层次的使能技术。着重探讨了模型的校核,验证与确认,环境仿真,分布交互仿真等关键技术. 关键词:模型校核;建模;验模;环境仿真;分布交互方真;虚拟技术 1概述 仿真技术综合集成了计算机、网络技术、图形图像技术、多媒体、软件工程、信息处理、自动控制等多个高新技术领域的知识。 仿真技术是以相似原理、信息技术、系统技术及其应用领域有关的专业技术为基础,以计算机和各种物理效应设备为工具,利用系统模型对实际的或设想的系统进行试验研究的一门综合性技术。 仿真技术的应用已不仅仅限于产品或系统生产集成后的性能测试试验,仿真技术已扩大为可应用于产品型号研制的全过程,包括方案论证、战术技术指标论证、设计分析、生产制造、试验、维护、训练等各个阶段。仿真技术不仅仅应用于简单的单个系统,也应用于由多个系统综合构成的复杂系统。 对于国外仿真技术的发展和应用,本文拟引用九十年代初美国国防科学局(Defense Science Board)对建模与仿真的使能技术(Enabling Technologies)(即应能解决实现的技术)作出的归纳,可以作为我们思考问题的参考。美国国防科学局认为建立集成的综合仿真环境和仿真系统,应解决实现以下五个层次的使能技术。 第一层次——基础技术 包括:光纤通讯,集成电路,软件工程工具,人的行为模型,环境模型。 第二层次——元、部件级技术 包括:内存,海量存贮器,显示器,局域网,微处理器,数据库管理系统,数/模/数转换器,建模与仿真构建工具,测试设备。 第三层次——系统级技术 包括:微计算机系统,远距离通讯/广域网,人-机界面,计算机图像生成系统,高性能计算机系统,仪器装备系统,数据库,协议/标准/保密。 第四层次——应用级技术 包括:制造过程仿真工程设计建模与仿真,含人仿真系统,随机作战仿真,半自动兵力。 第五层次——集成综合环境和建模与仿真工具 包括:需求定义,原型机,规划,设计与制造,训练与备战,测试与评估。 上述使能技术有些由商业市场解决,有些主要由美国国防部组织解决,如下表所示: 2仿真技术发展和应用中的几个问题探讨 1.建模与验模 数学模型是仿真的基础。对被仿真的对象或系统,应根据其运动定律、约束条件

哈工大 计算机仿真技术实验报告 仿真实验四基于Simulink控制系统仿真与综合设计

基于Simulink 控制系统仿真与综合设计 一、实验目的 (1) 熟悉Simulink 的工作环境及其功能模块库; (2) 掌握Simulink 的系统建模和仿真方法; (3) 掌握Simulink 仿真数据的输出方法与数据处理; (4) 掌握利用Simulink 进行控制系统的时域仿真分析与综合设计方法; (5) 掌握利用 Simulink 对控制系统的时域与频域性能指标分析方法。 二、实验内容 图2.1为单位负反馈系统。分别求出当输入信号为阶跃函数信号)(1)(t t r =、斜坡函数信号t t r =)(和抛物线函数信号2/)(2t t r =时,系统输出响应)(t y 及误差信号)(t e 曲线。若要求系统动态性能指标满足如下条件:a) 动态过程响应时间s t s 5.2≤;b) 动态过程响应上升时间s t p 1≤;c) 系统最大超调量%10≤p σ。按图1.2所示系统设计PID 调节器参数。 图2.1 单位反馈控制系统框图

图2.2 综合设计控制系统框图 三、实验要求 (1) 采用Simulink系统建模与系统仿真方法,完成仿真实验; (2) 利用Simulink中的Scope模块观察仿真结果,并从中分析系统时域性能指标(系统阶跃响应过渡过程时间,系统响应上升时间,系统响应振荡次数,系统最大超调量和系统稳态误差); (3) 利用Simulink中Signal Constraint模块对图2.2系统的PID参数进行综合设计,以确定其参数; (4) 对系统综合设计前后的主要性能指标进行对比分析,并给出PID参数的改变对闭环系统性能指标的影响。 四、实验步骤与方法 4.1时域仿真分析实验步骤与方法 在Simulink仿真环境中,打开simulink库,找出相应的单元部件模型,并拖至打开的模型窗口中,构造自己需要的仿真模型。根据图2.1 所示的单位反馈控制系统框图建立其仿真模型,并对各个单元部件模型的参数进行设定。所做出的仿真电路图如图4.1.1所示。

国内外电力系统仿真技术

1国内外电力系统仿真技术 1.1电力系统仿真技术发展概述 目前,电力系统的仿真技术主要有三大类,即电力系统动态模拟仿真技术、电力系统数模混合式仿真技术以及电力系统全数字仿真技术。 1.1.1电力系统动态模拟仿真技术 电力系统动态模拟仿真技术采用动态模拟装置,也就是物理仿真系统。20世纪60年代以前,电力系统仿真主要采用这种全物理的动态模拟装置。其原理是用比原型系统在规格上缩减一定比例的方法建立物理模型系统,通过在物理模型上做试验代替在实际系统中的试验。其优点是可以较真实的反映被研究系统的全动态过程,现象直观明了,物理意义明确,缺点是仿真的规模受实验室设备和场地限制,而且每一次不同类型的试验都要重新进行电气接线,耗力耗时,另外,可扩展性和兼容性差。 1.1.2电力系统数模混合式仿真技术 电力系统数模混合式技术采用数模混合仿真系统,这种技术一般是用数字仿真模型模拟发电机、电动机、控制系统等,变压器、交流输电线路、直流输电换流阀组和控制装置等元件仍采用物理模型。其优点是综合了数字仿真和物理仿真优势,能够较真实地模拟一些系统电气元件,准确地反映系统的动态过程,缺点是接口环节多、试验接线工作量大和仿真规模受限。 1.1.3电力系统全数字仿真技术 电力系统全数字仿真系统是进入20世纪90年代以来发展起来的一种仿真技术。全数字仿真系统内所有元件都采用数字仿真模型。这种仿真系统对于计算方法和计算机运算处理速度的要求很高。全数字仿真系统的优点是不受被研究系统规模和结构复杂性的限制,计算速度快、使用灵活、扩展方便、成本相对低廉,

是当前电力系统仿真系统发展的主要方向。尤其是近年来随着数字计算机和并行技术的发展而出现的基于高性能PC机群的全数字仿真系统使得其价格低廉、升级扩展方便的优势更为突出,电力系统全数字实时仿真得到了越来越广泛的应用。 全数字仿真系统优势明显,是当前仿真系统的发展趋势。随着电力系统的发展,系统规模和复杂程度的增加,采取物理模拟的方法对实际系统进行仿真受到限制。由于电力系统数字仿真具有不受原有系统规模和结构复杂性的限制、保证被研究和试验系统的安全性、具有良好的经济性和便利性、可用于对设计未来系统性能的预测等优点,现已成为分析、研究电力系统必不可少的工具。随着计算机和数值计算技术的飞速发展,为电力系统数字仿真的发展提供了坚实的基础,使得电力系统数字仿真技术得到了迅速地发展。电力系统数字仿真包括离线数字仿真和实时数字仿真。 电力系统离线数字仿真是在计算机技术发展的基础上,建立电力系统物理过程的数学模型,用求解数学方程的方法来进行仿真研究。电力系统仿真软件根据动态过程中系统模型和仿真方法的不同,离线数字仿真可以分为电磁暂态过程仿真、机电暂态过程仿真和中长期动态过程仿真。电磁暂态数字仿真是用数值计算方法对电力系统中从数微秒至数秒之间的电磁暂态过程进行仿真模拟。电磁暂态仿真程序普遍采用的是电磁暂态程序(简称为EMTP),中国电力科学研究院在EMTP基础上开发了EMTPE。另外,加拿大Manitoba直流研究中心的EMTDC、加拿大哥伦比亚大学的MicroTran和德国西门子的NETOMAC,都具有与EMTP 相似的软件功能;机电暂态数字仿真主要研究电力系统受到大扰动后的暂态稳定和受到小扰动后的静态稳定性能。国际上常用的机电暂态仿真程序有美国的PSS/E和ETMSP、ABB的SYMPOW、西门子的NETOMAC,国内主要采用中国电科院的PSASP和中国版的BPA;电力系统中长期动态过程仿真是电力系统受到扰动后较长过程的动态仿真,主要用来分析电力系统内较长时间的动态特性。国际上主要采用的中长期动态过程仿真程序有EUROSTAG程序、LTSP程序、EXTAB程序,另外PSS/E和MODES程序也具有长过程动态稳定计算功能。 电力系统实时数字仿真系统是基于现代计算机技术开发的体系机构和大型电力系统电磁暂态仿真软件系统,可以进行电力系统电磁暂态的全过程实时模

系统仿真

系统仿真 1系统仿真概述 1.1定义及实质 所谓系统仿真(system simulation),就是根据系统分析的目的,在分析系统各要素性质及其相互关系的基础上,建立能描述系统结构或行为过程的、且具有一定逻辑关系或数量关系的仿真模型,据此进行试验或定量分析,以获得正确决策所需的各种信息。 系统仿真的实质是 ①它是一种对系统问题求数值解的计算技术。尤其当系统无法通过建立数学模型求解时,仿真技术能有效地来处理。 ②仿真是一种人为的试验手段。它和现实系统实验的差别在于,仿真实验不是依据实际环境,而是作为实际系统映象的系统模型以及相应的“人造”环境下进行的。这是仿真的主要功能。 ③仿真可以比较真实地描述系统的运行、演变及其发展过程。 1.2系统仿真的分类 根据仿真所采用的模型划分,可将仿真分为数学仿真和物理仿真两大类。 物理仿真亦称为实物仿真,它是在系统生产出样机后,将系统实物全部或部分的引入回路,由于物理仿真能将系统的实际参数、数学仿真中难以考虑到的非线性因素和干扰因素引入仿真回路,因此物理仿真更接近系统的实际情况,通过仿真可以检验实物系统工作的可靠性,可以准确地调整系统元部件的参数。 数学仿真就是将数学模型编排成模拟计算机的排题图或数值计算机的程序。这一过程是将原始数学模型转换成仿真模型,通过对计算机模型的运行达到对原始系统研究的目的,数学仿真在系统设计阶段和分析阶段是十分重要的,通过数学仿真可以检验理论设计的正确性。 1.3系统仿真的作用 ①仿真的过程也是实验的过程,而且还是系统地收集和积累信息的过程。尤其是对一些复杂的随机问题,应用仿真技术是提供所需信息的唯一令人满意的方法。 ②对一些难以建立物理模型和数学模型的对象系统,可通过仿真模型来顺利地解决预测、分析和评价等系统问题。 ③通过系统仿真,可以把一个复杂系统降阶成若干子系统以便于分析。 ④通过系统仿真,能启发新的思想或产生新的策略,还能暴露出原系统中隐藏着的一些问题,以便及时解决。 1.4适合于系统仿真的问题 ①难以用数学公式表示的系统,或者没有建立和求解数学模型的有效方法。 ②虽然可以用解析的方法解决问题,但数学的分析与计算过于复杂,这时计算机仿真可能提供简单可行的求解方法。 ③希望能在较短的时间内观察到系统发展的全过程,以估计某些参数对系统行为的影响。 ④难以在实际环境中进行实验和观察时,计算机仿真是唯一可行的方法,例如太空飞行的研究。 ⑤需要对系统或过程进行长期运行比较,从大量方案中寻找最优方案。

控制系统仿真课程设计

控制系统仿真课程设计 (2014级) 题目控制系统仿真课程设计学院 专业 班级 学号 学生姓名 指导教师 完成日期

实验一 交流异步电机动态仿真 一.设计目的 1.了解交流异步电机的原理,组成及各主要单元部件的原理。 2. 设计交流异步电机动态结构系统; 3.掌握交流异步电机调速系统的调试步骤,方法及参数的整定。 二.设计原理 异步电机工作在额定电压和额定频率下,仿真异步电机在空载启动和加载过程中的转速和电流变化过程。仿真电动机参数如下: 1.85, 2.658,0.2941,0.2898,0.2838s r s r m R R L H L H L H =Ω=Ω===, 2 0.1284Nm s ,2,380,50Hz p N N J n U V f =?===,此外,中间需要计算的参数如下:2 1m s r L L L σ=-, r r r L T R =,22 2 s r r m t r R L R L R L +=,10N m TL =?。αβ坐标系状态方程: 其中,状态变量: 输入变量: 电磁转矩: 2p m p s r s L r d ()d n L n i i T t JL J βααωψψβ=--r m r r s r r d 1d L i t T T ααβαψψωψ=--+r m r r s r r d 1d L i t T T ββαβψψωψ=-++22s s r r m m m s r r s s 2r r r r d d i R L R L L L L i u t L T L L ααβαα σψωψ+=+-+22 s s r r m m m s r r s s 2 r r r r d d i R L R L L L L i u t L T L L ββαββ σψωψ+=--+[ ] T r r s s X i i αβαβωψψ=[ ] T s s L U u u T αβ=() p m e s s s s r n L T i i L βααβ ψψ=-

基于MATLAB的电力系统仿真

《电力系统设计》报告题目: 基于MATLAB的电力系统仿 学院:电子信息与电气工程学院 班级: 13级电气 1 班 姓名:田震 学号: 日期:2015年12月6日 基于MATLAB的电力系统仿真 摘要:目前,随着科学技术的发展和电能需求量的日益增长,电力系统规模越来 越庞大,超高压远距离输电、大容量发电机组、各种新型控制装置得到了广泛的应用,这对于合理利用能源,充分挖掘现有的输电潜力和保护环境都有重要意义。另一方面,随着国民经济的高速发展,以城市为中心的区域性用电增长越来越快,大电网负荷中心的用电容量越来越大,长距离重负荷输电的情况日益普遍,电力系统在人们的生活和工作中担任重要角色,电力系统的稳定运行直接影响着人们的日常生活。从技术和安全上考虑直接进行电力试验可能性很小,因此迫切要求运用电力仿真来解决这些问题。 电力系统仿真是将电力系统的模型化、数学化来模拟实际的电力系统的运行,可以帮助人们通过计算机手段分析实际电力系统的各种运行情况,从而有效的了解电力系统概况。本文根据电力系统的特点,利用MATLAB的动态仿真软件Simulink搭建了无穷大电源的系统仿真模型,得到了在该系统主供电线路电源端发生三相短路接地故障并由故障器自动跳闸隔离故障的仿真结果,并分析了这一暂态过程。通过仿真结果说明MATLAB 电力系统工具箱是分析电力系统的有效工具。 关键词:电力系统;三相短路;故障分析;MATLAB仿真 目录 一.前言.............................................. 二.无穷大功率电源供电系统仿真模型构建............... 1.总电路图的设计......................................

气浮台在卫星控制系统仿真中的应用

航 天 控 制A e r o s p a c e C o n t r o l O c t .2008 V o l .26,N o .5 气浮台在卫星控制系统仿真中的应用 李季苏1  牟小刚1  张锦江1  王晓磊2  宗 红2  孙宝祥 2 1.北京控制工程研究所空间智能控制技术国家级重点实验室,北京100190 2.北京控制工程研究所,北京100190 摘 要 本文叙述单轴和三轴气浮台仿真设备在卫星控制系统仿真中的应用,主要包括空间太阳望远镜高精度姿控系统单轴气浮台物理仿真试验研究、大型 卫星平台单框架控制力矩陀螺(C G C M G )控制系统三轴气浮台物理仿真试验研究、东方红四号卫星控制系统全物理仿真试验。 关键词 单轴气浮台;三轴气浮台;卫星控制系统;物理仿真中图分类号:V 448.2;O 411.3 文献标识码:A 文章编号:1006-3242(2008)05-0064-05 A p p l i c a t i o no f A i r B e a r i n g T a b l e i nS a t e l l i t e C o n t r o l S y s t e m S i m u l a t i o n L I J i s u 1  M UX i a o g a n g 1  Z H A N GJ i n j i a n g 1  W A N GX i a o l e i 2  Z O N GH o n g 2  S U NB a o x i a n g 2 1.N a t i o n a l L a b o r a t o r y o f S p a c e I n t e l l i g e n t C o n t r o l ,B e i j i n g I n s t i t u t e o f C o n t r o l E n g i n e e r i n g , B e i j i n g 100190, C h i n a 2.B e i j i n g I n s t i t u t e o f C o n t r o l E n g i n e e r i n g ,B e i j i n g 100190,C h i n a A b s t r a c t T h e p a p e r p r e s e n t s t h e a p p l i c a t i o n o f s i n g l e -a x i s a n d t h r e e -a x i s a i r b e a r i n g t a b l e i ns a t e l l i t e c o n t r o l s y s t e m s i m u l a t i o n ,i n c l u d i n g h i g h a c c u r a c y s i m u l a t i o n o f c o n t r o l s y s t e mf o r s p a c e t e l e s c o p e ,t h r e e -a x i s s i m u l a t i o n o f S G C M Gc o n t r o l s y s t e mf o r l a r g e s a t e l l i t e a n d p h y s i c a l s i m u l a t i o n t e s t o f c o n t r o l s y s t e mf o r D O N G F A N G H O N G -4s a t e l l i t e . K e y w o r d s S i n g l e a x i s a i r b e a r i n gt a b l e ;T h r e e a x i s a i r b e a r i n gt a b l e ;S a t e l l i t e c o n t r o l s y s t e m ;P h y s i c a l s i m u l a t i o n 收稿日期:2007-12-20 作者简介:李季苏(1941-),男,湖南人,研究员,研究方向为卫星控制系统仿真;牟小刚(1969-),男,四川人,高级 工程师,研究方向为卫星控制系统仿真;张锦江(1973-),男,黑龙江人,高级工程师,研究方向为航天器控制、制导与仿真,非线性控制。王晓磊(1972-),男,山东人,高工,研究方向为导航、制导与控制;宗 红(1971-),女,北京人,高工,研究方向为导航、制导与控制;孙宝祥(1944-),男,江苏人,研究员,研究方向为空间控制。 气浮台依靠压缩空气在气浮轴承与轴承座之间形成的气膜,使模拟台体浮起,从而实现近似无摩擦的相对运动条件,以模拟卫星在外层空间所受干扰力矩很小的力学环境。作为卫星运动模拟器,如采用球面气浮轴承支持的三轴气浮台,不但能模拟三轴方向所需要的姿态运动,还能模拟卫星三轴姿态耦合动力学。卫星动力学由气浮台来模拟,控制系统采用部分或全部实物部件组成,并置于气浮台上, 组成与卫星控制系统相同的仿真回路,使用星上实际的控制规律和实际的运行软件,完成对气浮台的姿态控制。执行机构产生的控制力矩直接作用在气浮台上,如气浮台各轴与对应卫星各轴具有相等的转动惯量,实现转动惯量的1∶1模拟,则执行机构的控制力矩矢量与实际卫星的相同。在进行气浮台缩比模型试验时,气浮台各轴与对应卫星各轴的转动惯量比等于试验时执行机构与实际卫星执行机构控 · 64·

相关主题