搜档网
当前位置:搜档网 › 几种新型制冷技术

几种新型制冷技术

几种新型制冷技术
几种新型制冷技术

浅谈几种新型制冷技术

浅谈几种新型制冷技术

引言:

20世纪初,人们谈论的话题只是能源,而21世纪初,人们谈论的话题则是能源危机。这说明在当今这个高速发展的社会,能源已经成为支撑国家经济发展的基础和核心问题。2010年,我国一次能源消费总量超过32亿吨标准煤,能源消费总量已经占世界总量的20%,能源消费总量已经超过美国,但经济总量仅为美国的三分之一左右。其中,我国的石油对外依存度已经超过55%,天然气也已经超过16%是进口,昨日的煤炭大国在2010年也已经是变成了净进口国。近年来,由于传统的制冷空调设备对氟利昂类制冷剂的大量使用,以及对电能的大量消耗成为导致当前环境与能源问题的重要因素。随着我国能源结构的调整,太阳能、地热能、生物质能等可再生能源的应用比例不断提高。因此,研制和发展对臭氧层无损耗、无温室效应而且可以利用低品位能源作为动力的节能环保型的制冷技术是制冷领域研究的重要课题。

一、太阳能制冷

1、背景:

人类进入21世纪以来,电力、煤炭、石油等不可再生能源频频告急,据美国石油业协会估计,地球上尚未开采的原油储藏量已不足两万亿桶,可供人类开采时间不超过95年。在2050年到来之前,世界经济的发展将越来越多地依赖煤炭。其后在2250到2500年之间,煤炭也将消耗殆尽,矿物燃料供应枯竭。

同时化石燃料燃烧后造成的排放污染问题日益凸显,能源问题日益成为制约国际社会发展的瓶颈。太阳能既是一次能源,有是可再生能源,可免费使用,又无需运输,对环境也没有污染,具有无可避免的自然优势。同时,我国幅员辽阔,有着十分丰富的太阳能资源,有2/3以上的地区日照大于2000小时,太阳能资源的理论储量大每年7000亿吨标准煤[1]。

2、原理:

主要有吸收式、吸附式、冷管式、除湿式、喷射式和光伏等制冷类型[2-3]

(1) 太阳能吸收式制冷:用太阳能集热器收集太阳能来驱动吸收式制冷系统,利用储存液态冷剂的相变潜热来储存能量,利用其在低压低温下气化而制冷,目前为止示范应用最多的太阳能空调方式。多为溴化锂—水系统,也有的采用氨—水系统。

(2) 太阳能吸附式制冷:将收式制冷相结合的一种蒸发制冷,以太阳能为热源,采用的工质对通常为活性碳—甲醇、分子筛—水、硅胶—水及氯化钙一氨等,可利用太阳能集热器将吸附床加热后用于脱附制冷剂,通过加热脱附——冷凝——吸附——蒸发等几个环节实现制冷。

(3) 太阳能除湿空调系统:是一种开放循环的吸附式制冷系统。基本特征是干燥剂除湿和蒸发冷却,也是一种适合于利用太阳能的空调系统。

(4) 太阳能喷射式制冷:通过太阳能集热器加热使低沸点工质变为高压蒸汽,通过喷管时因流出速度高、压力低,在吸入室周围吸引蒸发器内生成的低压蒸汽进入混合室,同时制冷剂任蒸发器中汽化而达到制冷效果。

(5)太阳能冷管制冷:这是一种间歇式制冷,主要结构是由太阳能冷管、集热箱、制冷箱、蓄冷器和冷却水回路等组成,是一种特殊的吸附式制冷系统

(6)太阳能半导体制冷:该系统由太阳能光电转换器(太阳能电池)、数控匹配器、储能设备(蓄电池)和半导体制冷装置四部分组成。太阳能光电转换器输出直流电,一部分直接供给半导体制冷装置进行制冷运行,另一部分则进入储能设备储存,以供阴天或晚上使用,保证系统可以全天候正常运行。[2-3]

3、优点:

热源温度要求低,可以在比较大的热源温度波动范围内工作;活动部件少;对环境无害,环保。吸附式制冷不需氯氟氢类物质,因而对环境不会产生破坏,同时可以节能。

4、应用与发展:

目前,我国的建筑能耗占社会总能耗25%以上,而在建筑能耗中,空调能耗占到50%以上,并且建筑物空调的需求量呈逐年上升趋势,给能源、电力和环境带来很大的压力,在这种情况下,推广和发展太阳能空调系统可以节约大量的一次能源并减少能源转换污染物的排放,符合可持续发展战略的要求。利用太阳能光热转换获取热量驱动空调制冷机组,具有良好的季节适应性,太阳辐射越强,系统制冷量越大,与建筑空调负荷变化一致。随着太阳能集热技术的不断发展和常规能源价格的持续上涨,太阳能空调系统的投资将越来越低,系统的性能将越来越好,运行经济性和环保效益将更加突出,将会有更多的行业在空调制冷系统中推广利用的太阳能这一取之不尽的免费清洁能源。

[4]

二、余热制冷:

1、背景:

工业余热资源普遍存在,特别在石油化工、钢铁焦化、合成氨、聚酯化纤,、橡胶和多晶硅等行业的生产过程中,都存在丰富的余热资源,但是我国工业余热资源回收率仅33.5%。工业领域中消耗的大量的能量,最终以低温热水的方式排放掉,造成了很大的浪费。同时,汽车行业每年消耗大量的化石燃料,2011年全球汽车总产量高达80,064,168辆。汽车发动机的实用效率一般为35%-40%左右,约占燃料发热量一半以上的能量被发动机赶套循环冷却水及尾气带走。所带走的热量约占发动机燃料发热量的30%,发动机尾气温度约在450°C以上,可利用的尾气余热最低温度约为180°C,相应的可利用热量约占燃料发热量的20%以上。[5]

2、原理:

工业余热制冷一般采用吸收式制冷原理,其原理如下图所示:

汽车预热制冷技术有喷射式,吸收式,混合式等方式。

电压缩式制冷直燃型吸收式制冷技术比较

随着社会生产力的发展和人民生活水平的提高,空调已成为各类建筑不可缺少的重要组成部分,夏季用于空调制冷的能耗相当巨大。 现广泛使用的空调制冷方式有:(1)电压缩式制冷,包括活塞式、螺杆式、离心式压缩机制冷;(2)直燃型吸收式制冷,有燃油型和燃气型直燃机;(3)蒸汽(或热水)型吸收式制冷。它们所消耗的主要能源分别为电、天然气和蒸汽。 目前北京市的能源供应情况为:电力供应的峰谷矛盾严重,尤其在空调季该矛盾更为突出,给电力生产带来很大困难和浪费;天然气供应虽较以前有很大提高,但仍供不应求,且天然气作为一种消耗性能源,不可再生;很多集中热源厂冬夏季热负荷存在较大峰谷差,夏季蒸汽使用一直处于低负荷状态,给安全、高效的蒸汽输配带来不利影响,且不利于提高热源厂设备利用率和经济效益。 空调制冷方式选择得是否合理及切合实际,将直接影响社会能源的利用和人类的生存环境,如选择得当,既可安全可靠地供冷,还可合理利用和节约能源,改善城市的环境质量。 本文结合实例,对电压缩制冷、直燃型吸收式制冷、蒸汽型吸收式制冷三种制冷方式进行技术、经济比较,可为实际制冷方案的确定提供参考。 2.某建筑三种制冷方式的技术、经济比较 2.1项目概况 某建筑夏季需空调制冷,其建筑面积为20000m2,冷负荷指标为100W/m2,其总冷负荷为2000kW(1720×103kcal/h)。 2.2方案选择 方案1:选用1台制冷量为2093kW(1800×103kcal/h)的水冷螺杆式冷水机组,制冷剂为R22;方案2:选用1台制冷量为2110kW(1815×103kcal/h)的直燃型双效吸收式冷热水机组,燃料为天然气; 方案3:选用1台制冷量为2040kW(1754×103kcal/h)的蒸汽型双效吸收式冷水机组,热源为0.6MPa饱和蒸汽。 2.3计算参数 2.3.1地区参数 配电设备费:1200元/kW用电电价:0.8元/kW•h 天然气热值:8650kcal/Nm3天然气价格:1.90元/Nm3 蒸汽价格:80元/吨制冷期:120天/年 日运行时间:10小时/天制冷负荷率:0.6 2.3.2技术参数 根据上述方案制冷主机的选择,配设相应的冷冻水系统和冷却水系统等主要设备,各方案的技术参数统计如表1。 从表2可知,以设备初投资进行比较,直燃机制冷方案设备初投资为最大,电制冷方案设备初投资为最低,蒸汽制冷方案比电制冷方案设备初投资稍高。 2.5运行费用比较 运行费用包括设备运行能源消耗费(耗电费、燃料费、热源费)、耗水费、设备维护费、折旧费等。其中能源消耗费占较大比例,不考虑其它各项费用,各方案运行费用统计如下表:从表3可知,以年运行费用进行比较,直燃机制冷方案的年运行费用为最高,蒸汽制冷方案的年运行费用为最低,而电制冷方案比蒸汽制冷方案的年运行费用稍高。从整个制冷期的单位面积年运行费用看,蒸汽制冷方案比电制冷方案每平米节约1.47元,比直燃机制冷方案每平米节约5.45元。对于整个建筑(建筑面积20000m2),蒸汽制冷方案比电制冷方案每年节约运行费用2.94万元,约3.74年可收回比电制冷方案增加的初投资。 2.6能源利用率比较

太阳能固体吸附式制冷空调原理及前景

太阳能固体吸附式制冷空调原理及前景 一.前言 随着人们生活水平的大幅提高,空调器已逐渐成为家庭必备的家用电器,另一方面,大范围地使用传统制冷方式已经给环境造成了极大的破坏。首先是臭氧层空洞问题。传统制冷机广泛采用氯氟烃类制冷剂简称CFC,HCFC,它们会催化分解臭氧,削弱对紫外线的阻挡,威胁人类健康;其次,每年常规高能耗的制冷需求占用国家电力消耗的比例迅速增加,引起电力紧张,各地兴建各类发电站,火力占主要,大量烧煤增排CO2增强温室效应,引起全球升温;再次,能源短缺已然成为世界性的问题,普通空调器的普及显然是不利与于能源节约的,近几年来夏季我国各地特别是沿海停电现象严重,拉电限电十分普遍。 基于以上的问题,人们已经逐渐认识到可持续发展的重要性,同时也积极开发对能源有效利用和保护环境的新技术。太阳能固体吸附式制冷技术作为一种以太阳能为能源并且对环境无破坏作用的新型技术备受关注。 国外于二十世纪六七十年代就开始了对吸附式循环的研究。国内的研究开始于八十年代初,严爱珍等人曾在1982年对吸附式制冷作过研究,使用的工质是沸石分子筛-水和沸石分子筛-乙醇。1992年巴黎国际吸附式制冷会议带动了该技术的研究,在接下来的国际会议上均有上百篇论文发表,该项技术得到不断发展。 二. 工作原理 固体吸附式制冷技术的原理包括吸附和脱附两个过程。 1.脱附. 左图是脱附过程的简单模型图。吸附床 内充满了吸附剂,吸附有制冷剂,冷凝 器与冷却系统相连,一般冷却介质为水。 工作时,太阳能集热器对吸附床加热, 制冷剂获得能量克服吸附剂的吸引力从 吸附剂表面脱附,进入右边管道,系统 压力增加,C1导通,C2关闭。当压力与 冷凝器中对应温度下的饱和压力相等 时,制冷剂开始液化冷凝,最终制冷剂 凝结在蒸发器中,脱附过程结束。在这个过程中,太阳能集热器供能Q1,冷凝器放热Q4由冷却水排除到系统之外。 2.吸附. 右图是吸附过程的简单模型图。冷却系统对吸附 床进行冷却,温度下降,吸附剂开始吸附制冷剂, 左边管道内压力降低,C2导通,C1关闭,蒸发 器中的制冷剂因压力瞬间降低而蒸发吸热,达到 制冷效果,制冷剂达到吸附床,吸附过程结束。 在此过程中,吸附床放热Q2,被冷却水排除到 系统之外,蒸发器从环境中吸收Q3的热量。 以上只是最简单的模型图,由上可知单台吸 附床工作时制冷是间歇式的,不能连续制冷,要达到连续制冷的效果,必须使用两台或两台以上的吸附床,交错运行,制冷的循环就连续了。 三. 优点和缺点

制冷技术概述

第一章概论 1.1制冷技术及其应用 1.1.1.制冷的基本概念 制冷技术是为适应人们对低温条件的需要而产生和发展起来的。制冷是指用人工的方法在一定的时间和空间内从低于环境温度的空间或物体中吸取热量,并将其转移给环境介质,制造和获得低于环境温度的技术。能实现制冷过程的机械和设备的总和称为制冷机。 制冷机中使用的工作介质称为制冷剂。制冷剂在制冷机中循环流动并与外界发生能量交换,实现从低温热源吸取热量,向高温热源释放热量的制冷循环。由于热量只能自动地从高温物体传给低温物体,因此制冷的实现必须消耗能量,所消耗能量的形式可以是机械能、电能、热能、太阳能、化学能或其它可能的形式。 制冷几乎包括了从室温至0K附近的整个热力学温标。在科学研究和工业生产中,常把制冷分为普通制冷和低温制冷两个体系。根据国际制冷学会第13届制冷大会(1971年)的建议,将120K 定义为普冷与低温的分界线。在120K和室温之间的温度范围属于“普冷”,简称为制冷;在低于120K 温度下所发生的现象和过程或使用的技术和设备常称为低温制冷或低温技术,但是,制冷与低温的温度界线不是绝对的。 1.1. 2.制冷技术的应用 制冷技术几乎与国民经济的所有部门紧密联系,利用制冷技术制造舒适环境以保障人身健康和工作效率;利用制冷技术生产和贮存食品;利用制冷技术来保证生产的进行和产品质量的要求。制冷技术的应用几乎渗透到人类生活、生产技术、医疗生物和科学研究等各领域,并在改善人类的生活质量方面发挥巨大的作用。 1.1. 2.1.商业及人民生活 食品冷冻冷藏和空气调节是制冷技术最重要的应用之一。 商业制冷主要用于对各类食品冷加工、冷藏贮存和冷藏运输,使之保质保鲜,满足各个季节市场销售的合理分配,并减少生产和分配过程中的食品损耗。典型的食品“冷链”由下列环节组成:现代化的食品生产、冷藏贮运和销售,最后存放在消费者的家用冷藏冷冻装置内。 舒适性空气调节为人们创造适宜的生活和工作环境。如大中型建筑物和公共设施的空调,各种交通运输工具的空调装置,家用空调等。近年来,家用空调器已成为我国居民消费的热点家电产品之一。2003年我国家用空调器的年产量达3500万台,出口1000多万台,中国已成为世界空调产品的生产基地,产量约占世界总产量的40%。 工业空调不仅为在恶劣环境中工作的员工提供一定程度的舒适条件,而且也包括有利于生产和制造而作的空气调节。如:在冷天或炎热环境中,以维持工人可以接受的工作条件;纺织业、精密制造、电子元器件生产和生物医药等生产行业为了保证一定的产品质量和数量,需要空气调节系统提供合适的生产环境。 1.1. 2.2.工农业生产

300MW尖峰凝汽器系统调研报告

武乡及漳山尖峰系统调研报告 9月26日去武乡、漳山电厂学习借鉴尖峰冷却系统及投运后的运行调整。 一、武乡电厂尖峰系统 1、武乡电厂尖峰系统改造概述 武乡西山发电有限责任公司2×600MW机组为哈尔滨汽轮机厂生产的NZK600-16.7/538/538型亚临界参数、一次中间再热、三缸四排汽、单轴、直接空冷凝汽式。 武乡西山发电有限责任公司2×600MW直接空冷凝汽式机组,分别于2006年10月、2007年1月投产发电,是国内较早投入运行的600MW直接空冷机组,机组设计背压15kPa,夏季满发背压34 kPa,供电煤耗长期在350g/kw.h以上,与国内先进水平有较大距离。 经过考察论证,2012年武乡电厂对2×600MW直接空冷凝汽式机组进行了尖峰凝汽器改造工程,该工程由山西电力设计院负责设计,主体安装单位为山西华通电力工程公司,项目于2012年6月份建成投运。该项目设计为在机组夏季额定工况下投运时,保证机组排汽压力降低4KPA,2013年9月经过电科院试验论证,各负荷工况下均能满足排汽压力降低4KPA的要求,达到了将600MW直接空冷机组高温季节的满发排汽背压降低从而降低供电煤耗的目的。 2、机组参数: 2.1汽轮机设备参数: 制造厂:哈尔滨汽轮机厂有限责任公司 型号: NZK600-16.7/538/538

型式:亚临界、一次中间再热、单轴、三缸四排汽、直接空冷凝汽式汽轮机 额定功率:600MW 额定蒸汽参数: 高压主汽门前蒸汽压力:16.67MPa.a 高压主汽门前蒸汽温度:538℃ 中压主汽门前蒸汽压力:3.324MPa.a 中压主汽门前蒸汽温度:538℃ 额定进汽量:1830.79t/h 额定排汽压力:15kPa.a 能力工况背压:34kPa.a 2.2尖峰冷却系统设备技术参数(单台机组): 设计背压:27KPa(循环冷却水温度为33℃) 最高运行背压:48KPa 冷却蒸汽量:175t/h 循环水压力:0.25 MPa 最大循环水量:6000 t/h 冷却水温:正常20℃;最大33℃ 循环冷却水温升15℃,(由33℃升至48℃)。 尖冷凝汽器汽侧凝结水通过自流回主机排汽装置。 武乡电厂尖峰凝汽器循环水系统采用单独的机力通风冷却塔循环供水系统,供水方式为#1、#2机联络母管制,配备二座单塔冷却水量6000 m3/h通风冷却塔及三台循环水泵并联运行。单泵流量为4000 m3/h,扬程为:25.0m.正常情况下,三台循环水泵同时运行,不设备用。

尖峰冷却装置在发电厂的研究与应用

龙源期刊网 https://www.sodocs.net/doc/314118218.html, 尖峰冷却装置在发电厂的研究与应用 作者:张广柱王慧 来源:《时代经贸》2013年第12期 【摘要】本文介绍了尖峰冷却装置的基本原理,将空冷换热和蒸发换热进行优化组合, 以保证机组出力和在较低背压下经济运行。不同换热形式优化组合,优势互补;适用性强,可联合使用,也可独立运行,有效解决夏季机组出力与冬季防冻对换热面积不同需求的矛盾;与空冷系统相比,可将系统运行背压降低5~15KPa,机组满发可提高15%以上,煤耗降低2%以上;投资低、运行费用低、占地小,操作、维护方便。 【关键词】尖峰冷却装置;空冷换热;蒸发式换热 汽轮机的排汽通过一定的装置被冷却为凝结水的系统,它通常分为湿冷和空冷两种冷却方式,空冷又分为直接空冷和间接空冷。由于空冷方式用空气直接冷却汽轮机排汽或用空气冷却循环水再间接冷却汽轮机排汽构成了密闭的系统,所以在理论上它没有循环冷却水的蒸发损耗,从而使电厂的全厂总耗水量降低80%左右。但由于空冷系统增加了空冷风机,厂用电率增加0.7左右。三种空冷方式在国际上都得到广泛的应用[1]。 从20世纪70年代起.国际上发达国家开始改用蒸发式冷凝器代替水冷式冷凝器。蒸发式 冷凝器(尖峰冷却装置核心)与传统的以显热换热为主的水冷、空冷换热设备相比,大幅度提高了换热效率,降低能耗及水耗,从而提高了企业的经济效益和社会效益[2]。 1.尖峰冷却装置结构原理 尖峰冷却装置主要由蒸发式冷凝器、冷却塔、水循环系统及风机四部分组成,在箱体内装有换热管束,管束上面为喷水装置。蒸发式冷凝器在运行时,集水槽内的水由循环水泵送到上部的喷淋装置中,由喷淋装置均匀地喷在冷却盘管的外表面上,形成很薄的一层水膜[3]。水 膜与冷却盘管内的高温制冷剂气体进行热交换后,一部分水蒸发成水蒸汽,靠汽化潜热带走大量热量。水蒸汽在风机风力的作用下随热空气一起上升,经过挡水板时,水蒸汽被截住,收集到PVC热交换层中,与未蒸发的水一起冷却降温后,流回集水槽,继续循环使用。水蒸汽在挡水板中的飘逸率很小,不到0.001%。因此,蒸发式冷凝器在使用过程中,只要补充很少的水量,即可满足运行要求,尤其适用于干旱缺水地区。 2.工艺流程(图1-1) 汽轮机排汽经排汽管道分别送至空冷换热管束和蒸发换热管束中进行冷凝。不凝性气体在空冷逆流管束和蒸发换热管束上部由抽真空系统排出,凝结水汇集于凝结水联箱中,通过管道送入回热系统循环利用。

现代几种简单的制冷技术

目录 第一章制冷的热力学基础 (2) 第1节热力学第一定律 (2) 第2节热力学第二定律 (6) 第二章传统的制冷物质与制冷技术 (7) 第1节制冷剂的历史[4] (7) 第2节传统制冷技术的简单介绍 (7) 第三章半导体制冷 (10) 第1节半导体[4] (10) 第2节半导体制冷器 (11) 参考文献 (12) 致谢 (13)

第一章 制冷的热力学基础 第1节 热力学第一定律 1、热力学第一定律 自然界中的所有物质都有能量,能量不能被创造也不能被消灭,它只能进行能量之间的转换,从一种形态变成另一种形态,但是能量的总和不会改变,这就是能量守恒与转换定律,是自然界的基础规律之一,也是热力学第一定律的理论基础[2]。热力学第一定律就是能量守恒与转换在一个热力学系统中的应用。 热力学第一定律的解析式为: W U Q +?= (1.1.1) 式中Q 为系统中的热量,U ?表示热力学能的变化量,W 为与环境交换的功。式中热力学能变化量U ?、热量Q 、和功W 都是代数值,可正可负,系统吸热Q 值为正,放热Q 值为负;同理,系统对外做功W 为正,反之为负。系统的热力学能增大时,U ?为正。可以理解为在一个热力学系统内,热力学变化量U ?与对环境做的功的总和为系统中的总热量。这也说明了一个道理热力学第一定律是一个准静态过程,即在这个过程中的每一时刻,系统都处于平衡态。 说简单些,就是在一个系统中,热和功是可以相互转换的,消耗一定量的热即可产生一定量的功,同时,消耗一定量的功会产生一定量的热,但其二者之和是保持不变的一个固定值。 热力学的第一定律解析式的微分形式为 W dU Q δδ+= (1.1.2) 2、热力学第一定律对理想气体的应用[1] 下面我们来看看热力学第一定律在理想气体下的一些简单的能量转换。 (1)等体过程 等体过程即使在系统体积保持不变,外界做功为零,故此根据热力学第一定律的解析式可得出

制冷技术与应用考试试题及答案

@@学院 2011-2012学年第 二 学期 《 制冷技术与应用》期末考试试卷 年级 10级 专业 供暖通风 层次:普通高职 普通本科 (本试卷考试时间120分钟 满分100分) 一、选择题(每空2分,共30分): 1、用于食品冷却的房间称为冷却间,冷却间的温度通常为( )左右。 A 、—23~—30℃ B 、—15℃ C 、0℃ D 、—35℃ 2、( )是决定物体间是否存在热平衡的物理量。 A 、温度 B 、比体积 C 、压力 D 、热量 3、蒸气定压发生的过程中,不包括( )区域。 A 、未饱和液体 B 、过热蒸气 C 、湿饱和蒸气 D 、饱和蒸气 4、当几根毛细管并联使用时,为使流量均匀,最好使用( )。安装时 要垂直向上。 A 、分液器 B 、电子膨胀阀 C 、热力膨胀阀 D 、感温包 5、水果采后生理活动不包括( )。 A 、呼吸作用 B 、蒸发作用 C 、光合作用 D 、激素作用 6、冷库的集中式制冷系统中,双级压缩还需增加一个( )。 A 、蒸发回路 B 、冲霜回路 C 、供热回路 D 、冷却回路 7、气调库在结构上区别于冷藏库的一个最主要的特征是( )。 A 、安全性 B 、观察性 C 、气密性 D 、调压性 8、610F80G —75G 中,610是指( )。 A 、开启式6缸V 型,缸径为100mm B 、开启式6缸Y 型,缸径为100mm C 、开启式6缸S 型,缸径为100mm D 、开启式6缸W 型,缸径为100mm 9、制冷量大、效率高、易损件少、无往复运动、制冷量可实现无极调控等优点 属于( )压缩机。 A 、离心式 B 、螺杆式 C 、涡旋式 D 、滚动转子式 10、冷库容量不包括( )。

发电有限公司循环水管道内外壁防腐技术规范书

××发电有限公司空冷系统 增设尖峰冷却工程循环水管道防腐工程 技术规范书 二0一一年八月二十九日

1.工程概况: ××发电厂位于××村西南,属浊漳河北源涅河一级阶地、二级阶地及黄土丘陵区。厂址区大部分地段地形平坦、开阔,地面标高一般为938.3-948.1m。 电厂的规划容量为2400MW,一期建设规模为2×600MW亚临界燃煤空冷供热机组,两台机组分别于2006年9月、2006年12月投产发电。因空冷系统换热器冷却器面积受限,夏季时节机组无法带满负荷,本技改工程增设循环水冷却系统。全长约564米,主要型号有:Φ273×6、Φ630×8、Φ820×8、Φ1020×10、Φ1220×10、Φ1420×10等。内外壁喷砂除锈,内壁环氧树脂、外壁三布五油环氧煤玻璃钢防腐后,沟内焊接,并内外壁补口补伤。 2.编制依据: 2.1.《涂装前钢材表面锈蚀等级和除锈等级》 GB/T 8923-1988 2.2.《钢质管道及储罐腐蚀控制工程设计规范》 SY0007-1999 2.3.《涂装前钢材表面预处理规范》 SY/T0407-1997 2.4.《钢质管道聚乙烯胶粘带防腐层技术标准》 SY/T0414-1998 2.5.《地埋钢质管道环氧煤沥青防腐层技术标准》SY/T0447-1996 2.6.《埋地管道聚乙烯防腐层技术标准》 SY/T0413-2002 2.7.《管道防腐施工工艺及质量验收控制标准》 2011-01-10 2.8.《钢制管道液体环氧涂料内防腐层技术标准》 SY/T 0457-2010 3.施工工艺: 3.1.防腐方案: 3.1.1.钢管内壁防腐:环氧树脂漆三遍详见表一。 3.1.2.钢管外壁防腐:采用橡塑型环氧煤沥青冷缠带(RPC),简称三布五油。 3.2.工序流程: 3.2.1.预制钢管防腐:

制冷技术试卷及答案汇编

一.填空题每题 3 分,共 30 分 1?制冷是指用(人工)的方法将(被冷却对象)的热量移向周围环境介质,使其达到低于环境介质的温度,并 在所需时间内维持一定的低温。 2?最简单的制冷机由(压缩机)、(冷凝器)、(节流阀)和(蒸发器)四个部件并依次用管道连成封闭的 系统所组成。 3?蒸气压缩式制冷以消耗(机械能)为补偿条件,借助制冷剂的(相变)将热量从低温物体传给高温环境介 质。 4?节流前液体制冷剂的过冷会使循环的单位质量制冷量(变大);单位理论压缩功(不变)。 5?制冷机的工作参数,即(蒸发温度)、(过热温度)、(冷凝温度)、(过冷温度),常称为制冷机的运行工况。 6?在溴化锂吸收式制冷装置中,制冷剂为(水),吸收剂为(溴化锂)。 7?活塞式压缩机按密封方式可分为(开启式)、(半封闭式)和(全封闭式)三类。 8?活塞式压缩机的输气系数受(余隙容积)、(吸、排气阀阻力)、(气缸壁与制冷剂热交换)、(压缩机内部泄漏)影响。 9?壳管式冷凝器管束内流动(水),管间流动(制冷剂)。 10?空调用制冷系统中,水管系统包括(冷却水)系统和(冷冻水)系统。 二.单项选择题每小题 2 分,共 20 分 1?空调用制冷技术属于 (A ) A .普通制冷 B .深度制冷 C .低温制冷 D .超低温制冷 2?下列制冷方法中不属于液体汽化法的是( B) A .蒸气压缩式制冷 B .气体膨胀制冷 C .蒸汽喷射制冷 D .吸收式制冷 3?下列属于速度型压缩机的是( D ) A .活塞式压缩机 B .螺杆式压缩机 C .回转式压缩机 D .离心式压缩机 4?将制冷系统中不能在冷凝器中液化的气体分离掉的设备是( C )

固体吸附式制冷系统分析(翻译)

32NH -SrCl 固体吸附式制冷系统分析 K. NagaMalleswara Rao, M. Ram Gopal and Souvik Bhattacharyya 印度理工学院机械工程部 印度克勒格布尔 721302 摘要 基于固体吸附剂反应器(吸收器/发生器)的传热传质对SrCl2-NH3为工质的 固体吸附制冷系统性能进行了分析。瞬态的传热传质模型考虑了反应器壁和床层 之间的反应器壁的质量和接触电导的影响。对同一反应器内的理论结果及试验结 果进行比较。根据两个吸附器/发生器,冷凝器,膨胀阀和蒸发器的整个系统,分 析了使用反应器的传热传质模型。结果是在性能系数(COP )和特定的冷却功率 系数(SCP )的条件获得的。结果表明优化床层和运行参数,以便获得高的性能系 数COP 和冷却功率系数SCP 。显著影响系统的性能的有床层的厚度、冷源温度和 宏观反应进程。 关键词 : 固体吸附式制冷; SrCl 2–NH 3;传热传质;系统性能

1引言 固体吸附式制冷系统对环境是友好的,它们运行在低品位能源如废热或太阳能中。基于制冷剂-吸附剂,对固体吸附式系统可以分为水-沸石系统、水-硅胶系统,甲醇-活性炭系统,氨-氯系统等。与其他工作流体对相比,氨氯化物盐具有一定优势,比如由快速反应动力学导致的密实度、高放热反应、高工作温度范围、不结晶和各种各样的吸附剂都可用。然而,类似于其他固体吸附式系统,运行氨氯化物吸附系统在本质上是循环的,提供最准确连续输出的。由于操作的循环性质,盐(吸附剂)床交替的发生制冷和加热会导致发生额外的能量损失。对于一个给定的冷却/加热输出系统,能量损失的大小取决于吸附剂的使用量。在给定输出的情况下,为了减少所需盐的数量,吸附剂床层的传热传质特性必须大幅提高。在正常的形式,具有吸附床层的有效导热系数非常低,过去一直努力提高这个值。然而,提高有效导热系数一般涉及添加高导热惰性材料(如膨胀石墨)添加材料不参与氨的吸附,重要的是要对有效导热系数的优化。最佳值的有效导热系数取决于几个设计参数和运行参数。可能需要权衡性能系数COP和特定功率输出系数SCP(即每单位冷却或加热输出吸附剂的质量)的取值,使固体吸附式系统的总寿命周期成本最小化。。详细地对吸附床层传热传质分析和完整的系统辨别,对理解这些方面至关重要。 许多研究者采用多种数学模型研究了耦合热吸附剂床层传质特性。黄教授等SrCl形式获取低温介质系统的一维传热模型,再加上整个反应进人建立了一个以 2 程的动力学模型和最佳的热动力学参数的确定。王教授等人研究了用CaCl2–NH3和MnCl2–NH3两个系统之间的多步反应。nibe和Iloeje利用反应模型体积和考虑扩散吸附动力学对CaCl2-NH3工质开发了球形一维传热传质模型。Mbaye等人简化化学反应系统的假设,采用控制体积法和二维圆柱的能量和动力学方程解决通过热化学材料MnCl2 传导的反应热。Lu等人、oetz 和Marty 采用扩散动力学模型求解一维圆柱能量方程,研究了渗透系数和工作压力反应进程的变化。 CaCl2、BaCl2和SrCl2是常用的固体吸附剂。基于属性数据报道,它可以表 明SrCl2在冷源温度较高时能吸附NH3 ,而和CaCl2相比BaCl2的吸附能力较差。因此,SrCl2–NH3的特点是在高温热带气候环境下最适合的组合。但是,在基于SrCl2–NH3吸附式制冷系统的系统模拟研究都未见公开报道。Erhard等人公布了一个基于SrCl2–NH3的太阳能冰箱的实验和仿真结果。在本文中,提出了一个数学模型来模拟SrCl2–NH3固体吸附制冷系统。该模型充分考虑了吸附床层的传热与传质

半导体制冷技术

半导体制冷技术 实物图 半导体制冷又称电子制冷,或者温差电制冷,是从50年代发展起来的一门介于制冷技术和半导体技术边缘的学科,它利用特种半导体材料构成的P-N结,形成热电偶对,产生珀尔帖效应,即通过直流电制冷的一种新型制冷方法,与压缩式制冷和吸收式制冷并称为世界三大制冷方式。 1834年,法国物理学家帕尔帖在铜丝的两头各接一根铋丝,再将两根铋丝分别接到直流电源的正负极上,通电后,他惊奇的发现一个接头变热,另一个接头变冷;这个现象后来就被称为"帕尔帖效应"。"帕尔帖效应"的物理原理为:电荷载体在导体中运动形成电流,由于电荷载体在不同的材料中处于不同的能级,当它从高能级向低能级运动时,就会释放出多余的热量。反之,就需要从外界吸收热量(即表现为制冷)。 所以,"半导体制冷"的效果就主要取决于电荷载体运动的两种材料的能级差,即热电势差。纯金属的导电导热性能好,但制冷效率极低(不到1%)。半导体材料具有极高的热电势,可以成功的用来做小型的热电制冷器。但当时由于使用的金属材料的热电性能较差,能量转换的效率很低,热电效应没有得到实质应用。直到本世纪五十年代,苏联科学院半导体研究所约飞院士对半导体进行了大量研究,于1945年前发表了研究成果,表明碲化铋化合物固溶体有良好的致冷效果。这是最早的也是最重要的热电半导体材料,至今还是温差致冷中半导体材料的一种主要成份。约飞的理论得到实践应用后,有众多的学者进行研究到六十年代半导体致冷材料的优值系数,达到相当水平,才得到大规模的应用。80年代以后,半导体的热电制冷的性能得到大幅度的提高,进一步开发热电制冷的应用领域。 二、半导体制冷片制冷原理 原理图

一种用于热压机乏汽供暖(尖峰冷却)的凝汽器

一种用于热压机乏汽供暖(尖峰冷却)的凝汽器 摘要】本文论述了一种用于热压机乏汽供暖、尖峰冷却兼顾的凝汽器,包括结 合在一起的乏汽凝汽器、热压机凝汽器;其中的A、B、C为乏汽凝汽器部分,D、E为热压机凝汽器部分,A与B与C之间由隔板隔开水室,且乏汽凝汽器和热压 机凝汽器之间连接不通过布置管道进行连接。一种用于热压机乏汽供暖的凝汽器 的热压机凝汽器与乏汽凝汽器制造成整体多腔体结构,这样使整套热压机供暖系 统在占地面积、造价、乏汽管道布置、运行灵活性、经济效益核算方面更能体现 出优势。 【关键词】热压机乏汽供暖凝汽器尖峰冷却 1.技术领域 本文内容涉及热电厂乏汽供热系统,具体涉及一种用于热压机乏汽供暖的多 腔体凝汽器,或者也可以应用于夏季尖峰冷却,降低背压,实现节能降耗,从而 实现全年的降低机组的冷端损失,减少煤耗,减少了碳排放,绿色环保。 2.背景技术 目前,乏汽供热系统在电厂是一个重要的课题,已经在很多电厂通过乏汽实 现了供热,而热压机技术(蒸汽喷射压缩升压技术)本身作为一种新型的供热手段,已经被业内认可:热压机技术是基于蒸汽喷射器的原理深度研发应用。蒸汽 喷射器由起初只是用来抽真空,随后产生了一系列的基于喷射器原理的发明:用 于闪蒸、用于制冷、用于蒸汽压缩等,从而应用在了通过热压机设备对乏汽进行 提质利用,进行供暖。在乏汽进入热压机之前,汽轮机通常需要抬高一定背压, 可以设置一台前置乏汽凝汽器,尤其在初末寒期,抬高背压后的乏汽可以直接进 入乏汽凝汽器进行加热热网水,而在其他阶段,乏汽温度低无法直接进入乏汽凝 汽器加热热网水,需经过热压机提压后进入专用的热压机凝汽器加热。 综上所述,采用灵活性高、节煤经济性好、有效提升供热能力的供热改造路线。推荐采用“前置凝汽器+热压机凝汽器”组成的阶梯系统最为节能。 该技术目前被众多业主和专家们誉为:空冷机组最佳的乏汽利用技术路线。 该技术高度契合国家发改委、住建部的“余热暖民”政策,为了便于今后申报政府 补贴和奖项,可以将“余热暖民”嵌入题目。 这样的话需要设置两台凝汽器,前置乏汽凝汽器+热压机凝汽器。 3、技术优化 经过优化后,可以将两台凝汽器合二为一,这种用于热压机乏汽供暖的凝汽器,包括结合在一起的乏汽凝汽器、热压机凝汽器;其中的A、B、C为乏汽凝汽 器部分,D、E为热压机凝汽器部分,A与B与C之间由隔板隔开水室,且乏汽凝 汽器和热压机凝汽器之间连接不通过布置管道进行连接。 一种用于热压机乏汽供暖的凝汽器的优点:热压机凝汽器与乏汽凝汽器制造 成整体多腔体结构,这样使整套热压机供暖系统在占地面积、造价、乏汽管道布置、运行灵活性、经济效益核算方面更能体现出优势。 除了上面所描述的目的、特征和优点之外,一种用于热压机乏汽供暖的凝汽 器还有其它的目的、特征和优点。下面将参照图,对一种用于热压机乏汽供暖的 凝汽器作进一步详细的说明。 为了使用于热压机乏汽供暖的凝汽器目的、技术方案及优点更加清楚明白, 以下结合附图及实施例,对本实用新型进行进一步详细说明。

制冷技术作业(有答案的)

Chap I 1、有传热温差的卡诺循环被冷却物温度恒为5℃,冷却物温度恒为40℃两个传热温差分别为1℃,3℃,5℃,试分别求该几个有传热温差的制冷循环的制冷系数并加以讨论。 解:据题意: 当10=?=?T T k ℃时 48.7) 11()540(15273)()(0'0'1'01=++--+=?+?+-?-=T T T T T T K K ε 当 30=?=?T T k ℃ 时 71.6)33()540(352732=++--+=ε 当 50=?=?T T k ℃ 时 067.6) 55()540(552732=++--+=ε 讨论:当0,T T k ??↑,则ε↓。且当0,T T k ??↑↑,ε↓↓ 2、R 717和R 12在T K =30℃,T 0=-15℃的条件下进行基本理论循环及回热循环时,COM 吸气温度T Sh =15℃,试分别计算各个循环的制冷系数,热力完善度,并分析。 解:一、先计算基本理论循环: 对于R 717 ∵ T 0=15℃ ∴h 1=1743.51 kj /kg 且在R 717的lgPH 图上查得h 2=1990kj/kg 且T 2=102℃ 又因 T k =30℃ ∴ h 3=639.01 kj/kg

故 481.451 .1743199001.63951.17431 231000 =--=--==??==h h h h q M q M P c c R R th th ωωφε 782.0)15(30) 15(273481.400'=---+=-ε=εε=η-T T T K th c th 对于R 12查表和图得: T 0=–15℃时,h 1=345.78 kj /kg 排气温度:T 2=39℃时,h 2=371 kj /kg T k =30℃时,h 3=228.62 kj /kg 故 811.0153015 15.27365.465.478 .34537162.22878.345'23 10=+-=εε=η=--=ε--=ω=εc th th c th h h h h q 二、当有回热循环时,当R 717时 T sh =15℃时,h 1=1815 kj /kg T k =30℃时,h 2=2078 kj /kg h 3′=639.01 kj /kg 则制冷系数

知识物件上传—吸附式制冷技术发展-能源知识库

吸附式製冷技術發展 熱驅動製冷系統不僅可以利用工業餘熱或回收廢熱驅動,亦可以利用太陽能熱水驅動,在提供工業冷卻與商業空調的需求的同時,有助於提高整體能源的使用效率與善用再生能源,是發展再生能源空調系統最重要的技術發展項目之一,因此熱能驅動製冷技術在國內外,再度受到各國重視與廣泛的討論,如何以政策配合民間推動與落實冷熱電三生系統的應用,以提高整體能源的使用效率,對節能減碳作出貢獻。 固體吸附式製冷系統的驅動熱源溫度較吸收式製冷系統低,被冀望是發展太陽能空調系統的較佳方案,緣此,本文特別以吸附式製冷系統為題,比較說明兩種熱驅動製冷系統的運轉原理與特性,介紹國內外吸附式製冷系統的發展與應用現況,探討現階段推動商業化普及應用的障礙,以及未來可能的技術發展重點。 一、國內技術發展現況 溴化鋰-水吸收式製冷系統 論及熱驅動製冷系統在空調的應用,首推技術發展與商品成熟度最高的吸收式製冷系統(習稱吸收式冰水機、吸收式冷凍機),圖1所示為單效應溴化鋰-水吸收式製冷系統的結構與循環示意圖。吸收式製冷系統的工作流體以水為冷媒、以溴化鋰水溶液為吸收劑,溴化鋰水溶液對水氣具有高度的親合性(吸收力),因此利用這種特性發展出吸收式製冷系統。 吸收式製冷系統的運轉原理為,當冷媒在蒸發器的低壓下(真空)吸收冰水的熱量蒸發時,使冰水降溫產生製冷效果;蒸發的氣態冷媒被吸收器的溴化鋰溶液所吸收以維持蒸發器的低壓狀態;吸收氣態冷媒的溴化鋰溶液濃度降低,吸收能力也隨著降低,為維持溴化鋰溶液強烈的吸收力,利用溶液泵浦將溴化鋰溶液送到發生器加熱,使溴化鋰溶液的濃度提高以恢復其高度的吸收力;在發生器加熱溴化鋰溶液產生的氣態冷媒被送到冷凝器液化後再送至蒸發器製冷,在發生器提高濃度後的溴化鋰溶液吸收能力提高,被送到吸收器吸收蒸發的氣態冷媒,如此構成連續式的單效應吸收式製冷循環。

科技计划项目申报书范本

科技计划项目申报书 计划类别: 项目类别: 项目名称:凝汽器补水系统及空冷技术的研究与应用 申请单位: 起止年限:2017年至2018年 申报日期:2017年11月12日 科技局

二零一六年十月制

一、项目的意义与目标 (一)意义和必要性 研究的背景和意义: 在现代大型电站凝汽式汽轮机组的热力循环中,凝汽设备的真空度是汽

轮机运行的性能考核指标,也最能直接影响到整个汽轮机组的安全性、可靠性、稳定性和经济性。实际运行经验告诉我们,凝汽器的真空水平对汽轮发电机组的经济性有着直接影响,汽轮机真空严密性差会直接导致一是降低汽轮机组的效率,有资料显示,真空每下降1kpa,机组的热耗将在家70kJ/kw,热效率降低1.1%,增加发电煤耗约3-5g/kwh;二是威胁汽轮机的安全运行。 因此提高真空度,维持机组经济最佳真空运行,提高整个汽轮机组的热经济性、保证汽轮机安全运行等方面很有必要。 其次根据新疆自治区节能监查总队对能源发展的规划,在到2020年,现役燃煤发电机组改造后平均供电煤耗低于310克/千瓦时,其中现役60万千瓦及以上机组(除空冷机组外)改造后平均供电煤耗低于300克/千瓦时。优先淘汰改造后仍不符合能效、环保等标准的30万千瓦以下机组,特别是运行满20年的纯凝机组和运行满25年的抽凝热电机组。逐步淘汰改造后平均供电煤耗不达标的火电机组。 直接空冷机组通常在设计时因考虑空冷散热面积与当地全年最热气温满负荷小时数的经济性关系,空冷机组普遍存在夏季高温时段背压高,煤耗高,带不满负荷的情况。 我厂#1机组于2012年投产,#2机组于2013年投产,环境温度达到30℃以上时机组运行工况变差,机组真空降低,当环境温度高达33度以上时,更是严重制约机组负荷。在7、8、9月份,机组平均发电煤耗在330g/KW.h以上。 为解决空冷的不足,我厂技术人员对凝汽器补水系统及空冷技术进行研究,研究项目成立后可降低机组背压1~3kpa,节约发电煤耗约3-5g/kwh,全

制冷技术复习题图文稿

制冷技术复习题 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

第一章课后习题 1-1 正卡诺循环和逆卡诺循环有何不同理想制冷循环属于其中哪一种卡诺循环它有那几个过程组成? 1-2 实现逆卡诺循环有哪几个必要条件试分析逆卡诺循环的制冷系数含义及表示方法,并说明其制冷系数与哪些因素有关,与哪些因素无关。1-3 在分析逆卡诺循环制冷系数时,蒸发温度与冷凝温度变化有什么影响,那个影响作用更大 1-4 在分析具有传热温差的逆卡诺循环中得出了什么重要结论 1-5 蒸汽压缩式制冷是否可以采用逆卡诺循环为什么。 1-6 制冷循环的制冷系数和热力完善度概念,使用方面有什么区别 P-H 1-7 理论制冷循环与逆卡诺循环有哪些区别对比两种循环的T-S,L g 图组成的不同 1-8 蒸汽压缩式制冷理论循环为什么要采用干压缩 1-9 试述液体的过冷温度、过冷度;吸气的过热温度、过热度不同含义。 1-10 如何实现制冷循环中的液体过冷 1-11 什么叫无效过热什么叫有效过热制冷循环中吸气过热对制冷系数(效率)都不利吗什么情况下,即使对制冷系数不利,也要采取吸气过热技术手段(参考双级与复叠循环) 1-12 在进行制冷理论循环热力计算时,首先应确定哪些工作参数制冷循环热力计算应包括哪些内容

1-13 实际制冷循环与理论循环有什么区别对比两种循环在,L P-H图上表 g 示,思考造成变化的原因。 1-14 有一逆卡诺循环,其被冷却物体的温度恒定为5℃,冷却剂的温度为40℃,求其制冷系数xx。 1-15 今有一理想制冷循环,被冷却物体的温度恒定为5℃,冷却剂(即环境介质)的温度为25℃,两个传热过程的传热温差均为5℃,试问: a) 逆卡诺循环的制冷系数为多少 b) 当考虑传热温差时,制冷系数如何变化 1-16某一R717压缩制冷装置,蒸发器的出口温度为-20℃的干饱和蒸汽,被压缩机吸入绝热压缩后,进入冷凝器,冷凝温度为30℃,冷凝器出口为25℃的氨液,试将该制冷装置与没有过冷时的单位制冷制冷量、单位耗功量和制冷系数加以比较。 1-17某厂设有氨压缩制冷装置,已知蒸发温度t0=-10℃(相应的 p0=0.2908MPa)冷凝温度tk=40℃(相应的pk=1.5549MPa),过冷温度 trc=35℃,,压缩机吸入干饱和蒸汽,系统制冷量Φ0=174.45kW,时进行制冷理论的热力计算。 1-18某空调系统需要制冷量为35kW,采用R22制冷剂,采用回热循环,其工作条件是;蒸发温度t0=0℃(p0=0.198MPa),冷凝温度tk=40℃(pk=1.5769MPa),吸气温度t1=15℃,试进行理论循环的热力计算。1-19 如何实现回热循环,画出循环压焓图,写出单位制冷量与冷凝热表示公式,说明其表示意义。 第二.三章课后习题

吸附式制冷国内外研究概况

吸附式制冷国内外研究概况及市场前景 国内外研究吸附制冷的重点: 国内外的研究主要集中在吸附床的制作和机组控制的设计上,发生器是组成吸附制冷的核心部件,发生器的效率高低直接决定了机组的制冷效率。一、发生器是由添加了吸附剂的吸附床组成的,吸附床的结构、材质,研究者通过降低吸附床重量、降低传热热阻、加大换热面积来提高吸附床的导热性。另外,吸附剂的布置、灌装、活化工艺是制作吸附床的关键。总之达到传热、传质的最佳结合是研究吸附床的最终目的。传质、传热相互矛盾,所以研究者都在通过各种工艺手段实现两者的完美统一。二、控制系统也是国内外研究吸附制冷的厂家重点研究的一项内容。包括安全使用的安全保护装置、自动调节装置。安全使用是前提,热变冷的机组由于受到加热的原因,系统处在高压状态,安全显得十分重要,所以在控制上必须优先考虑。由于余热不稳定,所以要有自动控制的自动调节系统,根据外界的热源变化情况随时调节切换时间,达到加热与冷却的最佳配合,达到物质、能量的合理回收,回热、回质的合理回收可以大大提高机组效率。 研究余热驱动吸附制冷技术的必要性 我国工业余热回收的现状: 当前我国中高温余热利用技术普及率不高,低温余热利用由于技术不成熟基本废弃。因此,推进工业节能减排工作,一方面要进一步推广普及中高温余热利用技术,另一方面要积极推广吸附制冷机组在

高、中、低温余热制冷技术在工程方面的应用,这样将对提高余热利用率、实现节能减排起到重要作用。 我国工业余热资源丰富 我国工业领域能源消耗量约占全国能源消耗总量的70%,主要工业产品单位能耗平均比国际先进水平高出30%左右。除了生产工艺相对落后、产业结构不合理的因素外,工业余热利用率低是造成能耗高的重要原因,我国能源利用率仅为33% 左右,比发达国家低约10%,至少50%的工业耗能以各种形式的余热被直接废弃。因此从另一角度看,我国工业余热资源丰富,广泛存在于工业各行业生产过程中,余热资源约占其燃料消耗总量的17%~67% ,其中可回收率达60%,余热利用率提升空间大,节能潜力巨大。工业余热回收利用被认为是一种“新能源”,近年来成为推进我国节能减排工作的重要内容。 余热驱动的吸附制冷机组能解决的问题: 解决制冷必须消耗能源的问题,实现真正意义上的绿色制冷。用白白排掉和不用的的废热制冷。应用吸附制冷技术实现了“太阳能冷库”、“非电冷库(工业余热冷库)”、“轮船尾气制冷”、“汽车尾气冷藏车”、“尾气空调”等产品,并已实际应用。吸附制冷过程没有机械运动,没有噪音、不用佛里昂,不用电,制冷深度可达零下40度,实现了冷能存储,到目前为止世界范围内没有同类产品。 吸附制冷技术在工业余热方面的应用前景

吸附式制冷

固体吸附式制冷可采用太阳能或余热等低品位热源作为驱动热源,不仅缓解电力的紧张供应和能源危机,而且能有效的利用大量的低品位热源。另外,吸附式制冷不采用氯氟烃类制冷剂,无CFCS问题,也无温室效应作用,是一种环境友好型制冷方式。 与蒸气压缩式制冷系统相比,吸附式制冷具有结构简单,一次性投资少,运行费用低,使用寿命长,无噪音,无环境污染,能有效利用低品位热源等一系列优点;与吸收式制冷系统相比,吸附式制冷系统不存在结晶和分馏问题,且能用于震动,倾颠或旋转等场合。 两床连续型吸附式制冷系统主要由两部分组成。第一部分包括两个吸附床(解吸床和吸附床),两床的功能相当于传统制冷中的压缩机。解吸态床向冷凝器排放高温高压的制冷剂蒸气,吸附床则吸附蒸发器中低温低压的蒸气,使制冷剂蒸气在解吸床中不断蒸发制冷。因此吸附式制冷系统设计的核心是吸附床,它的性能好坏直接影响了整个系统的功能。第二部分包括冷凝器,蒸发器及流量调节阀,冷却水系统和冷冻水系统,与普通的制冷系统相类似。从解吸态床解吸出来的高温高压的制冷剂蒸气在冷凝器中被冷凝后,经过流量调节阀,变成低温低压的液体,进入蒸发器蒸发制冷,被蒸发的制冷剂蒸气重新被吸附态床吸收。 1 吸附床设计的要求 a.传热性能好,和流体的传热迅速,同时能够有效地克服吸附剂低导热系数的影响,这样才能保证吸附床及时补充解吸过程所需要的解吸热并及时带走吸附过程所放出的吸附热,它是使吸附床具有高性能的必要条件。 b.传质迅速,吸附质扩散通道畅通,这样才能保证吸附床吸附过程的吸附速度和解吸过程的解吸速度,缩短循环周期,提高单位工质的制冷功率。 c.吸附床材料以及热媒流体本身的热容和床内填充吸附剂的热容之比也决定了吸附式制冷系统的性能。这主要是由于吸附床材料本身的加热和冷却,会造成大量的系统热量损失,严重影响了系统的性能。 上述三点都是非常重要的。而这三点常常是相互矛盾、相互制约的,要强化吸附床的传热,必然要加入一些必要的导热片或增加必要的传热通道,这样也就必然导致了吸附床金属热容比的增加;要强化吸附床的传热,就必须要提高吸附剂的导热系数,而这样却影响了吸附床内的传质。 2 结构 床身由上下两个吸附床复合而成,每个吸附床上表面是一个高效太阳能集热器,为避免它们之间的相互热作用,两个吸附床之间用绝热层隔开。该吸附床可用金属合金制造,这样有利于保持吸附床的真空度且增加传热面积。吸附床内壁设有一个 U型水槽,当下床吸附时,通以冷媒水冷却。当上下两床分别达到脱附/ 吸附饱和时,通过转动轴旋转180o,上下两床互换位置,仍然保持上床解吸,下床吸附,从而达到连续循环。(1)床内结构特点 传质通道采用蜂窝状分布,有利于吸附过程吸附剂对制冷剂的吸收。烧结成块状的吸附剂除了与太阳能集热器结合的那一面外,其它三面都有冷却水槽。当吸附床吸附制冷剂时,打开水槽阀门,通入冷却水,带走吸附热,这样一来可以加快吸附过程,从而缩短整个循环的时间。

相关主题