搜档网
当前位置:搜档网 › 大学物理复习题

大学物理复习题

大学物理复习题
大学物理复习题

8. 真空系统的容积为5.0×10-3m 3,内部压强为1.33×10-3Pa 。为提高真空度,可将容器加热,使附着在器壁的气体分子放出,然后抽出。设从室温(200C )加热到2200C ,容器内压强增为1.33Pa 。则从器壁放出的气体分子的数量级为B

(A )1016个; (B )1017个; (C )1018个; (D )1019个

13. 一理想气体系统起始温度是T ,体积是V ,由如下三个准静态过程构成一个循环:绝热膨胀2V ,经等体过程回到温度T ,再等温地压缩到体积V 。在些循环中,下述说法正确者是( A )。

(A )气体向外放出热量; (B )气体向外正作功; (C )气体的内能增加; (C )气体的内能减少。

19. 在SI 中,电场强度的量纲是 ( C ) (A )11--MLT I (B )21--MLT I (C )31--MLT I

(D )3-IMLT

20. 在带电量为+q 的金属球的电场中,为测量某点的场强E ,在该点放一带电电为 的检验电荷,电荷受力大小为F ,则该点电场强度E 的大小满足 ( D )

(A ) (B )

(D ) (D )E 不确定

21. 在场强为E 的匀强电场中,有一个半径为R 的半球面,若电场强度E 的方向与半球面的对称轴平行,则通过这个半球面的电通量的大小为( A )

(A )πR 2E ; (B )2πR 2E ;

(C );22

E R π (D )

E R 22

1π。

24. 两个载有相等电流I 的圆线圈,一个处于水平位置,一个处于竖直位置,如图所示。在圆心O 处的磁感强度的大小是 ( C )

(A ) 0 (B ) (C ) (D )

25. 无限长载流直导线在P 处弯成以O 为圆心,R 为半径的圆,如图示。若所通电流为I ,缝P 极窄,则O 处的磁感强度B 的大小为 ( C )

(A ) (B ) (C ) (D )

26. 如图所示,载流导线在圆 心O 处的磁感强度的大小为 ( D )

104(A)

R I u 204(B)R I

u ???? ??+210114(C)R R I u ???

? ??-210114(D)R R I u 27. 四条互相平行的载流长直导线中的电流均为I ,如图示放置。正方形的边长为a ,

3

q +

q F E 3=q

F

E 3?q

F E 3?R

I u 20R

I

u 220R

I

u 0R

I

u π0R

I u 0R

I u 2110?

?? ?

?-πR

I u 2110??? ?

?+π

正方形中心O 处的磁感强度的大小为

B 。

34. 简谐振动物体的位移为振幅的一半时,其动能和势能之经为 ( C )

(A )1:1 (B )1:2 (C )3:1 (D )2:1 36. 波线上A 、B 两点相距m 31,B 点的相位比A 点滞后6π

,波的频率为2Hz ,则波速为 ( A )

(A )18-?s m (B )

132-?s m (C )12-?s m (D )13

4

-?s m 37. 一质点沿y 方向振动,振幅为A ,周期为T ,平衡位置在坐标原点。已知t=0时该质点位于y=0处,向y 轴正运动。由该质点引起的波动的波长为λ。则沿x 轴正向传播的平面简谐波的波动方程为 ( D )

(A ))222cos(λπππ

x T t A y -+=; (B ))222cos(λπππx T t A y ++= (C ))222cos(λπππx T t A y +-=; (D ))222cos(λ

πππx

T t A y --=

40. 频率为500Hz 的波,其波速为1360-?s m ,相位差为3

π

的两点的波程差为( A )

(A )0.12m (B) m π21 (C) m π

1500

(D)0.24m

2.沿直线运动的质点,其运动学方程是3

20et ct bt x x +++=(x 0,b ,c ,e 是常量)。初始

时刻质点的坐标是 x 0 ;质点的速度公式υx = b+2ct+3et 2 ;初始速度等于b ;加速度公式a x = 3 ;初始速度等于

dt

;加速度a x 是时间的

函数,由

此可知,作用于质点的合力是随时间的 函数。

13. 在等压条件下,把一定量理想气体升温50K 需要161J 的热量。在等体条件下把它的温度降低100K ,放出240J 的热量,则此气体分子的自由度是 5.85 。

18. 真空两块互相平行的无限大均匀带电平板,其中一块的面电荷密度为σ+,另一块的面电荷密度为σ2+,两极板间的电场强度大小为 a/2ε0 。

19. 半径为R 、均匀带电Q 的球面,若取无穷远处为零电势点,则球心处的电势

V 0= Q/4πε0R ;球面外离球心r 处的电势V φ= Q/4πε0r 2 。

a

I u A π022)

(a

I u B π02)

(a

I u C π22)

(00

)(D

19. 某点的地磁场为T 4107.0-?,这一地磁场被半径为5.0cm 的圆形电流线圈中心的磁场抵消。则线圈通过 5.57 A 的电流。

20. 一物体的质量为kg 2

105.2-?,它的振动方程为

m t x )4

5cos(100.62π

-?=-

则振幅为 20 ,周期为 0.06m ,初相为 。质点在初始位置所受的力为

- 。

在π秒末的位移为 -3

,速度为 0.2121m/s ,加速度为 1.0605

24. 有两个弹簧振子。第一振子物体的质量为第二振子物体质量的两倍,而振幅则为第二振子的一半。设两振子以相同的频率振动,则第一振子的能量与第二振子能量之比为 1:2 。 25. 两简谐振的议程为

cm t x )6

2cos(81π

+

=

cm t x )6

2cos(62π

-=

两振动的相位差为 -π/3 ,合振幅为 8 ,合振动的初相为

arctg

,合振动的方程为 X= 8

cos(2t+arctan

)cm 。

3、导体回路中产生的感应电动势i ε的大小与穿过回路的磁通量的变化Φd 成正比,这就是法拉第电磁感应定律。在SI 中,法拉第电磁感应定律可表示为dt

d i Φ

-=ε,其中“—” 号确定感应电动势的方向。 (× )

5、质量为m 的均质杆,长为l ,以角速度ω绕过杆的端点,垂直于杆的水平轴转动,杆绕转动轴的动量矩为ω23

1ml 。( )

9、设长直螺线管导线中电流为I,单位长度的匝数为n ,则长直螺线管内的磁场为匀强磁场,各点的磁感应强度大小为nI 00εμ。(× )

12、作用在定轴转动刚体上的合力矩越大,刚体转动的角速度越大。( × ) 13、质点系总动量的改变与内力无关,机械能的改变与保守内力有关。(× )

21、刚体对某z 轴的转动惯量,等于刚体上各质点的质量与该质点到转轴垂直距离平方的乘积之和,即∑?=

k

k

k z r

m J 2

。( )

25、频率为Hz 500的波,其传播速度为s m /350,相位差为

π3

2

的两点间距为0.233m 。

() 33 实验发现,当两束或两束以上的光波在一定条件下重叠时,在重叠区会形成稳定的、不

均匀的光强分布,在空间有些地方光强加强,有些地方光强减弱,形成稳定的强弱分布,这种现象称为光的干涉。()

35由于光是由原子从高能级向低能级跃迁时产生的,而原子的跃迁存在着独立性、间歇性和随机性,所以其发出的光是相干光,这样的光称为自然光。×

四.计算题:

1.一质点沿半径为R 的圆周运动,运动学方程为20bt 2

1

t v s -=,其中0v 、b 都

是常数,求: (1) 在时刻t ,质点的加速度a ; (2) 在何时刻加速度的大小等于b ;

(3)到加速度大小等于b 时质点沿圆周运行的圈数。 1.解:(1)由用自然坐标表示的运动学方程可得

bt v d d v 0t

s

-==

b d d a 2

t

s 2-==

τ

故有 a =R

)bt v (2

0-n -b τ

(2)令b b R )bt v (a 2

2

20=+??????-=

解得 0bt v 0=-

b

v t 0

=

即b

v t 0

=

时,加速度大小为b 。 (3) )0(s )t (s s -=?

2b

v 2b v b 21b v v 2

02

000=???

??-=

运行的圈数为

Rb

4v R 2s

n 2

0ππ=?=

2、一质点运动学方程为2t x =,2)1(-=t y ,其中x ,y 以m 为单位,t 以s 为单位。

(1)质点的速度何时取极小值?

(2)试求当速度大小等于s m /10时,质点的位置坐标 (3)试求时刻t 质点的切向和法向加速度的大小。 解(1)t 时刻质点的速度为

t dt dx

v x 2==

)1(2-==t dt dy v y

速度大小为222

2)1(44-+=+=t t v v v y x

0=dt

dv

,得t=0.5,即t=0.5s 时速度取极小值。 (2)令10)1(4422=-+=t t v 得t=4,代入运动学方程,有 x(4)=16m y(4)=9m

(3)切向加速度为

2222)

1()

12(2)1(44-+-=

-+==

t t t t t dt d dt dv a τ 总加速度为82

2=+=y x

a a a 因此,法向加速度为2

2

22)

1(2-+=

+=t t a a a n τ

3、一质点沿着半径m R 1=的圆周运动。0=t 时,质点位于A 点,如图4.1。然后沿着顺时针方向运动,运动学方程为t t s ππ+=2,其中s 的单位为米(m),t 的单位为秒(s),试求:

(1)质点绕行一周所经历的路程、位移、平均速度和平均速率; (2)质点在第一秒末的速度和加速度的大小。

图4.1

3、解:

质点绕行一周所经历的路程为

m R s 28.62==?π

由位移和平均速度的定义可知,位移和平均速度均为零,即

0=?r ?

0=??=t

r

?ρυ

令R t t s t s s πππ2)0()(2=+=-=?

可得质点绕行一周所需时间 s t 1=?

平均速率为s m t

R

t s /28.62=?=??=πυ

(2) t 时刻质点的速度和加速度大小为

ππυ+==t dt

ds

2

)()(222

2

2

dt s

d R a a a n t +=+=υ

当t=1s 时 2

/0.89/42.9s

m a s

m ==υ

4、质量为kg 0.5的木块,仅受一变力的作用,在光滑的水平面上作直线运动,力随位置的变化如图所示,试问:

(1)木块从原点运动到m x 0.8=处,作用于木块的力所做之功为多少? (2)如果木块通过原点的速率为s m /0.4,则通过m x 0.8=时,它的速率为多大?

4、解:由图可得的力的解析表达式为

????

???<≤<≤<≤<≤----=86644220)6(2

5

0)

2(51010)(x x x x x x x F (1)根据功的定义,作用于木块的力所做的功为

[]??=--++--+-?=+++=8642432125)6(2

5

0)2(510)02(10J d x d x A A A A A x x

(2)根据动能定理,有

2

022

121mv mv A -=

可求得速率为

s m v m

A v /1.522

0=+=

5、一粒子沿着拋物线轨道y=x2运动,粒子速度沿x 轴的投影v x 为常数,等于3m/s,试计算质点在x=2/3处时,其速度和加速度的大小和方向。 5、解:依题意

v x =dt

dx

= 3m/s

y = x2

v y = dt dy = 2x dt

dx

= 2xv x

当x =

3

2

m 时 v y = 2×3

2

×3 = 4m/s

速度大小为 v =

y

x v v 22+=5m/s

速度的方向为 a = arccos

v

v x =53°8ˊ

a y =

dt

dv y = 2v 2x =18m/s 2

加速度大小为 a = a y = 18m/s 2

a 的方向沿y 轴正向。

6.一沿x 轴正方向的力作用在一质量为3.0kg 的质点上。已知质点的运动学方程为x=3t-4t 2+t 3,这里x 以m 为单位,时间t 以s 为单位。试求: (1)力在最初4.0s 内的功;

(2)在t=1s 时,力的瞬间功率。

6.解 (1)由运动学方程先求出质点的速度,依题意有

V=dt

dx

=3-8t+3t 2

质点的动能为

E k (t)= 21

mv 2

= 2

1

×3.0×(3-8t-3t 2 )2

根据动能定理,力在最初4.0s 内所作的功为 A=△E K = E K (4.0)- E K (0)=528j

(2) a=dt

dv

=6t-8

F=ma=3×(6t-8)

功率为

P(t)=Fv

=3×(6t-8) ×(3-8t-3t 2 ) P(1)=12W

这就是t=1s 时力的瞬间功率。

7、如图所示,质量为M 的滑块正沿着光滑水平地面向右滑动.一质量为m 的小

球水平向右飞行,以速度v ?

1(对地)与滑块斜面相碰,碰后竖直向上弹起,速率为v 2(对地).若碰撞时间为t ?,试计算此过程中滑块对地的平均作用力和滑块速度增量的大小.

7、解:(1) 小球m 在与M 碰撞过程中给M 的竖直方向冲力在数值上应等于M 对小球的竖直冲力.而此冲力应等于小球在竖直方向的动量变化率即:

t

m f ?=

2

v 由牛顿第三定律,小球以此力作用于M ,其方向向下. 对M ,由牛顿第二定律,在竖直方向上

0=--f Mg N , f Mg N += 又由牛顿第三定律,M 给地面的平均作用力也为

Mg t

m Mg f F +?=

+=2

v 方向竖直向下. (2) 同理,M 受到小球的水平方向冲力大小应为 ,t

m f ?=

'1

v 方向与m 原运动方向一致

根据牛顿第二定律,对M 有 ,t v

??='M f

利用上式的f ',即可得 M m /1v v =?

8质量为M 的朩块静止在光滑的水平面上,质量为m 、速度为0v 的子弹水平地身射入朩块,并陷在朩块内与朩块一起运动。求(1)、子弹相对朩块静止后,朩块的速度与动量;(2)、子弹相对朩块静止后,子弹的动量;(3)、这个过程中子弹施于朩块的动量。

8解:设子弹相对朩块静止后,其共同运动的速度为u ,子弹和朩块组成系统动量守恒。

(1)

0()mv m M u

=+

故 0

mv u m M =

+ 0M Mm

P Mu v M m

==+

(2)子弹动量为

2

0m m p mu v M m

==+

(3) 根据动量定理,子弹施于朩块的冲量为

00M Mm

I P v M m

=-=+

9、质量为M 、长为L 的木块,放在水平地面上,今有一质量为m 的子弹以水平初速度0υ射入木块,问:

(1)当木块固定在地面上时,子弹射入木块的水平距离为L/2。欲使子弹水平射穿木块(刚好射穿),子弹的速度1υ最小将是多少?

(2)木块不固定,且地面是光滑的。当子弹仍以速度0υ水平射入木块,相对木块进入的深度(木块对子弹的阻力视为不变)是多少?

(3)在(2)中,从子弹开始射入到子弹与木块无相对运动时,木块移动的距离是多少?

9、解:(1)设木块对子弹的阻力为f ,对子弹应用动能定理,有

2

02

102υm L f -=-

2

12

10υm fL -=-

子弹的速度和木块对子弹的阻力分别为:

012υυ= 2

0υL

m f =

(2)子弹和木块组成的系统动量守恒,子弹相对木块静止时,设其共同运动速度为υ',有 υυ'+=)(0m M m

设子弹射入木块的深度为1s ,根据动能定理,有 2

0212

1)(21υυm m M fs -'+=- 0υυm

M m

+=' L m M M

s )

(21+=

(3)对木块用动能定理,有

02

1

22-'=

υM fs 木块移动的距离为 L m M Mm

s 2

2)

(2+=

10、一质量为200g 的砝码盘悬挂在劲度系数k =196N/m 的弹簧下,现有质量为100g 的砝码自30cm 高处落入盘中,求盘向下移动的最大距离(假设砝码和盘的碰撞是完全非弹性碰撞)

10、解:砝码从高处落入盘中的过程机械能守恒,有

2

11121v m gh m = (1)

砝码与盘的碰撞过程中系统动量守恒,设碰撞结束时共同运动的速度为2v ,有 22111)(v m m v m += (2) 砝码与盘向下移动的过程中机械能守恒,有

2212212

22121)()(21)(2121gl m m l l k v m m kl +-+=++ (3)

12kl g m = (4) 解以上方程可得

0096.098.09822

2=--l l 向下移动的最大距离为

037.02=l (m )

11、 如图,起重机的水平转臂AB 以匀角速绕铅直轴Oz (正向

如图所示)转动,一质量为的小车被约束在转臂的轨道上向左行驶,当

小车与轴相距为时,速度为

.求此时小车所受外力对Oz 轴的合

外力矩。

11、解:小车对Oz轴的角动量为

它绕Oz轴作逆时针旋转,故取正值,按质点对轴的角动量定理,有

式中,为小车沿转臂的速度。按题设,,,

,,代入上式,算得小车在距转轴Oz为l=2m时所受外力对Oz 轴的合外力矩为

12、如图,一质量为m、长为l的均质细棒,轴Oz通过棒上一点O并与棒长垂直,O点与棒的一端距离为d,求棒对轴Oz的转动惯量。

12、解:在棒内距轴为x处,取长为d x,横截面积为S的质元,它的体积为

d V=S d x,质量为,为棒的密度。对均质细棒而言,其密度为

。故此质元的质量为

按转动惯量定义,棒对Oz 轴的转动惯量为

若轴通过棒的右端,即d =l 时,亦有

若轴通过棒的中心,即d =l /2,则得

13、电荷均匀分布在半径为R 的球形空间内,电荷的体密度为ρ。利用高斯定理求球内、外及球面上的电场强度。

13、解:根据电荷分布的球对称性,可知电场分布也具有球对称性。以带电球体的球心为球心,作半径为r 的球形高斯面,由高斯定理知:

R r <<0时

30341r s d E s

πρε=

??ρρ 30

234

4r r E πρεπ=

? r E 0

3ερ

=

R r =时

3

023414R R E s d E s

πρεπ=?=??ρρ

R E 0

3ερ

=

R r >时

3

023414R r E s d E s

πρεπ=

?=??ρρ 2

03

3r

R E ερ=

14、如图所示表示两个同心均匀带电球面,半径分别为A R ,B R ;分别带有电量为A q 、B q 。分别求出在下面情况下电场和电势。 (1) A R

题14图

14、解:(1)由高斯定理可得:r

024r

q E A πε=

r>R B ,2

034r q q E B

A πε+=

(2)由电势叠加原理可得:r

B

A A R q R q 00144πεπε?+=

R B

q B

R A

B A R q r

q 00144πεπε?+

=

r>R B ,r

q q B

A 014πε?+=。

15 如题4-2图所示,半径为R1和R2(R1

15解:(1)由高斯定理可得:r

R 1

; (2分)

r>R 2,2

034r

q E πε=

。 (2分)

(2)由电势叠加原理可得:r

; (2分)

R 1

r q 024πε?=; (2分)

r>R 2,

r

q 034πε?=。 (2分)

16、如图所示求无限长圆柱面电流的磁场分布。设圆柱面半径为a ,面上均匀分

布的总电流为I 。

题4-2图

16解:(1)对无限长圆柱面外距离轴线为r (R r >)的一点P 来说,根据安培环路定理

?==?L

I r B l d B 02μπρ

ρ

故得 r

I

B πμ20=

(2)P 点在圆柱面的内部时,即R r <

?==?L

r B l d B 02πρ

ρ

故得 0=B 17、两平行直导线相距d=40cm ,每根导线载有电流I 1= I 2=20A ,如题4-3图所示。求:

(1)两根导线所在平面内与该两导线等距离的一点处的磁感应强度; (2)通过图中斜线所示面积的磁通量。(设r 1=r 3=10cm,L=25cm 。)

题4-3图

17、解:(1)在两导线所在平面内与两导线等距离处的磁场为

T 100.44

.020

10422/225700--?=????==πππμd I B

1

I 2I

d L 2r 1r

3r

(2)所求磁通量为

12

10ln

d 22d 20211

r r r Il r l r I s B r r r +==?=??+πμπμφρρ Wb 102.26-?=

18、将一无限长直导线弯成题4-4图所示的形状,其上载有电流I ,计算圆心0处的磁感应强度的大小。

题18图

18解:如图所示,圆心O 处的B 是由长直导线AB 、DE 和1/3圆弧导线BCD 三部分电流产生的磁场叠加而成。

圆弧导线BCD 在O 点产生的磁感应强度B 1的大小为

r

I

r I B 6231001μμ== 方向垂直纸面向里。 载流长直导线AB 在O 点产生磁感应强度B 2的大小为 )cos (cos 42102θθπμ-=

a

I

B 其中01=θ,6

θ=;2

60cos 0r r a =

= )2

3

1(202-=

r I B πμ 方向垂直纸面向里。 同理,载流长直导线DE 在O 点产生磁感应强度B 3的大小为 )2

3

1(203-=

r I B πμ 方向垂直纸面向里。 O 点的合磁感强度的大小为 321B B B B ++= 2)2

3

1(2600?-+

=

r I r

I

πμμ

r

I

021.0μ= 方向垂直纸面向里。

19半径为R 的圆片上均匀带电,面密度为σ,若该片以角速度ω绕它的轴旋转如题4-4图所示。求轴线上距圆片中心为x 处的磁感应强度B 的大小。

19解:在圆盘上取一半径为r 、宽度为dr 的细环,所带电量为 rdr dq πσ2= 细环转动相当于一圆形电流,其电流大小为

rdr

rdr dI σωπω

πσ==22

它在轴线上距盘心为x 处产生的磁感应强度大小为

dr x r r rdr x r r x r dI r dB 2/3223

02/322202/32220)(2)(2)(2+=+=+=σωμσωμμ

总的磁感应强度大小为

)22(2)(2

222200

2/3223

0x x

R x R dr x r r B R

-++=+=

?

σωμσω

μ

20求无限长均匀载流圆柱导体产生的磁场。设圆柱体截面半径为R ,电流大小为I ,沿轴线方向运动,且在圆柱体截面上,电流分布是均匀的。

20解:磁力线是在垂直于轴线平面内以该平面与轴线交点为中心的同心圆,取

这样的圆作为闭合路径。

对圆柱体外距轴线距离为r 的一点来说,有

?==?L

I r B d 0

π

故得

)(20R r r

I

B >=

πμ 对圆柱体内距轴线距离为r 的一点来说,闭合路径包围的电流为

I R

r r R I I 222

2

=='ππ 故得

22

02R r I r B l d B L ?==?μπ

)(22

0R r r R

I

B <=

πμ

21、一个均匀带电细棒,长为l ,线电荷密度为λ,求其延长线上距细棒近端为a 的一点的电场和电势。

21、解:沿杆取x 轴,杆的x 轴反向端点取作原点。

电荷元x q d d λ=在场点P 的场强为: 2

0)(4d d x a l x

E -+=πελ

由场强叠加原理可得,

整个带电直线在P 点的场强为:??-+==l

x a l x

E E 0

2

0)(4d d πελ

)

(40a l a L

+=πελ

方向沿x 轴的正向。

由电势叠加原理可得,P 点的电势为:?-+=l

x a l x

0)(4d πελ?

a

l a +=

ln 40πελ 22、电荷均匀分布在半径为R 的球形空间内,电荷体电荷密度为ρ。试求(1)

球体内和球体外的电场;(2)球体内和球体外的电势。

22、解:根据电荷分布的球对称性,可知电场分布也具有球对称性。以带电球体的球心为球心,作半径为r 的球形高斯面,有高斯定理知: (1)R r <≤0时

大学物理模拟试题 (2)汇总

一填空题(共32分) 1.(本题3分)(0355) 假如地球半径缩短1%,而它的质量保持不变,则地球表面的重力加速度g 增大的百分比是________. 2.(本题3分)(0634) 如图所示,钢球A和B质量相等,正被绳 牵着以ω0=4rad/s的角速度绕竖直轴转动,二 球与轴的距离都为r1=15cm.现在把轴上环C 下移,使得两球离轴的距离缩减为r2=5cm.则 钢球的角速度ω=_____ 3.(本题3分)(4454) 。 lmol的单原子分子理想气体,在1atm的恒定压强下,从0℃加热到100℃, 则气体的内能改变了_____J.(普适气体常量R=8.31J·mol-1·k-1) 4。(本题3分)(4318) 右图为一理想气体几种状态变化过程的p-v图, 其中MT为等温线,MQ为绝热线,在AM, BM,CM三种准静态过程中: (1) 温度升高的是_____ 过程; (2)气体吸热的是______ 过程. 5。(本题3分)(4687) 已知lmol的某种理想气体(其分子可视为刚性分子),在等压过程中温度上 升1K,内能增加了20.78J,则气体对外作功为______ 气体吸收热 量为________.(普适气体常量R=8.31.J·mol-1·K-1) 6.(本题4分)(4140) 所谓第二类永动机是指____________________________________________________ 它不可能制成是因为违背了_________________________________________________。7。(本题3分)(1391)

一个半径为R的薄金属球壳,带有电荷q壳内充满相对介电常量为εr的各 向同性均匀电介质.设无穷远处为电势零点,则球壳的电势 U=_________________________. 8.(本题3分)(2620) 在自感系数L=0.05mH的线圈中,流过I=0.8A的电流.在切断电路后经 过t=100μs的时间,电流强度近似变为零,回路中产生的平均自感电动势 εL=______________· 9。(本题3分)(5187) 一竖直悬挂的弹簧振子,自然平衡时弹簧的伸长量为x o,此振子自由振动的 周期T=____. 10·(本题4分)(3217): 一束单色光垂直入射在光栅上,衍射光谱中共出现5条明纹;若已知此光栅 缝宽度与不透明部分宽度相等,那么在中央明纹一侧的两条明纹分别是 第_________级和第________级谱线. 二.计算题(共63分) 11.(本题10分)(5264) , 一物体与斜面间的摩擦系数μ=0.20,斜面固定,倾角 a=450.现给予物体以初速率v0=l0m/s,使它沿斜面向 上滑,如图所示.求: (1)物体能够上升的最大高度h; (2) 该物体达到最高点后,沿斜面返回到原出发点时速率v. 12。(本题8分)(0130) 如图所示,A和B两飞轮的轴杆在同一中心线上, 设两轮的转动惯量分别为J=10kg·m2和J=20 kg·m2.开始时,A轮转速为600rev/min,B轮静止.C 为摩擦啮合器,其转动惯量可忽略不计.A、B分别 与C的左、右两个组件相连,当C的左右组件啮合时,B轮得到加速而A轮减 速,直到两轮的转速相等为止.设轴光滑,求: (1)两轮啮合后的转速n; (2)两轮各自所受的冲量矩. 13.(本题lO分)(1276) 如图所示,三个“无限长”的同轴导体圆柱面A、B 和C,半径分别为R a、R b、R c. 圆柱面B上带电荷,A 和C都接地.求B的内表面上电荷线密度λl和外表面上 电荷线密度λ2之比值λ1/λ2。 14.(本题5分)(1652)

大学物理试题及答案

第2章刚体得转动 一、选择题 1、如图所示,A、B为两个相同得绕着轻绳得定滑轮.A滑轮挂一质量为M得物体,B滑轮受拉力F,而且F=Mg.设A、B两滑轮得角加速度分别为βA与βB,不计滑轮轴得摩擦,则有 (A) βA=βB。(B)βA>βB. (C)βA<βB.(D)开始时βA=βB,以后βA<βB。 [] 2、有两个半径相同,质量相等得细圆环A与B。A环得质量分布均匀,B环得质量分布不均匀。它们对通过环心并与环面垂直得轴得转动惯量分别为JA与J B,则 (A)JA>J B.(B) JA

大学物理(下)期末考试试卷

大学物理(下)期末考试试卷 一、 选择题:(每题3分,共30分) 1. 在感应电场中电磁感应定律可写成?-=?L K dt d l d E φ ,式中K E 为感应电场的电场强度。此式表明: (A) 闭合曲线L 上K E 处处相等。 (B) 感应电场是保守力场。 (C) 感应电场的电力线不是闭合曲线。 (D) 在感应电场中不能像对静电场那样引入电势的概念。 2.一简谐振动曲线如图所示,则振动周期是 (A) 2.62s (B) 2.40s (C) 2.20s (D) 2.00s 3.横谐波以波速u 沿x 轴负方向传播,t 时刻 的波形如图,则该时刻 (A) A 点振动速度大于零, (B) B 点静止不动 (C) C 点向下运动 (D) D 点振动速度小于零. 4.如图所示,有一平面简谐波沿x 轴负方向传 播,坐标原点O 的振动规律为)cos(0φω+=t A y , 则B 点的振动方程为 (A) []0)/(cos φω+-=u x t A y (B) [])/(cos u x t A y +=ω (C) })]/([cos{0φω+-=u x t A y (D) })]/([cos{0φω++=u x t A y 5. 一单色平行光束垂直照射在宽度为 1.20mm 的单缝上,在缝后放一焦距为2.0m 的会聚透镜,已知位于透镜焦平面处的屏幕上的中央明条纹宽度为2.00mm ,则入射光波长约为 (A )100000A (B )40000A (C )50000A (D )60000 A 6.若星光的波长按55000A 计算,孔镜为127cm 的大型望远镜所能分辨的两颗星2 4 1

大学物理模拟试题 (2)

大学物理模拟试题三 一、选择题(每题4分,共40分) 1.一质点在光滑平面上,在外力作用下沿某一曲线运动,若突然将外力撤消,则该质点将作[ ]。 (A) 匀速率曲线运动 (B) 减速运动 (C) 停止运动 (D)匀速直线运动 2.一劲度系数为k 原长为l 0的轻弹簧,上端固定,下端受一竖直方向的力F 作用,如图所示。在力F 作用下,弹簧被缓慢向下拉长为l ,在此过程中力F 作功为 [ ]。 (A) F(l –l 0) (B) l l kxdx (C) l l kxdx 0 (D) l l Fxdx 0 3.一质点在力F = 5m (5 2t ) (SI)的作用下,t =0时从静止开始作直线运动,式中m 为质点的质量,t 为时间,则当t = 5 s 时,质点的速率为[ ] (A) 50 m ·s -1. (B) 25 m ·s -1 (C) -50 m ·s -1 . (D) 0 4.图示两个谐振动的x~t 曲线,将这两个谐振动叠加,合成的余弦振动的初相为[ ]。 (A) (B) 32 (C) 0 (D) 2 5.一质点作谐振动,频率为 ,则其振动动能变化频率为[ ] (A ) 21 (B ) 4 1 (C ) 2 (D ) 4 6.真空中两平行带电平板相距位d ,面积为S ,且有S d 2 ,均匀带电量分别为+q 与-q ,则两级间的作用力大小为 [ ]。 (A) 2 02 4d q F (B) S q F 02

(C) S q F 022 (D) S q F 02 2 7.有两条无限长直导线各载有5A 的电流,分别沿x 、y 轴正向流动,在 (40,20,0)(cm )处B 的大小和方向是(注:70104 1 m H ) [ ]。 (A) 2.5×106 T 沿z 正方向 (B) 3.5×10 6 T 沿z 负方向 (C) 4.5×10 6 T 沿z 负方向 (D) 5.5×10 6 T 沿z 正方向 8.氢原子处于基态(正常状态)时,它的电子可看作是沿半径为a=0.538 10 cm 的轨道作匀速圆周运动,速率为2.28 10 cm/s ,那么在轨 道中心B 的大小为 [ ]。 (A) 8.56 10 T (B) 12.55 10 T (C) 8.54 10 T (D) 8.55 10 T 9.E 和V E 分别表示静电场和有旋电场的电场强度,下列关系中正确的是 [ ]。 (A) ?0dl E (B) ?0dl E (C) ?0dl E V (D) 0dl E V 10.两个闭合的金属环,穿在一光滑的绝缘杆上,如图所示,当条形磁铁N 极自右向左插向圆环时,两圆环的运动是 [ ]。 (A) 边向左移动边分开 (B) 边向右移动边合拢 (C) 边向左移动边合拢 (D) 同时同向移动

大学物理期末考试题(上册)10套附答案

n 3 电机学院 200_5_–200_6_学年第_二_学期 《大学物理 》课程期末考试试卷 1 2006.7 开课学院: ,专业: 考试形式:闭卷,所需时间 90 分钟 考生: 学号: 班级 任课教师 一、填充題(共30分,每空格2分) 1.一质点沿x 轴作直线运动,其运动方程为()3262x t t m =-,则质点在运动开始后4s 位移的大小为___________,在该时间所通过的路程为_____________。 2.如图所示,一根细绳的一端固定, 另一端系一小球,绳长0.9L m =,现将小球拉到水平位置OA 后自由释放,小球沿圆弧落至C 点时,30OC OA θ=o 与成,则 小球在C 点时的速率为____________, 切向加速度大小为__________, 法向加速度大小为____________。(210g m s =)。 3.一个质点同时参与两个在同一直线上的简谐振动,其振动的表达式分别为: 215 5.010cos(5t )6x p p -=?m 、211 3.010cos(5t )6 x p p -=?m 。则其合振动的频率 为_____________,振幅为 ,初相为 。 4、如图所示,用白光垂直照射厚度400d nm =的薄膜,为 2 1.40n =, 且12n n n >>3,则反射光中 nm ,

波长的可见光得到加强,透射光中 nm 和___________ nm 可见光得到加强。 5.频率为100Hz ,传播速度为s m 300的平面波,波 长为___________,波线上两点振动的相差为3 π ,则此两点相距 ___m 。 6. 一束自然光从空气中入射到折射率为1.4的液体上,反射光是全偏振光,则此光束射角等于______________,折射角等于______________。 二、选择題(共18分,每小题3分) 1.一质点运动时,0=n a ,t a c =(c 是不为零的常量),此质点作( )。 (A )匀速直线运动;(B )匀速曲线运动; (C ) 匀变速直线运动; (D )不能确定 2.质量为1m kg =的质点,在平面运动、其运动方程为x=3t ,315t y -=(SI 制),则在t=2s 时,所受合外力为( ) (A) 7j ? ; (B) j ?12- ; (C) j ?6- ; (D) j i ? ?+6 3.弹簧振子做简谐振动,当其偏离平衡位置的位移大小为振幅的4 1 时,其动能为振动 总能量的?( ) (A ) 916 (B )1116 (C )1316 (D )1516 4. 在单缝夫琅和费衍射实验中波长为λ的单色光垂直入射到单缝上,对应于衍 射角为300的方向上,若单逢处波面可分成3个半波带,则缝宽度a 等于( ) (A.) λ (B) 1.5λ (C) 2λ (D) 3λ 5. 一质量为M 的平板车以速率v 在水平方向滑行,质量为m 的物体从h 高处直落到车子里,两者合在一起后的运动速率是( ) (A.) M M m v + (B). (C). (D).v

大学物理模拟试题

东 北 大 学 网 络 教 育 学 院 级 专业 类型 试 卷(闭卷)(A 卷) (共 页) 年 月 学习中心 姓名 学号 总分 题号 一 二 三 四 五 六 得分 一、单项选择题:(每小题3分,共27分) 1、质点作半径为R 的变速圆周运动时加速度大小为 (v 表示任一时刻质点的速率): (A )dt dv (B) R v 2 (C) R v dt dv 2+ (D) 242 R v dt dv +?? ? ?? 2、用公式U=νC V T (式中C V 为定容摩尔热容量,ν为气体摩尔数)计算理想气体内能增量时,该式: (A) 只适用于准静态的等容过程。 (B) 只适用于一切等容过程。 (C) 只适用于一切准静态过程。 (D) 适用于一切始末态为平衡态的过程。 3、处于平衡状态的一瓶氦气和一瓶氮气的分子数密度相同,分子的平均平动动能也相同,都处于平衡态。以下说法正确的是: (A )它们的温度、压强均不相同。 (B )它们的温度相同,但氦气压强大于氮气压强。

(C )它们的温度、压强都相同。 (D) 它们的温度相同,但氦气压强小于氮气压强。 4、一容器内装有N 1个单原子理想气体分子和N 2个刚性双原子理想气体分子,当该系统处在温度为T 的平衡态时,其内能为 (A) ??? ??++kT kT N N 2523)(21 (B) ??? ??++kT kT N N 252 3 )(2121 (C) kT N kT N 252321 + (D) kT N kT N 2 3 2521+ 5、使用公式E q f =求电荷q 在电场E 中所受的力时,下述说法正确的是: (A )对任何电场,任何电荷,该式都正确。 (B )对任何电场,只要是点电荷,该式就正确。 (C )只要是匀强电场,对任何电荷,该式都正确。 (D )必需是匀强电场和点电荷该式才正确。 6、一个点电荷放在球形高斯面的球心处,讨论下列情况下电通量的变化情 况: (1)用一个和此球形高斯面相切的正立方体表面来代替球形高斯面。 (2)点电荷离开球心但还在球面内。 (3)有另一个电荷放在球面外。 (4)有另一电荷放在球面内。 以上情况中,能引起球形高斯面的电通量发生变化的是: (A )(1),(2),(3) (B )(2),(3),(4) (C )(3),(4) (D )(4) 7、离点电荷Q 为R 的P 点的电场强度为R R R Q E 204πε= ,现将点电荷用一半径小于R 的金属球壳包围起来,对点电荷Q 在球心和不在球心两种情况,下述说法正确的是:

大学物理试题库及答案详解【考试必备】

第一章 质点运动学 1 -1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,速率为v,t 至(t +Δt )时间内的位移为Δr , 路程为Δs , 位矢大小的变化量为Δr ( 或称Δ|r |),平均速度为v ,平均速率为v . (1) 根据上述情况,则必有( ) (A) |Δr |= Δs = Δr (B) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d s ≠ d r (C) |Δr |≠ Δr ≠ Δs ,当Δt →0 时有|d r |= d r ≠ d s (D) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d r = d s (2) 根据上述情况,则必有( ) (A) |v |= v ,|v |= v (B) |v |≠v ,|v |≠ v (C) |v |= v ,|v |≠ v (D) |v |≠v ,|v |= v 分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P′点,各量关系如图所示, 其中路程Δs =PP′, 位移大小|Δr |=PP ′,而Δr =|r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B). (2) 由于|Δr |≠Δs ,故t s t ΔΔΔΔ≠r ,即|v |≠v . 但由于|d r |=d s ,故t s t d d d d =r ,即|v |=v .由此可见,应选(C). 1 -2 一运动质点在某瞬时位于位矢r (x,y )的端点处,对其速度的大小有四种意见,即 (1)t r d d ; (2)t d d r ; (3)t s d d ; (4)2 2d d d d ?? ? ??+??? ??t y t x . 下述判断正确的是( ) (A) 只有(1)(2)正确 (B) 只有(2)正确

大学物理1 模拟试卷及答案

大学物理模拟试卷一 一、选择题:(每小题3分,共30分) 1.一飞机相对空气的速度为200km/h,风速为56km/h,方向从西向东。地面雷达测得飞机 速度大小为192km/h,方向是:() (A)南偏西;(B)北偏东;(C)向正南或向正北;(D)西偏东; 2.竖直的圆筒形转笼,半径为R,绕中心轴OO'转动,物块A紧靠在圆筒的内壁上,物块与圆筒间的摩擦系数为μ,要命名物块A不下落,圆筒转动的角速度ω至少应为:() (A);(B);(C);(D); 3.质量为m=0.5kg的质点,在XOY坐标平面内运动,其运动方程为x=5t,y=(SI),从t=2s到t=4s这段时间内,外力对质点作功为() (A); (B) 3J; (C) ; (D) ; 4.炮车以仰角θ发射一炮弹,炮弹与炮车质量分别为m和M,炮弹相对于炮筒出口速度为v,不计炮车与地面间的摩擦,则炮车的反冲速度大小为() (A); (B) ; (C) ; (D) 5.A、B为两个相同的定滑轮,A滑轮挂一质量为M的物体,B滑轮受拉力为F,而且F=Mg,设A、B两滑轮的角加速度分别为βA和βB,不计滑轮轴的摩擦,这两个滑轮的角加速度的大小比较是() (A)βA=β B ; (B)βA>β B; (C)βA<βB; (D)无法比较; 6.一倔强系数为k的轻弹簧,下端挂一质量为m的物体,系统的振动周期为T。若将此弹簧截去一半的长度,下端挂一质量为0.5m的物体,则系统振动周期T2等于() (A)2T1; (B)T1; (C) T1/2 ; (D) T1/4 ; 7.一平面简谐波在弹性媒质中传播时,媒质中某质元在负的最大位移处,则它的能量是:() (A)动能为零,势能最大;(B)动能为零,势能为零; (C)动能最大,势能最大;(D)动能最大,势能为零。 8.在一封闭容器中盛有1mol氦气(视作理想气体),这时分子无规则运动的平均自由程仅决定于: () (A) 压强p;(B)体积V;(C)温度T; (D)平均碰撞频率Z; 9.根据热力学第二定律判断下列哪种说法是正确的() (A)热量不可能从低温物体传到高温物体; (B)不可能从单一热源吸取热量使之全部转变为有用功; (C)摩擦生热的过程是不可逆的; (D)在一个可逆过程中吸取热量一定等于对外作的功。 10.在参照系S中,有两个静止质量都是m0的粒子A和B,分别以速度v沿同一直线相向运动,相碰后合在一起成为一个粒子,则其静止质量M0的值为:() (A) 2m0; (B) 2m0; (C) ; (D) 二.填空题(每小题3分,共30分)

大学物理期末考试试卷(C卷)答案

第三军医大学2011-2012学年二学期 课程考试试卷答案(C 卷) 课程名称:大学物理 考试时间:120分钟 年级:xxx 级 专业: xxx 答案部分,(卷面共有26题,100分,各大题标有题量和总分) 一、选择题(每题2分,共20分,共10小题) 1.C 2.C 3.C 4.D 5.B 6.C 7.D 8.C 9.A 10.B 二、填空题(每题2分,共20分,共10小题) 1.m k d 2 2.20kx ;2021 kx -;2021kx 3.一个均匀带电的球壳产生的电场 4.θ cos mg . 5.θcot g . 6.2s rad 8.0-?=β 1s rad 8.0-?=ω 2s m 51.0-?='a 7.GMR m 8.v v v v ≠=? ?, 9.1P 和2P 两点的位置.10.j i ??22+- 三、计算题(每题10分,共60分,共6小题) 1. (a) m /s;kg 56.111.0?+-j i ρρ (b) N 31222j i ρρ+- . 2. (a) Yes, there is no torque; (b) 202202/])([mu mbu C C ++ 3.(a)m/s 14 (b) 1470 N 4.解 设该圆柱面的横截面的半径为R ,借助于无限长均匀带电直线在距离r 处的场强公式,即r E 0π2ελ=,可推出带电圆柱面上宽度为θd d R l =的无限长均匀带电直线在圆柱

2 轴线上任意点产生的场强为 =E ρd r 0π2ε λ-0R ρ=000π2d cos R R R ρεθθσ- =θθθεθσ)d sin (cos π2cos 0 0j i ρρ+-. 式中用到宽度为dl 的无限长均匀带电直线的电荷线密度θθσσλd cos d 0R l ==,0R ρ为从 原点O 点到无限长带电直线垂直距离方向上的单位矢量,i ρ,j ρ为X ,Y 方向的单位矢量。 因此,圆柱轴线Z 上的总场强为柱面上所有带电直线产生E ρd 的矢量和,即 ??+-==Q j i E E πθθθεθσ2000)d sin (cos π2cos d ρρρρ=i 002εσ- 方向沿X 轴负方向 5.解 设邮件在隧道P 点,如图所示,其在距离地心为r 处所受到的万有引力为 23π34r m r G f ??-=ρ r m G )π34 (ρ-= 式中的负号表示f ρ与r ρ的方向相反,m 为邮件的质量。根据牛顿运动定律,得 22d )π34(dt r m r m G =-ρ

《大学物理 》下期末考试 有答案

《大学物理》(下)期末统考试题(A 卷) 说明 1考试答案必须写在答题纸上,否则无效。请把答题纸撕下。 一、 选择题(30分,每题3分) 1.一质点作简谐振动,振动方程x=Acos(ωt+φ),当时间t=T/4(T 为周期)时,质点的速度为: (A) -Aωsinφ; (B) Aωsinφ; (C) -Aωcosφ; (D) Aωcosφ 参考解:v =dx/dt = -A ωsin (ωt+φ) ,cos )sin(2 4/?ω?ωπA A v T T t -=+?-== ∴选(C) 2.一弹簧振子作简谐振动,当其偏离平衡位置的位移的大小为振幅的1/4时,其动能为振动总能量的 (A) 7/6 (B) 9/16 (C) 11/16 (D )13/16 (E) 15/16 参考解:,1615)(221242122122 1221=-=kA k kA kA mv A ∴选(E ) 3.一平面简谐波在弹性媒质中传播,在媒质质元从平衡位置运动到最大位移处的过程中: (A) 它的动能转换成势能. (B) 它的势能转换成动能. (C) 它从相邻的一段质元获得能量其能量逐渐增大. (D) 它把自己的能量传给相邻的一段质元,其能量逐渐减小. 参考解:这里的条件是“平面简谐波在弹性媒质中传播”。由于弹性媒质的质元在平衡位置时的形变最大,所以势能动能最大,这时动能也最大;由于弹性媒质的质元在最大位移处时形变最小,所以势能也最小,这时动能也最小。质元的机械能由最大变到最小的过程中,同时也把该机械能传给相邻的一段质元。∴选(D )

4.如图所示,折射率为n 2、厚度为e 的透明介质薄膜 的上方和下方的透明介质的折射率分别为n 1和n 3,已知n 1 <n 2<n 3.若用波长为λ的单色平行光垂直入射到该薄膜 上,则从薄膜上、下两表面反射的光束①与②的光程差是 (A) 2n 2 e . (B) 2n 2 e -λ / 2 . (C) 2n 2 e -λ. (D) 2n 2 e -λ / (2n 2). 参考解:半波损失现象发生在波由波疏媒质到波密媒质的界面的反射现象中。两束光分别经上下表面反射时,都是波疏媒质到波密媒质的界面的反射,同时存在着半波损失。所以,两束反射光的光程差是2n 2 e 。 ∴选(A ) 5.波长λ=5000?的单色光垂直照射到宽度a=0.25mm 的单缝上,单缝后面放置一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹,今测得屏幕上中央明条纹一侧第三个暗条纹和另一侧第三个暗条纹之间的距离d=12mm ,则凸透镜的焦距f 为: (A) 2m (B) 1m (C) 0.5m (D) 0.2m ; (E) 0.1m 参考解:由单缝衍射的暗纹公式, asin φ = 3λ, 和单缝衍射装置的几何关系 ftg φ = d/2, 另,当φ角很小时 sin φ = tg φ, 有 1103 310500061025.0101232==?=---?????λa d f (m ) , ∴选(B ) 6.测量单色光的波长时,下列方法中哪一种方法最为准确? (A) 双缝干涉 (B) 牛顿环 (C) 单缝衍射 (D) 光栅衍射 参考解:从我们做过的实验的经历和实验装置可知,最为准确的方法光栅衍射实验,其次是牛顿环实验。 ∴选(D ) 7.如果两个偏振片堆叠在一起,且偏振化方向之间夹角为60°,光强为I 0的自然光垂直入射在偏振片上,则出射光强为 (A) I 0 / 8. (B) I 0 / 4. (C) 3 I 0 / 8. (D) 3 I 0 / 4. 参考解:穿过第一个偏振片自然光的光强为I 0/2。随后,使用马吕斯定律,出射光强 10201 60cos I I I == ∴ 选(A ) n 3

大学物理模拟试卷-56学时上学期(大类)讲解

大学物理模拟试卷 (电类、轻工、计算机等专业,56学时,第一学期) 声明:本模拟试卷仅对熟悉题型和考试形式做出参考,对考试内容、范围、难度不具有任何指导意义,对于由于依赖本试卷或对本试卷定位错误理解而照成的对实际考试成绩的影响,一概由用户自行承担,出题人不承担任何责任。 (卷面共有26题,100.0分,各大题标有题量和总分) 一、判断题(5小题,共10分) 1.(1分)不仅靠静电力,还必须有非静电力,才能维持稳恒电流。 ( ) A 、不正确 B 、正确 2.(1分)高斯定理在对称分布和均匀分布的电场中才能成立。 ( ) A 、不正确 B 、正确 3.(1分)把试验线圈放在某域内的任意一处。若线圈都不动,那么域一定没有磁场存在。 ( ) A 、不正确 B 、正确 4.(1分)电位移通量只与闭合曲面内的自由电荷有关而与束缚电荷无关。( ) A 、不正确 B 、正确 5.(1分)动能定理 ∑A =△k E 中,究竟是内力的功还是外力的功,主要取决于怎样选取参 照系。( ) A 、正确 B 、不正确 二、选择题(12小题,共36分) 6.(3分)质点在xOy 平面内作曲线运动,则质点速率的正确表达示为( ). (1) t r v d d = (2) =v t r d d (3) t r v d d = (4) t s v d d = (5)2 2)d d ()d d (t y t x v += A 、 (1)(2)(3) B 、 (3)(4)(5) C 、 (2)(3)(4) D 、 (1)(3)(5) 7.(3分)如图所示,劲度系数为k 的轻弹簧水平放置,一端固定,另一端系一质量为m 的物体,物体与水平面的摩擦系数为μ。开始时,弹簧没有伸长,现以恒力F 将物体自平衡位置开始向右拉动,则系统的最大势能为( )。 A 、. 2)(2 mg F k μ-

大学物理期末考试题库

1某质点的运动学方程x=6+3t-5t 3 ,则该质点作 ( D ) (A )匀加速直线运动,加速度为正值 (B )匀加速直线运动,加速度为负值 (C )变加速直线运动,加速度为正值 (D )变加速直线运动,加速度为负值 2一作直线运动的物体,其速度x v 与时间t 的关系曲线如图示。设21t t →时间合力作功为 A 1,32t t →时间合力作功为A 2,43t t → 3 C ) (A )01?A ,02?A ,03?A (B )01?A ,02?A , 03?A (C )01=A ,02?A ,03?A (D )01=A ,02?A ,03?A 3 关于静摩擦力作功,指出下述正确者( C ) (A )物体相互作用时,在任何情况下,每个静摩擦力都不作功。 (B )受静摩擦力作用的物体必定静止。 (C )彼此以静摩擦力作用的两个物体处于相对静止状态,所以两个静摩擦力作功之和等于 零。 4 质点沿半径为R 的圆周作匀速率运动,经过时间T 转动一圈,那么在2T 的时间,其平均 速度的大小和平均速率分别为(B ) (A ) , (B ) 0, (C )0, 0 (D ) T R π2, 0 5、质点在恒力F 作用下由静止开始作直线运动。已知在时间1t ?,速率由0增加到υ;在2t ?, 由υ增加到υ2。设该力在1t ?,冲量大小为1I ,所作的功为1A ;在2t ?,冲量大小为2I , 所作的功为2A ,则( D ) A .2121;I I A A <= B. 2121;I I A A >= C. 2121;I I A A => D. 2121;I I A A =< 6如图示两个质量分别为B A m m 和的物体A 和B 一起在水平面上沿x 轴正向作匀减速直线 运动,加速度大小为a ,A 与B 间的最大静摩擦系数为μ,则A 作用于B 的静摩擦力F 的 大小和方向分别为(D ) 轴正向相反与、轴正向相同 与、轴正向相同 与、轴正向相反 与、x a m D x a m x g m x g m B B B B ,,C ,B ,A μμT R π2T R π2T R π2t

大学物理力学题库及答案

一、选择题:(每题3分) 1、某质点作直线运动的运动学方程为 x = 3t-5t 3 + 6 (SI),则该质点作 2、一质点沿x 轴作直线运动,其v t 曲 线如图所示,如t=0时,质点位于坐标原点, 则t=4.5 s 时,质点在x 轴上的位置为 (A) 5m . (B) 2m . (C) 0. (D) 2 m . (E) 5 m. [ b ] pc 的上端点,一质点从p 开始分 到达各弦的下端所用的时间相比 6、一运动质点在某瞬时位于矢径 r x, y 的端点处,其速度大小为 7、 质点沿半径为R 的圆周作匀速率运动,每 T 秒转一圈.在2T 时间间隔中, 其平均速度大小与平均速率大小分别为 (A) 2 R/T , 2 R/T . (B) 0,2 R/T (C) 0,0. (D) 2 R/T , 0. [ b ] 8 以下五种运动形式中,a 保持不变的运动是 4、 一质点作直线运动,某时刻的瞬时速度 v 2 m/s ,瞬时加速度a 2m/s , 则一秒钟后质点的速度 (B)等于 2 m/s . (D)不能确定. [ d ] (A)等于零. (C)等于 2 m/s . 5 、 一质点在平面上运动, 已知质点位置矢量的表示式为 r at i bt 2j (其中 a 、 b 为常量),则该质点作 (A)匀速直线运动. (B)变速直线运动. (C)抛物线运动. (D) 一般曲线运 动. [ b ] [d ] (A) 匀加速直线运动,加速度沿 x 轴正方向. (B) 匀加速直线运动,加速度沿 x 轴负方向. (C) 变加速直线运动,加速度沿 x 轴正方向. (D) 变加速直线运动,加速度沿 x 轴负方向. 3、图中p 是一圆的竖直直径 别沿不同的弦无摩擦下滑时, 较是 (A) 到a 用的时间最短. (B) 到b 用的时间最短. (C) 到c 用的时间最短. (D) 所用时间都一样. (A) d r dt (C) d r dt (B) (D) d r dt dx 2 .dt 2 d y dt [d ] a

《大学物理I、II》(下)模拟试题(2)

《大学物理I 、II 》(下)重修模拟试题(2) 一、选择题(每小题3分,共36分) 1.轻弹簧上端固定,下系一质量为m 1的物体,稳定后在m 1下边又系一质量为m 2的物体,于是弹簧又伸长了?x .若将m 2移去,并令其振动,则振动周期为 (A) g m x m T 122?π= (B) g m x m T 212?π= (C)g m x m T 2121?π= (D) g m m x m T )(2212+π=? [ ] 2.有两个相同的容器,容积固定不变,一个盛有氦气,另一个盛有氢气(看成刚性分子的理想气体),它们的压强和温度都相等,现将5J 的热量传给氢气,使氢气温度升高,如果使氦气也升高同样的温度,则应向氦气传递热量是 [ ] (A) 6 J (B) 5 J (C) 3 J (D) 2 J 3.一机车汽笛频率为750 Hz ,机车以25 m/s 速度远离静止的观察者。观察者听到的声音的频率是(设空气中声速为340 m/s )。 (A) 810 Hz (B) 685 Hz (C) 805 Hz (D) 699 Hz [ ] 4.一质点在X 轴上作简谐振动,振幅4A cm =,周期2T s =,取其平衡位置为坐标原点,若0t =时刻质点第一次通过2x cm =-处,且向X 轴负方向运动,则质点第二次通过2x cm =-处的时刻为 [ ] (A )1s (B )32s (C )3 4 s (D )2 s

5.如图所示,平板玻璃和凸透镜构成牛顿环装置,全部浸入n =1.60的液体中,凸透镜可沿O O '移动,用波长λ=500 nm(1nm=10-9m)的单色光垂直入射。从上向下观察,看到中心是一个暗斑,此时凸透镜顶点距平板玻璃的距离最少是 (A) 156.3 nm (B) 148.8 nm (C) 78.1 nm (D) 74.4 nm (E) 0 [ ] 6.一横波以波速u 沿x 轴负方向传播,t 时刻波形曲线如图所示,则该时刻 [ ] (A) A 点振动速度大于零 (B) B 点静止不动 (C) C 点向下运动 (D) D 点振动速度小于零 7.1 mol 刚性双原子分子理想气体,当温度为T 时,其内能为 [ ] (A) RT 23 (B)kT 23 (C)RT 2 5 (D) kT 2 5 (式中R 为普适气体常量,k 为玻尔兹曼常量) 8.如图所示,折射率为n 2、厚度为e 的 透明介质薄膜的上方和下方的透明介质的折 射率分别为n 1和n 3,已知n 1<n 2<n 3.若用 波长为λ的单色平行光垂直入射到该薄膜上, 则从薄膜上、下两表面反射的光束①与②的 光程差是 [ ] (A) 2n 2 e -λ / 2 (B) 2n 2 e (C) 2n 2 e + λ / 2 (D) 2n 2 e -λ / (2n 2) n=1.68 n=1.60 n=1.58 O ' O λ x u A y B C D O n 2 n 1 n 3 e ① ②

大学物理期末考试试卷(含答案) 2

2008年下学期2007级《大学物理(下)》期末考试(A 卷) 一、选择题(共27分) 1. (本题3分) (2717) 距一根载有电流为3×104 A 的电线1 m 处的磁感强度的大小为 (A) 3×10-5 T . (B) 6×10-3 T . (C) 1.9×10-2T . (D) 0.6 T . (已知真空的磁导率μ0 =4π×10-7 T ·m/A) [ ] 2. (本题3分)(2391) 一电子以速度v 垂直地进入磁感强度为B 的均匀磁场中,此电子在磁场中运动轨道所围的面积内的磁通量将 (A) 正比于B ,反比于v 2. (B) 反比于B ,正比于v 2. (C) 正比于B ,反比于v . (D) 反比于B ,反比于v . [ ] 3. (本题3分)(2594) 有一矩形线圈AOCD ,通以如图示方向的电流I ,将它置于均匀磁场B 中,B 的方向与x 轴正方向一致,线圈平面与x 轴之间的夹角为α,α < 90°.若AO 边在y 轴上,且线圈可绕y 轴自由转动,则线圈将 (A) 转动使α 角减小. (B) 转动使α角增大. (C) 不会发生转动. (D) 如何转动尚不能判定. [ ] 4. (本题3分)(2314) 如图所示,M 、N 为水平面内两根平行金属导轨,ab 与cd 为垂直于导轨并可在其上自由滑动的两根直裸导线.外磁场垂直水平面向上.当外力使 ab 向右平移时,cd (A) 不动. (B) 转动. (C) 向左移动. (D) 向右移动.[ ] 5. (本题3分)(2125) 如图,长度为l 的直导线ab 在均匀磁场B 中以速度v 移动,直导线ab 中的电动势为 (A) Bl v . (B) Bl v sin α. (C) Bl v cos α. (D) 0. [ ] 6. (本题3分)(2421) 已知一螺绕环的自感系数为L .若将该螺绕环锯成两个半环式的螺线管,则两个半环螺线管的自感系数 c a b d N M B

大学物理期末考试试卷(含答案)

《大学物理(下)》期末考试(A 卷) 一、选择题(共27分) 1. (本题3分) 距一根载有电流为3×104 A 的电线1 m 处的磁感强度的大小为 (A) 3×10-5 T . (B) 6×10-3 T . (C) 1.9×10-2T . (D) 0.6 T . (已知真空的磁导率μ0 =4π×10-7 T ·m/A) [ ] 2. (本题3分) 一电子以速度v 垂直地进入磁感强度为B 的均匀磁场中,此电子在磁场中运动轨道所围的面积内的磁通量将 (A) 正比于B ,反比于v 2. (B) 反比于B ,正比于v 2. (C) 正比于B ,反比于v . (D) 反比于B ,反比于v . [ ] 3. (本题3分) 有一矩形线圈AOCD ,通以如图示方向的电流I ,将它置于均匀磁场B 中,B 的方向与x 轴正方向一致,线圈平面与x 轴之间的夹角为α,α < 90°.若AO 边在y 轴上,且线圈可绕y 轴自由转动,则线圈将 (A) 转动使α 角减小. (B) 转动使α角增大. (C) 不会发生转动. (D) 如何转动尚不能判定. [ ] 4. (本题3分) 如图所示,M 、N 为水平面内两根平行金属导轨,ab 与cd 为垂直于导轨并可在其上自由滑动的两根直裸导线.外磁场垂直水平面向上.当外力使 ab 向右平移时,cd (A) 不动. (B) 转动. (C) 向左移动. (D) 向右移动.[ ] 5. (本题3分) 如图,长度为l 的直导线ab 在均匀磁场B 中以速度v 移动,直导线ab 中的电动势为 (A) Bl v . (B) Bl v sin α. (C) Bl v cos α. (D) 0. [ ] 6. (本题3分) 已知一螺绕环的自感系数为L .若将该螺绕环锯成两个半环式的螺线管,则两个半环螺线管的自感系数 c a b d N M B

大学物理考试题库完整

普通物理Ⅲ 试卷( A 卷) 一、单项选择题 1、运动质点在某瞬时位于位矢r 的端点处,对其速度的大小有四种意见,即 (1)t r d d ; (2)dt r d ; (3)t s d d ; (4)22d d d d ?? ? ??+??? ??t y t x . 下述判断正确的是( ) (A) 只有(1)(2)正确 (B) 只有(2)正确 (C) 只有(2)(3)正确 (D) 只有(3)(4)正确 2、一个质点在做圆周运动时,则有( ) (A) 切向加速度一定改变,法向加速度也改变 (B) 切向加速度可能不变,法向加速度一定改变 (C) 切向加速度可能不变,法向加速度不变 (D) 切向加速度一定改变,法向加速度不变 3、如图所示,质量为m 的物体用平行于斜面的细线联结置于光滑的斜面上,若斜面向左方作加速运动,当物体刚脱离斜面时,它的加速度的大小为( ) (A) g sin θ (B) g cos θ (C) g tan θ (D) g cot θ 4、对质点组有以下几种说法: (1) 质点组总动量的改变与内力无关; (2) 质点组总动能的改变与内力无关; (3) 质点组机械能的改变与保守内力无关. 下列对上述说法判断正确的是( ) (A) 只有(1)是正确的 (B) (1) (2)是正确的 (C) (1) (3)是正确的 (D) (2) (3)是正确的 5、静电场中高斯面上各点的电场强度是由:( ) (A) 高斯面内的电荷决定的 (B) 高斯面外的电荷决定的 (C) 空间所有电荷决定的 (D) 高斯面内的电荷的代数和决定的 6、一带电粒子垂直射入均匀磁场中,如果粒子的质量增加为原来的2倍,入射速度也增加为原来的2倍,而磁场的磁感应强度增大为原来的4倍,则通过粒子运动轨道所围面积的磁通量增大为原来的:( ) (A) 2倍 (B) 4倍 (C) 0.5倍 (D) 1倍 7、一个电流元Idl 位于直角坐标系原点 ,电流沿z 轴方向,点P (x ,y ,z )的磁感强度沿 x 轴的分量 是: ( )

相关主题