搜档网
当前位置:搜档网 › 线路参数测试作业指导书

线路参数测试作业指导书

线路参数测试作业指导书
线路参数测试作业指导书

交流输电线路工频电气参数测量作业指导书

批准:

审核:

编制:

深圳市鹏能投资控股有限公司试验分公司

交流输电线路工频电气参数测量作业指导书

编号:版本号:

状态:执行

目录

1.试验项目

2.适用范围

3.编制依据

4.作业流程

5.作业准备

6.作业方法

7.安全风险辨析与预控

8.质量控制及检验标准

9.附表(1、2、3)

文件修改记录:

创建

版本号修改说明修改人审核人批准人

1. 试验项目 1.1测试要求

1.1.1 新建和改建的单回交流输电线路,在运行前应进行线路单位长度电阻、电感、电容等工频电气参数的测量;

1.1.2 新建和改建的同塔双回输电线路,在运行前应进行双回线路之间的工频单位长度的耦合电感、耦合电容测量。

1.2线路电气参数测试前的试验项目

(a) 感应电压; (b) 感应电流; (c) 绝缘电阻; (d) 核对相别。 1.3线路电气参数测量项目

(a) 直流电阻 (b) 直流电阻测量 (c) 正序阻抗测量 (d) 零序阻抗测量 (e) 正序电容测量 (f) 零序电容测量

(g) 双回线路之间的工频单位长度的耦合电感和耦合电容测量(无特殊要求不用测试,

详细测试方法见附表1)。

1.4架空线和电缆混合线路参数的测量

当一条输电线路由架空线路和电缆线路串联构成时,可测量混合线路的电气参数,必要

时分别测量架空线段和电缆线段的电气参数。 1.5测量用电源的频率选取

待测线路不存在工频感应电压和感应电流的条件下,可直接选用工频电源进行测量。 待测线路存在工频感应电压和感应电流的条件下,为保证参数测量结果的准确度,宜采用异频法进行测量。一般情况下,选取f -f S ?和f

f S ?+两个频率点进行测量。

f ?通常可取2.5 Hz ,5 Hz ,7.5 Hz ,10 Hz 。

交接试验是能及时有效地发现电力设备因运输、安装等方面的问题造成的缺陷、防范电力设备事故、保证电力系统安全运行的有效手段,是保证电力设备安全投产工作中必不可少的一个重要环节。为了强化一次设备交接试验工作,规范交接试验现场作业,四川通源电力科技有限公司组织编制交接试验标准化作业指导书。作业指导书的编写参照国家标准、企业标准的技术规范、规定。

本作业指导书适用于110kV~500kV电压等级新安装的、按照国家相关出厂试验标准试验合格的电气设备交接试验,本标准不适用于安装在煤矿井下或其他有爆炸危险场所的电气设备。

3.编写依据

表3-1 编写依据

序号引用资料名称

1 GB50150—2016 电气装置安装工程电气设备交接试验标准

2 DL408-1991 电业安全工作规程(发电厂和变电所电气部分)

3 DL/T596-1996 《电力设备预防性试验规程》

4 《110千伏及以上送变电基本建设工程启动验收规程》

5 《继电保护及安全自动装置运行管理规程》

6 DL/T559-200

7 《220kV-750kV电网继电保护装置运行整定规程》

7 DL/T584-2007 《3kV-110kV电网继电保护装置运行整定规程》

作业(工序)流程见图4-1 图4-1 作业(工序)流程图

线路参数测试 是否异常 采取措施

否 设置围栏、悬挂警示牌,摆放设备、接取电源

试验接线并检查,试验前绝缘电阻测试并核相

开始

确认试验现场,断开线路侧架空引下线(悬空)

完成 正确记录试验数据,

拆除试验接线,恢复引下线 试验后绝缘电阻测试

5.1 人员配备

表6-1 作业人员配备

工序名称建议工作人数负责人数监护人数

试验前准备4~7 1 1

线路参数测试 1 1 1 工作终结 3 1 1

5.2 工器具及仪器仪表配置

表6-2 主要工器具及仪器表配置

序号名称规格/编号单位数量备注

1 线路参数测试主机台 1

2 线路参数专用测试钳线条 3

3 接地线条 2

4 万用表只 1

5 兆欧表5000V及以上台 1

6 阻容分压器及测试表头台 1 用于测试感应电压

7 1100kV高压验电器支 1

8 220kV高压验电器支 1

9 绝缘手套付 2

10 绝缘靴双 2

11 绝缘杆套 2

12 发电机AC220/380V 条 1

13 电源线、电源箱套 1

6作业方法

6.1线参测试前期准备 6.1.1编制测试方案

收集相关资料信息,现场踏勘 ,编写,审核,审定,批准等步骤。 6.1.2落实相关人员,各相关人员应熟悉测试方案。

6.1.3备齐备好:测试设备、测试电源、测试用线、通讯工具、运输工具。 6.1.4安排被测线路停电计划。

6.1.5确认线路已竣工,所有安全接地已拆除,并经验收合格。试验前,应确保线路上无人工作;待测输电线路沿线无雷雨等恶劣天气;长度超过200km 的线路,应该与电抗器、电容器、分压器等设备断开引线,以避免测量结果误差过大。

6.1.6完成被测线路的停电操作和安全措施; 办理许可工作的手续; 6.2线参测试前期试验 6.2.1感应电压测量

A .线路末端短路条件下的感应电压

如图1,将被试线路末端三相接地,通过阻容分压器(或者极高阻抗的电压表,如静电电压表Q3-V )测量各相对地感应电压,并记录交流分量和直流分量。

A C

B 首端V

分压器

末端

被试线路

图1 末端短路条件下工频感应电压测量

B .线路末端悬空条件下的感应电压

如图2,将被测线路首、末端解除接地后,通过阻容分压器(或者极高阻抗的电压表,如静电电压表Q3-V )测量各相末端开路条件下的感应电压,并记录交流分量和直流分量。

A C

B 首端V

分压器

末端

被试线路

图2末端开路条件下工频感应电压测量

注:若用极高阻抗的电压表,如静电电压表Q3-V ,只需分别逐相测取:线路两端均不接地和线路仅远端接地时的感应电压并记录; 6.2.2感应电流

如图3,将被测线路首、末端分别三相接地,用钳形电流表在线路首端分别测量各相的接地电流,并记录交流分量和直流分量。

A

C

B

首端

末端

被试线路A

A 图3 工频电磁感应电流测量

6.2.3线路相别核对及绝缘电阻测量

(a) 如图4(a ),在进行A 相线路绝缘电阻测量和核相过程中,将B 相、C 相的首、末端接地,A 相线路两端悬空。用5000V 或10 000V 兆欧表对A 相进行绝缘电阻的测量。若绝缘电阻不为零,初步判断A 相线路两端的相别标识一致,记录绝缘电阻值;若绝缘电阻为零,则可初步判断相别标识错误,或者线路中间有接地短路点。

(b) 如图4(b ),将A 相线路的末端接地,再次测量A 相线路绝缘电阻值,若绝缘电阻为零,则可判断A 相线路两端的相别标识一致。若绝缘电阻不为零,则A 相线路两端的相别标识不一致,或者A 相线路中间有断开点。

(c) 线路B 相和C 相的绝缘电阻测量及核相方法与A 相测量方法相同。

注:线路两端若有电磁式电压互感器,将对兆欧表进行绝缘测量的结果产生影响。在此

条件下,需断开电磁式电压互感器的高压引线。

A

C

B 首端

A'C'

B'末端

被试线路

兆欧表

(a) A 相线路末端开路条件下的绝缘电阻测量

A

C

B 首端

A'C'

B'末端

被试线路

兆欧表

(b) A 相线路末端短路条件下的相别标示复核 图4测量线路各相绝缘电阻及相位核对接线

6.3线参测试 6.3.1直流电阻测量

如图5,线路末端三相短路,首端开路并在A 相和B 相之间施加直流电压,测量直流电压AB U 和直流电流AB I 。A 相和B 相线路的总直流电阻AB R 为:

AB AB AB I U R /= (1)

逐次测量B 和C 相线路的相间电阻BC R 、C 和A 相线路的相间电阻CA R ,则各相的直流电阻:

2

/(2/(2/()))AB BC CA C CA BC AB B BC CA AB A R -R R R R -R R R R -R R R +=+=+= (2)

式中:

A R —A 相的直流电阻值,Ω;

B R —B 相的直流电阻值,Ω;

C R —C 相的直流电阻值,Ω;

注:亦可采用直流电阻测量仪进行线路直流电阻测量。当测量线路较短时,测量结果应考虑减去测量引线的直流电阻。

A

A C

B 首端末端

被试线路V U AB

图5直流电阻测量

直流电阻的测量过程中应记录线路两端及沿线的温度。根据测量记录的温度将相应的直流电阻测量结果折算至20℃的直流电阻:

β)20(120,-+=

?t R R A

C A (3)

式中:

t —线路沿线的平均温度,℃;

β—被试线路的电阻温升系数, 1/℃。对于钢芯铝绞线,β=0.0036(1/℃);对于铜芯电

缆, β=0.00382(1/℃)。

C

B R ?20,、

C

C R ?20,测量结果的折算方法同

C

A R ?20,。

6.3.2三相正序阻抗测试 A .测试原理分析

如图6,将单回三相线路的末端短路,在首端施加频率为f 的三相正序电源。在首端测

量并通过信号分析提取该频率的三相电压相量][1,1,11C ,S B S A S S U U U &&&=U ,三相电流相量][1,1,11C ,S B

S A

S S I I I &&&=I ,正序短路阻抗1

S Z :

T S T

S S Z 1

11aI aU =, (4)

其中:]1[3

1

2a a =a ,3/2πj e a =。

C A B 首端末端

被试线路

测量仪器

PT

CT

AC

AC

AC

a

U &b U &c

U

&A

,S U

1&B ,S U 1&C

,S U 1&A ,S I 1&B

,S I

1&C

,S I 1&图6 交流线路正序短路阻抗测量

B .图7,DS-2008高压线路参数异频测试系统测试接线

图7 DS-2008高压线路参数异频测试系统测试接线

C.操作提示

被测线路对侧短路接地,分别采用变频电源的40Hz/60Hz输出频率点,输出电压档位置于250V低档输出,由变频电源隔离变250V输出L端经测试主机的电流输入端-电流输出端对被测三相线路施加三相对称的电压,同时分别将需测取的始端电压接入仪器的Ua、Ub、Uc,隔离变输出N端连接测试主机的Un端并可靠接地。电源由零位逐步调压,当施加的试验电流达到6~8A时,即可测取施加于线路的三相相电压、三相电流、三个单相有功功率和无功功率。加压两次40Hz/60Hz分别按下[采40Hz]和[60Hz]两频点的试验数据后,按换算键即可得出线路的正序阻抗、正序电阻、正序电抗、正序电感及阻抗角等参数值,按[打印]键或[保存]键】将测试结果打印或保存。该项目测试结束后将试验电源调零,合接地刀闸,更改其他项目接线,拉开接地刀闸,进行下一项目测试。

6.3.3三相零序阻抗测试 A .测试原理分析

如图8,将单回三相线路的末端短路并接地,三相线路的首端并联,在首端与接地装置之间施加频率为f 的单相电源。在首端测量并通过信号分析提取该频率的电压相量0S U &

,电流相量0S I &

,零序短路阻抗0S Z :

300

S S S I U Z &&= (4)

C

A B 首端

末端

被试线路测量仪器

PT

CT

AC

U

&0

S U

&0

S I &

图8单回交流线路零序短路阻抗测量

B .图9,DS-2008高压线路参数异频测试系统测试接线

图9 DS-2008高压线路参数异频测试系统测试接线

C.操作提示

被测线路测试端三相短接,线路对侧三相短路接地,分别采用变频电源的40Hz/60Hz输出频率点,输出电压档位置于250V低档输出,由变频电源单相隔离变低档输出L端经测试主机的A相电流输入端-A相电流输出端对被短接三相线路施加单相电压,隔离变输出N端连接测试主机的Un端并可靠接地,电源由零位逐步调压,当施加的试验电流达到6~8A时,即可测取施加于线路的电压、电流、有功功率和无功功率。加压两次40Hz/60Hz分别按下[采40Hz]和[60Hz]两频点的试验数据后,按换算键即可得出线路的零序阻抗、零序电阻、零序电抗、零序电感及阻抗角等参数值,按打印键或保存键键测试结果打印或保存。该项目测试结束后将试验电源调零,合接地刀闸,更改其他项目接线,拉开接地刀闸,进行下一项目测试。

A.如图10,DS-2008高压线路参数异频测试系统测试接线

图10,DS-2008高压线路参数异频测试系统测试接线

B.操作提示

被测线路对侧开路,建议使用变频电源60Hz输出频率,电源的输出电压档位置于750V 高档输出,由变频电源三相隔离变的750V输出L端经测试主机的电流输入端-电流输出端对被测线路三相施加三相的对称电压,隔离变输出N端连接测试主机并可靠接地,电源由零位逐步调压,当施加的试验电压达到750V左右时,测取施加于线路的三相电压、三相电流,按下采样键仪器自动计算出线路工频下的正序电容和容纳参数,按打印键或保存键键测试结果打印或保存。该项目测试结束后将试验电源调零,合接地刀闸,更改其他项目接线,拉开接地刀闸,进行下一项目测试。

A.如图11,DS-2008高压线路参数异频测试系统测试接线

图11,DS-2008高压线路参数异频测试系统测试接线

B.操作提示

被测线路对侧开路,始端短接,建议使用变频电源60Hz输出频率,电源的输出电压档位置于750V高档输出,由变频电源单相隔离变750V输出L端经测试主机的A相电流输入端-A相电流输出端对被测线路施加单相电压,变频电源输出N端连接测试主机Un端并接保证接地良好,电源由零位逐步调压,当施加的试验电压达到750V左右时,测取施加于线路的电压、电流,按下采样键仪器自动计算出线路工频下的零序电容和容纳参数。

6.3.6测试结束

7. 安全风险辨析与预控

工作前安全风险辨析及预控措施见表5-1

表5-1 工作前安全风险辨析及预控措施表

序号安全风险预控措施

检查结

1 把有故障的试

验设备带到现

出工前检查试验设备是否完好,是否在有效期内

2 现场安全措施

不满足要求

工作负责人应在值班人员的带领下核实工作地点、任务,拉开

的隔离开关、合上的接地开关情况

3 工作任务和安

全措施交代不

详尽、不清晰

工作负责人应在开工前向全体工作成员交代清楚工作地点、工

作任务、已拉开的隔离开关(刀闸)和已合上的接地开关的情

况,检查安全围栏和标识牌等安全措施,特别注意与邻近带电

设备的安全距离,防止走错间隔

4 误接非独立电

检查电源是否为独立电源,防止误跳运行设备

5 电源线蹦跳触

及带电设备

严禁蹦跳电源线,电源线必须固定,防止甩动或突然断开试验

电源

6 高空坠落登高人员必须使用安全带,必要时使用高空作业车

7 无关人员可能

误入试验场地

安全围栏设置,不要有缺口,安全围栏周围派人监护,防止无

关人员进入

8 人员误触碰带

电的高压试验

引线

在加压之前清理无关人员,同时对工作组成员交代好安全事项,

加压过程中设专人监护,并呼唱

9 感应电伤人、

高压触电

试验中断、更改接线或结束后,必须切断主回路的电源,挂上

接地线后才可以更换试验接线

10 拆接引线未恢

复,或者遗留

工具

工作负责人在试验工作结束后进行认真的检查,确认拆接引线

已恢复除,现场无遗留工具和杂物

请您认真检查并签名确认,您的签名意味着将承担相应的安全质量责任。

施工单位检查人:监理单位检查人:

日期:日期:

注:检查结果::未检查×:检查不合格√:检查合格/ :无此项

8. 质量控制措施及检验标准

8.1质量控制

实测输电线路工频参数的安全事项

输电线路工频参数的测量除一般电气测试必须注意的种种安全问题之外, 还有其特殊性。输电线路短则几千米, 长则上千里, 不仅常常有同类相邻伴行,还屡屡与之上跨下穿, 由于电容C H/C0分压和电磁感应(X H和负荷电流)在彼此各自身上产生的响应-感应电压,对测试人员和测试仪器的安全构成威胁,这是必须以万无一失的态度来对待的事,防止感应电压伤及人身安全是线路参数现场测试的第一要义。

8.1.1现场测量应根据线路的实际情况和生产运行的实际需要, 预先编制测试方案,以确保线路试验的安全、顺利完成。

方案应包括:确定需测取的参数。阻抗和电容等工频参数可用交流法测取,电阻可用直流法测取,感应电压宜用直接法测取。

测试方案中,必须:

1). 确定现场工作负责人: 对测试工作全面负责;

2). 确定现场工作安全负责人: 对现场安全负责,监督现场安全措施的实施;

8.1.2无论测试哪条线路的哪项参数,进行测试接线前, 必须一律先将被测线路良好接地;然后接好仪表,加电压(或通电流)前, 才可拆去接地线;拆测试引线前, 须再次将线路可靠接地,切不可图省事,少作任何一个步骤。

搭接和拆除临时接地线时,必须使用合格的绝缘操作杆。绝缘杆的长时耐受电压不得低于运行线路的最高额定电压。

拉合接地刀闸时,必须穿戴合格的绝缘靴和绝缘手套。

8.1.3测试线路参数前,应保证通讯畅通、清晰,且应有后备通讯手段。

8.1.4测试前,凡需接地的,必须先确认已接地良好, 如仪器外壳,试验电源和被试线路的中性点等。凡属工作接地, 如测零序阻抗时的中性点接地的阻抗应小到不影响测试精度的要求。

8.1.5测取有相邻并行或交叉跨越较多,特别是有更高电压线路相邻或交叉线路的工频参数时,必须先测感应电压、感应电流。

注意:通过互感抗X H感应过来的电压会随运行线路上的电流变大而变大的。

8.1.6检测感应电压时,必须使用合格的绝缘操作杆。

与被测线路相连接的所有测试仪表设备的耐受电压应大于可能的感应电压,否则必须采用有效措施或只能利用相关线路停电的时机检测。

8.1.7只要对测试准确度影响不大,尽可能接地。如:测试正序阻抗参数时, 用三表法,对端的中性点可予接地。

8.1.8测试时,必须作到:

1). 全线路无其他工作;

2). 线路两侧开关及刀闸确保均在断开位置,且无工作;

3). 每次接通试验电源前,都应将电源的输出调压旋钮调至零位,每一项试验结束后,也必须将输出调压旋钮立即调回零位;

8.1.9 现场测试应在天气良好的情况下进行,不得在雷雨天进行,也不宜在风、雪天进行;提高输电线路工频参数测试准确性的若干措施

影响线路参数准确测试的首要因素是工频感应电压,传统的测试方法采取的主要措施是提高试验电压, 增大试验电流并加以倒换相序以图削弱“干扰”的影响,这是一个方法,但试验电源将随之增大容量和重量, 会使现场试验感到十分不便。本测试系统通过改变试验电源的频率, 且让测试仪表只接受试验频率的信息,对工频感应电压采取规避的处理方式,然后将测试结果换算成工频参数。

影响线路参数测试准确性还有下述四个值得强调的因素:

8.1.10当测量较短的线路(如几千米以内)的阻抗(Z1、Z0)和较长线路(如几十千米以上)的电容(C1、C0、C H)时,测试用的电压引线和电流引线应分开;并在被试线路侧(而不是试验电源侧)测取试验电压。

8.1.11测取较长(百千米以上)线路的阻抗(或电容)参数时,应在对侧同时读取电流(或电压)取首末两端的平均值供计算用。

8.1.12提高电压测试回路的内阻抗Z N,可使测得的感应电压U G更接近真实。当Z N较小时, 所测得的感应电压U G值将几乎正比于Z N。因此, 测U G宜用特高阻抗的电压表,如静电电压表等。

8.1.14根据零序保护分段和地质状况, 在线路的相应位置增作1-2次零序阻抗参数的实测。

8.2 质量控制表

表8-1 质 量 控 制 表

8.3检验标准

新建及改建的高压输电线路在投入运行前,除了检查线路绝缘情况,核对相位外,还应测量各种工频参数值,以作为计算系统短路电流、继电保护整定、推算潮流分布和选择合理运行方式等工作的实际依据,并可借以验证长线路的换相效果和无功补偿是否达到了设计的预期。

序号 控制点

控制方式

W H S 1 试验参数确定 ● 2 登高作业 ● 3 起吊设备 ● 4 试验接线 ● 5 安全距离确定 ● ● 6 试验监护确定 ● 7 加压确定 ● 8

工序验收

注:H :停工待检点;W :见证点;S :旁站点

线路参数测试方法

高感应电压下用SM501测试线路参数的方法 湖南省送变电建设公司调试所邓辉邓克炎 0引言 超高压输电线路工频参数测试时,经常遇到感应电压很高的情况,不能用仪器直接测试, 否则仪器被感应电压击穿损坏。本文根据厂家仪器给出的原理接线进行了改接,通过理论分析,实际测试,数据证实,此种方法确实有效可行。 1SM501的介绍: SM501线路参数测试仪,是专门用于输电线路工频参数测试的仪器。该仪器电路设计精巧,思路独特,使得其性能优越,功能强大,体积小,重量轻。该仪器内部采用先进的A/D同步交流采样及数字信号处理技术,成功的解决了多路信号在市电条件下同步测量和计算的难题。仪器操作简单方便,数据准确可靠,可完全取代传统仪表的测量方法,可显示并记录用户关心的所有测量数据,可作为现场高精度交流指示仪表使用。该仪器测试线路参数与传统仪表测试线路参数比较,减轻劳动强度,工作效率大大提高。 1.1SM501的主要功能与特点: (1)可测量输电线路的正序阻抗,线间阻抗,零序阻抗,线地阻抗,正序电容,线间电冰箱容,零序电容,线地电容,互感阻抗,电压,电流,功率,电阻,电抗,阻抗角,频率等参数。 (2)全部数据均在统一周期内同步测量,保证在市电条件下测量结果的准确性和合理性。

(3)在仪器允许的测量范围内可直接测量,超出测量范围时可外接一次电压互感器和电流互感器。 (4)可锁定显示数据并存储或打印全部测量结果,本仪器内置不掉电存储器,可长期保持测量数据并可随时查阅。 (5)全部汉字菜单及操作提示,直观方便。 1.2主要技术指标; (1)基本测量精度:电流、电压、阻抗0.2级,功率0.5级 (2)电压测量范围:AC 0-450V 电流测量范围:AC 0-50A 2为什么要对输电线路进行参数测试: 输电线路短距离也有几公里,长距离的有几十至几百公里,输电线路长距离的架设,中途的换位,变电站两端相位有时出现差错,输电线路的正序阻抗,线间阻抗,零序阻抗,线地阻抗,正序电容,线间电容,零序电容,线地电容,互感阻抗,电阻,电抗,阻抗角等实际与理论计算值不一至。 以上这些参数的准确对继电保护的整定至关重要,这些参数如果有误,保护不能正确动作,距离保护不能准确测距,甚至误动或不动,对电力设备造成直接经济损失。为了保证输电线路进行参数测试的准确,保定市超人电子有限公司研制了一种比较智能的参数测试仪那就是SM501。 3几种典型的参数测试: 3.1 输电线路正序阻抗的测试: 将线路末端三相短路悬浮。当测试电压和测试电流都不超过本测试仪器允许输入范围时,按图1接法测量。当测试电压和测试电流超过本测试仪器允许输入范围必须外接电压互感器和电流互感器,按图2接法测量。在仪器测试项目菜单中

线路参数测试方法

SM501测试线路参数的方法高感应电压下用邓克炎邓辉湖南省送变电建设公司调试所 引言0, ,不能用仪器直接测试超高压输电线路工频参数测试时,经常遇到感应电压很高的情况否则仪器被感应电压击穿损坏。本文根据厂家仪器给出的原理接线进行了改接,通过理论分析,实际测试,数据证实,此种方法确实有效可行。 SM501的介绍:1 线路参数测试仪,是专门用于输电线路工频参数测试的仪器。该仪器电路设计精巧,思路独特,SM501同步交流采样及数字信号处理技使得其性能优越,功能强大,体积小,重量轻。该仪器内部采用先进的A/D 术,成功的解决了多路信号在市电条件下同步测量和计算的难题。仪器操作简单方便,数据准确可靠,可完全取代传统仪表的测量方法,可显示并记录用户关心的所有测量数据,可作为现场高精度交流指示仪表使用。该仪器测试线路参数与传统仪表测试线路参数比较,减轻劳动强度,工作效率大大提高。 SM501的主要功能与特点:1.1 可测量输电线路的正序阻抗,线间阻抗,零序阻抗,线地阻抗,正序电容,线间电(1)冰箱容,零序电容,线地电容,互感阻抗,电压,电流,功率,电阻,电抗,阻抗角,频率等参数。全部数据均在统一周期内同步测量,保证在市电条件下测量结果的准确性和合理性。(2)在仪器允许的测量范围内可直接测量,超出测量范围时可外接一次电压互感器和电(3) 流互感器。可锁定显示数据并存储或打印全部测量结果,本仪器内置不掉电存储器,可长期保(4) 持测量数据并可随时查阅。 (5)全部汉字菜单及操作提示,直观方便。主要技术指标;1.2 0.5级级,功率(1)基本测量精度:电流、电压、阻抗0.2:AC 0-50A :AC 0-450V 电流测量范围(2)电压测量范围为什么要对输电线路进行参数测试:2输电线路短距离也有几公里,长距离的有几十至几百公里,输电线路长距离的架设,中途的换位,变电站两端相位有时出现差错,输电线路的正序阻抗,线间阻抗,零序阻抗,线地阻抗,正序电容,线间电容,零序电容,线地电容,互感阻抗,电阻,电抗,阻抗角等实际与理论计算值不一至。以上这些参数的准确对继电保护的整定至关重要,这些参数如果有误,保护不能正确动作,距离保护不能准确测距,甚至误动或不动,对电力设备造成直接经济损失。为了保证输电线路进行参数测试的准确,保SM501。定市超人电子有限公司研制了一种比较智能的参数测试仪那就是几种典型的参数测试:3: 输电线路正序阻抗的测试3.1 接法测量。1将线路末端三相短路悬浮。当测试电压和测试电流都不超过本测试仪器允许输入范围时,按图接法测量。2当测试电压和测试电流超过本测试仪器允许输入范围必须外接电压互感器和电流互感器, 按图在仪器测试项目菜单中应选择“正序阻抗”。 IUA a A I UB B b

第十章 输电线路试验与检测

第十章输电线路试验与检测 第一节输电线路绝缘试验 本节讨论的线路参数均指三相导线的平均值,即按三相线路通过换位后获得完全对称。对不换位线路,因其不对称度较小,也可以近似地适用。 一、线路各相的绝缘电阻的测量 ?线路各相的绝缘电阻的测量,是对线路绝缘状况、接地情况或相间短路等缺陷的检查。 ?测量不能在雷雨天气,应在天气良好的情况下进行。为保证人身和设备安全以释放线路电容积累的静电荷,首先将被测线路相对地短接。 ?测量时,拆除三相对地的短路接地线,为保证测试工作的安全和测量结果的准确,应测量各相对地是否还有感应电压,若还有感应电压,应采取措施消除。 ?对线路的绝缘电阻进行测量时,确定线路上无人工作,并得到现场指挥允许工作的命令后,将非测量的两相短路接地,用两千五至五千伏兆欧表,依次测量每一相对其它两相及地间的绝缘电阻。 ?对于线路长、电容量较大的,应在读取绝缘电阻值后,先拆去接于兆欧表L端子上的测量导线,再停摇兆欧表,以免反充电损坏兆欧表。测量结束应对线路进行放电。 ?根据测得的绝缘电阻值,结合当时气候条件和线路具体情况综合分析,作出正确判断。 二、核对相位 核对相位一般用兆欧表和指示灯法。指示灯法又分干电池和工频低压电源两种。 1、兆欧表法

图10-1是用兆欧表核对相位的接线图,在线路的始端一相接兆欧表的L 端,兆欧表的E 端接地,在线路末端逐相接地测量,若兆欧表的指示为零,则表示末端接地相与始端测量相同属于一相。按此方法,定出线路始、末两端的A 、B 、C 相。 2、指示灯法 指示灯法是将图10-1中的兆欧表换成电源,和指示灯串联测量,若指示灯亮,则表示始、末两端同属于一相。但应注意感应电压的影响,以免造成误判断。 A B C 始端末端A B C ''' 图10-1 核对相位接线图 三、测量直流电阻 试验前线路末端三相均应彻底放电。线路始端开路,末端三相短路,拆开两端所有接地线。使用仪器设备:24V 直流电源,直流毫伏电压表如图10-2。 A B C 始端末端A .DC V ... 图10-2 电流电压表法测量线路直流电阻接线图 A ─直流电流表,V ─直流电压表 A , B 相加直流电压AB U ,测电流AB I ,则

线路参数测试作业指导书

交流输电线路工频电气参数测量作业指导书 批准: 审核: 编制: 深圳市鹏能投资控股有限公司试验分公司

1.试验项目 测试要求 新建和改建的单回交流输电线路,在运行前应进行线路单位长度电阻、电感、电容等工频电气参数的测量; 新建和改建的同塔双回输电线路,在运行前应进行双回线路之间的工频单位长度的耦合电感、耦合电容测量。 线路电气参数测试前的试验项目 (a)感应电压; (b)感应电流; (c)绝缘电阻; (d)核对相别。 线路电气参数测量项目 (a)直流电阻 (b)直流电阻测量 (c)正序阻抗测量 (d)零序阻抗测量 (e)正序电容测量 (f)零序电容测量 (g)双回线路之间的工频单位长度的耦合电感和耦合电容测量(无特殊要求不用测试, 详细测试方法见附表1)。 架空线和电缆混合线路参数的测量 当一条输电线路由架空线路和电缆线路串联构成时,可测量混合线路的电气参数,必要时分别测量架空线段和电缆线段的电气参数。 测量用电源的频率选取 待测线路不存在工频感应电压和感应电流的条件下,可直接选用工频电源进行测量。 待测线路存在工频感应电压和感应电流的条件下,为保证参数测量结果的准确度,宜采

用异频法进行测量。一般情况下,选取f -f S ?和f f S ?+两个频率点进行测量。 f ?通常可取 Hz ,5 Hz , Hz ,10 Hz 。 2.适用范围 交接试验是能及时有效地发现电力设备因运输、安装等方面的问题造成的缺陷、防范电力设备事故、保证电力系统安全运行的有效手段,是保证电力设备安全投产工作中必不可少的一个重要环节。为了强化一次设备交接试验工作,规范交接试验现场作业,四川通源电力科技有限公司组织编制交接试验标准化作业指导书。作业指导书的编写参照国家标准、企业标准的技术规范、规定。 本作业指导书适用于110kV~500kV 电压等级新安装的、按照国家相关出厂试验标准试验合格的电气设备交接试验,本标准不适用于安装在煤矿井下或其他有爆炸危险场所的电气设备。 3.编写依据 表3-1 编 写 依 据

线路参数测试方案

. .. . 220KV茅申I线、茅申II线线路 参数测试案 编制: 审核: 批准: 年月日

线路参数测试案 I 试验前的准备: 1、先组织参加试验人员学习该线路测量三措案 2、由工作负责人向全体试验人员交待整个工作容和人员分工定位及安全注意事项。 3、检查试验所需仪器、仪表连接线,绝缘工器具等是否按试验要求备齐备足。 4、检查两通讯工具是否正常。 5、整个试验工作开始之前,一定要得到基建负责人可,确认所有试验线路已停电,线路上均无人工作,可以进行测量。 6、两则分别办理可开工手续。 II 试验项目和步骤: 以下试验项目,每执行一项,即在序号左打“√”,由工作负责人执行。 一、线路相序和绝缘电阻的测定: 1、测试人员按“安规”要求设置工作围栏,并悬挂“止步,高压危险”标示牌。 2、由工作负责人再次向工作班成员交待工作容和人员分工定位及安全注意事项。 3、准备绝缘垫一块,2500伏兆欧表面2只(其中一只作备品)

4、用验电器验明线路确无电压后,将线路三相短路接地。 5、用通知对,线路已接地,请对做好安措,拆除线路耦合电容器上的引线,对已拆开的引线要保持一定的相间距离并有防止摆动措施。 测试茅申II线时,将茅申I线申城变侧三相短路接地,测茅申I 线时,将茅申II线三相短路接地。 6、得到对回答:引线已拆除,人员已离开。 7、通知对:将线路一相接地,其它两相开路,操作完毕,人员离开设备后,用回答对。 8、接到对回答后,开始测量,并作好数据记录。 9、重复项7、项8,测量其它两相。 二、直流电阻测定: 1、将被试线路短路接地放电20分钟。 2、用通知对(申城变侧,以下同):线路已接地,将对侧线路三相用专用线夹短路并接地。 3、得到对回答:“三相已短接完毕,可以试验”。 4、通知对:“试验开始,将引下线分别接至电桥进行三相电阻测

高压输电线路测量方法

高压输电线路工频参数测量方法 根据GB50150-2006标准规定,新建及改建的35kV高压输电线路在投入运行前,除了检查线路绝缘情况,核对相位外,还应测量各种工频参数值,以作为计算系统短路电流、继电保护整定、推算潮流分布和选择合理运行方式等工作的实际依据,并可借以验证长线路的换相效果和无功补偿是否达到了设计的预期 目前,高压输电线路工频参数测量方法有2种:传统工频法和变频法测试 目前国内不少电业部门在现场进行线路工频参数测量时,有的还采用指针式表计组合,需人工多次不同步读取测量数据,人工工作量大;有的虽已使用了专用的数字测量仪表或线路参数测试仪,但当线路较长时,所需用的工频试验电源容量仍将会很大;而且采用工频电源进行测试需要用调压器,隔离变压器,高压电流互感器、电压互感器等众多设备, 使得试验设备重、大、多,试验接线非常繁杂。整套试验设备体积庞大,重量大,需要吊车等配合工作,十分不利于现场工作,而且由于测试电源是工频电源,容易与耦合的工频干扰信号混频,带来很大的测量误差,需要大幅度提高信噪比,对电源的容量和体积要求又进一步提高 随着国家电力建设的发展、供电线路的同杆架设和交叉跨越增多,导致输电线路相互间的感应电压不断提高,对测试人员和仪器仪表的安全造成严重的威胁;给线路工频参数的准确测量带来了强力的干扰。因此,采用传统的工频电源进行线路参数的测试难以保证工作的安全性及测试结果的准确性 变频法测试系统可采用非工频频率的电源进行线路的测试,以代替目前线路测试需用的众多设备,并规避了工频感应对测量准确性的干扰。为了进一步削弱工频感应电压、电流对于测量安全的威胁和对测量准确性的干扰,我公司在测试系统的核心部件-变频电源内部做了特殊处理,用于泄放工频感应电流和削除工频感应电压 测试系统主机可对设定的频率信号进行定频采样,并根据主机仪器中数据库内置的不同类型及线径的输电线路每公里的理论参考值用于对测试结果的非工频频率进行 校正得出工频下的线路参数测试值 用户可根据被测线路的工频感应电压、电流的大小确定试验频率为工频或变频,若采用定频测试,仪器可将线路测试参数自动归算到工频条件下的测试结果,并且生成标准规范的测试报告。这样一来,极大的简化了线路参数的传统测试,而且可不必再考虑 量仪表、数学模型于一体,消除强干扰的影响,保证仪器设备的安全,能极其方便快速、准确地测量输电线路的工频参数 MS-110输电线路工频参数测试系统主要特点有 1、快速准确完成线路的正序电容,正序阻抗,零序电容,零序阻抗等参数的测量,还可以测量线路间互感和耦合电容(线路直阻采用线路直阻仪进行测量) 2、抗干扰能力强,能在异频信号与工频干扰信号之比为1:10的条件下准确测量; 3、外部接线简单,仅需一次接入被测线路的引下线就可以完成全部的线路参数测量

数字式电参数测试仪设计报告(附带电路图)

数字式电参数测试仪 设计报告 摘要:根据设计任务与要求,该设计的控制部分以89C51单片机为核心,配以12bit模/数转换器MAX187,电参数信号经A/D转换后输入到单片机,从而实现了单片机对电参数测量值的控制,它具有高精度的特点。分频部分采用4069芯片,产生稳定、抖动幅度较小的方波。与用3片4017芯片构成的3级分频电路连接于一起,并采用测周期法测量频率,在整体上提高了电路输出频率的精确度。采用两片74LS164芯片串入并出动态扫描显示,通过检测基本实现了发挥部分的设计要求,在频率测量过程时,50Hz以下的低频没有达到发挥部分的要求。 关键词:单片机AT89C51 MAX187 数字式电参数 1. 方案比较 在本设计中采用模块化设计思想,对整个电路以模块为单位,进行分析.比较和论证。 1.1数字电参数测量电路方案比较 方案一: MAX187是美国MAXIM 公司生产的一种串行A/D 转换器,具有低功耗、高精度、高速度、体积小、接口简单等特点。数字电参数测试仪框图如图1所示。其主要以89C51单片机为核心,配以12bit模/数转换器MAX187,实现了单片机对整个电路的控制;再配以40系列芯片,实现了直流电压、直流电流、电阻、频率的测量。使用74LS164减少单片机I/O口的使用 图1 187与单片机组成的控制电路框图 MAX187 引脚: VDD :电源端接+ 5V ;AIN :采样模拟信号输入端,0 - VREF ; SHDN :三电平关闭输入端; REF :用于模拟转换的基准电压端,使用外部基准电源时用作输入; GND :模拟地和数字地;CS:片选信号输入端; SCLK:串行时钟输入端;DOUT:串行数据输入端,数据在SCLK下降沿输出。 输入信号经放大、滤波,通过8 选1 模拟开关输给A/ D 转换器MAX187,转换后的数字信号通过DOUT 端输入给单片机。这里我们采用软件合成的方式模拟SPI 接口将单片机与MAX187 连接,从而完成串行数据的A/ D 转换。 MAX187 的SCLK、CS、DOUT 端直接与单片机的通用I / O 口相连,不需要任何接口变换。

线路参数测试方法

线路参数测试方法 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】

220KV茅申I线、茅申II线线路 参数测试方案 编制: 审核: 批准: 年月日 线路参数测试方案 I试验前的准备: 1、先组织参加试验人员学习该线路测量三措方案 2、由工作负责人向全体试验人员交待整个工作内容和人员分工定位及安全注意事项。 3、检查试验所需仪器、仪表连接线,绝缘工器具等是否按试验要求备齐备足。 4、检查两方通讯工具是否正常。 5、整个试验工作开始之前,一定要得到基建负责人许可,确认所有试验线路已停电,线路上均无人工作,可以进行测量。 6、两则分别办理许可开工手续。 II试验项目和步骤: 以下试验项目,每执行一项,即在序号左方打“√”,由工作负责人执行。 一、线路相序和绝缘电阻的测定:

1、测试人员按“安规”要求设置工作围栏,并悬挂“止步,高压危险”标示牌。 2、由工作负责人再次向工作班成员交待工作内容和人员分工定位及安全注意事项。 3、准备绝缘垫一块,2500伏兆欧表面2只(其中一只作备品) 4、用验电器验明线路确无电压后,将线路三相短路接地。 5、用电话通知对方,线路已接地,请对方做好安措,拆除线路耦合电容器上的引线,对已拆开的引线要保持一定的相间距离并有防止摆动措施。 测试茅申II线时,将茅申I线申城变侧三相短路接地,测茅申I线时,将茅申II线三相短路接地。 6、得到对方回答:引线已拆除,人员已离开。 7、通知对方:将线路一相接地,其它两相开路,操作完毕,人员离开设备后,用电话回答对方。 8、接到对方回答后,开始测量,并作好数据记录。 9、重复项7、项8,测量其它两相。 二、直流电阻测定: 1、将被试线路短路接地放电20分钟。 2、用电话通知对方(申城变侧,以下同):线路已接地,将对方侧线路三相用专用线夹短路并接地。 3、得到对方回答:“三相已短接完毕,可以试验”。 4、通知对方:“试验开始,将引下线分别接至电桥进行三相电阻测量,记录电桥读数和两端环境温度”。(为了防止空间感应电压干扰,根据情况可在线路测量端并上旁路电容)。

电缆测试仪测试参数详解

电缆测试仪测试参数详解 发布时间:2006.08.14 19:58来源:xfbbs作者: 目前应用最多的网络布线系统就是使用双绞线的布线系统,其中主流的选择是超5 类或更高的性能的系统。 对于布线系统来说,安装人员进行的最最基本的测试就是使用连通性测试仪验证链路端到端的连接。这些测试仪提供完整的接线图测试,使用TDR 技术测量长度以及其他一些附加信息。这类仪器对于测试语音线路,快速检查数据链路以及高速增长的住宅局域网布线市场是非常有帮助的。 用于布线系统验收的测试标准要求测量几个重要的电气参数以便于认证布线系统满足一定的传输性能要求。有的测试在全世界范围内都是要进行的。每个标准都有其特定的通过/失败极限值,这些极限值取决于链路的类别和链路模型的定义。 对于已安装的链路都会要求进行三项基本的测试。第一个就是接线图测试。接线图测试用于验证线缆链路中每一根针脚端至端的连通性,同时检查串绕问题。任何错误的接线形式,例如断路,短路,跨接,反接,串绕等都应能够检测出来。 判断布线系统性能的另一个重要的参数是衰减。任何电子信号从信号源发出后在传输过程中都会有能量的损失,这对于局域网信号来说也不例外。衰减随着温度和频率的增加而增加。高频信号比低频信号衰减得更严重。这也是为什么链路有正确的接线图,在10Base-T 网络中运行得非常好,而不能在100Base-T 网络中正常工作的原因。对于5 类布线系统,各个厂商的产品在衰减方面的性能非常接近。 判断双绞线布线系统性能的最重要的参数是串扰,其中近端串扰(NEXT)被提出的最早(始于TSB-67)。串扰是由于一对线的信号产生了辐射并感应到其他临近的一对线而造成的。串扰也是

线路参数测试方案

220KV茅申I线、茅申II线线路 参数测试方案 编制: 审核: 批准: 年月日

线路参数测试方案 I 试验前的准备: 1、先组织参加试验人员学习该线路测量三措方案 2、由工作负责人向全体试验人员交待整个工作内容和人员分工定位及安全注意事项。 3、检查试验所需仪器、仪表连接线,绝缘工器具等是否按试验要求备齐备足。 4、检查两方通讯工具是否正常。 5、整个试验工作开始之前,一定要得到基建负责人许可,确认所有试验线路已停电,线路上均无人工作,可以进行测量。 6、两则分别办理许可开工手续。 II 试验项目和步骤: 以下试验项目,每执行一项,即在序号左方打“√”,由工作负责人执行。 一、线路相序和绝缘电阻的测定: 1、测试人员按“安规”要求设置工作围栏,并悬挂“止步,高压危险”标示牌。 2、由工作负责人再次向工作班成员交待工作内容和人员分工定位及安全注意事项。 3、准备绝缘垫一块,2500伏兆欧表面2只(其中一只作备品) 4、用验电器验明线路确无电压后,将线路三相短路接地。

5、用电话通知对方,线路已接地,请对方做好安措,拆除线路耦合电容器上的引线,对已拆开的引线要保持一定的相间距离并有防止摆动措施。 测试茅申II线时,将茅申I线申城变侧三相短路接地,测茅申I线时,将茅申II线三相短路接地。 6、得到对方回答:引线已拆除,人员已离开。 7、通知对方:将线路一相接地,其它两相开路,操作完毕,人员离开设备后,用电话回答对方。 8、接到对方回答后,开始测量,并作好数据记录。 9、重复项7、项8,测量其它两相。 二、直流电阻测定: 1、将被试线路短路接地放电20分钟。 2、用电话通知对方(申城变侧,以下同):线路已接地,将对方侧线路三相用专用线夹短路并接地。 3、得到对方回答:“三相已短接完毕,可以试验”。 4、通知对方:“试验开始,将引下线分别接至电桥进行三相电阻测量,记录电桥读数和两端环境温度”。(为了防止空间感应电压干

线路参数测量方案

110kV电缆线路参数测量方案 一、试验目的: 新建线路在投入运行前,测量各种工频参数值,为计算系统短路电流、继电保护整定、推算潮流分布和选择合理运行方式等工作提供依据。 二、线路名称 1、2.8km纯电缆线路; 三、试验方法 1、从XX变电站进行测量,对侧站根据试验项目进行相应配合; 2、从XXX变电站进行测量,对侧站根据试验项目进行相应配合。 四、试验设备 五、试验准备 1.测试前应收集被测线路情况如线路名称、电压等级、线路长度、型号、截面等信息。 2.由对方协调好各关联单位 3.对侧GIS进行相应的操作 4.按试验计划准备好在现象XX变电站和XX变电站测量的工作票。 六、测量接线及步骤 1.正序阻抗的测量: 试验接线:将线路末端三相短路不接地,即合H-ES11地刀、并将接地

(1)如图接好试验回路接线,检查调压器置于零位。 (2)将测试仪选择正序阻抗测量后按确定,进入正序阻抗测量。 (2)将测试仪选择零序阻抗测量后按确定,进入零序阻抗测量。

(3)调节调压器开始升压,待电流升至一定值并且较为稳定时按确认。 (4)记录仪器显示的测量数值。可多次测量取平均值。 3. 正序电容的测量: 试验接线:将线路末端三相短路不接地,即合H-ES11地刀、并将接地点解开,三相短接。在线路始端加三相工频电源进行测量。接线图如下: 图一:正序电容测试接线图 试验步骤: (4)如图接好试验回路接线,检查调压器置于零位。 (5)将测试仪选择正序阻抗测量后按确定,进入正序阻抗测量。 (6)调节调压器开始升压,待电流升至一定值并且较为稳定时按确认。记录仪器显示的测量数值。可多次测量取平均值。 2. 零序电容的测量:

E题-脉冲信号参数测量仪报告

脉冲信号参数测量仪 摘要:本设计选用 FPGA 作为数据处理与系统控制的核心,采用FPGA 与单片机相结合的方式制备出可测量脉冲信号频率、占空比、幅度、上升时间的测量仪以及标准脉冲信号发生器。本设计由以下功能模块构成:前端信号处理模块、峰值检波模块、窗口比较器模块、幅值升压模块等。利用FPGA 的强大处理能力,完成数字信号处理,并将处理后的信号送至单片机进行显示,设计中综合运用了电容去耦、滤波以及同轴电缆等抗干扰措施,减少了电路干扰。在FPGA 内有等精度测频模块、占空比测量模块和上升时间测量模块、标准脉冲产生模块等。显示与校准通过单片机完成。 关键词:峰值检波 窗口比较器 脉冲参数测试仪 标准脉冲信号发生器 一、系统方案 1.方案论证与比较 方案一:图1所示为中规模电路脉冲信号测量仪。此方案采用中规模数字电路构成,主要由比较器、功能选择、量程选择、计数器和控制模块组成。该方案电路复杂,频带过窄,功能不强,实现起来比较困难。故不采用此方案。 图1 小规模数字电路原理框图 方案二:图2所示为纯单片机方案,该方案以单片机为核心。 门控信号由单片机内部计数定时器产生。该方案成本低,但受单片机本身限制,其时序控制能力弱,处理速度慢,无法达到本次设计要求。故不采用此方案。 图2 纯单片机方案原理框图 方案三:图3所示为FPGA 与单片机相结合的方案。此方案中,FPGA 构成主要测量模块,输入信号经过前端处理电路,得到5V 信号输入到FPGA 中。单

片机控制FPGA完成各种测量功能并显示测量数据。该方案外围元件相对较少,对高速信号处理速度快,精度高,且控制灵活、可靠性高。 图3 FPGA与单片机结合方案原理框图 综上所述,本设计拟采用方案三。 2.总体方案设计 当进行频率测量时,脉冲信号进入前置分挡模块。当信号较大时衰减,当信号较小时放大。在放大模块中,高频信号通过高速放大器,低频信号通过精密放大器,使输入波形均为幅值适中的脉冲,直接进入FPGA进行计算测量。FPGA 中,采用等精度测频方法进行测频和测占空比,利用基本上升时间测量模式进行两个信号的上升时间测量。单片机完成数据读取及校准功能。测量幅值时经过峰值检测并保持电路,再经单片机AD采集测出。 二、理论分析与计算 1.频率测量方法 本设计中的频率测量采用等精度测频法。该方法是将标准频率信号与待测信号输入到两个计数器进行同步计数。如图4所示,测量时单片机先预置闸门时间T,当闸门开启时,等待被测信号触发沿到来,计数器开始计数;预置闸门时间结束时,计数器并不立即停止而是等被测信号下一个同相位触发沿到来才关闭同步门并停止计数。可见实际闸门时间是被测信号周期的整数倍,即与被测信号同步。 若被测信号与标准信号的计数值分别为N x 和N ,则被测频率为: f x =N x /N ×f (1) 若忽略标频f 的误差,则等精度测频可能产生的相对误差为: η=(|f xe-f x|/f xe) ×100% (2) 式(2)中f xe 为被测信号频率的准确值。 在测量过程中,由于f x 计数的起止时间都是由该信号的上升测触发的,在 闸门时间T内对f x 的计数N x 无误差;对f 的计数N s 最多相差一个数的误差,即 |N s |≤1。则理论误差:η≤1/(T×f ) (3)由(3)式可以看出,测量频率的相对误差与被测信号频率的大小无关,仅 与闸门时间和标准信号频率有关,从而实现被测频带内的等精度测量。由于周期和频率互为倒数,因此可根据频率求出对应周期。该方法使测量精度大幅度提高,测量原理框图如图4 所示。

室内外热环境参数测定实验指导书

【实验名称】室内外热环境测试 【实验性质】综合性实验 【实验任务】测试不同类型建筑、不同建筑空间的热环境,对室外气象因素对室内热环境的影响进行分析,并根据分析结果针对建筑热工设计提出结论性意见。 【实验目的】 通过实验,使学生了解室内外热环境参数测定的基本内容,初步掌握仪器仪表的性能和使用方法,进一步感受和了解室外气象因素对建筑热环境的影响。 【实验内容】 建筑室内外热环境参数的测定主要分为室内热环境测定和室外热环境测定两部分。其中:室内热环境参数的测量主要包括2个方面的内容: ■温度的测定 ■空气相对湿度的测定 室外热环境参数的测试同样主要包括2个方面的内容: ■温度的测定 ■空气相对湿度的测定 ■风环境的测定 【实验仪器设备】 1、室内热环境的测定主要使用TESTO174H温湿度记录仪。 2、室外热环境参数的测定主要使用温湿度记录仪及8910便携气象站。 【实验方法和步骤】 1、室内热环境参数的测定 (1)将记录仪与计算机连接,设置记录仪时间及存储间隔等信息; (2)选择测点,注意避免测点受到日照等因素的影响; (3)选择完整时间段对选定测点和室外温湿度进行测试; (4)上传数据,进行数据整理和处理; (5)结合测点房间的特点(建筑形式、外环境、布局、朝向、围护结构等等)对实测数据的差异进行分析,提出建筑热工设计的改进型意见及设计原则; 测点A 位于建艺馆地下一层综合实验室西侧,有西向外墙外窗,有采暖; 测点B位于建艺馆地下一层综合实验室西侧,无外墙外窗,有采暖,暖气配置较少; 测点C 位于建艺馆地下一层综合实验室构造展室,无外墙外窗,无采暖;

【数据整理】 根据提供的数据图表选择所研究的时间段(周期10个小时),将对应的时刻、数据参数填入表格。 【分析】 根据数据结果分析同样外扰作用下不同室内环境的原因。 【结论及建议】 根据分析结果,归纳建筑热环境影响因素及其影响机理,提出通过建筑设计和设备等多种措施改善室内热环境的建议。

220kV线路参数试验总结

电网线路参数测试研究介绍 摘要: 本文介绍了220kV架空线线路参数测试原理,试验步骤及试验时一些注意事项 关键字: 线路参数测试 220kV架空线线路电气试验 1 概述 输电线路是电力系统的重要组成部分,工频参数则是输电线路重要的特征数据,是电力系统潮流计算、继电保护整定计算和选择电力系统运行方式等工作之前建立电力系统数学模型的必备参数,工频参数的准确性关系到电网的安全稳定运行,因此对新建和新改造的线路在投运前均需进行工频参数的计算和测量,为调度等部门提供准确的数据。 一般应测的参数有直流电阻R,正序阻抗Z1,零序阻抗Z0,正序电容C1,零序电容C0,及双回线路零序互感和线间耦合电容。除了以上参数外,绝缘电阻及相序核对也是线路参数中不可缺少的测试内容。 2 试验原理及试验步骤 2.1 测量线路各相的绝缘电阻及相序核对 测量绝缘电阻,是为了检查线路的绝缘状况,以及有无接地或相间短路等缺陷。一般应在沿线天气良好情况下(不能在雷雨天气)进行测量。首先将被测线路三相对地短接,以释放线路电容积累的静电荷,从而保证人身和设备安全。测量时,应拆除三相对地的短路接地线,然后测量各相对地是否还有感应电压,若还有感应电压,应采取消除措施。 测量绝缘电阻时,应确知线路上无人工作,并得到现场指挥允许工作的命令后,如图(2-1)所示将非测量的两相短路接地,用2500V或者5000V兆欧表轮流测量每一相对其他两相及地间的绝缘电阻。 图(2-1) 相位核对的方法很多,一般用兆欧表法进行测量,如图(2-2)所示在线路始端接兆欧表的L端,而兆欧表的E端接地,在线路末端逐相接地测量;若兆欧表指示为零,则表示末端接地相与始端测量相同属于一相。按此方法,定出线路始,末两端的A﹑B﹑C相。

电参数测试仪

2008年浙江省大学生电子设计竞赛题目-数字式电参数测试仪(E题) 一、电子设计竞赛任务 设计并制作一台用单5V直流电源供电,能测量电阻、直流电压、直流电流、频率等电参数的数字式测试仪。单5V直流电源自备。 二、电子设计竞赛要求 1、基本要求 (1)电阻测量范围:10Ω~100KΩ,相对误差<2%; (2)电流测量范围:100μA~10mA(电流源开路电压为10V),相对误差<2%;(3)电压测量范围:100mV~10V,相对误差<2%; (4)频率测量范围:100Hz~10kHz,相对误差<0.1%,输入信号为50mV的正弦交流信号; (5)显示刷新周期≤2s; (6)使用单5V直流电源供电。允许使用小于5V的单直流电源供电,要求线路板上留出5V直流电源电压测试接口。 2、电子设计竞赛发挥部分 (1)电阻测量范围:10Ω~1MΩ,相对误差<0.3%; (2)电流测量范围:100μA~10mA(电流源开路电压为10V),相对误差<0.2%;(3)电压测量范围:100mV~10V,相对误差<0.1%; (4)频率测量范围:10HZ~100kHZ,相对误差<0.01%,输入信号为50mV的正弦交流信号; (5)整机工作电流≤10mA。要求线路板上留出负载电流测试接口; (6)其它。

数字式电参数测试仪 摘要:本文介绍了一种基于高精度恒流源采样技术的新型数字式电参数测试仪,利用微处理器实现对电阻、直流电压、直流电流、频率等电参数的测量,该系统通过ADS1100来进行A/D转化,通过LM334来采集恒流源,通过LCD来显示测量数据。并给出了整个系统的总体设计方案,制作了样机,实际测试表明该:数字式电参数测试仪完全满足题目规定的基本要求和发挥部分的要求。 关键字:单片机电参数测量 AD1100 高精度恒流源 一方案设计与论证 该系统要求用单5V直流电源供电,能测量电阻、直流电压、直流电流、频率等电参数。该系统控制系统采用AT89C51单片机,A/D转换采用AD1100,显示部分采用LCD显示,恒流源采用LM334产生。该系统设计方案框图如图1.1所示。 §1.1系统控制部分 本设计采用AT89C51八位单片机实现。单片机软件编程的自由度大,可通过编程实现各种各样的算术算法和逻辑控制。而且体积小,硬件实现简单,安装方便。 §1.2 A/D转换部分 由于该系统的测量精度要达到0.3%,普通的8位AD转换芯片无法达到这一要求,而AD1100是16位A/D转换,线性误差仅为0.0015%,内置自校准电路,串行输出接口,可方便地与单片机配接。同时具有功耗低,精度高,抗干扰能力强等特点,适合要求精度较高的仪器仪表。所以该系统选择AD1100. §1.3显示部分 方案一:采用八位共阳极LED数码管进行显示,利用单片机I/O口动态循

线路参数测试方案

福清融侨经济技术开发区光电园二期项目220kV输变电工程(线路部分) 线路参数测试方案 编制: 审核: 批准: 福建省*****电力建设公司检测调试所

线路参数测试方案 1 测试依据 1.1《GB50150-2006 电气装置安装工程电气设备交接试验标准》第25.0.1.2 条 1.2《Q/FJG10029.2—2004 福建省电力设备试验规程》第17条 1.3《DL/T 782 -2001 110kV及以上送变电工程启动及竣工验收规程》第5条 1.4 国家电网公司发布的《架空输电线路管理规范》第十五条 1.5《DL/T559-2007 220kV-750kV电网继电保护装置运行整定规程》 1.6《DL/T584-2007 3kV-110kV电网继电保护装置运行整定规程》 2 试验目的 高压输电线路新架设、更改路径、更换导线地线、杆塔塔头改造升压都应进行线路工频参数的测试。 3 工作任务及测试参数 220kV东林Ⅰ路参数测试范围:500kV东台变220kV东林I路出线构架(253线路)~220kV林中变220kV东林I路出线构架(263线路); 220kV东林Ⅱ路参数测试范围:500kV东台变220kV东林II路出线构架(254线路)~220kV林中变220kV东林II路出线构架(264线路); 220kV东京线参数测试范围:500kV东台变220kV东京线出线构架(256线路)~220kV 京东方变220kV东京线出线构架(212线路); 220kV林京线参数测试范围:220kV林中变220kV林京线出线构架(266线路)~220kV 京东方变220kV林京线出线构架(211线路); 三相架空输电线路参数:正序阻抗、零序阻抗、正序电容、零序电容及核相等工作。 4 测试线路的信息 4.1、220kV东京线工程,起于已建500kV东台变220kV出线构架,终止于新建京东方变电站220kV进线构架。全线按单、双回路架空线路和单回路电缆线路混合设计,路径总长约11.0km,其中东台变出线约3.7km线路利用已建东林I路#1~#8双回路单边挂线重新架线,新建单回路架空线路长约6.5km,新建单回路电缆约0.8km(与林中~京东方220kV线路电缆沟平行敷设)。本工程架空线路导线分为两段:①东台变出线3.7km线路利用已建东台~林中I回线路双回路塔架线,考虑原东林I路导线使用情况,采用与其一致的导线截面,即2×300mm2截面,对应导线型号为JL/LB20A-300/25;②其余单回路段6.5km架空导线采用1×400mm2截面,对应导线型号为JL/LB20A-400/35。

用三表法测量电路等效参数

用三表法测量电路等效参数 一、实验目的 1. 学会用交流电压表、 交流电流表和功率表测量元件的交流等效参数的方法。 2. 学会功率表的接法和使用。 二、原理说明 1. 正弦交流信号激励下的元件值或阻抗值,可以用交流电压表、 交流电流表及功率表分别测量出元件两端的电压U 、流过该元件的电流I 和它所消耗的功率P ,然后通过计算得到所求的各值,这种方法称为三表法, 是用以测量50Hz 交流电路参数的基本方法。 计算的基本公式为: 阻抗的模I U Z = , 电路的功率因数 cos φ=UI P 等效电阻 R = 2I P =│Z │cos φ, 等效电抗 X =│Z │sin φ 或 X =X L =2πfL , X =Xc =fC π21 2. 阻抗性质的判别方法:在被测元件两端并联电容或串联电容的方法来加以判别,方法与原理如下: (1) 在被测元件两端并联一只适当容量的试验电容, 若串接在电路中电流表的读数增大,则被测阻抗为容性,电流减小则为感性。 图16-1 并联电容测量法 图16-1(a)中,Z 为待测定的元件,C'为试验电容器。(b)图是(a)的等效电路,图中G 、B 为待测阻抗Z 的电导和电纳,B'为并联电容C' 的电纳。在端电压有效值不变的条件下,按下面两种情况进行分析: ① 设B +B'=B",若B'增大,B"也增大,则电路中电流I 将单调地上升,故可判断B 为容性元件。 ② 设B +B'=B",若B'增大,而B"先减小而后再增大,电流I 也是先减小后上升,如图16-2所示,则可判断B 为感性元件。 由上分析可见,当B 为容性元件时, 对并联电容C'值无特殊要求;而当B 为感 性元件时,B'<│2B │才有判定为感性的意 I I Z B B B 2,U .U ....(a)(b).

输电线路工频参数测试仪的测试接线方法

输电线路工频参数测试仪的测试接线方法 MS-110A输电线路工频参数测试仪,能够准确测量各种高压输电线线路(架空、电缆、架空电缆混合、同杆多回架设的工频参数(正序电容、正序阻抗、零序电容、零序阻抗、互感和耦合电容等)。完全满足《110千伏及以上送变电基本建设工程启动验收规程》、DL/T559-94《220-500kV电网继电保护装置运行整定规程》、《GB50150-2006》的规定要求。 1、测试开始前的准备(将本端地刀打开)

图1-1:拆掉接地棒地线以便接上仪器测试线图1-2:测试线通过绝缘棒引到被测线路上 1.1如果试验现场有接地棒,操作步骤如下: (1)拆掉接地棒上的地线,以便接上仪器测试线,需拆3根接地棒,如图6-1;(2)将仪器面板左上角的接地端子可靠接入大地; (3)将信号地N可靠接入大地; (4)将黄色测试线较粗的接面板上的A端子,较细接U A端子,黄色夹子夹在接地棒前端的金属上; (5)将绿色测试线较粗的接面板上的B端子,较细接U B端子,黄色夹子夹在接地棒前端的金属上; (6)将红色测试线较粗的接面板上的C端子,较细接U C端子,黄色夹子夹在接地棒前端的金属上; (7)将夹有黄、绿、红测试线的接地棒分别钩到被测线路的A、B、C相上,如图6-2。 1.2如果试验现场没有接地棒,操作步骤如下: (1)将被测线路的测量端引下线可靠接入大地,如图6-3; 图1-3 将被测线路测量端引下线接地 (2)将仪器面板左上角的接地端子可靠接入大地; (3)将信号地N可靠接入大地; (4)将黄色测试线较粗的接面板上的A端子,较细的接U A端子; (5)将绿色测试线较粗的接面板上的B端子,较细的接U B端子; (6)将红色测试线较粗的接面板上的C端子,较细的接U C端子; (7)将黄、绿、红夹子分别夹到A、B、C线路的引下线上,如图6-4;

用三表法测量电路等效参数实验报告(含数据处理)

实验七 用三表法测量电路等效参数 一、实验目的 1. 学会用交流电压表、 交流电流表和功率表测量元件的交流等效参数的方法。 2. 学会功率表的接法和使用。 二、原理说明 1. 正弦交流信号激励下的元件的阻抗值,可以用交流电压表、 交流电流表及功率表分别测量出元件两端的电压U 、流过该元件的电流I 和它所消耗的功率P ,然后通过计算得到元件的参数值,这种方法称为三表法。 计算的基本公式为: 阻抗的模I U Z = , 电路的功率因数UI P =?cos 等效电阻 R = 2I P =│Z │cos φ, 等效电抗 X =│Z │sin φ 2. 阻抗性质的判别方法 可用在被测元件两端并联电容的方法来判别, 若串接在电路中电流表的读数增大,则被测阻抗为容性,电流减小则为感性。其原理可通过电压、电流的相量图来表示: 图7-1 并联电容测量法 图7-2 相量图 3. 本实验所用的功率表为智能交流功率表,其电压接线端应与负载并联,电流接线端应与负载串联。 三、实验设备 DGJ-1型电工实验装置:交流电压表、交流电流表、功率表、自耦调压器、白炽灯、镇流器、电容器。 四、实验内容 测试线路如图7-3所示,根据以下步骤完成表格7-1。 1. 按图7-3接线,将调压器调到表1中的规定值。 2. 分别测量15W 白炽灯(R)、镇流器(L) 和4.7μF 电容器( C)的电流和功率以及功率因数。 3. 测量L 、C 串联与并联后的电流和功率以及功率因数。 4. 如图7-4,用并联电容法判断以上负载的性质。

图7-3 图7-4 五、实验数据的计算和分析 根据表格7-1的测量结果,分别计算每个负载的等效参数。 白炽灯:I U Z ==2386.6, UI P =?cos =1 镇流器L :I U Z ==551.7,UI P =?cos =0.172 电容器C :I U Z ==647.2,UI P =?cos =0,C Z f ωπω1 ||,2==,f=50Hz ,因此C=4.9μF L 和C 串联:I U Z ==180.9,UI P =?cos =0.35;并联1μF 电容后,电流增大,所以是容 性负载 L 和C 并联:I U Z ==2515.7,UI P =?cos =0.47;并联1μF 电容后,电流减小,所以是感性负载 由以上数据计算等效电阻 R =│Z│cosφ,等效电抗 X =│Z│sinφ,填入表7-1中。 六、实验小结 掌握了交流电路的基本实验方法,学会使用调压器,交流电压表、交流电流表,用功率表测量元件的功率。通过三表法可以通过实验方法测量并计算出负载元件的阻抗。实验中,线路接错会出现报警,也可能烧坏功率表的保险丝,需按照例图仔细检查线路。通过测量发现,被测负载有些不是线性元件。 Z

相关主题