搜档网
当前位置:搜档网 › 反比例函数的实际应用典型例题

反比例函数的实际应用典型例题

反比例函数的实际应用典型例题
反比例函数的实际应用典型例题

反函的实际应用

1、某单位打算在长和宽分别为20米和11米的矩形大厅内修建一个60平方米的矩形健身房ABCD.该健身房的四面墙壁中有两侧沿用大厅的旧墙壁(如图为平面示意图),已知装修旧墙壁的费用为20元/平方米,新建(含装修)墙壁的费用为80元/平方米.设健身房的高为3米,一面旧墙壁AB的长为米,修建健身房墙壁的总投入为元.(1)求与的函数关系式;(2)为了合理利用大厅,要求自变量必须满足条件:,当投入的资金为4800元时,问利用旧墙壁的总长度为多少?

2、保护生态环境,建设绿色社会已经从理念变为人们的行动.某化工厂2009年1 月的利润为200万元.设2009年1 月为第1个月,第x个月的利润为y万元.由于排污超标,该厂决定从2009年1 月底起适当限产,并投入资金进行治污改造,导致月利润明显下降,从1月到5月,y与x成反比例.到5月底,治污改造工程顺利完工,从这时起,该厂每月的利润比前一个月增加20万元(如图).⑴分别求该化工厂治污期间及治污改造工程完工后y与x之间对应的函数关系式.⑵治污改造工程完工后经过几个月,该厂月利润才能达到2009年1月的水平?⑶当月利润少于100万元时为该厂资金紧张期,问该厂资金紧张期共有几个月?

3、近年来,我国煤矿安全事故频频发生,其中危害最大的是瓦斯,其主要成分是CO.在一次矿难事件的调查中发现:从零时起,井内空气中CO 的浓度达到4 mg/L ,此后浓度呈直线型增加,在第7小时达到最高值46 mg/L ,发生爆炸;爆炸后,空气中的CO 浓度成反比例下降.如图11,根据题中相关信息回答下列问题:(1)求爆炸前后..

空气中CO 浓度y 与时间x 的函数关系式,并写出相应的自变量取值范围;(2)当空气中的CO 浓度达到34 mg/L 时,井下3 km 的矿工接到自动报警信号,这时他们至少要以多少km/h 的速度撤离才能在爆炸前逃生?(3)矿工只有在空气中的CO 浓度降到4 mg/L 及以下时,才能回到矿井开展生产自救,求矿工至少在爆炸后多少小时才能下井?

4、如图所示,小华设计了一个探究杠杆平衡条件的实验:在一根匀质的木杆中点O 左侧固定位置B 处悬挂重物A ,在中点O 右侧用一个弹簧秤向下拉,改变弹簧秤与点O 的距离x (cm ),观察弹簧秤的示数y (N )的变化情况。实验数据记录如下:

(1)把上表中x ,y 的各组对应值作为点的坐标,在坐标系中描出相应的点,用平滑曲线连接这些点并观察所得的图象,猜测y (N )与x (cm )之间的函数关系,并求出函数关系式;(2)当弹簧秤的示数为24N 时,弹簧秤与O 点的距离是多少cm ?随着弹簧秤与O 点的距离不断减小,弹簧秤上的示数将发生怎样的变化?

图11

初中反比例函数经典例题

初中反比例函数习题集合(经典) (1)下列函数,① 1)2(=+y x ②. 11 += x y ③21x y = ④.x y 21-=⑤2 x y =-⑥13y x = ; 其中是y 关于x 的反比例函数的有:_________________。 (2)函数2 2 )2(--=a x a y 是反比例函数,则a 的值是( ) A .-1 B .-2 C .2 D .2或-2 (3)如果y 是m 的反比例函数,m 是x 的反比例函数,那么y 是x 的( ) A .反比例函数 B .正比例函数 C .一次函数 D .反比例或正比例函数 (4)如果y 是m 的正比例函数,m 是x 的反比例函数,那么y 是x 的( ) (5)如果y 是m 的正比例函数,m 是x 的正比例函数,那么y 是x 的( ) (6)反比例函数(0k y k x = ≠) 的图象经过(—2,5)和(2, n ), 求(1)n 的值;(2)判断点B (24,2-)是否在这个函数图象上,并说明理由 (7)已知函数12y y y =-,其中1y 与x 成正比例, 2y 与x 成反比例,且当x =1时,y =1; x =3时,y =5.求:(1)求y 关于x 的函数解析式; (2)当x =2时,y 的值. (8)若反比例函数2 2)12(--=m x m y 的图象在第二、四象限,则m 的值是( ) A 、 -1或1; B 、小于 1 2 的任意实数; C 、-1; D、不能确定 (9)已知0k >,函数y kx k =+和函数k y x =在同一坐标系内的图象大致是( ) (10)正比例函数2x y = 和反比例函数2 y x =的图象有 个交点. (11)正比例函数5y x =-的图象与反比例函数(0)k y k x =≠的图象相交于点A (1,a ), 则a = . (12)下列函数中,当0x <时,y 随x 的增大而增大的是( ) A .34y x =-+ B .123y x =-- C .4 y x =- D .12y x =. x y O x y O x y O x y O A B C D

反比例函数及典型例题

反比例函数知识点及典型例题 反比例函数这一章是初中数学的一个重点,也是初中数学的一个核心知识点。由反比例函数的图像和性质衍生出了好多数学问题,这对“数形结合”思想还有点欠缺的中学生来说无疑是一个难点。 一、反比例函数知识要点点拨 1、反比例函数的图象和性质: 反比例函数 (0)k y k x = ≠ k 的符号 0k > 0k < 图象 性质 ①x 的取值范围是0x ≠, y 的取值范围是0y ≠. ②当0k >时,函数图象的两个分支分别在第一、第三象限.在每 个象限内,y 随x 的增大而减小. ①x 的取值范围是0x ≠, y 的取值范围是0y ≠. ②当0k <时,函数图象的两个分支分别在第二、第四象 限.在每个象限内,y 随x 的增大而增大. 反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴,对称中心是坐标原点. 2、反比例函数与正比例函数(0)y kx k =≠的异同点: 函数 正比例函数 反比例函数 x y O x y O

解析式 (0)y kx k =≠ (0)k y k x = ≠ 图象 直线,经过原点 双曲线,与坐标轴没有交点 自变量取值范围 全体实数 0x ≠的一切实数 图象的位置 当0k >时,在一、三象限; 当0k <时,在二、四象限. 当0k >时,在一、三象限; 当0k <时,在二、四象限. 性质 当0k >时,y 随x 的增大而增大; 当0k <时,y 随x 的增大而减小. 当0k >时,y 随x 的增大而 减小; 当0k <时,y 随x 的增大而增大. 二,、典型例题 例 1 下面函数中,哪些是反比例函数? (1)3 x y -=;(2)x y 8-=;(3)54-=x y ;(4)15-=x y ;(5).8 1=xy 解:其中反比例函数有(2),(4),(5). 说明:判断函数是反比例函数,依据反比例函数定义,x k y =)0(≠k , 它也可变形为1-=kx y 及k xy =的形式,(4),(5)就是这两种形式. 例 2在以下各小题后面的括号里填写正确的记号.若这个小题成正比例关系,填 (正);若成反比例关系,填(反);若既不成正比例关系又不成反比例关系,填(非). (1)周长为定值的长方形的长与宽的关系 ( ); (2)面积为定值时长方形的长与宽的关系 ( ); (3)圆面积与半径的关系 ( ); (4)圆面积与半径平方的关系 ( ); (5)三角形底边一定时,面积与高的关系 ( ); (6)三角形面积一定时,底边与高的关系 ( );

反比例函数知识点归纳和典型例题

反比例函数知识点归纳和典型例题 知识点归纳 (一)反比例函数的概念 1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件; 2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式; 3.反比例函数的自变量,故函数图象与x轴、y轴无交点. (二)反比例函数的图象 在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称). (三)反比例函数及其图象的性质 1.函数解析式:() 2.自变量的取值范围: 3.图象: (1)图象的形状:双曲线. 越大,图象的弯曲度越小,曲线越平直. 越小,图象的弯曲度越大. (2)图象的位置和性质: 与坐标轴没有交点,称两条坐标轴是双曲线的渐近线. 当时,图象的两支分别位于一、三象限; 在每个象限内,y随x的增大而减小; 当时,图象的两支分别位于二、四象限; 在每个象限内,y随x的增大而增大. (3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上, 则(,)在双曲线的另一支上.

图象关于直线对称,即若(a,b)在双曲线的一支上, 则(,)和(,)在双曲线的另一支上.4.k的几何意义 如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是(三角形PAO和三角形PBO的面积都是). 如图2,由双曲线的对称性可知,P关于原点的对称 点Q也在双曲线上,作QC⊥PA的延长线于C,则有三 角形PQC的面积为. 图1 图2 5.说明: (1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论. (2)直线 与双曲线的关系: 当 时,两图象没有交点; 当 时,两图象必有两个交点,且这两个交点关于原点成中心对称.

反比例函数经典编辑中考例题

反比例函数经典中考例题解析一 一、 填空题(每空3分,共36分) 1、任意写出一个图象经过二、四象限的反比例函数的解析式:__________ 2、若正比例函数y =mx (m ≠0)和反比例函数y =n x (n ≠0)的图象有一个交点为点(2,3),则m =______,n =_________ . 3、已知正比例函数y=kx 与反比例函数y= 3 x 的图象都过A (m ,1)点,求此正比例函数解析式为________,另一个交点的坐标为________. 4、已知反比例函数2k y x -=,其图象在第一、三象限内,则k 的值可为 。 (写出满足条件的一个k 的值即可) 5、已知反比例函数x k y = 的图象经过点)2 1 4(,,若一次函数1+=x y 的图象平移后经过该反比例函数图象上的点B (2,m ),求平移后的一次函数图象与x 轴的交点坐标为______________ 6、已知双曲线x k y = 经过点(-1,3),如果A (11,b a ),B (22,b a )两点在该双曲线上,且1a <2a <0,那么1b 2b . 7、函数y=x 2的图象如图所示,在同一直角坐标系内,如果将直线y=-x+1沿y 轴向上平 移2个单位后,那么所得直线与函数y= x 2 的图象的交点共有 个 8、已知函数y kx =- (k≠0)与y=4x -的图象交于A 、B 两点,过点A 作AC 垂直于y轴,垂足为点C ,则△BOC 的面积为____ (第9题)

9.如图,11POA V 、 212P A A V 是等腰直角三角形,点1P 、2P 在函数4 (0)y x x =>的图象上,斜边1OA 、12A A 都在x 轴上,则点2A 的坐标是____________. 10. 两个反比例函数x y 3= ,x y 6 =在第一象限内的图象如图 所示, 点P 1,P 2,P 3,…,P 2 005在反比例函数x y 6 = 图象上,它们的横坐标分别是x 1,x 2,x 3,…,x 2 005,纵坐标分别是1,3,5,…,共2 005个连续奇数,过点P 1, P 2,P 3,…,P 2 005分别作 y 轴的平行线,与x y 3 = 的图象交点依次是Q 1(x 1,y 1),Q 2(x 2,y 2),Q 3(x 3,y 3),…,Q 2 005(x 2 005,y 2 005),则 y 2 005= . 二、选择题(每题3分,共30分) 11、反比例函数k y x = 与直线2y x =-相交于点A ,A 点的横坐标为-1,则此反比例函数的解析式为( ) A .2y x = B .12y x = C .2y x =- D .12y x =- 12、如图所示的函数图象的关系式可能是( ). (A )y = x (B )y =x 1 (C )y = x 2 (D) y = 1x 13、若点(3,4)是反比例函数2 21m m y x +-=图象上一点,则此函数图象必须经过点 ( ). O x y (第12题) 第10

反比例函数经典中考例题解析二

反比例函数经典中考例题解析二 一、选择题(每小题3分,共30分) 1、反比例函数y = x n 5 图象经过点(2,3),则n 的值是( ). A 、-2 B 、-1 C 、0 D 、1 2、若反比例函数y = x k (k ≠0)的图象经过点(-1,2),则这个函数的图象一定经过点( ). A 、(2,-1) B 、(- 2 1 ,2) C 、(-2,-1) D 、( 2 1 ,2) 3、(08双柏县)已知甲、乙两地相距s (km ),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t (h )与行驶速度v (km/h )的函数关系图象大致是( ) 4、若y 与x 成正比例,x 与z 成反比例,则y 与z 之间的关系是( ). A 、成正比例 B 、成反比例 C 、不成正比例也不成反比例 D 、无法确定 5、一次函数y =kx -k ,y 随x 的增大而减小,那么反比例函数y = x k 满足( ). A 、当x >0时,y >0 B 、在每个象限内,y 随x 的增大而减小 C 、图象分布在第一、三象限 D 、图象分布在第二、四象限 6、如图,点P 是x 轴正半轴上一个动点,过点P 作x 轴的垂 线PQ 交双曲线y = x 1 于点Q ,连结OQ ,点P 沿x 轴正方向运动时, Rt △QOP 的面积( ). A 、逐渐增大 B 、逐渐减小 C 、保持不变 D 、无法确定 Q p x y o t /h v /(km/ O t /h v /(km/ O t /h v /(km/ O t /h v /(km/ O A . B . C . D .

7、在一个可以改变容积的密闭容器内,装有一定质量 m 的某种气体,当改变容积V 时,气体的密度ρ也随之改变. ρ与V 在一定范围内满足ρ= V m ,它的图象如图所示,则该 气体的质量m 为( ). A 、1.4kg B 、5kg C 、6.4kg D 、7kg 8、若A (-3,y 1),B (-2,y 2),C (-1,y 3)三点都在函数y =-x 1的图象上,则y 1,y 2,y 3的大 小关系是( ). A 、y 1>y 2>y 3 B 、y 1<y 2<y 3 C 、y 1=y 2=y 3 D 、y 1<y 3<y 2 9、已知反比例函数y = x m 21-的图象上有A (x 1,y 1)、B (x 2,y 2)两点,当x 1<x 2<0时,y 1<y 2,则m 的取值范围是( ). A 、m <0 B 、m >0 C 、m <2 1 D 、m > 2 1 10、如图,一次函数与反比例函数的图象相交于A 、B 两 点,则图中使反比例函数的值小于一次函数的值的x 的取值范围 是( ). A 、x <-1 B 、x >2 C 、-1<x <0或x >2 D 、x <-1或0<x <2 二、填空题(每小题3分,共30分) 11.某种灯的使用寿命为1000小时,它的可使用天数y 与平均每天使用的小时数x 之间的函数关系式 为 . 12、已知反比例函数 x k y = 的图象分布在第二、四象限,则在一次函数b kx y +=中,y 随x 的增大而 (填“增大”或“减小”或“不变”). 13、若反比例函数y =x b 3 -和一次函数y =3x +b 的图象有两个交点,且有一个交点的纵坐标为6,则b = . 14、反比例函数y =(m +2)x m 2 - 10的图象分布在第二、四象限内,则m 的值为 .

反比例函数知识点及典型例题解析

反比例函数 知识点及考点: (一)反比例函数的概念: 知识要点: 1、一般地,形如 y = x k ( k 是常数, k = 0 ) 的函数叫做反比例函数。 注意:(1)常数 k 称为比例系数,k 是非零常数; (2)解析式有三种常见的表达形式: (A )y = x k (k ≠ 0) , (B )xy = k (k ≠ 0) (C )y=kx -1 (k ≠0) 例题讲解:有关反比例函数的解析式 (1)下列函数,① 1)2(=+y x ②. 11 += x y ③21x y = ④.x y 21-=⑤2x y =-⑥13y x = ;其中是y 关于 x 的反比例函数的有:_________________。 (2)函数2 2 )2(--=a x a y 是反比例函数,则a 的值是( ) A .-1 B .-2 C .2 D .2或-2 (3)若函数1 1-= m x y (m 是常数)是反比例函数,则m =________,解析式为________. (4)如果y 是m 的反比例函数,m 是x 的反比例函数,那么y 是x 的( ) A .反比例函数 B .正比例函数 C .一次函数 D .反比例或正比例函数 练习:(1)如果y 是m 的正比例函数,m 是x 的反比例函数,那么y 是x 的( ) (2)如果y 是m 的正比例函数,m 是x 的正比例函数,那么y 是x 的( ) (5)反比例函数(0k y k x = ≠) 的图象经过(—2,5, n ), 求1)n 的值; 2)判断点B (24,)是否在这个函数图象上,并说明理由 (6)已知y 与2x -3成反比例,且4 1 =x 时,y =-2,求y 与x 的函数关系式.

反比例函数知识点归纳总结与典型例题(供参考)

反比例函数知识点归纳总结与典型例题 (一)反比例函数的概念: 知识要点: 1、一般地,形如 y = x k ( k 是常数, k = 0 ) 的函数叫做反比例函数。 注意:(1)常数 k 称为比例系数,k 是非零常数; (2)解析式有三种常见的表达形式: (A )y = x k (k ≠ 0) , (B )xy = k (k ≠ 0) (C )y=kx -1 (k ≠0) 例题讲解:有关反比例函数的解析式 (1)下列函数,① 1)2(=+y x ②. 11+= x y ③21x y = ④.x y 21 -=⑤2 x y =-⑥13y x = ;其中是y 关 于x 的反比例函数的有:_________________。 (2)函数2 2)2(--=a x a y 是反比例函数,则a 的值是( ) A .-1 B .-2 C .2 D .2或-2 (3)若函数1 1-= m x y (m 是常数)是反比例函数,则m =________,解析式为________. (4)反比例函数(0k y k x = ≠) 的图象经过(—2,52, n ), 求1)n 的值; 2)判断点B (24,2- (二)反比例函数的图象和性质: 知识要点: 1、形状:图象是双曲线。 2、位置:(1)当k>0时,双曲线分别位于第________象限内;(2)当k<0时, 双曲线分别位于第________象限内。 3、增减性:(1)当k>0时,_________________,y 随x 的增大而________; (2)当k<0时,_________________,y 随x 的增大而______。 4、变化趋势:双曲线无限接近于x 、y 轴,但永远不会与坐标轴相交 5、对称性:(1)对于双曲线本身来说,它的两个分支关于直角坐标系原点____________;(2)对于k 取互为相反数的两个反比例函数(如:y = x 6 和y = x 6 -)来说,它们是关于x 轴,y 轴___________。 例题讲解: 反比例函数的图象和性质: (1)写出一个反比例函数,使它的图象经过第二、四象限 . (2)若反比例函数 2 2 )12(--=m x m y 的图象在第二、四象限,则m 的值是( ) A 、 -1或1; B 、小于 1 2 的任意实数; C 、-1; D、不能确定 (3)下列函数中,当0x <时,y 随x 的增大而增大的是( ) A .34y x =-+ B .123y x =-- C .4 y x =- D .12y x =.

反比例函数的典型例题集

反比例函数的典型例题一 例 下面函数中,哪些是反比例函数? (1)3x y - =;(2)x y 8-=;(3)54-=x y ;(4)15-=x y ;(5).8 1=xy 解:其中反比例函数有(2),(4),(5). 说明:判断函数是反比例函数,依据反比例函数定义,x k y =)0(≠k ,它也可变形为1-=kx y 及k xy =的形式, (4),(5)就是这两种形式. 反比例函数的典型例题二 例 在以下各小题后面的括号里填写正确的记号.若这个小题成正比例关系,填(正);若成反比例关系,填(反);若既不成正比例关系又不成反比例关系,填(非). (1)周长为定值的长方形的长与宽的关系 ( ); (2)面积为定值时长方形的长与宽的关系 ( ); (3)圆面积与半径的关系 ( ); (4)圆面积与半径平方的关系 ( ); (5)三角形底边一定时,面积与高的关系 ( ); (6)三角形面积一定时,底边与高的关系 ( ); (7)三角形面积一定且一条边长一定,另两边的关系 ( ); (8)在圆中弦长与弦心距的关系 ( ); (9)x 越来越大时,y 越来越小,y 与x 的关系 ( ); (10)在圆中弧长与此弧所对的圆心角的关系 ( ). 答: 说明:本题考查了 正比例函数和反比例函数的定义,关键是一定要弄清出二者的定义. 反比例函数的典型例题三 例 已知反比例函数6 2)2(--=a x a y ,y 随x 增大而减小,求a 的值及解析式. 分析 根据反比例函数的定义及性质来解此题. 解 因为6 2)2(--=a x a y 是反比例函数,且y 随x 的增大而减小, 所以???>--=-.02,162a a 解得???>±=. 2,5a a

反比例函数经典题型

X Y -9 -8-7-6-5-4-3-2-1 1110987654321 -8-7-6-5-4-3-2-1 9 876543210X Y -9 -8-7-6-5-4-3-2-1 11109876543 21 -8-7-6-5-4-3-2-19 8 7 6 5 4 3 2 1 0反比例函数 一、经典内容解析 1.反比例函数的概念 (1) (k ≠0)可以写成(k ≠0)的形式,注意自变量x 的指数为-1,在解决有关 自变量指数问题时应特别注意系数k ≠0这一限制条件; (2) (k ≠0)也可以写成xy=k 的形式,用它可以迅速地求出反比例函数解析式中的 k ,从而得到反比例函数的解析式; (3) 反比例函数 的自变量x ≠0,故函数图象与x 轴、y 轴无交点. 解析式 x k y = (k 为常数,且0k ≠) 自变量取值范围 0≠x 的实数 图 象 图象的性质 双曲线 0k > 0k < 示意图 位置 两个分支分别位于 一、三象限 两个分支分别位于 二、四象限 变化趋势 在每个象限内,y 随x 的增大而减小 在每个象限内,y 随x 的增大而增大 对称性 是轴对称图形,直线x y ±=是它的两条对称轴 是中心对称图形,对称中心为坐标原点 3.反比例函数的性质(与正比例函数对比) 函数解析式 正比例函数 y=kx (k ≠0) 反比例函数 (k ≠0) 自变量的 取值范围 全体实数 x ≠0 图 象 直线,经过原点 双曲线,与坐标轴没有交点

图象位置 (性质) 当k>0时,图象经过一、三象限;当 k<0时,图象经过二、四象限. 当k>0时,图象的两支分别位于一、三 象限;当k<0时,图象的两支分别位 于二、四象限. 性质 (1) 当k>0时,y随x的增大而增大; 当k<0时,y随x的增大而减小. (2) 越大,图象越靠近y轴. (1) 当k>0时,在每个象限内y随x的 增大而减小;当k<0时,在每个象限 内y随x的增大而增大. (2) 越大,图 象的弯曲度越小,曲线越平直. 注: (1) 双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论, 不能一概而论. (2) 正比例函数与反比例函数, 当时,两图象没有交点; 当时,两图象必有两个交点, 且这两个交点关于原点成中心对称. (3) 反比例函数与一次函数的联系. 4.反比例函数中比例系数k的几何意义 (1)过双曲线(k≠0) 上任意一点作x轴、y轴的垂线,所得矩形的面积为. (2)过双曲线(k≠0) 上任意一点作一坐标轴的垂线,连接该点和原点,所得三角形

反比例函数知识点及经典例题

第十七章 反比例函数 一、基础知识 1. 定义:一般地,形如x k y =(k 为常数,o k ≠)的函数称为反比例函数。x k y = 还可以写成kx y =1- 2. 反比例函数解析式的特征: ⑴等号左边是函数y ,等号右边是一个分式。分子是不为零的常数k (也叫做比例系数k ),分母中含有自变量x ,且指数为1. ⑵比例系数0≠k ⑶自变量x 的取值为一切非零实数。 ⑷函数y 的取值是一切非零实数。 3. 反比例函数的图像 ⑴图像的画法:描点法 ① 列表(应以O 为中心,沿O 的两边分别取三对或以上互为相反的数) ② 描点(有小到大的顺序) 连线(从左到右光滑的曲线) ⑵反比例函数的图像是双曲线,x k y =(k 为常数,0≠k )中自变量0≠x ,函 数值0≠y ,所以双曲线是不经过原点,断开的两个分支,延伸部分逐渐靠近坐标轴,但是永远不与坐标轴相交。 ⑶反比例函数的图像是是轴对称图形(对称轴是x y =或x y -=)。 ⑷反比例函数x k y = (0≠k )中比例系数k 的几何意义是:过双曲线x k y = (0≠k )上任意引x 轴y 轴的垂线,所得矩形面积为k 。 4 5. 点的坐标即可求出k ) 6.“反比例关系”与“反比例函数”:成反比例的关系式不一定是反比例函数, 但是反比例函数x k y =中的两个变量必成反比例关系。 7. 反比例函数的应用二、例题 【例1】如果函数2 22 -+=k k kx y 的图像是双曲线,且在第二,四象限内,那么的值 是多少?【解析】有函数图像为双曲线则此函数为反比例函数x k y = ,(0≠k )

即kx y =1-(0≠k )又在第二,四象限内,则0>>则下列各式正确的是( ) A .213y y y >> B .123y y y >> C .321y y y >> D .231y y y >> 【解析】可直接以数的角度比较大小,也可用图像法,还可取特殊值法。 解法一:由题意得111x y - =,221x y -=,3 31x y -= 3210x x x >>>Θ,213y y y >>∴所以选A 解法二:用图像法,在直角坐标系中作出x y 1 -=的图像 描出三个点,满足3210x x x >>>观察图像直接得到213y y y >>选A 解法三:用特殊值法 213321321321,1,1,2 1 1,1,2,0y y y y y y x x x x x x >>∴=-=-=∴-===∴>>>令Θ 【例3】如果一次函数()的图像与反比例函数x m n y m n mx y -=≠+=30相交于点 (22 1,),那么该直线与双曲线的另一个交点为( ) 【解析】 ???==?? ???=-=+∴??? ??-=+=12132 212213n m m n n m x x m n y n mx y 解得,,相交于与双曲线直线Θ ?????== ???-=-=?? ? ? ?=+==+=∴2 21111121,122211y x y x x y x y x y x y 得解方程组双曲线为直线为 ()11--∴, 另一个点为 【例4】 如图,在AOB Rt ?中,点A 是直线m x y +=与双曲线x m y =在第一象限的交点,且2=?AOB S ,则m 的值是_____.

反比例函数经典例题(含详细解答)

反比例函数难题 1、如图,已知△P1OA1,△P2A1A2,△P3A2A3…△P n An-1An都是等腰直角三角形,点P1、P 2、P3…Pn都在函 2、如图1,矩形ABCD的边BC在x轴的正半轴上,点E(m,1)是对角线BD的中点,点A、E在反比例函 数y= (1)求AB的长; (2)当矩形ABCD是正方形时,将反比例函数y=k x 的图象沿y轴翻折,得到反比例函数y= 1 k x 的图象(如 图2),求k1的值; (3)在条件(2)下,直线y=-x上有一长为2动线段MN,作MH、NP都平行y轴交第一象限内的双曲线 y=k x 于点H、P,问四边形MHPN能否为平行四边形(如图3)?若能,请求出点M的坐标;若不能,请说明 理由.

1.已知反比例函数y= 2k x 和一次函数y=2x-1,其中一次函数的图象经过(a,b ),(a+k ,b+k+2)两点.?(1)求反比例函数的解析式; (2)求反比例函数与一次函数两个交点A、B 的坐标: (3)根据函数图象,求不等式 2k x >2x -1的解集;?(4)在(2)的条件下,x轴上是否存在点P,使△AOP 为等腰三角形?若存在,把符合条件的P 点坐标都求出来;若不存在,请说明理由.

1.如图,在平面直角坐标系xOy 中,一次函数y =kx +b (k≠0)的图象与反比例函数y = (m≠0)的图象交于二、四象限内的A 、B 两点,与x 轴交于C 点,点B 的坐标为(6,n ),线段OA =5,E 为x 轴负半轴上一点,且s i n ∠AOE =\f (4,5). (1)求该反比例函数和一次函数; (2)求△AO C的面积. (1)过A 点作AD⊥x轴于点D,∵sin ∠AO E= 错误!未定义书签。,OA =5, ∴在Rt△ADO中,∵sin∠AOE=错误!未定义书签。 =错误!未定义书签。= 4 5, ∴AD=4,DO=OA 2-DA2=3,又点A 在第二象限∴点A的坐标为(-3,4), x m

反比例函数经典习题及答案

反比例函数练习题 一、精心选一选!(30分) 1.下列 函数中,图象经过点(11)-,的反比例函数解析式是( ) A .1 y x = B .1y x -= C .2y x = D .2y x -= 2. 反 比例函数2 k y x =-(k 为常数,0k ≠)的图象位于( ) A.第一、二象限 B.第一、三象限 C.第二、四角限 D.第三、四象限 3.已知 反比例函数y = x 2 k -的图象位于第一、第三象限,则k 的取值范围是( ). (A )k >2 (B ) k ≥2 (C )k ≤2 (D ) k <2 4.反 比例函数x k y = 的图象如图所示,点M 是该函数图象上一点,MN 垂直于x 轴,垂足是点N ,如果S △MON =2,则k 的值为( ) (A)2 (B)-2 (C)4 (D)-4 5.对于反比 例函数2 y x = ,下列说法不正确...的是( ) A .点(21)--,在它的图象上 B .它的图象在第一、三象限 C .当0x >时,y 随x 的增大而增大 D .当0x <时,y 随x 的增大而减小 6.反比 例函数 2 2)12(--=m x m y ,当x >0时,y 随x 的增大而增大,则m 的值时( ) A 、±1 B 、小于 2 1 的实数 C 、-1 D 、1 7.如 图,P 1、P 2、P 3是双曲线上的三点,过这三点分别作y 轴的垂线,得到三个三角形P 1A 1O 、P 2A 2O 、P 3A 3O ,设它们的面积分别是S 1、S 2、S 3,则( )。 A 、S 1<S 2<S 3 B 、S 2<S 1<S 3 C 、S 3<S 1<S 2 D 、S 1=S 2=S 3 8.在同 一直角坐标系中,函数x y 2 - =与x y 2=图象的交点个数为( ) A .3 B .2 C .1 D .0 9.已知 甲、乙两地相距s (km ),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t (h )与行驶速度v (km/h )的函数关系图象大致是( ) 10.如图,直线y=mx 与双曲线y=x k 交于A 、B 两点,过点A 作AM ⊥x 轴,垂足为M ,连结BM,若ABM S ?=2,则k 的值是( ) A .2 B 、m-2 C 、m D 、 4

反比例函数知识点总结典型例题大全

. 反比例函数 (一)反比例函数的概念 1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件; 2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式; 3.反比例函数的自变量,故函数图象与x轴、y轴无交点. (二)反比例函数的图象 在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称). (三)反比例函数及其图象的性质 1.函数解析式:() 2.自变量的取值范围: 3.图象: (1)图象的形状:双曲线. 越大,图象的弯曲度越小,曲线越平直.越小,图象的弯曲度越大. (2)图象的位置和性质: 与坐标轴没有交点,称两条坐标轴是双曲线的渐近线. 当时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小; 当时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大. (3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上,则(,)在双曲线的另一支上.图象关于直线对称,即若(a,b)在双曲线的一支上,则(,)和(,)在双曲线的另一支上. 4.k的几何意义 如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA 的面积是(三角形PAO和三角形PBO的面积都是). 如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC的面积为. 图1 图2 5.说明: (1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个 分支分别讨论,不能一概而论. (2)直线与双曲线的关系: 当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称 (3)反比例函数与一次函数的联系.

反比例函数典型例题

反比例函数典型例题

————————————————————————————————作者:————————————————————————————————日期: ?

反比例函数的典型例题一 例 下面函数中,哪些是反比例函数? (1)3x y - =;(2)x y 8-=;(3)54-=x y ;(4)15-=x y ;(5).8 1=xy 解:其中反比例函数有(2),(4),(5). 说明:判断函数是反比例函数,依据反比例函数定义,x k y =)0(≠k ,它也可变形为1-=kx y 及k xy =的形式, (4),(5)就是这两种形式. 反比例函数的典型例题二 例 在以下各小题后面的括号里填写正确的记号.若这个小题成正比例关系,填(正);若成反比例关系,填(反);若既不成正比例关系又不成反比例关系,填(非). (1)周长为定值的长方形的长与宽的关系 ( ); (2)面积为定值时长方形的长与宽的关系 ( ); (3)圆面积与半径的关系 ( ); (4)圆面积与半径平方的关系 ( ); (5)三角形底边一定时,面积与高的关系 ( ); (6)三角形面积一定时,底边与高的关系 ( ); (7)三角形面积一定且一条边长一定,另两边的关系 ( ); (8)在圆中弦长与弦心距的关系 ( ); (9)x 越来越大时,y 越来越小,y与x的关系 ( ); (10)在圆中弧长与此弧所对的圆心角的关系 ( ). 答: 说明:本题考查了正比例函数和反比例函数的定义,关键是一定要弄清出二者的定义. 反比例函数的典型例题三 例 已知反比例函数6 2 )2(--=a x a y ,y 随x 增大而减小,求a 的值及解析式. 分析 根据反比例函数的定义及性质来解此题. 解 因为6 2 )2(--=a x a y 是反比例函数,且y 随x的增大而减小, 所以???>--=-.02, 162a a 解得???>±=. 2,5a a 所以5=a ,解析式为x y 2 5-= . 反比例函数的典型例题四

初中数学反比例函数经典测试题附答案

初中数学反比例函数经典测试题附答案 一、选择题 1.如图,在平面直角坐标系中,菱形ABCD 在第一象限内,边BC 与x 轴平行,A ,B 两点的纵坐标分别为4,2,反比例函数y k x =(x >0)的图象经过A ,B 两点,若菱形ABCD 的面积为25,则k 的值为( ) A .2 B .3 C .4 D .6 【答案】C 【解析】 【分析】 过点A 作x 轴的垂线,交CB 的延长线于点E ,根据A ,B 两点的纵坐标分别为4,2,可得出横坐标,即可求得AE ,BE 的长,根据菱形的面积为25,求得AE 的长,在Rt △AEB 中,即可得出k 的值. 【详解】 过点A 作x 轴的垂线,交CB 的延长线于点E , ∵A ,B 两点在反比例函数y k x =(x >0)的图象,且纵坐标分别为4,2, ∴A ( 4 k ,4),B (2k ,2), ∴AE =2,BE 12=k 14 -k 1 4=k , ∵菱形ABCD 的面积为5 ∴BC×AE =5BC 5= ∴AB =BC 5=

在Rt △AEB 中,BE ==1 ∴ 1 4 k =1, ∴k =4. 故选:C . 【点睛】 本题考查了菱形的性质以及反比例函数图象上点的坐标特征,熟记菱形的面积公式是解题的关键. 2.已知点()11,A y -、()22,B y -都在双曲线32m y x +=上,且12y y >,则m 的取值范围是( ) A .0m < B .0m > C .32 m >- D .32 m <- 【答案】D 【解析】 【分析】 根据已知得3+2m <0,从而得出m 的取值范围. 【详解】 ∵点()11,A y -、()22,B y -两点在双曲线32m y x +=上,且y 1>y 2, ∴3+2m <0, ∴32 m <- , 故选:D . 【点睛】 本题考查了反比例函数图象上点的坐标特征,当k >0时,该函数图象位于第一、三象限,当k <0时,函数图象位于第二、四象限. 3.如图,点A 、B 在函数k y x = (0x >,0k >且k 是常数)的图像上,且点A 在点B 的左侧过点A 作AM x ⊥轴,垂足为M ,过点B 作BN y ⊥轴,垂足为N ,AM 与BN 的交点为C ,连结AB 、MN .若CMN ?和ABC ?的面积分别为1和4,则k 的值为( )

人教版初中数学反比例函数经典测试题附答案

人教版初中数学反比例函数经典测试题附答案 一、选择题 1.如图,正方形OABC 的边长为6,D 为AB 中点,OB 交CD 于点Q ,Q 是y =k x 上一点,k 的值是( ) A .4 B .8 C .16 D .24 【答案】C 【解析】 【分析】 延长根据相似三角形得到:1:2BQ OQ =,再过点Q 作垂线,利用相似三角形的性质求出 QF 、OF ,进而确定点Q 的坐标,确定k 的值. 【详解】 解:过点Q 作QF OA ⊥,垂足为F , OABC Q 是正方形, 6OA AB BC OC ∴====,90ABC OAB DAE ∠=∠=?=∠, D Q 是AB 的中点, 1 2 BD AB ∴=, //BD OC Q , OCQ BDQ ∴??∽, ∴ 1 2 BQ BD OQ OC ==, 又//QF AB Q , OFQ OAB ∴??∽,

∴ 22 213 QF OF OQ AB OA OB ====+, 6AB =Q , 2643QF ∴=? =,2 643 OF =?=, (4,4)Q ∴, Q 点Q 在反比例函数的图象上, 4416k ∴=?=, 故选:C . 【点睛】 本题考查了待定系数法求反比例函数、相似三角形的性质和判定,利用相似三角形性质求出点Q 的坐标是解决问题的关键. 2.如图,菱形OABC 的顶点C 的坐标为(3,4),顶点A 在x 轴的正半轴上.反比例函数 k y x = (x>0)的图象经过顶点B ,则k 的值为 A .12 B .20 C .24 D .32 【答案】D 【解析】 【分析】 【详解】 如图,过点C 作CD ⊥x 轴于点D , ∵点C 的坐标为(3,4),∴OD=3,CD=4. ∴根据勾股定理,得:OC=5. ∵四边形OABC 是菱形,∴点B 的坐标为(8,4).

反比例函数经典例题

反比例函数难题 1、如图,已知△P1OA1,△P2A1A2,△P3A2A3…△P n A n-1A n都是等腰直角三角形,点P1、P 2、P3…P n都在函数y=4 x (x>0)的图象上,斜边OA1、A1A2、A2A3…A n-1A n都在x轴上.则点A10的坐标为 2、如图1,矩形ABCD的边BC在x轴的正半轴上,点E(m,1)是对角线BD的中点,点A、E在反比例函 数y=k x 的图象上. (1)求AB的长; (2)当矩形ABCD是正方形时,将反比例函数y=k x 的图象沿y轴翻折,得到反比例函数y= 1 k x 的图象(如 图2),求k1的值; (3)在条件(2)下,直线y=-x上有一长为2动线段MN,作MH、NP都平行y轴交第一象限内的双曲线 y=k x 于点H、P,问四边形MHPN能否为平行四边形(如图3)?若能,请求出点M的坐标;若不能,请说明 理由.

1.已知反比例函数y= 2k x 和一次函数y=2x-1,其中一次函数的图象经过(a ,b ),(a+k ,b+k+2)两点. (1)求反比例函数的解析式; (2)求反比例函数与一次函数两个交点A 、B 的坐标: (3)根据函数图象,求不等式 2k x >2x-1的解集; (4)在(2)的条件下,x 轴上是否存在点P ,使△AOP 为等腰三角形?若存在,把符合条件的P 点坐标都求出来;若不存在,请说明理由.

1.如图,在平面直角坐标系xOy 中,一次函数y =kx +b (k ≠0)的图象与反比例函数y = x m (m ≠0)的图象交于二、四象限内的A 、B 两点,与x 轴交于C 点,点B 的坐标为(6,n ),线段OA =5,E 为x 轴负半轴上一点,且s i n ∠AOE =4 5 . (1)求该反比例函数和一次函数; (2)求△AOC 的面积.

反比例函数经典例题

反比例函数经典例题 典型例题分析1: 如图,在平面直角坐标系中,OA⊥OB,AB⊥x轴于点C,点A(√3,1)在反比例函数y=k/x的图象上. (1)求反比例函数y=k/x的表达式; (2)在x轴的负半轴上存在一点P,使得S△AOP=S△AOB/2,求点P的坐标; (3)若将△BOA绕点B按逆时针方向旋转60°得到△BDE.直接写出点E的坐标,并判断点E是否在该反比例函数的图象上,说明理由.

考点分析: 待定系数法求反比例函数解析式;反比例函数系数k的几何意义;坐标与图形变化﹣旋转. 题干分析: (1)将点A(√3,1)代入y=k/x,利用待定系数法即可求出反比例函数的表达式; (2)先由射影定理求出BC=3,那么B(√3,﹣3),计算求出 S△AOB=1/2×√3×4=2√3.则S△AOP=S△AOB/2=√3.设点P的坐标为(m,0),列出方程求解即可; (3)先解△OAB,得出∠ABO=30°,再根据旋转的性质求出E点坐标为(﹣√3,﹣1),即可求解. 解题反思:

本题考查了待定系数法求反比例函数的解析式,反比例函数图象上点的坐标特征,三角形的面积,旋转的性质,正确求出解析式是解题的关键. 典型例题分析2: 已知点P在一次函数y=kx+b(k,b为常数,且k<0,b>0)的图象上,将点P向左平移1个单位,再向上平移2个单位得到点Q,点Q也在该函数y=kx+b的图象上. (1)k的值是; (2)如图,该一次函数的图象分别与x轴、y轴交于A,B两点,且与反比例函数y=-4/x图象交于C,D两点(点C在第二象限内),过点C作CE⊥x轴于点E,记S1为四边形CEOB的面积,S2为△OAB的面积,若S1/S2=7/9,则b的值是.

反比例函数知识点总结典型例题大全

反比例函数 (一)反比例函数的概念 1.()可以写成()的形式,注意自变量x 的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件; 2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式; 3.反比例函数的自变量,故函数图象与x轴、y轴无交点. (二)反比例函数的图象 在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称).(三)反比例函数及其图象的性质 1.函数解析式:() 2.自变量的取值范围: 3.图象: (1)图象的形状:双曲线. 越大,图象的弯曲度越小,曲线越平直.越小,图象的弯曲度越大. (2)图象的位置和性质: 与坐标轴没有交点,称两条坐标轴是双曲线的渐近线. 当时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小; 当时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大. (3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上,则(,)在双曲线的另一支上.图象关于直线对称,即若(a,b)在双曲线的一支上,则(,)和(,)在双曲线的另一支上. 4.k的几何意义 如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的 面积是(三角形PAO和三角形PBO的面积都是). 如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC的面积为. 图1 图2 5.说明: (1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个 分支分别讨论,不能一概而论. (2)直线与双曲线的关系: 当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称 (3)反比例函数与一次函数的联系. (四)实际问题与反比例函数

相关主题