搜档网
当前位置:搜档网 › 石墨烯薄膜制备方法研究

石墨烯薄膜制备方法研究

石墨烯薄膜制备方法研究
石墨烯薄膜制备方法研究

北京化工大学本科生毕业论文

题目石墨烯薄膜制备方法研究

诚信申明

本人声明:

所呈交的学位论文是本人在导师指导下进行的研究工作和取得的研究生成果,除了文中特别加以标注和致谢之处外,论文中不包含他人已经发表或撰写过的研究成果,也不包含为获得北京化工大学或其他教育机构的学位或证书而是用过的材料,其他同志对研究所做的贡献均已在论文中作了声明并表示了谢意。

申请学位论文与资料若有不实之处,本人愿承担一切相关责任。本科生签名:日期:年月日

本科生毕业设计(论文)任务书

设计(论文)题目:石墨烯薄膜制备方法研究

学院:化学工程学院专业:化学工程与工艺班级:化工0805

学生:艾东东指导教师(含职称):元炯亮副教授专业负责人:刘晓林

1.设计(论文)的主要任务及目标

主要任务:(1)利用Hummers法制备氧化石墨;

(2)利用电化学还原法制备石墨烯。

主要目标:配置一定浓度的氧化石墨溶液,导电玻璃作为基底,将氧化石墨溶液涂于导电玻璃表面,在恒电压下还原氧化石墨,制得薄层石墨烯。

2.设计(论文)的基本要求和内容

了解石墨烯国内外的研究现状和发展趋势,以及有关石墨烯的一些制备方法和表征手段,掌握基本的实验操作技能,学会分析实验结果。毕业论文完成后应具备独立进行研究的能力。

3.主要参考文献

[1] 朱宏伟,徐志平,谢丹等.石墨烯-结构、制备方法与性能表征[M].北京:清华大学出版社,2011:36~45

[2]郭鹏.石墨烯的制备、组装及应用研究[D],北京:北京化工大学,2010

[3] Hummers W S, Offeman R E, Preparation of graphite oxide[J].J Am Chem Soc,

1958,80(6):1339

4.进度安排

设计(论文)各阶段名称起止日期

1 前期文献查阅并准备开题2012.2.15~2012.2.29

2 进行相关实验,处理实验数据,分析结果2012.3.1~2012.5.1

3 总结实验结果,编写实验论文2012.5.1~2012.5.20

4 完善毕业论文,进行相关的修改2012.5.20~2012.5.30

5 准备毕业答辩及毕业相关的工作2012.5.30~2012.6.5

石墨烯薄膜制备方法研究

摘要

石墨烯是由单层碳原子组成的二维材料,它的特殊单原子层结构使其具有许多独特的物理化学性质,成为当前研究的热门课题。现有许多制备石墨烯的方法,比如固相法的机械剥离法、外延生长法;液相法的氧化还原法、有机合成法、溶剂热法;气相法的化学气相沉积法、电弧放电法等。石墨烯在超级电容器、锂离子电池、纳米复合物等方面有着广泛的应用。

本文主要是探究电化学还原法制备薄层石墨烯的新方法。

本文利用Hummers法制备了氧化石墨,将所制得的氧化石墨溶解于N,N-二甲基甲酰胺溶液(DMF)中,然后把溶有氧化石墨的DMF溶液涂在导电玻璃表面,利用循环伏安法找出最佳的还原电压,在此恒电压下还原氧化石墨烯制得石墨烯,然后用红外光谱对其进行表征,同时利用紫外可见分光光度仪测试石墨烯的透射率测量石墨烯的厚度,发现我们合成的石墨烯基本为单层。

关键词:石墨烯氧化石墨电化学还原法

Research on the preparation of thin-layer grapheme method

Abstract

Graphene, one novel single atom layer structured carbonaceous nanomaterial, has attracted increasing number of research s due to the unique physical and chemical properties. There are several methods to fabricate the grapheme which have been studied and published, including solid state methods : mechanical exfoliation, epitaxy growth et al, liquid state methods : oxidation reduction, organic synthesis, solvothermal method et al, and gas state:chemical vapor deposition, arc-discharge method et al. Graphene has showed great potential in the application of Supercapacitor, Li-ion batteries, nanocomposites.

In this paper, We much attention on synthesizing graphene by a new method-the electrochemical reduction method.

We prepared the Graphite oxide by Hummers method and dissolved it into the N,N-dimethyl formamide (DMF) solution, coated the former DMF solution on the surface of conductive glass. Graphene was synthesized at the best stable voltage which was found by cyclic voltammetry.We utilized the Infrared Spectroscopy (IR) to characterize the formation of the graphene and detected the thickness of the graphene by UV VIS, and found the graphene we fabricated that is almost single layer.

Keywords: graphene, graphite oxide, electrochemical reduction

目录

前言 (1)

第1章绪论 (2)

第1.1节石墨烯概述 (2)

第1.2节石墨烯的基本性能 (3)

1.2.1电子学性能 (4)

1. 2.2热学性能 (4)

1. 2.3力学性能 (5)

1. 2.4磁学性能 (5)

第1.3节石墨烯的制备方法 (5)

1.3.1机械剥离法 (5)

1.3.2 外延生长法 (6)

1.3.3 氧化石墨还原法 (6)

1.3.4 电化学还原法 (7)

1.3.5 化学气相沉积法 (7)

1.3.6 电弧放电法 (8)

第1.4节石墨烯的表征技术 (8)

1.4.1光学显微技术 (8)

1.4.2扫描电子显微镜(SEM)技术 (8)

1.4.3透射电子显微镜(TEM)技术 (9)

1.4.4扫描电子显微镜(SPM)技术 (9)

1.4.5拉曼光谱(Raman)技术 (9)

第1.5节石墨烯的应用前景 (9)

1.5.1石墨烯太阳能电池 (9)

1.5.2 锂离子电池的应用 (10)

1.5.3单电子晶体管 (11)

1.5.4气体传感器 (11)

1.5.5电化学电容器 (12)

第2章实验部分 (13)

第2.1节本论文的选题背景、目的和意义 (13)

第2.2节实验试剂和仪器 (13)

2.2.1 主要试剂、材料和仪器 (13)

第2.3节分析方法 (15)

2.3.1循环伏安法 (15)

2.3.2紫外可见分光光度计 (16)

第2.4节实验步骤 (16)

2.4.1 氧化石墨的制备 (17)

2.4.2石墨烯薄膜的制备 (17)

第3章结果与讨论 (20)

第3.1节石墨烯的电化学还原 (20)

3.1.1石墨烯的循环伏安行为 (20)

3.1.2石墨烯的恒电位还原 (21)

第3.2节石墨烯的红外光谱表征结果与讨论 (22)

第3.3节石墨烯的紫外可见光谱测试结果与讨论 (23)

第3.4节 CuInS2薄膜/石墨烯的光电效应测试结果与讨论 (24)

第 4 章结束语 (26)

致谢 (27)

参考文献 (28)

前言

碳是作为一种非金属元素在地球上广泛存在,是人类生活中不可或缺的一种物质。碳单质很早就被人们发现并利用,石墨和金刚石在1924年被研究者发现,然后相继在1985年、1991年发现了富勒烯和碳纳米管,而最大的发现应该算是2004年成功制备出的单层石墨烯,纠正了以前科学家们的一些错误认识—二维晶体材料在常温下无法稳定存在,引起了人们的广泛关注,目前已成光学、电子学、磁学、传感器、储能催化等诸多领域的热点话题,显示出了石墨烯巨大的应用潜能。

石墨烯由于具有独特的物理化学结构使其拥有良好的热稳定性、透光性、导电性和机械强度而经常被用来作为导电纳米材料的填充物,正因为石墨烯这些优良的特性才受到广泛关注,科学家们正努力探索制备石墨烯的最佳方法,虽然已经研究出许多制备方法,但仍然存在一些不足之处和需要改进的地方。本课题主要就是探究新的制备方法,并对原料和产物进行了表征。

第1章绪论

第1.1节石墨烯概述

石墨烯是由碳原子在二维平面按正六边形紧密排列成的蜂窝状晶格结构,它可团聚成零维的富勒烯[1]、卷曲成一维的碳纳米管[2]而三维的石墨是由单片石墨烯经过堆砌而形成的[3](如图1·1),

图1·1

是构建所有碳质材料的基础。石墨烯一直是石墨和后来出现的碳纳米管的基本单元,但传统理论上认为,石墨烯也只能是一个理想化的结构,不会实际存在,早在1934年,朗道(L.D. Landau)和佩尔斯(R.E. Peierls)[4]就指出准二维晶体材料由于自身的热力学不稳定性,在常温常压下会迅速分解。科学家们一直没有放弃对石墨烯的探究,经过多年的研究,直到2004年,曼彻斯特大学的Andre Geim和他的弟子Konstantin Novoselov尽然首次用简单的微机械剥离法制得薄层的新型二维原子晶体的石墨烯[5],极大的丰富了碳材料家族,在透射显微镜下发现悬浮的石墨烯层片上存在大量的波纹结构(图1·2),

图1·2石墨烯表面的热起伏

振幅大约为1nm,石墨烯就是因为表面形成褶皱或者吸附其他分子维持了自身的稳定性。石墨烯是指单层的石墨层片,仅有一个原子的厚度0.35nm,约为头发丝直径的二十万分之一。石墨烯的结构稳定性非常高,而且各碳原子之间的连接相当柔韧,当受到外力攻击时,就会歪曲变形,使得碳原子不必重新排列来适应外力,从而保证了自身的结构稳定性[6]。作为单质,石墨烯具有许多优异的性能,如它最大的特性就是其电子的运动速度是光速的三百分之一,是目前已知材料中电子传导速率最快的,远远超过了一般导体中电子的运动速度,其室温下的电子迁移率可达1.5×104m2·V-1·s-1[7],是锑化铟材料(目前已知具有最高迁移率的材料)的两倍,超过半导体硅迁移率的十倍,在低温骤冷的情况下,其迁移率高达 2.5×105m2·V-1·s-1;石墨烯虽然单质只有一个原子的厚度,且是已知材料中最薄的一种,但它的强度非常高,是已测试材料中最高的,强度达到130 GPa,是钢的一百多倍;且石墨烯的热导率可达5000 W·m-1·K-1,是金刚石的三倍[8];石墨烯还具有优异的光学性能,理论实验结果表明,单层石墨烯可吸收 2.3%的可见光,即透过率为97.7%[9];石墨烯的理论比表面积高达2600m2/g[10],用石墨烯制成的微传感器可以感应单个原子或分子,当气体分子附着或脱离石墨烯表面时,吸附的分子将改变石墨烯的局部载流子浓度,导致电阻发生阶跳跃性变化,气体传感器就是根据这个原理制作的。此外,石墨烯还具有室温下的半整数的量子霍尔效应、隧道效应、永久的导电率及铁磁性等一系列特殊性质[11],掀起了一股新的“碳”研究热潮。

第1.2节石墨烯的基本性能

碳原子以sp2杂化连接形成我们最熟悉的单原子层构成的物质石墨烯,它是目前发现的有机材料中最稳定的苯六元环,也是最薄的二维材料。石墨烯特殊的结构使其具有多种性能,具体包括:电子学性能、热学性能、力学性能、磁学性能。

1.2.1电子学性能

石墨烯晶格具有六方对称性,碳有四个价电子,其中在石墨烯面内,每一个碳原子通过sp2杂化与相邻的三个碳原子形成共价键,而对于面外则有一个P z轨道电子形成一个离域π键,它的这种特殊的结构决定了使其拥有优异的电子学性能。石墨烯的内部结构不同于一般的物质,它的每个晶胞里有俩个原子,会产生俩个锥顶点K和K0(见图1·3),观察图形,石墨烯上下俩层是对称的,相对应的每个布里渊区均

图1·3单层石墨烯的电子结构示意图

有交叉的能带区域,在这些交叉点附近,波矢量决定了电子能E。此外,石墨烯是零带隙半导体,具有独特的线性光谱特征和载流子特性,因此科学家们认为单层石墨烯的电子结构跟传统的半导体和金属有所不同[11]。正因为石墨烯具有特殊的能带结构,使其拥有优越的导电性能,导电率超出一般的硅半导体,成为未来唯一可能取代硅的物质。

由于石墨烯特殊的结构使其具有强的导电特性,利用这一特性,可以通过设计出不同宽度或者边缘形状纳米石墨条带组合的纳米电子器件。

1. 2.2热学性能

Balandin等人[12]通过非接触光学方法测量得到单层石墨烯的热传导系数高达5300 Wm-1K-1,这比碳纳米管的热传导率3000~3500 Wm-1K-1还要高,表明石墨烯作为导热材料具有良好的应用前景。

1. 2.3力学性能

石墨烯是以sp2杂化的单原子层二维晶体,具有极高的力学性能,通过原子显微镜、扫描隧道电子显微镜等观测,可清晰地看到石墨烯的片层结构—表面褶皱起伏,就像西北地区那凹凸不平的山丘,远远望去效果很明显,当受到外力的攻击时,它会自动歪曲变形来抵抗外力,从而维持了石墨烯的稳定性,体现了石墨烯高强度、高模量的特征。

1. 2.4磁学性能

据有关人员报道,双氢化及单氢化锯齿状边的石墨烯具有铁磁性,这是因为石墨烯锯齿形边缘拥有孤对电子对,这才使得石墨烯拥有一些潜在的磁性能,比如磁性开关、铁磁性等。研究表明,纳米石墨在一定的磁场强度下,改变温度可以使纳米石墨的磁性发生改变[13]。例如,在1T磁场强度下,温度T>90K时,纳米石墨表现出了反磁特性;而温度T<90K时,则表现出了顺磁特性。也就是说在低温区域,纳米石墨表现出了顺磁性,而在较高温区域显示出了反磁特性。此外,对石墨烯进行化学改性和不同方向的裁剪可以对其磁性能进行调控,同时石墨烯表面的物理吸附也可以对其磁性能有所改变。

第1.3节石墨烯的制备方法

1.3.1机械剥离法

这是盖姆等人于2004年用一种简单的方法—机械剥离法,利用这种方法成功地从高定向热解石墨上剥离并观察到单层石墨烯 [5]。

下图4-1是实验装置图。

图1·4械剥离法制备石墨烯的装置示意图

目前发现的其他剥离法还包括淬火法[14]、静电沉积法[15]等。但是利用上述方法很难得到单独的单原子层厚的石墨烯片,再加上产率也低,不适合大规模生产和应用。

1.3.2 外延生长法

C.Berger等人利用此方法,通过加热SiC,获得了薄层石墨烯,具体操作过程是通过加热单晶6H-SiC或4H脱除Si,在其表面上分解出石墨烯片层[16]。将样品的表面进行氧化或者氢气蚀刻后,在超低压高真空下进行电子轰击加热到1000℃以去除表面的氧化物,然后升温至1250℃~1450℃,保持恒温20min以内,最终可得到石墨烯薄片,值得注意的是温度会影响石墨烯的厚度,过程中应注意对温度的控制。此方法可以制备出1-2碳原子层厚的石墨烯,近年来被成功的用于制备石墨烯,但它的缺陷在于SiC晶体表面结构比较复杂,获得厚度均一、面积较大的石墨烯比较困难。

1.3.3 氧化石墨还原法

石墨常用的氧化方法主要有三种:Standenmaier法[17]、Bredie法[18]、Hummers法[19], 这三种方法都是用强氧化酸处理原石墨,强氧化酸小分子嵌入石墨层之间,然后对其进行氧化。Hummers法大概过程是将天然鳞片石墨(NG)和无水硝酸钠(NaNO3)混合后加入到浓硫酸(H2SO4)中,然后把反应装置放在冰水浴中,同时在强力搅拌下的情况下加入强氧化剂高锰酸钾高锰酸钾(KMnO4),维持温度不变,接着用体积分数为30%的过氧化氢(H2O2)还原未反应的高锰酸钾(KMnO4)和反应过程生成的二氧化锰(MnO2),一边反应一边加入大量的水,最后经过滤、

洗涤、干燥得到氧化石墨(GO)。Brodie法是先用发烟硝酸(HN03)处理天然鳞片石墨,在处理过程中硝酸根离子插入石墨片层间,然后用氧化剂高氯酸钾(KClO4)进一步对石墨氧化,随后将大量去离子水加在反应混合物中,最后过滤、洗涤、干燥得到GO。Standenmaier法是先将浓硫酸(H2SO4)和发烟硝酸(HNO3)混合,然后对石墨粉进行处理,接着用氧化剂高氯酸钾(KClO4)氧化石墨而得到氧化石墨。以上这三种氧化方法,Brodie法所得石墨氧化程度较低,所得氧化石墨不利于对石墨烯的制备;Standenmaier法由于所使用的浓硫酸和发烟硝酸混合酸氧过程度高,对石墨层结构的破坏较为严重;而Hummers氧化法没有这些缺陷,它氧化石墨的程度适中,对石墨层间结构破坏较小,且安全系数高。由于Hummers这种制备方法,可以获得独立的单层石墨片,而且产量高,所以受到广泛应用。

1.3.4 电化学还原法

这种方法工作的原理是,通过改变外部电能来调节材料的内部电子状态,从而有规律的对材料进行修饰和还原。Liu等[20]通过电化学的方法制备了石墨烯,具体操作过程是首先将两个高纯度的石墨棒平行插入离子液体水溶液中,电压设置在10-20V之间,反应30min后阳极石墨棒被腐蚀,在阴极处阳离子被还原形成自由基,石墨烯片中的π电子与其相结合,之后用无水乙醇洗涤黑色沉淀物,在干燥箱中干燥2h 即可得到石墨烯。此方法虽然制备出了功能化的石墨烯,但是所制备的石墨烯非单层厚度。相继众多科研人员尝试利用电化学还原法制备石墨烯,方法在不断的改进,此方法得到的石墨烯低于化学还原发制得的石墨烯中C和O的原子比值,受到广泛关注。

1.3.5 化学气相沉积法

化学气相沉积法提供了一种制备石墨烯的有效方法,是近几十年发展起来的一种新方法。该方法主要是以Ni、Ru等过渡金属为基体[21],传统的化学气相沉积法是,它是将平面基底置于高温可分解的碳氢化合物气体中,加热催化碳氢化合物裂解,然后通过高温退火在基底表面沉积形成石墨烯,最后将金属基底用化学腐蚀法去除即可得到石墨烯片。一般选用Ni作为基底,而最近的研究表明,Cu比Ni更具有优势[22]。此方法可获得大面积石墨烯薄膜,适于广泛应用。

1.3.6 电弧放电法

电弧放电法也是制备纳米碳材料的典型方法,因其独特的效果而被广泛应用。Subrahmanyam等[23]以氦气和氢气的混合气体为缓冲气体,两个电极石墨间形成等离子电弧,随着放电的进行,阳极石墨不断消耗,阴极上沉积碳,实现了石墨烯的制备。该方法中氢气起了关键作用,使石墨烯卷曲或闭合生成碳纳米管可能性变小。但该方法成本较高,且存在一定的危险性,不提倡经常使用。

石墨烯的制备方法还有很多,诸如:微波法[24]、溶剂热法[25]、有机合成法[26]等。

第1.4节石墨烯的表征技术

1.4.1光学显微技术

石墨烯虽然仅有一个原子厚度,但在光学显微镜下却可以成像,最初石墨烯就是在光学显微镜下分辨出来的[27]。在使用过程中值得注意的是,在一般的硅片基底上,光学显微镜下是无法观测到石墨烯的,氧化硅层的厚度对石墨烯的光学成像尤为重要,只有当氧化层厚度满足一定条件时,由于光路干涉和衍射效应而导致颜色变化,石墨烯会显示出特有的颜色和对比度。目前,光学显微技术已经成为一种成熟的石墨烯层数标定技术。

1.4.2扫描电子显微镜(SEM)技术

扫描电子显微镜的成像原理:当电子束在样品表面扫描时会激发出二次电子,探测器可收集产生的二次电子,则可获得样品表面结构信息。由于石墨烯发射二次电子的能力极低[28],在SEM下很难成像,但幸运的是石墨烯质软,在基底上沉积可以形成大量的褶皱,SEM可清晰分辨出这些褶皱,从而勾勒出石墨烯的轮廓。因此,SEM适合表征大面积的石墨烯薄膜,而不能够测出石墨烯的层数。

1.4.3透射电子显微镜(TEM)技术

TEM简称透射电镜,它的成像原理很简单,就是电子束透过薄膜样品经过聚焦与放大后所产生的物象。因为电子容易被物体吸收或者散射,故而穿透力极低,必须将样品切成薄片,而石墨烯满足这个条件,可以直接用TEM检测。在TEM下只能判别石墨烯的样子,观测到石墨烯层片的大概轮廓,无法对其层数进行鉴定。而使用高分辨电子显微镜(HRTEM)可以对石墨烯原子尺寸进行表征,可测出石墨烯的层数。

1.4.4扫描电子显微镜(SPM)技术

SPM包括原子力显微(AFM)和扫描隧道显微(STM)两种模式,它是根据量子力学中的隧道效应设计的,可以分别对材料的原子结构和表面形貌进行检测。借助SPM,我们可以观察到很多样品表面的单个原子和表面的三维原子结构图像,进而可以清楚的了解样品的内部结构。通过使用SPM,我们可以清楚的观测出石墨烯样品的厚度。

1.4.5拉曼光谱(Raman)技术

在Raman光谱中,Raman光谱的各种条件都是影响石墨烯的层数的因素,比如形状、宽度和位置等,这为石墨烯层数的测量提供了一个高效率、无破坏的表征手段。入射光和样品相互作用,加之样品中的分子振动和转动,是散射光的频率发生变化,根据这一变化可以分析材料的分子结构。据此,拉曼光谱可以用于鉴别单层、双层、多层石墨烯和块体石墨烯之间的区别。所以根据实验结果可知,Raman法是检测石墨烯厚度的最佳选择。

第1.5节石墨烯的应用前景

1.5.1石墨烯太阳能电池

石墨烯具有独特的单原子二维结构使其拥有许多优异的特性:高迁移率、高透光率、高比表面积、可功能化及其他优越的电学性能,可以作为太阳能电池的组成材料,使石墨烯制作太阳能电池成为可能。众所周知,铟锡氧化物(ITO)是太阳能

电池材料[29],但是由于铟这种资源在地球上非常稀缺,电极材料供不应求,人们急需寻找一些新的材料来代替铟锡氧化物。石墨烯那些优异的性能正好能满足太阳能电极材料的要求,有望成为ITO的代替品,利用石墨烯制作太阳能电极材料成为人们当今研究的热点。

石墨烯可用做有机聚合物太阳能电池中的中间电极、电子受体材料和结构架等。Shougen Yin和Yongsheng Chen小组[30,31]利用3-己基噻吩(P3HT)或3-辛基取代聚噻吩(P3OT)与功能化的石墨烯相互作用,可以使该复合物很好地成为太阳能电池电极的活性层,其中石墨烯是受体材料,3-己基噻吩(P3HT)和3-辛基取代聚噻吩(P3OT)作为给体材料。研究发现,石墨烯有效的抑制了P3HT得光致发光效应,从而使大部分电子能量由P3HT转移到石墨烯上。实验表明该体异质结有机聚合物太阳能电池的开路电压、短路电流密度、填充因子及光电转换效率分别为0.72v、

4.7mA/cm2、32%和1.1%[32]。Li[33]等对石墨采用玻璃-嵌入-膨胀法制备了高质量的石墨烯,它的电阻比以GO为原料制备的石墨烯低很多,差不多是一百倍,并且以DMF 为溶剂,成功地制备出了透明导电膜,这种膜也成为应用于太阳能电池的潜在材料。

1.5.2 锂离子电池的应用

锂离子电池由于具有高能量密度、高电压、无记忆效应、循环性能优越、无重金属污染环境等优点,是一种理想的绿色电源,才得以大规模推广。近几年,人们发现石墨烯的片层结构有利于锂的嵌入和脱嵌,且石墨烯具有良好的导电性,结晶度高,重要的是锂原子嵌入石墨后电位基本保持不变,因此石墨是一种优秀的锂离子电池负极材料。锂嵌入石墨层之间的量不同,会形成不同阶数的化合物,例如平均二层插入一层锂原子,就称为二阶化合物。当形成一阶化合物时,锂原子相互排斥,此时石墨电极的理论最大可逆容量为372mA·h/g。Honma等人将化学改性的石墨烯组装成不同层数的石墨薄片,并将这种石墨薄片制成锂离子电池负极,其可逆容量可达540 mA·h/g,高于石墨的理论可逆容量。次课题小组为了验证电极的可逆容量与石墨薄片中石墨层间距的关系,他们在石墨烯层片间插入了碳纳米管和C60后,石墨层间距进一步扩大,其可逆容量尽增大到了784 mA·h/g和730 mA·h/g。这就说明了石墨薄片电极的可逆容量随着石墨层间距的增大而提高[34]。

1.5.3单电子晶体管

石墨烯具有高的稳定性、高迁移率和特殊的能带结构,甚至在只有一个六元环的情况下仍可以稳定存在,这对研制分子级的电子器件有着重要的意义。目前科学家们都在努力研制用一个或者少量电子就能记录信号的晶体管—单电子晶体管,这种单电子组件可能突破传统的电子技术极限,目前一般的储存器每个储存元包含的电子数远远超过了单晶体管每个储存单元包含的电子数,差不多是二十万与一的关系,这就大大降低了能耗,提高了集成电路的集成度。石墨烯在内存、光学器件、和传感器等方面有很大的应用前景,有望为发展超高速计算机芯片带来突破,也会对其他领域带来大的促进作用。由于石墨烯的电子运动速度达到了光速的1/300,所产生的热量特别少,所以石墨烯器件制成的微计算机处理器有望取代硅基计算器大大提高计算器机的运行速度。

1.5.4气体传感器

气体传感器,顾名思义就是将气体的成分、浓度等转换成电子信息传达给人们的一种装置。这就要求有强的灵敏度,而石墨烯大的比表面积和高的导电率,这就为制备气体传感器提供了可能性。石墨烯的表面可吸附气体分子(如NO2、H2O 等),这些气体分子能诱导石墨烯本身的电荷密度分布,从而改变石墨烯的电导率,因此,石墨烯晶体管可以用作气体分子探测器或者传感器。

对于传统的固态分子探测器,是无法精确测到单个分子水平,这是因为探测器表面的热波动和缺陷引起的噪声远远大于单个分子的影响。而石墨烯自身的独特结构对吸附的气体分子有着非常大的反应,对于由缺陷等因素引起的噪声在石墨烯探测器中的影响要远小于传统的气体探测器,因此,石墨烯气体传感器有望实现单个分子精度的探测。Geim等[35]首次利用石墨烯气体制备出了石墨烯传感器,结果表明,当气体分子作为电子吸附到石墨烯表面时,会改变石墨烯的导电率。研究者发现,当NO2和H2O吸附到石墨烯表面时,石墨烯的导电性会有明显增加,而相反当NH3和CO分子吸附到石墨烯表面时,则会出现相反的效果,然而我们惊奇的发现,当石墨烯吸取定量气体并加热到一定温度150℃,然后在真空真空箱中进行退火时,将会恢复导电率,利用这个原理可以实现对气体单分子的检测。陆续有科学家制作出对氢气、氦气等探测的单独仪器。然而由于现有科学水平的限制,传感器的实际

应用还须一段时间,目前最主要的问题是缺乏选择性,克服这个缺陷是现阶段的首要任务。

除了对气体分子探测外,石墨烯还收磁场、电场的影响,因此,石墨烯晶体管在传感器方面的应用具有广泛的前景。

1.5.5电化学电容器

电化学电容器又名超级电容器,是一类由金属氧化物、高比表面积碳材料和导电聚合物等电极材料制作成的新型储能装置,它具有比普通电容器的突出特点是功率密度高、充电时间短、循环寿命长、温度特性好、能量储存密度高等,其主要应用在超大电流电力、快速充电等场合。

在石墨烯发现之前,碳材料已经应用于超级电容器中,比表面积大、内阻小的多孔碳材料被应用于双层超级电容器中,并已经成功商业化。目前,用于制备超级电容器的碳材料主要有:活性碳纤维、活性碳粉末、碳纳米管、碳气凝胶、模板介孔等,碳材料作为超级电容器的电极材料主要有三方面的优势:第一,石墨烯具有大的比表面积;第二,石墨烯的平面层片状结构有利于电解液的浸润和离子的吸附/脱附,提高电容器的储能密度和功率特性;第三,石墨烯层片具有优异的导电和导热性能,可以有效降低电容器的内电阻,并提高其散热性能,从而提高电容器的充放电速率和功率密度。科学家们奋力研究石墨烯材料制成的超级电容器,力求制出储能密度高、导电速率快的超级电容器。Ruoff小组利用肼还原GO制得石墨烯,然后用这种石墨烯材料制成的超级电容器,在水基和有机电解质中的比电容密度分别为135F/g和99F/g[36]。陆续还有更多的科学家进行了探究,石墨烯材料在超级电容器方面的应用将会有广泛的前景。

关于石墨烯的应用还有很多,比如石墨烯量子效应器件、减少纳米元件噪声领域的应用,研究石墨烯的氧化衍生物等,总之,不断涌现的新生事物,极大地拓展了人们对石墨烯的研究方向,使得基于对石墨烯材料的研究成为一个充满诱惑与挑战的热点。

石墨烯的制备与表征综述

氧化石墨烯还原的评价标准 摘要还原氧化石墨烯(RGO)是一种 有趣的有潜力的能广泛应用的纳米 材料。虽然我们花了相当大的努力 一直致力于开发还原方法,但它仍然 需要进一步改善,如何选择一个合适 的一个特定的还原方法是一个棘手 的问题。在这项研究中,还原氧化石 墨烯的研究者们准备了六个典型的 方法:N2H4·H2O还原,氢氧化钠还 原,NaBH4还原,水浴还原 ,高温还原以及两步还原。我们从四个方面系统的对样品包括:分散性,还原程度、缺陷修复程度和导电性能进行比较。在比较的基础上,我们提出了一个半定量判定氧化石墨烯还原的评价标准。这种评价标准将有助于理解氧化石墨烯还原的机理和设计更理想的还原方法。 引言 单层石墨烯,因为其不寻常的电子性质和应用于各个领域的潜力,近年来吸引了巨大的研究者的关注。目前石墨烯的制备方法,包括化学气相沉积(CVD)、微机械剥离石墨,外延生长法和液相剥离法。前三种方法因为其获得的石墨烯的产品均一性和层数选择性原因而受到限制。此外,这些方法的低生产率使他们不适合大规模的应用。大部分的最有前途生产的石墨烯的路线是石墨在液相中剥离氧化然后再还原,由于它的简单性、可靠性、大规模的能力生产、相对较低的材料成本和多方面的原因适合而适合生产。这种化学方法诱发各种缺陷和含氧官能团,如羟基和环氧导致石墨烯的电子特性退化。与此同时,还原过程可能导致发生聚合、离子掺杂等等。这就使得还原方法在化学剥离法发挥至关重要的作用。 到目前为止,我们花了相当大的努力一直致力于开发还原的方法。在这里我们展示一个简单的分类:使用还原剂(对苯二酚、二甲肼、肼、硼氢化钠、含硫化合物、铝粉、维生素C、环六亚甲基四胺、乙二胺(EDA) 、聚合电解质、还原糖、蛋白质、柠檬酸钠、一氧化碳、铁、去甲肾上腺素)在不同的条件(酸/碱、热处理和其他类似微波、光催化、声化学的,激光、等离子体、细菌呼吸、溶菌酶、茶溶液)、电化学电流,两步还原等等。这些不同的还原方法生成的石墨烯具有不同的属性。例如,大型生产水分散石墨烯可以很容易在没有表面活性稳定剂的条件下地实现由水合肼还原氧化石墨烯。然而,水合肼是有毒易爆,在实际使用的过程中存在困难。水浴还原方法可以减少缺陷和氧含量的阻扰。最近,两个或更多类型的还原方法结合以进一步提高导电率或其他性能。例如,水合肼还原经过热处理得到的石墨烯通常显现良好的导电性。

石墨烯薄膜制备方法研究

北京化工大学本科生毕业论文

题目石墨烯薄膜制备方法研究 诚信申明 本人声明: 所呈交的学位论文是本人在导师指导下进行的研究工作和取得的研究生成果,除了文中特别加以标注和致谢之处外,论文中不包含他人已经发表或撰写过的研究成果,也不包含为获得北京化工大学或其他教育机构的学位或证书而是用过的材料,其他同志对研究所做的贡献均已在论文中作了声明并表示了谢意。 申请学位论文与资料若有不实之处,本人愿承担一切相关责任。本科生签名:日期:年月日

本科生毕业设计(论文)任务书 设计(论文)题目:石墨烯薄膜制备方法研究 学院:化学工程学院专业:化学工程与工艺班级:化工0805 学生:艾东东指导教师(含职称):元炯亮副教授专业负责人:刘晓林 1.设计(论文)的主要任务及目标 主要任务:(1)利用Hummers法制备氧化石墨; (2)利用电化学还原法制备石墨烯。 主要目标:配置一定浓度的氧化石墨溶液,导电玻璃作为基底,将氧化石墨溶液涂于导电玻璃表面,在恒电压下还原氧化石墨,制得薄层石墨烯。 2.设计(论文)的基本要求和内容 了解石墨烯国内外的研究现状和发展趋势,以及有关石墨烯的一些制备方法和表征手段,掌握基本的实验操作技能,学会分析实验结果。毕业论文完成后应具备独立进行研究的能力。 3.主要参考文献 [1] 朱宏伟,徐志平,谢丹等.石墨烯-结构、制备方法与性能表征[M].北京:清华大学出版社,2011:36~45 [2]郭鹏.石墨烯的制备、组装及应用研究[D],北京:北京化工大学,2010 [3] Hummers W S, Offeman R E, Preparation of graphite oxide[J].J Am Chem Soc, 1958,80(6):1339 4.进度安排 设计(论文)各阶段名称起止日期 1 前期文献查阅并准备开题2012.2.15~2012.2.29 2 进行相关实验,处理实验数据,分析结果2012.3.1~2012.5.1 3 总结实验结果,编写实验论文2012.5.1~2012.5.20 4 完善毕业论文,进行相关的修改2012.5.20~2012.5.30 5 准备毕业答辩及毕业相关的工作2012.5.30~2012.6.5

氧化石墨烯的制备方法总结

氧化石墨烯的制备方法: 方法一: 由天然鳞片石墨反应生成氧化石墨,大致分为3 个阶段,低温反应:在冰水浴中放入大烧杯,加入110mL 浓H2SO4,在磁力搅拌器上搅拌,放入温度计让其温度降至4℃左右。加入-100目鳞片状石墨5g,再加入NaNO3,然后缓慢加入15g KMnO4,加完后记时,在磁力搅拌器上搅拌反应90min,溶液呈紫绿色。中温反应:将冰水浴换成温水浴,在磁力搅拌器搅拌下将烧杯里的温度控制在32~40℃,让其反应30 min,溶液呈紫绿色。高温反应:中温反应结束之后,缓慢加入220mL 去离子水,加热保持温度70~100℃左右,缓慢加入一定双氧水(5 %)进行高温反应,此时反应液变成金黄色。反应后的溶液在离心机中多次离心洗涤,直至BaCl2检测无白色沉淀生成,说明没有SO42-的存在,样品在40~50℃温度下烘干。H2SO4、NaNO3、KMnO4一起加入到低温反应的优点是反应温度容易控制且与KMnO4反应时间足够长。如果在中温过程中加入KMnO4,一开始温度会急剧上升,很难控制反应的温度在32~40℃。技术路线图见图1。 方法二:Hummers 方法 采用Hummers 方法[5]制备氧化石墨。具体的工艺流程在冰水浴中装配好250 mL 的反应瓶加入适量的浓硫酸搅拌下加入2 g 石墨粉和1 g 硝酸钠的固体混合物再分次加入6 g 高锰酸钾控制反应温度不超过20℃搅拌反应一段时间然后升温到35℃左右继续搅拌30 min再缓慢加入一定量的去离子水续拌20 min 后并加入适量双氧水还原残留的氧化剂使溶液变为亮黄色。趁热过滤并用5%HCl 溶液和去离子水洗涤直到滤液中无硫酸根被检测到为止。最后将滤饼置于60℃的真空干燥箱中充分干燥保存备用。方法三:修正的Hummers方法 采用修正的Hummers方法合成氧化石墨,如图1中(1)过程。即在冰水浴中装配好250 mL的反应瓶,加入适量的浓硫酸,磁力搅拌下加入2 g 石墨粉和1 g硝酸钠的固体混合物,再缓慢加入6 g高锰酸钾,控制反应温度不超过10 ℃,在冰浴条件下搅拌2 h后取出,在室温下搅拌反应5 d。然后将样品用5 %的H2SO4(质量分数)溶液进行稀释,搅拌2 h后,加入6 mL H2O2,溶液变成亮黄色,搅拌反应2 h离心。然后用浓度适当的H2SO4、H2O2混合溶液以及HCl反复洗涤、最后用蒸馏水洗涤几次,使其pH~7,得到的黄褐色沉淀即为氧化石墨(GO)。最后将样品在40 ℃的真空干燥箱中充分干燥。将获得的氧化石墨入去离子水中,60 W功率超声约3 h,沉淀过夜,取上层液离心清洗后放入烘箱内40 ℃干燥,即得片层较薄的氧化石墨烯,如图1中(2)过程。

氧化石墨烯的制备及表征

氧化石墨烯的制备及表征 文献综述 材料0802班 李琳 200822046

氧化石墨烯的制备及表征 李琳 摘要:石墨烯(又称单层石墨或二维石墨)是单原子厚度的二维碳原子晶体,被认为是富勒烯、碳纳米管和石墨的基本结构单元[1]。石墨烯可通过膨胀石墨经过超声剥离或球磨处理来制备[2,3],其片层厚度一般只能达到30~100 nm,难以得到单层石墨烯(约0.34 nm),并且不容易重复操作。所以寻求一种新的、容易和可以重复操作的实验方法是目前石墨烯研究的热点。而将石墨氧化变成氧化石墨,再在超声条件下容易得到单层的氧化石墨溶液,再通过化学还原获得,已成为石墨烯制备的有效途径[4]。通过述评氧化石墨及氧化石墨烯的制备、结构、改性及其与聚合物的复合,展望了石墨烯及其复合材料的研究前景。 关键词:氧化石墨烯,石墨烯,氧化石墨,制备,表征 Oxidation of graphite surfaces preparation and Characterization LI Lin Abstrat:Graphite surfaces (also called single graphite or 2 d graphite )is the single atoms thickness of the 2 d carbon atoms crystal, is considered fullerenes, carbon nanotubes and graphite basic structure unit [1].Graphite surfaces can through the expanded graphite after ultrasonic stripping or ball mill treatment topreparation [2,3], a piece of layer thickness normally only up to 30 to 100 nm, hard to get the single graphite surfaces (about 0.34 nm), and not easy to repeated operation. So to search a new, easy to operate and can be repeated the experiment method of the graphite surfaces is the focus of research. And will graphite oxidization into oxidation graphite, again in ultrasonic conditions to get the oxidation of the single graphite solution, again through chemical reduction get, has become an effective way of the preparation of graphite surfaces [4]. Through the review of graphite oxide and oxidation graphite surfaces of the preparation, structure, modification of polymer and the

石墨烯制备方法及应用的研究进展

石墨烯制备方法及应用的研究进展 邓振琪黄振旭 (郑州师范学院化学化工学院,河南郑州450044) 摘要:石墨烯因具有高的比表面积、突出的导热性能和力学性能及其非凡的电子传递性能等一系列优异的性质,引起了科学界新一轮的研究热点。本文总结近年石墨烯的研究现状,综述介绍石墨烯的制备方法和其应用的研究进展。 关键字:石墨烯;制备;应用 2004年,英国曼彻斯特大学Geim研究小组首成功地在实验中从石墨中分离出石墨烯[1],并提出了表征石墨烯的光学方法,对其电学性能进行了系统研究,发现石墨烯具有很高的载流子浓度、迁移率和亚微米尺度的弹道输运特性,从而掀起了石墨烯研究的热潮。 石墨烯是由碳原子以sp2杂化连接按照六边形紧密排列成蜂窝状晶格的二维晶体,其理论厚度仅为0.35nm,是目前所发现的最薄的二维材料[2]。是构造其他维度碳质材料的基本单元,它可以包裹形成零维富勒烯,也可以卷起来形成一维的碳纳米管或者层层堆叠构成三维的石墨。 石墨烯因其独特的二维晶体结构,从而具有优异的性能。如单原子层石墨烯材料理论表面积可达2630m2/g,半导体本征迁移率高达2×105cm2/(V·s),弹性模量约为1.0TPa,热传导率约为5000W/(m·K),透光率高达97.7%,强度高达 110GPa[3]。这些优异的性能使得石墨烯在纳米电子器件、传感器、电化学及复合材料等领域有光明的应用前景。 1.石墨烯的制备 现在制备石墨烯主要方法为微机械剥离法、基底生长法、化学气相沉淀法、氧化石墨还原法。另简单介绍液相或气相直接剥离法、电化学法、石墨插层法等方法。 1.1微机械剥离法 石墨烯最初的制备就是微机械剥离,机械剥离法就是通过机械力从具有高度定向热解石墨表面剥离石墨烯片层。Geim教授采用胶带剥离法可以认为是机械剥离法中的一个代表。Knieke等[4]利用湿法研磨法在室温下研磨普通石墨粉,成功的对石墨的片层结构进行了剥离,制备了单层和多层的石墨烯片。微机械剥离法制得的石墨烯具有最高的质量,适用于研究石墨烯的电学性质。但该方法低

石墨烯制备方法研究

石墨烯制备方法研究 具有优良的力学、电学、热学及电子学性质的石墨烯,近些年来成为研究的热点。简单介绍了石墨烯制备的主要方法,包括微机械分离法、化学插层法、加热SiC法及气相沉积法。 标签:石墨烯;制备方法 0 引言 自2004年Novoselov,K. S.等使用微机械剥离法从高定向热解石墨上剥离观测到石墨烯以来,碳元素同素异形体又增加了新的一员,其独特的性能和优良的性质引起了研究人员的极大关注,掀起了一波石墨烯的研究高潮。 石墨烯又称单层石墨,是只有一个C原子层厚度的石墨,是构建其他碳质材料的结构单元。通过SP2杂化成键,碳原子与周围三个碳原子以C-C单键相连,同时每个碳原子中未成键的一个π电子形成与平面垂直的π轨道。结构决定性质,石墨烯具有强度很大的C-C键,因此其具有极高的强度(其强度为130GPa,而无缺陷的石墨烯结构的断裂强度是42N/m)。而其可自由移动的π电子又赋予了石墨烯超强的导电性(石墨烯中电子的典型传导速率为8×105m/s)。同时,石墨烯还具有一系列奇特的电子特性,如反常的量子霍尔效应,零带隙的半导体以及电子在单层石墨片层内的定域化现象等。 规模化制备大批量石墨烯是石墨烯材料应用的第一步,已成为当前研究的重点。按照石墨烯的制备途径,可以将其制备方法分为两类:自上而下制备以及自下而上制备。顾名思义,简单地说自上而下途径是从石墨中获得石墨烯的方法,主要依靠物理过程处理石墨使其分层来得到石墨烯。自下而上途径是从碳的化合物中断裂化学键生长石墨烯的方法,主要依靠加热等手段使含碳化合物分解从而生长石墨烯。 1 自上而下制备石墨烯途径 自上而下途径是从石墨出发(又可称之为石墨途径),用物理手段如机械力、超声波、热应力等破坏石墨层与层之间的范德华力来制备单层石墨的方法。根据石墨处理方法的不同,又可细分为机械剥离法和化学插层法。前者是直接使用机械方法将石墨分层来获得石墨烯的方法。后者则是将石墨先用化学插层剂处理转换为容易分层的形式如石墨插层化合物,然后再对其处理来获得石墨烯。 这类方法的优点是原料来源广泛,制备操作较为简单,制备一般不需高温,对设备要求不是很高,但是这类方法是通过石墨分层得到的,得到的单层石墨混在石墨片层中,其分离比较困难,而且生成的石墨烯尺寸不可控。 1.1 机械剥离法

石墨烯的制备方法

石墨烯的制备方法 主要市场包括:石墨烯透明导电薄膜材料的生产和销售,以及在透明电极、储能、电子器件等领域的应用技术开发和技术支持服务。公司目前的石墨烯导电层产品功能良率能做到85%,但外观良率目前只能做到60%左右。目前产品已经在低端手机上逐渐应用。常州二维碳素科技有限公司的关键技术如下: ②辉锐集团由辉锐科技(香港)有限公司,辉锐材料科技有限公司与辉锐电子技术有限公司。 辉瑞科技专注于石墨材料的研发和生产,是大面积高质量石墨烯的量产成为现实。而辉锐材料则主要从事应用产品的设计和营销,提升石墨烯在移动设备,发电和能源储备,医疗保健等领域的应用。 辉锐科技是一家从事石墨烯技术发展的公司,率先进军大面积石墨烯柔性触控屏市场,且计划未来3年公投资1.5亿美元发展石

墨烯移动设备市场。5月份,厦门大学,英国BGT Material Limited 和福建辉瑞材料有限公司签署协议在厦门大学建立“石墨烯工业技术研究院”。石墨烯发明者诺贝奖物理学奖获得者康斯坦丁·诺沃肖洛夫等将加盟改研究院。公司正研制利用石墨烯制造可屈曲触摸屏,目前已经投产。 2. 石墨烯在锂离子电池领域的应用 石墨烯优异的导电性能可以提升电极材料的电导率,进而提升锂离子电池的充放电速度;石墨烯的二维层状结构可以有效抑制电极材料在充放电过程中因体积变化引起的材料粉化;石墨烯还能很好地改善锂电池的大电流充放电性能、循环稳定性和安全性。除此之外还能大幅提高电池的充放电速度。国内研究成果: 宁波墨西科技有限公司依托中科院宁波所技术研发实力,产学研一体化优势,使得公司在石墨烯领域走在行业前列;公司产品分为三大类:基础产品(浆料、粉体)、专用分散液、工业化应用产品。在锂电池领域,已经开发出石墨烯复合电极材料、石墨烯导电添加剂、石墨烯涂层铝箔等;公司石墨烯导电剂产品已经在磷酸铁锂电池厂商试样,能有效提高电池倍率充放电性能。 宁波墨西锂电池领域研发目标:第一,2016 年实施Battery 200 计划,研发能量密度达到200Wh/kg 的新型电力锂电池及其材料技术;第二,2020 年实施Battery 300 计划,研发能量密度达到300Wh/kg 的下一代动力锂电池及其材料技术。目前技术路线,以石墨烯作为新一代导电剂研发为主,包括石

氧化石墨烯的制备讲义

实验十、氧化石墨烯的制备实验 一、实验目的 1、掌握Hummers法制备氧化石墨烯。 2、了解氧化石墨烯结构与性能表征。 二、实验原理 1、氧化石墨烯 氧化石墨烯是石墨烯的氧化物,其颜色为棕黄色,市面上常见的产品有粉末状、片状以及溶液状的。氧化石墨烯薄片是石墨粉末经化学氧化及剥离后的产物,氧化石墨烯是单一的原子层,可以随时在横向尺寸上扩展到数十微米,因此,其结构跨越了一般化学和材料科学的典型尺度。氧化石墨烯可视为一种非传统型态的软性材料,具有聚合物、胶体、薄膜,以及两性分子的特性。氧化石墨烯长久以来被视为亲水性物质,因为其在水中具有优越的分散性,但是,相关实验结果显示,氧化石墨烯实际上具有两亲性,从石墨烯薄片边缘到中央呈现亲水至疏水的性质分布。 经过氧化处理后,氧化石墨仍保持石墨的层状结构,但在每一层的石墨烯单片上引入了许多氧基功能团。这些氧基功能团的引入使得单一的石墨烯结构变得非常复杂。鉴于氧化石墨烯在石墨烯材料领域中的地位,许多科学家试图对氧化石墨烯的结构进行详细和准确的描述,以便有利于石墨烯材料的进一步研究,虽然已经利用了计算机模拟、拉曼光谱,核磁共振等手段对其结构进行分析,但由于种种原因(不同的制备方法,实验条件的差异以及不同的石墨来源对氧化石墨烯的结构都有一定的影响),氧化石墨烯的精确结构还无法得到确定。大家普遍接受的结构模型是在氧化石墨烯单片上随机分布着羟基和环氧基,而在单片的边缘则引入了羧基和羰基。 图1 氧化石墨烯的结构 2、氧化石墨烯的制备 氧化石墨烯的制备一般有三种方法:brodie法、Staudenmaier法、hummers法。这三种方法的共同点都是利用石墨在酸性质子和氧化剂的作用下氧化而成的,但是不同的方法各有优点。Brodie 等人于1859年首次用高氯酸和发烟硝酸作为氧化剂插层制备出

石墨烯文献检索

《文献检索与科技论文写作》作业 学生姓名 年级专业 班级学号 指导教师职称

目录 第一部分文献查阅练习 (1) 第二部分文献总结练习 (7) 第三部分科技论文图表练习 (8) 第四部分心得体会 (11)

第一部分文献查阅练习 1、黄毅,陈永胜.石墨烯的功能化及其相关应用.中国科学B辑:化学2009年第39卷第9期:887-896 摘要:石墨烯是2004年才被发现的一种新型二维平面纳米材料,其特殊的单原子层结构决定了它具有丰富而新奇的物理性质.过去几年中,石墨烯已经成为了备受瞩目的国际前沿和热点.在石墨烯的研究和应用中,为了充分发挥其优良性质,并改善其成型加工性(如分散性和溶解性等),必须对石墨烯进行功能化,研究人员也在这方面开展了积极而有效的工作.但是,关于石墨烯的功能化方面的研究还处在探索阶段,对各种功能化的方法和效果还缺乏系统的认识.如何根据实际需求对石墨烯进行预期和可控的功能化是我们所面临的机遇和挑战.本文重点阐述了石墨烯的共价键和非共价键功能化领域的最新进展,并对功能化石墨烯的应用作了介绍,最后对相关领域的发展趋势作了展望. 关键词:功能化应用 2、胡耀娟,金娟.石墨烯的制备、功能化及在化学中的应用. 物理化学学报(Wuli Huaxue Xuebao)Acta Phys.-Chim.Sin.,2010,26(8):2073-2086 摘要:石墨烯是最近发现的一种具有二维平面结构的碳纳米材料,它的特殊单原子层结构使其具有许多独特的物理化学性质.有关石墨烯的基础和应用研究已成为当前的前沿和热点课题之一.本文仅就目前石墨烯的制备方法、功能化方法以及在化学领域中的应用作一综述,重点阐述石墨烯应用于化学修饰电极、化学电源、催化剂和药物载体以及气体传感器等方面的研究进展,并对石墨烯在相关领域的应用前景作了展望。 关键词:制备功能化应用. 3、杨永岗,陈成猛,温月芳.新型炭材料.第23卷第3期 2008年9月:193-200 摘要:石墨烯是单原子厚度的二维碳原子晶体,也是性能优异的新型纳米复合填料。近三年来,石墨烯从概念上的二维材料变成现实材料,在化学和物理学界均引起轰动。通过述评氧化石墨及氧化石墨烯的制备、结构、改性及其与聚合物的复合,展望了石墨烯及其复合

石墨烯薄膜的制备及性能分析_侯朝霞

第27卷第1期 2015年2月沈阳大学学报(自然科学版) J o u r n a l o f S h e n y a n g U n i v e r s i t y(N a t u r a l S c i e n c e)V o l.27,N o.1 F e b.2015 文章编号:2095-5456(2015)01-0012-06 石墨烯薄膜的制备及性能分析 侯朝霞,周银,李光彬,李思明,王美涵,胡小丹(沈阳大学机械工程学院,辽宁省新型功能材料与化学工艺重点实验室,辽宁沈阳110044) 摘要:采用改进的H u mm e r s法和超声剥离法制备的氧化石墨烯经旋涂和滴涂工艺制备成膜,再经一步还原获得石墨烯薄膜.研究了氧化石墨烯经一步和两步还原制备出石墨烯后再经旋涂成膜的工艺.同时研究了不同分散剂对石墨烯的分散效果,分析了不同还原工艺对石墨烯薄膜方电阻的影响,并采用金相显微镜和扫描电镜观察分析了石墨烯薄膜的微观形貌.结果表明:旋涂法制备的石墨烯薄膜更均匀二透光率更高; D M F对石墨烯具有良好的分散效果;两步还原得到的石墨烯薄膜的导电性能明显优于一步还原. 关键词:石墨烯;薄膜;制备;旋涂;方电阻 中图分类号:T Q127.1+1文献标志码:A 石墨烯是由碳的单原子层构成的二维蜂窝状网格结构[1].同时它也是构成其他碳的同素异形体的基本单元,它可以折叠成零维的富勒烯,卷曲成一维的碳纳米管,堆垛成三维的石墨[2].自2004年被发现以来,石墨烯已被冠以多个美名: 未来之材料 电子高速公路 等.2010年在石墨烯的两位发现者盖姆和诺沃肖洛夫获得诺贝尔物理学奖后,学术界掀起了新一轮的石墨烯研究热潮,重大成果不断涌现. 由于具有优异的导电二透光性和高比表面积,石墨烯在太阳能电池中可以作为透明电极窗口层材料.对于传统透明导电材料, 透明 表明材料的能隙大(E g>3e V),且自由电子少,但 导电 又往往表明自由电子多,类似金属而不透明.只有同时满足这两个条件的材料才能用作透明导电薄膜,这在理论和技术上是一对矛盾.以氧化铟锡(I T O)和掺氟氧化锡(F T O)为代表的薄膜材料虽然能够较好地协调上述矛盾,因其高的电导率和光透射率已被广泛用在太阳能电池的电极材料中[34],但却存在着诸多无法克服的缺点.例如,制备I T O大量使用稀有元素,成本高.I T O的脆性影响其使用寿命二对聚合物中离子扩散过于敏感等.人们急需要寻找一种易得的材料来替代这种稀少的材料,石墨烯具有良好的透光性和导电性,有潜力成为铟锡氧化物(I T O)的替代材料. W a n g等[5]利用热膨胀石墨氧化物为原料进行热还原后得到的石墨烯可制作成透明导电膜,其在染料敏化太阳电池中的应用,取得了非常好的效果.制备出的石墨烯的厚度在10n m左右,电导率为550S四c m-1,在1000~3000n m的波长范围内透光率达70%.B e c e r r i l等[6]把石墨烯氧化物旋涂到石英表面进行热还原后,电导率为100S四c m-1,并且在400~1800n m波长范围内透光率可以达到80%,显示出该材料在太阳能电池领域有很大的应用前景. 虽然目前在石墨烯透明导电薄膜的结构二性能二制备等方面已经取得了很多的成果,但是很明显石墨烯透明导电薄膜实现产业化还需要做更多的研究和努力,以充分发掘石墨烯透明导电薄膜的潜力. 1试验 1.1样品制备 1.1.1原料及试剂 石墨粉(含碳质量分数大于98%,购于天津市瑞金特化学品有限公司),硝酸钠(N a N O3),高锰酸钾(KM n O4),98%硫酸(H2S O4),30%过氧化氢(H2O2),36%盐酸(H C l),均为分析纯.还原剂水合肼(N2H4四H2O)二氢碘酸(H I)二维生素C DOI:10.16103/https://www.sodocs.net/doc/3810935348.html,ki.21-1583/n.2015.01.003 网络出版时间:2015-03-23 16:59 网络出版地址:https://www.sodocs.net/doc/3810935348.html,/kcms/detail/21.1583.N.20150323.1659.003.html 收稿日期:20141114 基金项目:国家自然科学基金资助项目(51472166);辽宁省优秀人才支持计划项目(U Q2011125).作者简介:侯朝霞(1971),女,山东高密人,沈阳大学教授,博士.

石墨烯的研究综述 7021214215 周新汇总

化学信息学课程论文化学还原法制备石墨烯的研究进展 学号7021214215 学生姓名周新 所属学院生命科学学院 专业应用化学 班级18—2 日期2016-10-2

石墨烯的研究综述 摘要:近年来,石墨烯以其独特的结构和优异的性能,在化学、物理和材料学界引起了广泛的研究兴趣。石墨烯这样特殊的二维结构蕴含了多种奇特的物理现象,本文大量引用最新参考文献、综述了石墨烯的制备方法:物理方法 (微机械剥离法、液相或气相直接射离法)与化学法 (化学气相沉积法、晶体外延生长法、氧化还原法),并详细介绍了石墨烯的各种修饰方法,指出了石墨烯制备方法的发展趋势。 关键词:石墨烯;性能;结构;综述. Abstract: in recent years, the graphene with its unique structure and excellent performance, in chemistry, physics, and material field has attracted a great deal of research interest. Graphene such special two-dimensional structure contains a variety of unique physical phenomena, in this paper, a large number of references the latest references, reviews the preparation of graphene: physical methods (micro mechanical stripping method, the direct shot from liquid or gas phase method) with chemical method, chemical vapor deposition method, crystal epitaxial growth method, oxidation-reduction method), and various modification methods of graphene was introduced in detail, points out the development trend of graphene preparation. Key words: graphene, Performance; Structure; Reviewed in this paper. 0 引言 2004年,英国曼彻斯特大学的 Geim研究小组首次制备出稳定的石墨烯,推翻了经典的“热力学涨落不允许二维晶体在有限温度下自由存在”的理论,震撼了整个物理界,引发了石墨烯的研究热潮。理想的石墨烯结构可以看作被剥离的单原子层石墨,基本结构为sp2杂化碳原子形成的类六元环苯单元并无限扩展的二维晶体材料,这是目前世界上最薄的材料一单原子厚度的材料。这种特殊结构蕴含了丰富而新奇的物理现象,使石墨烯表现出许多优异性质,石墨烯不仅有优异的电学性能,突出的导热性能,超常的比表面积,其杨氏模量和断裂强度也可与碳纳米管媲美,如完美的量子隧道效应、半整数量子霍尔效应、永不消失的电导率等一系列性质。石墨烯的主要性能均与之相当,甚至更好,避免了碳纳米管研究和应用中难以逾越的手性控制、金属型和半导体型分离以及催化剂杂质等难题,而且制备石墨烯的原料价格便宜.正是由于石墨烯材料具有如此众多奇特的性质,引起了物理、化学、材料等不同领域科学家的极大研究兴趣,也使得石墨烯在电子、信息、能源、材料和生物医药等领域具有重大的应用前景。 1.石墨烯 碳—元素周期表中最有意思的元素,具有多种同素异形体:从早为人知的金刚石和石墨,到上世纪被发现的富勒烯[1]、碳纳米管[2],碳家族一直在给我们带来惊喜,而近年来,碳家族又添新成员——石墨烯(Gphene)[3],如图1.1 1所示。石墨烯被认为是其它维度石墨材料的基本结构单元[4,5]:它可围裹成OD的富勒烯,卷曲成ID的纳米管,堆砌成3D的石墨。

石墨烯的制备方法概述

石墨烯的制备方法概述 1物理法制备石墨烯 物理方法通常是以廉价的石墨或膨胀石墨为原料,通过机械剥离法、取向附生法、液相或气相直接剥离法来制备单层或多层石墨烯。这些方法原料易得,操作相对简单,合成的石墨烯的纯度高、缺陷较少。 1.1机械剥离法 机械剥离法或微机械剥离法是最简单的一种方法,即直接将石墨烯薄片从较大的晶体上剥离下来。Novoselovt等于2004年用一种极为简单的微机械剥离法成功地从高定向热 解石墨上剥离并观测到单层石墨烯,验证了单层石墨烯的独立存在。具体工艺如下:首先利用氧等离子在1mm厚的高 定向热解石墨表面进行离子刻蚀,当在表面刻蚀出宽20μm —2mm、5μm的微槽后,用光刻胶将其粘到玻璃衬底上, 再用透明胶带反复撕揭,然后将多余的高定向热解石墨去除并将粘有微片的玻璃衬底放入丙酮溶液中进行超声,最后将单晶硅片放入丙酮溶剂中,利用范德华力或毛细管力将单层石墨烯“捞出”。 但是这种方法存在一些缺点,如所获得的产物尺寸不易控制,无法可靠地制备出长度足够的石墨烯,因此不能满足工业化需求。

1.2取向附生法—晶膜生长 PeterW.Sutter等使用稀有金属钌作为生长基质,利用基质的原子结构“种”出了石墨烯。首先在1150°C下让C原子渗入钌中,然后冷却至850°C,之前吸收的大量碳原子就会浮到钌表面,在整个基质表面形成镜片形状的单层碳原子“孤岛”,“孤岛”逐渐长大,最终长成一层完整的石墨烯。第一层覆盖率达80%后,第二层开始生长,底层的石墨烯与基质间存在强烈的交互作用,第二层形成后就前一层与基质几乎完全分离,只剩下弱电耦合,这样制得了单层石墨烯薄片。但采用这种方法生产的石墨烯薄片往往厚度不均匀,且石墨烯和基质之间的黏合会影响制得的石墨烯薄片的特性。 1.3液相和气相直接剥离法 液相和气相直接剥离法指的是直接把石墨或膨胀石墨(EG)(一般通过快速升温至1000°C以上把表面含氧基团除去来获取)加在某种有机溶剂或水中,借助超声波、加热或气流的作用制备一定浓度的单层或多层石墨烯溶液。Coleman等参照液相剥离碳纳米管的方式将墨分散在N-甲基-吡咯烷酮(NMP)中,超声1h后单层石墨烯的产率为1%,而长时间的 超声(462h)可使石墨烯浓度高达1.2mg/mL。研究表明,当溶剂与石墨烯的表面能相匹配时,溶剂与石墨烯之间的相互作用可以平衡剥离石墨烯所需的能量,能够较好地剥离石墨烯

石墨烯的制备及评价综述

石墨烯的制备及评价综述 摘要:近年来, 石墨烯以其独特的结构和优异的电学性能和热学性能, 在化学、物理和材料学界引起了广泛的研究兴趣。人们已经在石墨烯的制备方面取得了积极的进展, 为石墨烯的基础研究和应用开发提供了原料保障。通过大量引用参考文献, 简要了解石墨烯的应用方面,并综述石墨烯的几种制备方法: 物理方法(微机械剥离法、液相或气相直接剥离法)与化学法(化学气相沉积法、晶体外延生长法、氧化?还原法)[1]。通过分析比较各种制备方法的优缺点, 对几种方法进行评价,并指出了自己的看法。 关键词:石墨烯制备方法综述 中图分类号:O613 文献标识码:A Preparation and Application of Graphene Abstract: Graphene has attracted much interest in recent years due to its unique and outstanding properties. Different routes to prepare graphene have been developed and achieved. Brief introduction of application of graphene is given in this article. Preparation methods of graphene used in recent years are intensively introduced, including micromechanical cleavage, chemical vapor deposition, liquid/gasphase-based exfoliation of graphite, epitaxial growth on an insulator, chemical reduction of exfoliated graphene oxide, etc. And their advantages and shortcomings are further discussed in detail. I have also given my own opinion by the end of this article. Key words: graphene; preparation; overview 正文 2010年10月5日,英国曼彻斯特大学科学家安德烈·盖姆与康斯坦丁·诺沃肖洛夫因在二维空间材料石墨烯的突破性实验获得2010年诺贝尔物理学奖。一时间,石墨烯成为科学家们关注的焦点。石墨烯以其独特的结构,以及其优越的电学性能和导热性能,在物理、化学以及材料学界引起了广泛的研究兴趣。 石墨烯或称纳米石墨片,是指一种从石墨材料中剥离出的单层碳原子薄膜,它是由单层六角元胞碳原子组成的蜂窝状二维晶体。简单地说,它是单原子层的石墨晶体薄膜,其晶格是由碳原子构成的二维六角蜂窝结构。其厚度为0.34nm,是二维纳米结构。它是其他石墨材料的基本组成。当包裹起来的时候,就组成富勒烯。同时,他也是另一种重要材料――碳纳米管的组成,碳纳米管就是由这种结构卷曲构成的。三维的石墨则是有许多的石墨烯层叠而成。[2]

石墨烯制备综述

石墨烯制备方法综述 石墨烯的制备方法可以分为物理和化学制备方法。物理的方法主要是采取机械剥离的方法,化学方法主要是分为化学沉积和化学合成两大方向。物理制备方法包括微机械剥离法,碳纳米管切割法,取向复生法等;化学制备方法包括化学气相沉积法,氧化还原法,液相剥离法,有机合成法,SiC外延生长法等。 物理方法制备石墨烯共同的缺点就是生产出的石墨烯厚度不一,可操作性差,并且无法生长出大尺寸的石墨烯,但微机械剥离法为人类发现石墨烯做出了重要的贡献。 化学制备方法中化学气相沉积法和氧化还原法分别是先进制备石墨烯薄膜和石墨烯粉体最重要的方法,也是最有希望实现大规模制备石墨烯的方法。化学气相沉积法制备的石墨烯能生成大尺寸石墨烯薄膜,但制备技术仍然缺乏稳定性,在转移过程中也会造成石墨烯缺陷,制备得到的石墨烯薄膜面积仍然相对有限。氧化还原法制备过程中采用强酸,容易造成设备损坏和环境污染,制备得到的石墨烯粉末品质不高。整体上,化学制备方法是最有希望实现大规模制备石墨烯的方法,但存在稳定性问题,技术还需要继续改进。表4.1是各种制备方法的优缺点。 表1.1各种石墨烯制备方法的优缺点列表

4.1.1石墨烯的CVD法制备工艺 CVD法制备研究概况:用化学气相沉积(CVD)方法在金属催化剂基底上可以得到大面积连续的石墨烯薄膜,所用的多晶基底相比于单晶基底更为廉价易得,同时生长出的石墨烯薄膜的转移也相对简单,目前来看是大规模制备石墨烯的最有希望的方法之一。通过CVD生长方法已经获得大面积(最大面积可达30英寸)、高质量、层数可控、带隙可调的石墨烯薄膜材料。这种生长方法因其便捷易操作且可控性高、能与下一步石墨烯的转移与应用紧密结合的优点,已经成为石墨烯生长领域的主流方法。石墨烯在金属催化剂表面的CVD生长是一个复杂的多相催化反应体系。该过程主要包括如下几步:(1)烃类碳源在金属催化剂基底上的吸附与分解;(2)表面碳原子向催化剂体相内的溶解以及在体相中的扩散。某些

石墨烯的制备方法

一.文献综述 随着社会的发展,人们对材料的要求越来越高,碳元素在地球上分布广泛,其独特的物理性质和多种多样的形态己逐渐被人类发现、认识并利用。1924年 确定了石墨和金刚石的结构;1985年发现了富勒烯;1991年发现了碳纳米管;2004年,曼彻斯特大学Geim等成功制备的石墨烯是继碳纳米管被发现后富勒烯 家族中又一纳米级功能性材料,它的发现使碳材料领域更为充实,形成了从零维、一维、二维到三维的富勒烯、碳纳米管、石墨烯以及金刚石和石墨的完整系统。而2004年至今,关于氧化石墨烯和石墨烯的研究报道如雨后春笋般涌现,其已 成为物理、化学、材料学领域的国际热点课题。 制备石墨烯的方法有很多种,如外延生长法,氧化石墨还原法,CVD法, 剥离-再嵌入-扩涨法以及有机合成法等。在本文中主要介绍氧化石墨还原法。 除此之外,还对其的一些性能进行表征。 二.石墨烯材料 2.1石墨烯材料的结构和特征 石墨烯(gr即hene)是指碳原子之间呈六角环形排列的一种片状体,由一层 碳原子构成,可在二维空间无限延伸,可以说是严格意义上的二维结构材料,同时,它被认为是宇宙上最薄的材料[`2],也被认为是有史以来见过的最结实的材料。 ZD结构的石墨烯具有优异的电子特性,且导电性依赖于片层的形状和片层数,据悉石墨烯是目前已知的导电性能最出色的材料,可运用于导电高分子复合 材料,这也使其在微电子领域、半导体材料、晶体管和电池等方面极具应用潜力。有专家指出,如果用石墨烯制造微型晶体管将能够大幅度提升计算机的运算速度,其传输电流的速度比电脑芯片里的硅元素快100倍。近日,某科技日报称,mM的 研究人员展示了由石墨烯材料制作而成的场效应晶体管(FET),经测试,其截止频率可达100吉赫兹(GHz),这是迄今为止运行速度最快的射频石墨烯晶体管。石 墨烯的导热性能也很突出,且优于碳纳米管。石墨烯的表面积很大,McAlliste: 等通过理论计算得出石墨烯单片层的表面积为2630扩/g,这个数据是活性炭的 2倍多,可用于水净化系统。

综述石墨烯的制备与应用

半导体物理课程作业 石墨烯的制备与应用(材料)

目录 一、石墨烯概述 (2) 二、石磨烯的制备 (3) 1、机械剥离法 (3) 2、外延生长法 (5) 3、化学气相沉积法 (6) 4、氧化石墨-还原法 (6) 5、电弧法 (9) 6、电化学还原法 (9) 7、有机合成法 (10) 三、石墨烯的应用 (11) 1、石墨烯在电子器件领域的应用 (11) 1.1 石墨烯场效应晶体管 (11) 1.2 石墨烯基计算机芯片 (12) 1.3 石墨烯信息存储器件 (13) 2、石墨烯在能源领域的应用 (14) 2.1 石墨烯超级电容器 (14) 2.2 锂离子电池 (15) 2.3 太阳能电池 (16) 2.4 储氢/甲烷器件 (17) 3、石墨烯在材料领域的应用 (18) 3.1 特氟龙材料替代物 (18) 3.2 石墨烯聚合物复合材料 (18) 3.3 光电功能材料 (19) 4、石墨烯在生物医药领域的应用 (20) 4.1 基于氧化石墨烯的纳米载药体系 (20) 4.2 氧化石墨烯对DNA/基因/蛋白的选择性检测 (21) 4.3用于生物成像技术 (23) 4.4 石墨烯在肿瘤治疗方面的应用 (23) 四、总结及展望 (24) 参考文献 (25)

一、石墨烯概述 碳广泛存在于自然界中,是构成生命有机体的基本元素之一。碳基材料是材料界中一类非常具有魅力的物质,从无定形的碳黑到晶体结构的天然层状石墨;从零维纳米结构富勒烯到一维碳纳米管无不给人们带来炫丽多彩的科学新思路。而二维碳基材料石墨烯的发现,不仅极大地丰富了碳材料的家族,而且其所具有的特殊纳米结构和性能,使得石墨烯无论是在理论还是实验研究方面都已展示出了重大的科学意义和应用价值,从而为碳基材料的研究提供新的目标和方向。 碳的晶体结构—石墨和金刚石(三维)是自然界中最早为人们熟知的两种碳同素异构体,因化学成键方式不同而具有截然相反的特性。1985年,一种被称为“巴基 (零维)被首次发现,三位发现者于11年后, 即1996年获诺贝尔球”的足球形分子C 60 化学奖。1991年,由石墨层片卷曲而成的一维管状结构: 碳纳米管被发现,发现者饭岛澄男(Sumio Iijima)于2008年获卡弗里纳米科学奖。石墨烯(Graphene)是只有一个原子层厚的单层石墨片,是石墨的极限形式。作为碳的二维晶体结构, 石墨烯的出现最终为人类勾勒出一幅点、线、面、体(从零维到三维)相结合的完美画面(图1)。 图1 碳的晶体结构 石墨烯作为一种独特的二维晶体,有着非常优异的性能:具有超大的比表面积,理论值为2630m2/g;机械性能优异,杨氏模量达1.0TPa;热导率为5300W·m-1·K-1,是铜热导率的10多倍;几乎完全透明,对光只有2.3%的吸收;在电和磁性能方面具有很多奇特的性质,如室温量子霍尔效应、双极性电场效应、铁磁性、超导性及高

石墨烯的合成

合成化学综述论文 ——石墨烯的合成 姓名:常俊玉 学号:1505120528

学院:化学化工学院 班级:应化1204班 时间:2015-4-19 石墨烯合成综述 应化1204 常俊玉1505120528 摘要:由于石墨烯优异的电学、光学、机械性能以及石墨烯广泛的应用前景,自英国曼彻斯特大学物理学教授Geim 等得到了稳定存在的石墨烯以来,掀起对碳材料的又一次研究热潮。这10年来,石墨烯的制备方法上取得了重大进展。本文对石墨烯的机械剥离法、化学气相沉积法、氧化还原法、有机合成法四种制备方法进行了综述,比较可以发现各种合成方法有其优缺点,实际生产可以根据实际情况选择对应方法。 关键词:石墨烯、机械剥离法、化学气相沉积法、氧化还原法、有机合成法一.引言 石墨烯是由碳原子通过sp2 杂化,构成的单层蜂窝状二维网格结构。石墨烯是构成其他碳同素异形体的基本单元,它可折叠成富勒烯(零维),卷曲成碳纳米管(一维),堆垛成石墨(三维),如图一所示[1]。石墨烯的理论研究已经有60 多年,当时主要用来为富勒烯和碳纳米管等结构构建模型,没有人认为石墨烯会稳定存在,因为物理学家认为,热力学涨落不允许二维晶体在有限温度下存在。 2004 年,英国曼彻斯特大学物理学教授Geim 等,用胶带反复剥离高定向热解石墨的方法,得到了稳定存在的石墨烯[2]。该发现立即引起了物理学家、化学家和材料学家的广泛关注,掀起了继富勒烯和碳纳米管之后碳材料的又一次研究热潮。由于石墨烯优异的电学、光学和机械性能,以及石墨烯广泛的应用前景,石墨烯的发现者Geim 教授和Novoselov 博士被授予2010 年度诺贝尔物 理学奖。

相关主题