搜档网
当前位置:搜档网 › 函数的概念与表示知识点与经典题型归纳

函数的概念与表示知识点与经典题型归纳

函数的概念与表示知识点与经典题型归纳
函数的概念与表示知识点与经典题型归纳

函数的概念与表示

知识领航

1.函数的定义

一般地:设A,B是非空的数集,如果按照某种确定的对应关系,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数()

f x和它对应,那么就称():

f x A B

→为从集合A到集合B的一个函数,记作:(),

y f x x A

=∈.

注意:函数概念中的关键词

(1) A,B是非空数集.

(2)任意的x∈A,存在唯一的y∈B与之对应.

2. 函数的定义域、值域

其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{()|}

f x x A

∈叫做函数的值域.

3. 函数的三要素

定义域、值域和对应法则.

4. 相等函数

如果两个函数的定义域和对应法则完全一致,则这两个函数相等;

这是判断两函数相等的依据.

5. 区间的概念

设,a b是两个实数,而且a b<.我们规定:

(1)满足不等式a x b

≤≤的实数x的集合叫做闭区间,表示为[,]

a b.

(2)满足不等式a x b

<<的实数x的集合叫做开区间,表示为(,)

a b.

(3)满足不等式a x b

≤<或a x b

<≤的实数x的集合叫做半开半闭区间,分别表示为[,)

a b,(,]

a b. 这里的实数都叫做相应区间的端点.

实数R可以用区间表示为(,)

-∞+∞.“∞”读作“无穷大”,“-∞”读作“负无穷大”,“+∞”读作“正无穷大”,我们可以把满足x a≥,x a>,x b≤,x b<,的实数x的集合分别表示为[,)

a+∞,(,)

a+∞,(,]b

-∞,(,)b

-∞.

6. 函数的表示法

(1)解析法:用数学表达式表示两个变量之间的对应关系的方法.

(2)列表法:列出表格来表示两个变量之间的对应关系的方法.

(3)图像法: 用图象表示两个变量之间的对应关系的方法.

用描点法画函数图象的一般步骤:列表、描点、连线(视其定义域决定是否连线).

7.求函数的解析式的方法

(1)待定系数法: 适用于已知函数的模型(如一次函数、二次函数、反比例函数等.

(2)换元法: 适用于已知(())

f g x的解析式,求()

f x.

(3)消元法: 适用于同时含有()

f x和1()

f

x ,或()

f x和()

f x-.

8. 分段函数

在它的定义域中,对于自变量的不同取值范围,对应关系不同,这种函数通常称为分段函数.

9. 映射的概念

设A ,B 是两个非空的集合,如果按照某种对应法则 ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素()f x 与之对应,那么就称对应():f x A B →为从集合A 到集合B 的一个映射。

注意:由映射的定义可以看出,映射是函数概念的推广,函数是一种特殊的映射,要注意构成函数的两个集合A 、B 必须是非空数集.

e 线聚焦

【例1】下列图象中不能作为函数的是( ).

A B C D

解:答案为B. 因为B 中存在x ,使得有两个y 与之对应.

【例2】已知函数1()32f x x x =+++.

(1)求函数的定义域.

(2)求(3)f -,(6)f 的值.

(3)当0a >时,求()f a ,(1)f a -的值.

解:(1)使得3x + 有意义的实数x 的集合是{|3}x x ≥-,

使得1

2x +有意义的实数x 的集合是{|2}x x ≠-,

所以,这个函数的定义域就是{|32}x x x ≥-≠-且

.

(2)1

(3)33132f =-++=--+

125

(6)63628f =++=+

(3)因为0a >,所以()f a ,(1)f a -有意义,

1

()32f a a a =+++

11(1)121

f a a a -==-++ 【例3】已知()f x 的定义域为[0,2],求(21)f x -的定义域.

解:由题意知,0212x ≤-≤,所以

所以(21)f x -的定义域为 【例4】求下列函数的值域. (1

)1y =

(2)246,[1,5]y x x x =-+∈

(3) (4

)y x =+解:(1

0≥

11≥,

所以1y =的值域为[1,)∞. (观察法)

(2)配方,得2(2)2y x =-+

又[1,5]x ∈,所以211y ≤≤,

所以246,[1,5]y x x x =-+∈的值域为[2,11]. (配方法)

(3) 因为

303

x ≠-,所以1y ≠ 所以 的值域为{|1}y y ≠. (分离常数法) (4

)设u =,则0u ≥且 所以 即

所以y x =+ . (换元法) 【例4】下列函数中哪个与函数y x =相等( )

A.2y =

B.y

C.y =

D.2

x y x = 解:函数y x =的定义域为R ,对应法则为y x =.

A

中2y =的定义域为[0,)+∞

,所以2y =与y x =不是同一个函数;

B

中y =的定义域为R

,且y x ==

;y =与y x =的定义域和对应法则都相同,所以为

1322x ≤≤13{|}22x x ≤≤x y x =-3331333

x x y x x x -+===+---3x y x =-212u x +=212u y u +=+2

1(1)2y u =+1[,]2+∞

同一函数;

C 中2y x =的定义域为R ,但2||y x x ==,所以2y x =与y x =不是同一个函数;

D 中2x y x =的定义域为{|0}x x ≠,所以2x y x

=与y x =不是同一个函数. 所以,应选B.

【例4】某种笔记本的单价是5元,买({1,2,3,4,5})x x ∈个笔记本需要y 元.试用函数的三种表示法表示函数()y f x =.

解:这个函数的定义域是数集{1,2,3,4,5}

用解析法表示为5,{1,2,3,4,5}y x x =∈

笔记本数x

1 2 3 4 5 钱数y 5 10 15 20 25

用图象法可将函数表示如下图:

注意:(1)函数的图象既可以是连续的曲线,也可以是直线、折线、离散的点等等。

(2)函数的定义域是函数存在的前提,写函数解析式的时候,一般要写出函数的定义域。

【例5】已知(1)23f x x +=+,求()f x 和(1)f -.

解:令1t x =+,则1x t =-,

所以()2(1)321f t t t =-+=+,

所以()21f x x =+,

所以(1)2(1)11f -=?-+=-.

注意:此方法为换元法.

【例6】已知()f x 是一次函数,(())41f f x x =-,求()f x 的解析式.

解:设()(0)f x kx b k =+≠,

则2(())()()41f f x f kx b k kx b b k x kb b x =+=++=++=-

对比系数得241k kb b ?=?+=-? 解得213k b =???=-??

或21k b =-??=? 所以函数()f x 的解析式为1()23

f x x =-或()21f x x =-+. 注意:此方法为待定系数法,适用于已知函数的模型(如一次函数、二次函数、反比例函数等).

【例7】已知13()2()(0)f x f x x x

+=≠,求()f x 的解析式. 解:用1x 代替x 得113()2()f f x x x

+= 所以13()2()11

3()2()f x f x x f f x x x ?+=????+=??

消去1()f x 解得32()(0)55x f x x x

=-≠ 注意:此方法为消元法求函数的解析式,适用于同时含有()f x 和1()f x

,或()f x 和()f x -. 【例8】已知函数22,1(),122,2x x f x x x x x +≤-??=-<

(1)求1(3),(),(5)2

f f f -的值. (2)若()3f x =,求x 的值.

解:(1)(3)236f =?=

2111()()224

f == (5)523f -=-+=-

(2)①若1x ≤-,则23x +=,解得1x =,不满足1x ≤-,舍去;

②若11x -<<,则23x =

,解得x =

x =

x =11x -<<,舍去;

所以x =

③若2x ≥,则23x =,解得32

x =

,不满足2x ≥,舍去. 【例9】画出函数||y x =的图象. 解:,0||,0x x y x x x ≥?==?-≤?

根据这个函数解析式,可画出函数图象,如下图:

【例10】某市“招手即停”公共汽车的票价按下列规则制定:

(1)5公里以内(含5公里),票价2元;

(2)5公里以上,每增加5公里,票价增加1元(不足5公里的按5公里计算).

如果某条线路的总里程为20公里,请根据题意,写出票价与里程之间的函数解析式,并画出函数的图象.

解:设票价为y 元,里程为x 公里,由题意可知,自变量x 的取值范围是(0,20].

由“招手即停”公共汽车票价的制定规定,可得到以下函数解析式:

2,053,5104,

10155,1520x x y x x <≤??<≤?=?<≤??<≤?

根据这个函数解析式,可画出函数图象,如下图

:

双基淘宝

仔细读题,一定要选择最佳答案哟!

1.下列说法正确的是( )

A .函数值域中每一个数在定义域中一定只有一个数与之对应

B .函数的定义域和值域可以是空集

C .函数的定义域和值域一定是数集

D .函数的定义域和值域确定后,函数的对应关系也就确定了

高中数学必修一《集合与函数的概念》经典例题

高中数学必修一第一章《集合与函数概念》综合测 试题试题整理:周俞江 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正 确答案的代号填在题后的括号内(本大题共12个小题, 每小题5分,共60分). 1.已知全集}5,4,3,2{},3,2,1{==B A ,则=B A I ( ) A. }{5,4,3,2,1 B.{}3,2,1 C.{}3,2 D.{}7,6,3 2. 若{{}|0,|12A x x B x x =<<=≤<,则A Y B=( ) A . {}|0x x ≤ B .{}|2x x ≥ C .{0x ≤≤ D .{}|02x x << 3 .在下列四组函数中,f (x )与g (x )表示同一函数的是( ) A.x x y y ==,1 B .1,112-=+?-=x y x x y C.55 ,x y x y == D .2)(|,|x y x y == 4.函数x x x y +=的图象是( ) 5.0≤f 不是映射的是A .1:3f x y x ?? →= B .1 :2 f x y x ??→= C .1:4f x y x ??→= D .1:6f x y x ??→= 6.函数y =f (x )的图象与直线x =1的公共点数目是( ). A .1 B .0 C .0或1 D .1或2 7.函数1)2(++=x k y 在实数集上是增函数,则k 的范围是( ) A .2-≥k B .2-≤k C .2->k D .2-

9.有下面四个命题: ①偶函数的图象一定与y 轴相交; ②奇函数的图象一定通过原点; ③偶函数的图象关于y 轴对称; ④既是奇函数,又是偶函数的函数一定是f (x )=0(x ∈R ). 其中正确命题的个数是( ). A .1 B .2 C .3 D .4 10.图中阴影部分所表示的集合是( ) A.B ∩[C U (A ∪C)] B.(A ∪B) ∪(B ∪C) C.(A ∪C)∩(C U B) D.[C U (A ∩C)]∪B 11.若函数))(12()(a x x x x f -+= 为奇函数,则=a ( ) A.21 B.32 C.43 D.1 12.已知函数x x x x f 22 11)11(+-=+-,则函数)(x f 的解析式可以是( ) A.x x 21+ B.x x 212+- C.x x 212+ D.x x 21+- 13.二次函数y =x 2+bx +c 的图象的对称轴是x =2,则有( ). A .f (1)<f (2)<f (4) B .f (2)<f (1)<f (4) C .f (2)<f (4)<f (1) D .f (4)<f (2)<f (1) 14.已知函数[](]?????∈--∈-=5,2,32,13)(,2x x x x f x 则方程1)(=x f 的解是( ) A.2或2 B.2或3 C.2或4 D.±2或4 15.函数()f x 的定义域为),(b a ,且对其内任意实数12,x x 均有:1212()[()()]0x x f x f x --<,则()f x 在),(b a 上是 A .增函数 B .减函数

集合与函数概念单元测试题_有答案

高一数学集合与函数测试题 一、 选择题(每题5分,共60分) 1、下列各组对象:○12008年北京奥运会上所有的比赛项目;○2《高中数学》必修1中的所有难题;○3所有质数;○4平面上到点(1,1)的距离等于5的点的全体;○5在数轴上与原点O 非常近的点。其中能构成集合的有( ) A .2组 B .3组 C .4组 D .5组 2、下列集合中与集合{21,}x x k k N +=+∈不相等的是( ) A .{23,}x x k k N =+∈ B .{41,}x x k k N +=±∈ C .{21,}x x k k N =+∈ D .{23,3,}x x k k k Z =-≥∈ 3、设221()1x f x x -=+,则(2)1()2 f f 等于( ) A .1 B .1- C .35 D .35- 4、已知集合2{40}A x x =-=,集合{1}B x ax ==,若B A ?,则实数a 的值是( ) A .0 B .12± C .0或12± D .0或12 5、已知集合{(,)2}A x y x y =+=,{(,)4}B x y x y =-=,则A B =I ( ) A .{3,1}x y ==- B .(3,1)- C .{3,1}- D .{(3,1)}- 6、下列各组函数)()(x g x f 与的图象相同的是( ) (A )2)()(,)(x x g x x f == (B )22)1()(,)(+==x x g x x f (C )0)(,1)(x x g x f == (D )???-==x x x g x x f )(|,|)( )0()0(<≥x x 7、是定义在上的增函数,则不等式的解集

导数及其应用(知识点总结)

导数及其应用 知识点总结 1、函数()f x 从1x 到2x 的平均变化率:()()2121 f x f x x x -- 2、导数定义:()f x 在点0x 处的导数记作x x f x x f x f y x x x ?-?+='='→?=)()(lim )(00000;. 3、函数()y f x =在点0x 处的导数的几何意义是曲线 ()y f x =在点()()00,x f x P 处的切线的斜率. 4、常见函数的导数公式: ①'C 0=; ②1')(-=n n nx x ;③x x cos )(sin '=; ④x x sin )(cos '-=; ⑤a a a x x ln )('=;⑥x x e e =')(; ⑦a x x a ln 1)(log '=;⑧x x 1)(ln '= 5、导数运算法则: ()1 ()()()()f x g x f x g x '''±=±????; ()2 ()()()()()()f x g x f x g x f x g x '''?=+????; ()3()()()()()()()()()20f x f x g x f x g x g x g x g x '??''-=≠????????. 6、在某个区间(),a b 内,若()0f x '>,则函数()y f x =在这个区间内单调递增; 若()0f x '<,则函数()y f x =在这个区间内单调递减. 7、求解函数()y f x =单调区间的步骤: (1)确定函数()y f x =的定义域; (2)求导数'' ()y f x =; (3)解不等式'()0f x >,解集在定义域内的部分为增区间; (4)解不等式'()0f x <,解集在定义域内的部分为减区间. 8、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时: ()1如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; ()2如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 9、求解函数极值的一般步骤: (1)确定函数的定义域 (2)求函数的导数f ’(x) (3)求方程f ’(x)=0的根 (4)用方程f ’(x)=0的根,顺次将函数的定义域分成若干个开区间,并列成表格 (5)由f ’(x)在方程f ’(x)=0的根左右的符号,来判断f(x)在这个根处取极值的情况 10、求函数()y f x =在[],a b 上的最大值与最小值的步骤是: ()1求函数()y f x =在(),a b 内的极值; ()2将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的一个是最大值,最小的一个是最小值.

指数函数与对数函数知识点总结

指数函数与对数函数知识点总结 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次 方根,其中n >1,且n ∈N * . 当n 是奇数时, a a n n =,当n 是偶数时, ?? ?<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3)s r r a a ab =)( ),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R . 二、对数函数 (一)对数 1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数, 记作:N x a log =(a — 底数,N — 真数,N a log — 对数式) 两个重要对数: ○ 1 常用对数:以10为底的对数N lg ; ○ 2 自然对数:以无理数 71828.2=e 为底的对数的对数N ln . 指数式与对数式的互化 幂值 真数 (二)对数的运算性质 如果0>a ,且1≠a ,0>M ,0>N ,那么: ○ 1 M a (log ·=)N M a log +N a log ; ○ 2 =N M a log M a log -N a log ; ○ 3 n a M log n =M a log )(R n ∈. 注意:换底公式 a b b c c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ; 0>b ). 利用换底公式推导下面的结论 (1)b m n b a n a m log log =; (2)a b b a log 1log =. (二)对数函数

集合与函数概念单元测试题(含答案)

新课标数学必修1第一章集合与函数概念测试题 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代 号填在题后的括号内(每小题5分,共50分)。 1.用描述法表示一元二次方程的全体,应是 ( ) A .{x |ax 2+bx +c =0,a ,b ,c ∈R } B .{x |ax 2+bx +c =0,a ,b ,c ∈R ,且a ≠0} C .{ax 2+bx +c =0|a ,b ,c ∈R } D .{ax 2+bx +c =0|a ,b ,c ∈R ,且a ≠0} 2.图中阴影部分所表示的集合是( ) A.B ∩[C U (A ∪C)] B.(A ∪B) ∪(B ∪C) C.(A ∪C)∩(C U B) D.[C U (A ∩C)]∪B 3.设集合P={立方后等于自身的数},那么集合P 的真子集个数是 ( ) A .3 B .4 C .7 D .8 4.设P={质数},Q={偶数},则P ∩Q 等于 ( ) A . B .2 C .{2} D .N 5.设函数x y 111+=的定义域为M ,值域为N ,那么 ( ) A .M={x |x ≠0},N={y |y ≠0} B .M={x |x <0且x ≠-1,或x >0},N={y |y <0,或0<y <1,或y >1} C .M={x |x ≠0},N={y |y ∈R } D .M={x |x <-1,或-1<x <0,或x >0=,N={y |y ≠0} 6.已知A 、B 两地相距150千米,某人开汽车以60千米/小时的速度从A 地到达B 地,在B 地停留1小时后再以50千米/小时的速度返回A 地,把汽车离开A 地的距离x 表示为时间t (小时)的函数表达式是 ( ) A .x =60t B .x =60t +50t C .x =???>-≤≤)5.3(,50150)5.20(,60t t t t D .x =?????≤<--≤<≤≤)5.65.3(),5.3(50150)5.35.2(,150) 5.20(,60t t t t t 7.已知g (x )=1-2x,f [g (x )]=)0(122≠-x x x ,则f (21)等于 ( ) A .1 B .3 C .15 D .30 8.函数y=x x ++-1912是( )

指数函数知识点总结

指数函数知识总结 (一)指数与指数幂的运算 1.根式的概念: 一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N * . ①负数没有偶次方根;②0的任何次方根都是0,记作00=n 。 ③当n 是奇数时,a a n n =, 当n 是偶数时,???<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0()1(*>∈>=n N n m a a a n m n m )1,,,0(1 1)2(*>∈>= = - n N n m a a a a n m n m n m (3)0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3) s r r a a ab =)( ),,0(R s r a ∈>. 题型一、计算 1.44 等于( ) A 、16a B 、8a C 、4a D 、2 a 2.⑴ 33 )2(-= ⑵ 44 )2(-= ⑶ 66)3(π-= ⑷ 2 22y xy x ++= 3.① 625625++- ② 335252-++ 4.计算(1 + 2048 21)(1 + 1024 21)…(1 + 421)(1 + 2 21)(1 + 21 ). 5. 计算(0.0081)4 1-- [3×(87)0]1-·[8125 .0-+(38 3)31-]21 -.

题型二、化简 1. 3 2 13 2b a b a ?- ÷3 2 11- --??? ? ? ?a b b a 2. 322a a a ?(a >0). 3.化简: 3 32 b a a b b a (a >0,b >0). 题型三、带附加条件的求值问题 1. 已知a 2 1+ a 2 1-= 3,求下列各式的值: ⑴ a + a 1 - ⑵ a 2+ a 2 - ⑶ 2 12 1232 3- - --a a a a 2. 已知2a x x =+-2(常数),求8x x -+8的值。 3. 已知x + y = 12, xy = 9,且x <y ,求 2 12 1 212 1y x y x +-的值。 4.已知a 、b 是方程x 2 - 6x + 4 = 0的两根,且a >b >0,求b a b a +-的值。

函数定义域与值域经典类型总结 练习题 含答案

<一>求函数定义域、值域方法和典型题归纳 一、基础知识整合 1.函数的定义:设集合A 和B 是非空数集,按照某一确定的对应关系f ,使得集合A 中任意一个数x,在集合B 中都有唯一确定的数f(x)与之对应。则称f:为A 到B 的一个函数。 2.由定义可知:确定一个函数的主要因素是①确定的对应关系(f ),②集合A 的取值范围。由这两个条件就决定了f(x)的取值范围③{y|y=f(x),x ∈A}。 3.定义域:由于定义域是决定函数的重要因素,所以必须明白定义域指的是: (1)自变量放在一起构成的集合,成为定义域。 (2)数学表示:注意一定是用集合表示的范围才能是定义域,特殊的一个个的数时用“列举法”;一般表示范围时用集合的“描述法”或“区间”来表示。 4.值域:是由定义域和对应关系(f )共同作用的结果,是个被动变量,所以求值域时一定注意求的是定义域范围内的函数值的范围。 (1)明白值域是在定义域A 内求出函数值构成的集合:{y|y=f(x),x ∈A}。 (2)明白定义中集合B 是包括值域,但是值域不一定为集合B 。 二、求函数定义域 (一)求函数定义域的情形和方法总结 1已知函数解析式时:只需要使得函数表达式中的所有式子有意义。 (1)常见情况简总: ①表达式中出现分式时:分母一定满足不为0; ②表达式中出现根号时:开奇次方时,根号下可以为任意实数;开偶次方时,根号下满足大于或等于0(非负数)。 ③表达式中出现指数时:当指数为0时,底数一定不能为0. ④根号与分式结合,根号开偶次方在分母上时:根号下大于0. ⑤表达式中出现指数函数形式时:底数和指数都含有x ,必须满足指数底数大于0且不等于1.(0<底数<1;底数>1) ⑥表达式中出现对数函数形式时:自变量只出现在真数上时,只需满足真数上所有式子大于0,且式子本身有意义即可;自变量同时出现在底数和真数上时,要同时满足真数大于0,底数要大于0且不等于 1. (2 ()log (1)x f x x =-) 注:(1)出现任何情形都是要注意,让所有的式子同时有意义,及最后求的是所有式子解集的交集。

集合与函数概念单元测试题(含答案)

一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分)。 1.用描述法表示一元二次方程的全体,应是 ( ) A .{x |ax 2+bx +c =0,a ,b ,c ∈R } B .{x |ax 2+bx +c =0,a ,b ,c ∈R ,且a ≠0} C .{ax 2+bx +c =0|a ,b ,c ∈R } D .{ax 2+bx +c =0|a ,b ,c ∈R ,且a ≠0} 2.图中阴影部分所表示的集合是( ) ∩[C U (A ∪C)] B.(A ∪B) ∪(B ∪C) C.(A ∪C)∩(C U B) D.[C U (A ∩C)]∪B 3.设集合P={立方后等于自身的数},那么集合P 的真子集个数是 ( ) A .3 B .4 C .7 D .8 4.设P={质数},Q={偶数},则P ∩Q 等于 ( ) A . B .2 C .{2} D .N 5.设函数x y 111 +=的定义域为M ,值域为N ,那么 ( ) A .M={x |x ≠0},N={y |y ≠0} B .M={x |x <0且x ≠-1,或x >0},N={y |y <0,或0<y <1,或y >1} C .M={x |x ≠0},N={y |y ∈R } D .M={x |x <-1,或-1<x <0,或x >0=,N={y |y ≠0} 6.已知A 、B 两地相距150千米,某人开汽车以60千米/小时的速度从A 地到达B 地,在B 地停留1小时后再以50千米/小时的速度返回A 地,把汽车离开A 地的距离x 表示为时间t (小时)的函数表达式是 ( ) A .x =60t B .x =60t +50t C .x =???>-≤≤)5.3(,50150)5.20(,60t t t t D .x =? ????≤<--≤<≤≤)5.65.3(),5.3(50150)5.35.2(,150)5.20(,60t t t t t 7.已知g (x )=1-2x,f [g (x )]=)0(12 2≠-x x x ,则f (21)等于 ( ) A .1 B .3 C .15 D .30 8.函数y=x x ++-1912是( ) A .奇函数 B .偶函数 C .既是奇函数又是偶函数 D .非奇非偶数

指数函数及对数函数复习(有详细知识点及习题详细讲解)

指数函数与对数函数总结与练习 一、指数的性质 (一)整数指数幂 1.整数指数幂概念: a n n a a a a 个???= )(* ∈N n ()010a a =≠ ()1 0,n n a a n N a -*= ≠∈ 2.整数指数幂的运算性质:(1)(),m n m n a a a m n Z +?=∈ (2)() (),n m mn a a m n Z =∈ (3)()()n n n ab a b n Z =?∈ 其中m n m n m n a a a a a --÷=?=, ()1n n n n n n a a a b a b b b --??=?=?= ??? . 3.a 的n 次方根的概念 一般地,如果一个数的n 次方等于a ( )* ∈>N n n ,1,那么这个数叫做a 的n 次方根, 即: 若a x n =,则x 叫做a 的n 次方根, ()* ∈>N n n ,1 说明:①若n 是奇数,则a 的n 次方根记作n a ; 若0>a 则0>n a ,若o a <则0a 则a 的正的n 次方根记作n a ,a 的负的n 次方根,记作: n a -;(例如:8的平方根228±=± 16的4次方根2164±=±) ③若n 是偶数,且0a <则n a 没意义,即负数没有偶次方根; ④( )* ∈>=N n n n ,100 0=; ⑤式子n a 叫根式,n 叫根指数,a 叫被开方数。 ∴ n a =. . 4.a 的n 次方根的性质 一般地,若n 是奇数,则a a n n =; 若n 是偶数,则???<-≥==0 0a a a a a a n n . 5.例题分析: 例1.求下列各式的值: (1)( )33 8- (2)() 2 10- (3)()44 3π- (4) 例2.已知,0<N n n ,1, 化简:()()n n n n b a b a ++-. (二)分数指数幂

最全函数概念及基本性质知识点总结及经典例题(汇编)

函数及基本性质 一、函数的概念 (1)设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到 B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →. (2)函数的三要素:定义域、值域和对应法则. 注意1:只有定义域相同,且对应法则也相同的两个函数才是同一函数 例1.判断下列各组中的两个函数是同一函数的为( ) ⑴3) 5)(3(1+-+=x x x y ,52-=x y ; ⑵111-+= x x y ,)1)(1(2-+=x x y ; ⑶x x f =)(,2)(x x g =; ⑷()f x ()F x = ⑸21)52()(-=x x f ,52)(2-=x x f 。 A .⑴、⑵ B .⑵、⑶ C .⑷ D .⑶、⑸ 2:求函数的定义域时,一般遵循以下原则: ①()f x 是整式时,定义域是全体实数.如:943)(2-+=x x x f ,R x ∈ ②()f x 是分式函数时,定义域是使分母不为零的一切实数.如:()6 35 -= x x f ,2≠x ③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.如()1432+-=x x x f , 13 1 >=x x x f a ,当对数或指数函数的底数中含变量时,底数须大 于零且不等于1。如:( ) 2 12 ()log 25f x x x =-+ ⑤tan y x =中,()2 x k k Z π π≠+ ∈.

集合与函数概念单元测试

集合与函数概念单元测试 一、选择题 1.集合},{b a 的子集有 ( ) A .2个 B .3个 C .4个 D .5个 2、已知函数x x f -=21)(的定义域为M ,2)(+=x x g 的定义域为N ,则=?N M A.{}2-≥x x B.{}2x x (C )||)(x x f =与33)(x x g = (D )11)(2--=x x x f 与)1(1)(≠+=t t x g 4. (A ) (B) (C ) (D) 5..已知()5412-+=-x x x f ,则()x f 的表达式是( ) A .x x 62+ B .782++x x C .322-+x x D .1062-+x x 6.已知函数y f x =+()1定义域是[]-23,,则y f x =-()21的定义域是( ) A []05 2 , B []-14, C []-55, D []-37, 7.函数 是单调函数时,的取值范围 ( ) A . B . C . D . 8.函数在实数集上是增函数,则 ( ) A . B . C . D . 9.已知 在实数集上是减函数,若,则下列正确的是 ( ) A . B . C . D . x y 0 x y 0 x y 0 x y 0

10.已知函数212x y x ?+=?-? (0)(0)x x ≤>,使函数值为5的x 的值是( ) A .-2 B .2或52- C . 2或-2 D .2或-2或52 - 11.下列四个函数中,在(0,∞)上为增函数的是 (A )f (x )=3-x (B )f (x )=x 2-3x (C )f (x )=-|x | (D )f (x )=-2 3+x 12、定义在R 上的偶函数在[0,7]上是增函数,在[7,+∞]上是减函数,又6)7(=f ,则)(x f A 、在[-7,0]上是增函数,且最大值是6 B 、在[-7,0]上是增函数,且最小值是6 C 、在[-7,0]上是减函数,且最小值是6 D 、在[-7,0]上是减函数,且最大值是6 二、填空题 13.已知集合M={(x ,y )|x +y =2},N={(x ,y )|x -y =4},那么集合M∩N= . 14.已知f (x )是偶函数,当x <0时,f (x )=x (2x -1),则当x >0时,f (x )=__ 15. 设f(x)=2x+3,g(x+2)=f(x-1),则g(x)= . 16.定义域为2[32,4]a a --上的函数f(x)是奇函数,则a= . 17.设32()3,()2f x x x g x x =-=-,则(())g f x = . 三.解答题 18..已知集合A={-1,a 2+1,a 2-3},B={-4,a-1,a+1},且A∩B={-2},求a 的值.(13分) 19.已知集合A={} 71<≤x x ,B={x|2

函数定义域知识点梳理、经典例题及解析、高考题带答案

函数的定义域 【考纲说明】 1、理解函数的定义域,掌握求函数定义域基本方法。 2、会求较简单的复合函数的定义域。 3、会讨论求解其中参数的取值范围。 【知识梳理】 (1) 定义:定义域是在一个函数关系中所有能使函数有意义的 的集合。 (2) 确定函数定义域的原则 1.当函数y=f(x)用列表法给出时,函数的定义域指的是表格中所有实数x 的集合。 2.当函数y=f(x)用图象法给出时,函数的定义域指的是图象在x 轴上的投影所覆盖的实数的集合。 3.当函数y=f(x)用解析式给出时,函数定义域指的是使解析式有意义的实数的集合。 4.当函数y=f(x)由实际问题给出时,函数定义域要使函数有意义,同时还要符合实际情况。 3、.确定定义域的依据: ①f(x)是整式(无分母),则定义域为 ; ②f(x)是分式,则定义域为 的集合; ③f(x)是偶次根式,则定义域为 的集合; ④对数式中真数 ,当指数式、对数式底中含有变量x 时,底数 ; ⑤零次幂中, ,即x 0中 ; ⑥若f(x)是由几个基本初等函数的四则运算而合成的函数,则定义域是各个函数定义域的 。 ⑦正切函数x y tan = 4、抽象函数的定义域(难点) (1)已知)(x f 的定义域,求复合函数()][x g f 的定义域 由复合函数的定义我们可知,要构成复合函数,则内层函数的值域必须包含于外层函数的定义域之中,因此可 得其方法为:若)(x f 的定义域为()b a x ,∈,求出)]([x g f 中b x g a <<)(的解x 的范围,即为)]([x g f 的定义域。 (2)已知复合函数()][x g f 的定义域,求)(x f 的定义域 方法是:若()][x g f 的定义域为()b a x ,∈,则由b x a <<确定)(x g 的范围即为)(x f 的定义域。

复变函数第六章留数理论及其应用知识点总结

第六章留数理论及其应用 §1.留数1.(定理柯西留数定理): 2.(定理):设a为f(z)的m阶极点, 其中在点a解析,,则 3.(推论):设a为f(z)的一阶极点, 则 4.(推论):设a为f(z)的二阶极点 则 5.本质奇点处的留数:可以利用洛朗展式 6.无穷远点的留数:

即,等于f(z)在点的洛朗展式中这一项系数的反号 7.(定理)如果函数f(z)在扩充z平面上只有有限个孤立奇点(包括无穷远点在内),设为,则f(z)在各点的留数总和为零。 注:虽然f(z)在有限可去奇点a处,必有,但是,如果点为f(z)的可去奇点(或解析点),则可以不为零。 8.计算留数的另一公式: §2.用留数定理计算实积分 一.→引入 注:注意偶函数 二.型积分 1.(引理大弧引理):上 则 2.(定理)设

为互质多项式,且符合条件: (1)n-m≥2; (2)Q(z)没有实零点 于是有 注:可记为 三.型积分 3.(引理若尔当引理):设函数g(z)沿半圆周 上连续,且 在上一致成立。则 4.(定理):设,其中P(z)及Q(z)为互质多项式,且符合条件:(1)Q的次数比P高; (2)Q无实数解; (3)m>0 则有 特别的,上式可拆分成:

及 四.计算积分路径上有奇点的积分 5.(引理小弧引理): 于上一致成立,则有 五.杂例 六.应用多值函数的积分 §3.辐角原理及其应用 即为:求解析函数零点个数 1.对数留数: 2.(引理):(1)设a为f(z)的n阶零点,则a必为函数的一阶极点,并且 (2)设b为f(z)的m阶极点,则b必为函数的一阶极点,并且 3.(定理对数留数定理):设C是一条周线,f(z)满足条件: (1)f(z)在C的内部是亚纯的;

指数函数知识点汇总

指数函数知识点汇总

————————————————————————————————作者:————————————————————————————————日期:

指数函数 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N * . 负数没有偶次方根;0的任何次方根都是0,记作00=n 。 当n 是奇数时, a a n n =,当n 是偶数时, ? ? ?<≥-==)0()0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m ) 1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3) s r r a a ab =)( ),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数 )1,0(≠>=a a a y x 且叫做指数函数,其中x 是自 变量,函数的定义域为R . 注意:指数函数的底数的取值范围,底数不能是负数、零和1. 2、指数函数的图象和性质 a >1 0

函数概念典型例题

函数概念及其表示---典例分析 例1.下列各组函数中,表示同一函数的是( C ). 选题理由:函数三要素。 A. 1,x y y x == B. 11,y x y = += C. ,y x y == D. 2||,y x y == 点评:有利于理解函数概念,强化函数的三要素。 变式: 1.函数f (x )= 2(1)x x x ??+? ,0,0x x ≥< ,则(2)f -=( ). A. 1 B .2 C. 3 D. 4 例2.集合{}22M x x =-≤≤,{}02N y y =≤≤,给出下列四个图形,其中能表示以M 为定义域,N 为值域的函数关系的是( B ). 选题理由:更好的帮助学生理解函数概念,同时也体现函数的重要表示法图像法,图形法是数形结合思想应用的前提。 变式: 1.下列四个图象中,不是函数图象的是(B ). 2.设集合A ={x |0≤x ≤6},B ={y |0≤y ≤2},从A 到B 的对应法则f 不是映射的是( ). A. f :x →y = 1 2x B. f :x →y = 1 3x C. f :x →y =1 4x D. f :x →y =1 6 x A. B. C. D.

函数的表达式及定义域—典例分析 【例1】 求下列函数的定义域: (1)1 21 y x = +-;(2 )y = . 选题理由:考查函数三要素,定义域是函数的灵魂。 解:(1)由210x +-≠,解得1x ≠-且3x ≠-, 所以原函数定义域为(,3)(3,1)(1,)-∞----+∞. (2 )由30 20 x -≥??≠,解得3x ≥且9x ≠, 所以原函数定义域为[3,9)(9,)+∞. 选题理由:函数的重要表示法,解析式法。 变式: 1 .函数y =的定义域为( ). A. (,1]-∞ B. (,2]-∞ C. 11(,)(,1]22-∞-- D. 1 1(,) (,1]2 2 -∞-- 2.已知函数()f x 的定义域为[1,2)-,则(1)f x -的定义域为( ). A .[1,2)- B .[0,2)- C .[0,3)- D .[2,1)- 【例2】已知函数1( )1x f x x -=+. 求: (1)(2)f 的值; (2)()f x 的表达式 解:(1)由121x x -=+,解得13x =-,所以1 (2)3f =-. (2)设11x t x -=+,解得11t x t -= +,所以1()1t f t t -=+,即1()1x f x x -=+. 点评:此题解法中突出了换元法的思想. 这类问题的函数式没有直接给出,称为抽象函数的研究,常常需要结合换元法、特值代入、方程思想等. 变式: 1.已知()f x =2x +x +1,则f =______;f [(2)f ]=______. 2.已知2(21)2f x x x +=-,则(3)f = . 【例 2】 已知f (x )=33x x -+?? (,1) (1,)x x ∈-∞∈+∞,求f [f (0)]的值. 选题理由:分段函数生活重要函数,是考察重点。 解:∵ 0(,1)∈-∞ , ∴ f 又 ∵ >1, ∴ f )3)-3=2+ 12=52,即f [f (0)]=5 2 . 点评:体现了分类讨论思想。 2.某同学从家里到学校,为了不迟到,先跑,跑累了再走余下的路,设在途中花的时间为 t ,离开家里的路程为d ,下面图形中,能反映该同学的行程的是( ).

第一章 集合与函数概念单元测试卷(巅峰版)解析版-假期利器之暑假初升高数学衔接(人教A版必修一)

第一章 集合与函数单元测试卷(巅峰版) 一、选择题 共12小题,每小题5分,共60分。在每小题列出的四个选项中,选出符合题目要求的一项。 1.设{ } 2 1M x x ==,则下列关系正确的是( ) A .1M ? B .{}1,1M -∈ C .{}1M -? D .M φ∈ 【答案】C 【解析】 由题得{}1,1M =-, A. 元素“1”和集合M 的关系只能用∈?, 连接,不能用??,连接,所以该选项错误; B.{}1,1-和集合M 只能用??, 连接,不能用∈?,连接,所以该选项错误; C.{}1M -?正确; D. M φ∈,显然错误. 故选:C 2.(2019·唐山一中高一期中)已知集合A={x|x 2﹣2x ﹣3<0},集合B={x|2x+1>1},则?B A=() A .[3,+∞) B .(3,+∞) C .(﹣∞,﹣1]∪[3,+∞) D .(﹣∞,﹣1)∪(3,+∞) 【答案】A 【解析】因为2 {|230}{|(1)(3)0}(1,3)A x x x x x x =--<=+-<=-,{ } 1 2 1(1,)x B x +==-+∞,所以 [3,)B C A =+∞;故选A. 3.(2019·苍南县树人中学高一期中)若对任意的实数x ∈R ,不等式2230x mx m ++-≥恒成立,则实数 m 的取值范围是 A .[2,6]? B .[6,2]-- C .(2,6) D .(6,2)-- 【答案】A 【解析】对任意实数x R ∈,不等式2230x mx m ++-≥恒成立,则224238120m m m m --=-+≤(),

解得26m ≤≤,即实数m 的取值范围是[] 26, ,故选A. 4.(5分)已知集合2{|2530}A x x x =++<,集合{|20}B x x a =+>,若A B ?,则a 的取值范围是( ) A .(3,)+∞ B .[3,)+∞ C .[1,)+∞ D .(1,)+∞ 【分析】先分别求出集合A ,B ,由A B ?,能求出a 的取值范围. 【解答】解:Q 集合23 {|2530}{|1}2A x x x x x =++<=-<<-, 集合{|20}{|}2 a B x x a x x =+>=>-, A B ?, 3 22a ∴--…,解得3a … . a ∴的取值范围是[3,)+∞. 故选:B . 【点评】本题考查实数的取值范围的求法,考查交集、子集、不等式等基础知识,考查运算求解能力,考查函数与方程思想,是基础题. 5.已知函数y =f (x )的定义域为[﹣6,1],则函数g (x )()212 f x x +=+的定义域是( ) A .(﹣∞.﹣2)∪(﹣2,3] B .[﹣11,3] C .[7 2- ,﹣2] D .[7 2 - ,﹣2)∪(﹣2,0] 【答案】D 【解析】 由题可知,对应的x 应满足[]216,120 x x ?+∈-?+≠?,即(]7,22,02?? - --???? U 故选:D 6.已知()f x 是定义域为R 的偶函数,当0x ≤时,()2 4f x x x =+,则()25f x +>的解集为( ) A .()(),73,-∞-+∞U B .()(),33,-∞-+∞U C .()(),71,-∞--+∞U D .()(),53,-∞-+∞U 【答案】A 【解析】

基本初等函数和函数的应用知识点总结

基本初等函数和函数的应用知识点总结 一、指数函数 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次方根, 其中n >1,且n ∈N * . ◆ 负数没有偶次方根;0的任何次方根都是0,记作00=n 。 当n 是奇数时,a a n n =,当n 是偶数时,???<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m , )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m ◆ 0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1)r a ·s r r a a +=),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3) s r r a a ab =)(),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R . 注意:指数函数的底数的取值范围,底数不能是负数、零和1. 因为负数对一些分数次方无意义,0的负数次方无意义。 2、指数函数的图象和性质 a>1 0

指数函数知识点总结

指数函数 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *. 负数没有偶次方根;0的任何次方根都是0,记作00=n 。 当n 是奇数时,a a n n =,当n 是偶数时,???<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m ? 0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3)s r r a a ab =)( ),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R . 《 注意:指数函数的底数的取值范围,底数不能是负数、零和1. 2 注意:利用函数的单调性,结合图象还可以看出:

(1)在[a ,b]上,)1a 0a (a )x (f x ≠>=且值域是)]b (f ),a (f [或)]a (f ),b (f [ (2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈; (3)对于指数函数)1a 0a (a )x (f x ≠>=且,总有a )1(f =; ' 指数函数·例题解析 【例1】求下列函数的定义域与值域: (1)y 3 (2)y (3)y 12x ===-+---21 3321x x 、 解 (1)定义域为x ∈R 且x ≠2.值域y >0且y ≠1. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为y ≥0. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<.0y 3 ? 练习:(1)4 12-=x y ; (2)|| 2()3 x y =; (3)12 41 ++=+x x y ; 【例2】指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是 [ ] A .a <b <1<c <d | B .a <b <1<d <c C . b <a <1<d <c D .c <d <1<a <b 解 选(c),在x 轴上任取一点(x ,0),

相关主题