搜档网
当前位置:搜档网 › 二次函数的单调性)

二次函数的单调性)

二次函数的单调性)
二次函数的单调性)

二次函数的单调性

学习目标

1、 从数和形两个方面准确地理解二次函数的单调性,从而对函数的单调性有更深刻、具体的理解;

2、 利用二次函数单调性解题

任务一

(1)判断下列函数的单调性

(2)指出下面两个二次函数的单调区间

10+的单调增区间是______

单调减区间是______ 总结:从上述题目中可以得出,二次函数的单调区间是以 来划分的,当0>a 时,在对称轴的左侧,函数单调 ,在对称轴的右侧,函数单调 ;当0

任务二

题型一、定区间,定对称轴

1. 说明函数242

-+-=x x y 在区间]3,0[的单调性.

x x x 2 x

2. 指出函数()7622+--=x x x f 在区间]1,3[-的单调性.

题型二、定区间,动对称轴

3、已知函数,2)1(2)(2+-+=x m x x f 当[)∞∈,4x 时是增函数,当(]4,∞-∈x 时是减函数,则求m 的值。

4. 已知函数3)24(2

-++=x a x y 在区间]3,1[单调,求a 的取值范围

5.已知a>0,求函数222++-=x ax y 在]1,2[-∈x 上的最大值.

题型三、定对称轴,动区间

6.已知22)(2++=x x x f ,当],2[a a x -∈时,讨论该函数的单调性.

7.已知2()23f x x x =-+,当[1]()x t t t ∈+∈R ,时,求()f x 的最小值.

小结

函数图象形象地显示函数性质,为研究数量关系问题提供了“形” 的直观性,是探求解题途径获得问题结果的重要工具,应当注意数 形结合解题的思想方法。

课后探究:动区间,动对称轴

8. 已知函数4)13(2+--=x a x y ,讨论函数在区间]1,[+a a 的单调性.

9. 已知函数22y x ax =-,[]4,x a a ∈--+,求函数的最大值()h a .

二次函数-平行四边形存在性问题

专题:二次函数中的平行四边形存在性问题 类型一:已知三个定点,再找一个定点构成平行四边形(平面内有三个点满足) 1.已知抛物线b ax ax y ++-=22与x 轴的一个交点为A (-1,0),与y 轴的正半轴交于点C. ⑴直接写出抛物线的对称轴,及抛物线与x 轴的另一个交点B 的坐标; ⑵当点C 在以AB 为直径的⊙P 上时,求抛物线的解析式; ⑶坐标平面内是否存在点M ,使得以点M 和⑵中抛物线上的三点A、B、C 为顶点的四边形是平行四边形?若存在,请求出点M 的坐标;若不存在,请说明理由. 类型:已知两个定点,再找两个点构成平行四边形 1.已知,如图抛物线2 3(0)y ax ax c a =++>与y 轴交于C 点,与x 轴交于A、B 两点,A 点在B 点左侧。点B 的坐标为(1,0),OC=30B. (1)求抛物线的解析式; (2)若点D 是线段AC 下方抛物线上的动点,求四边形ABCD 面积的最大值: (3)若点E 在x 轴上,点P 在抛物线上。是否存在以A、C、E、P 为顶点且以AC 为一边的平行四边形?若存在,求点P 的坐标;若不存在,请说明理由.

2、练习如图,抛物线:c bx x y ++=22 1与x 轴交于A、B(A 在B 左侧),顶点为C(1,﹣2)。(1)求此抛物线的关系式;并直接写出点A、B 的坐标; (2)求过A、B、C 三点的圆的半径; (3)在抛物线上找点P,在y 轴上找点E,使以A、B、P、E 为顶点的四边形是平行四边形,求点P、E 的坐标。 1.如图,抛物线2 23y x x =--与x 轴交A、B 两点(A 点在B 点左侧),直线l 与抛物线交于A、C 两点,其中C 点的横坐标为2. (1)求A、B 两点的坐标及直线AC 的函数表达式; (2)P 是线段AC 上的一个动点,过P 点作y 轴的平行线交抛物线于E 点,求线段PE 长度的最大值; (3)点G 抛物线上的动点,在x 轴上是否存在点F,使A、C、F、G 这样的四个点为顶点的四边形是平行 四边形?如果存在,求出所有满足条件的F 点坐标;如果不存在,请说明理由.

(完整版)二次函数与三角形的存在性问题的解法

二次函数与三角形的存在性问题 一、预备知识 1、坐标系中或抛物线上有两个点为P (x1,y ),Q (x2,y ) (1)线段对称轴是直线2x 2 1x x += (2)AB 两点之间距离公式:221221)()(y y x x PQ -+-= 中点公式:已知两点 ()()2211y ,x Q ,y ,x P ,则线段PQ 的中点M 为??? ??++222121y y ,x x 。 2、两直线的解析式为11b x k y +=与 22b x k y += 如果这两天两直线互相垂直,则有121-=?k k 3、平面内两直线之间的位置关系:两直线分别为:L1:y=k1x+b1 L2:y=k2x+b2 (1)当k1=k2,b1≠b2 ,L1∥L2 (2)当k1≠k2, ,L1与L2相交 (3)K1×k2= -1时, L1与L2垂直 二、三角形的存在性问题探究: 三角形的存在性问题主要涉及到的是等腰三角形,等边三角形,直角三角形 (一)三角形的性质和判定: 1、等腰三角形 性质:两腰相等,两底角相等,三线合一(中线、高线、角平分线)。 判定:两腰相等,两底角相等,三线合一(中线、高线、角平分线)的三角形是等腰三角形。 2、直角三角形 性质:满足勾股定理的三边关系,斜边上的中线等于斜边的一半。 判定:有一个角是直角的三角形是直角三角形。 3、等腰直角三角形 性质:具有等腰三角形和等边三角形的所以性质,两底角相等且等于45°。 判定:具有等腰三角形和等边三角形的所以性质的三角形是等腰直角三角形 4、等边三角形 性质:三边相等,三个角相等且等于60°,三线合一,具有等腰三角形的一切性质。 判定:三边相等,抛物线或坐标轴或对称轴上三个角相等,有一个角是60°的等腰三角形是等边三角形。

二次函数的增减性及最值问题.doc(6月25日)

《二次函数的增减性及最值问题》是一节复习课。它是人教版九年级上册《二次函数》的章节复习课第三课时。下面我将从教材的地位与作用、教学任务,教学重难点,学生起点状况,教法学法,教学思想,教学过程设计6个方面来具体说明我对这节课的理解。 一教材的地位与作用 《二次函数的增减性及最值问题》是人教版九年级上册《二次函数》的章节复习课第三课时。二次函数函数的增减性及最值问题是初中数学的重要知识点,在学习有关性质的基础上深入理解函数值与自变量的一对多的问题;同时,二次函数的增减性与最值问题是高中重要的衔接内容。 二教学任务分析 我根据《新课标》,结合学生认知水平,将本节课目标制定如下: 教学目标 :知识目标:理解并掌握以代数为主干的综合题中有关二次函数的增减性及最值问题。 能力目标:培养学生对于含字母的式子的计算能力及用数形结合分析解决函数问题的能力。提高学生将复杂问题基本化,陌生问题熟悉化 的能力。 三教学重难点分析 重点:二次函数增减性及最值问题;带字母的计算 难点:带字母的计算;二次函数中函数值与自变量之间一对多的问题 四学生起点状况分析 在此之前,学生已经掌握二次函数图像的性质,并会利用二次函数性质求最值;而且,对于抛物线中的动点问题学生已经掌握较好;同时,对于抛物线中的含动点的三角形面积问题也已经作为专题讲解过。在此基础上,对于典例中以代数为主的综合题,就可以将重点放在二次函数的性质的综合运用上,不会因为动态三角形面积的计算花过多时间与精力,才能突出本节课重点,同时便于突破难点。 五教法与学法分析 教法分析:在学生探究,讨论的基础上,教师充分利用多媒体进行动画演示,适时讲解点拨,学法分析:探究,交流,动画感知,数形结合,知识升华 六数学思想方法分析 本节课在教学中向学生渗透的数学思想主要有:转化思想、函数思想、数形结合思想等 七教学过程设计 基于以上对教材特点和学生情况的分析,为能更好的达成教学目标,我在本节课主要安排以下四个环节。第一环节:铺垫导入,动画感知;第二环节:自主探究,典例剖析;第三环节:合作交流,动画演示;第四环节:知识小结,知识升华。 第一环节铺垫导入,动画感知(用ppt) 在这里我设计了两类知识铺垫:一类题一,已知自变量取值范围求函数值的取值范围,自变量的取值范围包括自变量在对称轴一侧及把对称轴包含进去,在学生回答题目的基础上,让学生归纳求最值方法:开口,对称轴,增减性,数形结合,最后动画演示,进一步感知随着自变量的变化二次函数值得变化规律;第二类,看题二,在题一中,给定一个函数值求自变量的值,学生在代数计算的基础上初步明白虽然一个函数值可能有两个自变量对应,但是由于自变量的范围的不同,也就会影响自变量的取值。在此基础上,教师利用动画从图形上感知平行于y轴的直线与抛物线的交点个数进一步明白题二中解的个数。从数到形,以

中考数学二次函数存在性问题 及参考答案

中考数学二次函数存在性问题 及参 考答案
一、二次函数中相似三角形的存在性问题 1.如图,把抛物线 向左平移 1 个单位,再向下平移 4 个单位,得到抛物线 . 所得抛物线与 轴交于 A,B 两点(点 A 在点 B 的左边),与 轴交于点 C,顶点为 D. (1)写出 的值;(2)判断△ACD 的形状,并说明理由; (3)在线段 AC 上是否存在点 M,使△AOM∽△ABC?若存在,求出点 M 的坐标;若不存在, 说明理由.
2.如图,已知抛物线经过 A(﹣2,0),B(﹣3,3)及原点 O,顶点为 C. (1)求抛物线的解析式; (2)若点 D 在抛物线上,点 E 在抛物线的对称轴上,且 A、O、D、E 为顶点的四边形是平行 四边形,求点 D 的坐标; (3)P 是抛物线上的第一象限内的动点,过点 P 作 PM x 轴,垂足为 M,是否存在点 P, 使得以 P、M、A 为顶点的三角形△BOC 相似?若存在,求出点 P 的坐标;若不存在,请说明 理由.
1 / 13

二、二次函数中面积的存在性问题 3.如图,抛物线 与双曲线 相交于点 A,B.已知点 B 的坐标为(-2,-2),点 A 在第一象限内,且 tan∠AOX=4.过点 A 作直线 AC∥ 轴,交抛物线于另一点 C. (1)求双曲线和抛物线的解析式; (2)计算△ABC 的面积; (3)在抛物线上是否存在点 D,使△ABD 的面积等于△ABC 的面积.若存在,请你写出点 D 的坐标;若不存在,请你说明理由.
4.如图,抛物线 y=ax2+c(a>0)经过梯形 ABCD 的四个顶点,梯形的底 AD 在 x 轴上, 其中 A(-2,0),B(-1, -3). (1)求抛物线的解析式;(3 分) (2)点 M 为 y 轴上任意一点,当点 M 到 A、B 两点的距离之和为最小时,求此时点 M 的坐
2 / 13

总复习教案:函数的单调性与最值(学生版)

第三节 函数的单调性与最值 [知识能否忆起] 一、函数的单调性 1.单调函数的定义 增函数 减函数 定义 设函数f (x )的定义域为I .如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1, x 2 当x 1f (x 2) ,那么就说函 数f (x )在区间D 上是减函数 图象描述 自左向右看图象逐渐上升 自左向右看图象逐渐下降 2.单调区间的定义 若函数y =f (x )在区间D 上是增函数或减函数,则称函数y =f (x )在这一区间上具有(严格的)单调性,区间D 叫做y =f (x )的单调区间. 二、函数的最值 前提 设函数y =f (x )的定义域为I ,如果存在实数M 满足 条件 ①对于任意x ∈I ,都有f (x )≤M ; ②存在x 0∈I ,使得f (x 0)=M ①对于任意x ∈I ,都有f (x )≥M ; ②存在x 0∈I ,使得f (x 0)=M 结论 M 为最大值 M 为最小值 [小题能否全取] 1.(2012·陕西高考)下列函数中,既是奇函数又是增函数的为( ) A .y =x +1 B .y =-x 3 C .y =1x D .y =x |x | 2.函数y =(2k +1)x +b 在(-∞,+∞)上是减函数,则( ) A .k >12 B .k <12 C .k >-1 2 D .k <-1 2

3.(教材习题改编)函数f (x )=1 1-x (1-x )的最大值是( ) A.45 B.54 C.34 D.43 4.(教材习题改编)f (x )=x 2-2x (x ∈[-2,4])的单调增区间为________;f (x )max =________. 5.已知函数f (x )为R 上的减函数,若m

二次函数单调性问题

二次函数单调性问题 一、 定区间,定对称轴 1. 说明函数 242-+-=x x y 在区间]3,0[的单调性及最值. 2. 求函数 4)43(22-+++-=x a a x y 在区间]1,3[-的单调性及最值. 二、 定区间,动对称轴 3. 已知函数 3)24(2-++=x a x y 在区间]3,1[单调,求a 的取值范围. 4.已知函数 4)22(2 +++=x a ax y 在区间]4,2[上单调递增,求a 的取值范围. 5.求函数222++-=x ax y 在]1,2[-∈x 上的最大值. 三、定对称轴,动区间 6.已知22)(2++=x x x f ,当],2[a a x -∈时,讨论该函数的单调性. 7.已知2()23f x x x =-+,当[1]()x t t t ∈+∈R ,时,求()f x 的最大值. 四、 动区间,动对称轴 8. 已知函数4)13(2 +--=x a x y ,讨论函数在区间]1,[+a a 的单调性. 9. 已知函数22y x ax =-,[]4,x a a ∈--+,求函数的最大值()h a . 五、 逆向型(是指已知二次函数在某区间上的最值,求函数或区间中参数的取值) 10. 已知函数2()21f x ax ax =++在区间[3,2]-上的最大值为4,求实数a 的值. 11. 二次函数1)12()(2+-+=x a ax x f 在区间3,22??-???? 上的最大值为3,求实数a 的值. 求函数值域(最值)的方法: 1.配方法----二次函数(二次函数在给出区间上的最值有两类:一是求闭区间[,]m n 上的最值;二是求区间定(动),对称轴动(定)的最值问题。求二次函数的最值问题,勿忘数形结合,注意“两看”:一看开口方向;二看对称轴与所给区间的相对位置关系), 求函数225,[1,2]y x x x =-+∈-的值域 2.换元法――通过换元把一个较复杂的函数变为简单易求值域的函数,其函数特征是函数解析式含有根式或三角函数公式模型 1、21y x =+的值域为_____ 2、4y x =+的值域为____;函数x x y 21-+=的值域 3.单调性法――利用一次函数,反比例函数,指数函数,对数函数等函数的单调性 。 求1(19)y x x x =-<<的值域为 4.数形结合法―函数解析式具有明显的某种几何意义,如两点的距离、直线斜率、等等, ⑴已知点(,)P x y 在圆221x y +=上,求 2y x +及2y x -的取值范围; 6.判别式法――对分式函数(分子或分母中有一个是二次)都可通用,但这类题型有时也可以用其它方法进行求解,不必拘泥在判别式法上,也可先通过部分分式后,再利用均值不等式: 1.求232y x =+的值域,2求21x y x =+的值域,3.求211x x y x ++=+的值域

二次函数中和角有关的存在性问题

二次函数中与角有关的存在性问题 与角有关的存在性问题包括相等角的存在性、二倍角或半角的存在性,其他倍数关系角的存在性等,解决这类问题我们通常利用以下知识点去构造相关角: ①平行线的同位角、内错角相等;②等腰三角形的等边对等角;③相似三角形对应角相等;④全等三角形对应角相等;⑤三角形的外角定理等。 然后利用解直角三角形、相似三角形边的比例关系作为计算工具去计算求解,难度相对较大,需要同学们灵活运用,融会贯通。 【类型一 相等角的存在性问题】 (一).利用平行线、等腰三角形构造相等角 例1 如图,直线33+-=x y 与x 轴、y 轴分别交于A ,B 两点,抛物线c bx x y ++-=2 与直线y =c 分别交y 轴的正半轴于点C 和第一象限的点P ,连接PB ,得BOA PCB ≌△△(O 为坐标原点)。若抛物线与x 轴正半轴交点为点F ,设M 是点C ,F 间抛物线上的一点(包括端点),其横坐标为m . (1)直接写出点P 的坐标和抛物线的解析式. (2)求满足POA MPO ∠=∠的点M 的坐标.

(二).利用相似三角形构造相等角 例2 如图,抛物线c bx x y ++=2 2 1与x 轴交于A 、B 两点,与y 轴交于点C ,其对称轴交 抛物线于点D ,交x 轴于点E ,已知OB=OC=6. (1)求抛物线的解析式及点D 的坐标; (2)连接BD ,F 为抛物线上一动点,当EDB FAB ∠=∠时,求点F 的坐标; 解:(1)因为OB=OC=6,所以B (6,0),C ()6,0-, 将 B 、 C 点 坐 标 代 入 解 析 式 , 得 ()822 162212 2--=--= x x x y , 所以点D 的坐标为(2,—8) (2)如图1,过F 作FG ⊥x 轴于点G ,设?? ? ?? --6221, F 2x x x ,则FG=62212--x x ,AG=x +2,当EDB FAB ∠=∠时,且B ED GA ∠=∠F , 所以BDE FAG ∽△△,所以 FG AG EB DE = ,即2622 12482=--+=x x x , 当点F 在x 轴上方时,则有12422 --=+x x x ,解得x=—2(舍去)或x=7,此时F 点的坐标为?? ? ??297,; 当点F 在x 轴下方时,则有)(12422 ---=+x x x ,解得x=—2(舍去)或x=5,此时F 点的坐标为??? ? ?-275, ,,综上可知点F 的坐标为??? ?? 297,或?? ? ? ?-275, .

二次函数的单调性专题

学员辅导教案 学生姓名:__________ 授课时间_2016年8月23日_ (星期二) ________________ 科目:数学 二次函数单调性专题 一. 教学内容: 高考复习:二次函数的基本性质 二. 考纲要求: (1)理解二次函数函数的单调性、最大(小)值及其几何意义;结合具体函数,了解函数奇偶性的含义。 (2)会运用二次函数函数图象理解和研究函数的性质。 三?命题方向及典例探究 二次函数的性质与图像 1、二次函数的概念:形如y ax bx c(a 0)的函数叫做二次函数?其定义域是R 2、二次函数的解析式: 一般式:f(x) ax bx c(a 0); 2 顶点式:f (x) a(x h) k(a 0) , (h,k)是二次函数的顶点坐标; 两根式:f (x) a(x xj(x x2)(a 0), x1,x2是二次函数与x轴的两个交点的横坐标。

考题简析 题型一:轴定、区间定。 A、定义域为全体实数: 1、求下列函数的单调区间及值域 2 2 (1) f(x) X+8X+3; ( 2) f(x) 5x-4x-3 ; (4) f (x) -2x2+x-1 2、变式训练:求下列函数的单调区间及值域 2 ① y x24x 1 ; ② y x 4x 1; B、定义域为有界区间: 1、已知二次函数f(x) x2-2x+3, 2

(1) 、当x 2,0时,求f(x)的最值; (2) 、当x 2,3时,求f(x)的最值; 2、已知函数f(x) x2-2x+2 , x 5,5,求该函数的值域。 3、变式训练:求下列函数的单调区间及值域 ③ y x24x 1,x [3,4] ④ y x2 题型二:轴定、区间不定。 例1、已知二次函数f(x) x2-2x+3,当x t,t 1时,求 变式训练1、求函数f(x) x2+2x在t,1上的值域。4x 1,x [0,5];f(x)的最小值

(完整版)二次函数中的存在性问题(答案)

二次函数中的存在性问题姓名 1.已知抛物线y=﹣x2+x﹣3与x轴交于A,B两点,与y轴交于点C.在直线CA上方的抛物线上是否存在一点D,使得△ACD的面积最大?若存在,求出点D的坐标;若不存在,请说明理由. 2.已知y=ax2+bx+c(a≠0)图象与直线y=kx+4相交于A(1,m),B(4,8)两点,与x轴交于原点及点C.(1)求直线和抛物线解析式; (2)在x轴上方的抛物线上是否存在点D,使S△OCD=2S△OAB?如果存在,求出点D坐标,如果不存在,说明理由. 3.已知直线y=x﹣3与x轴交于点A,与y轴交于点C,抛物线y=﹣x2+mx+n经过点A和点C. (1)求此抛物线的解析式; (2)在直线CA上方的抛物线上是否存在点D,使得△ACD的面积最大?若存在,求出点D的坐标;若不存在,说明理由.

4.在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴交于A、B两点(点A在点B的左侧),过点A的直线y=kx+1交抛物线于点C(2,3). (1)求直线AC及抛物线的解析式; (2)若直线y=kx+1与抛物线的对称轴交于点E,以点E为中心将直线y=kx+1顺时针旋转90°得到直线l,设直线l与y轴的交点为P,求△APE的面积; (3)若G为抛物线上一点,是否存在x轴上的点F,使以B、E、F、G为顶点的四边形为平行四边形?若存在,直接写出点F的坐标;若不存在,请说明理由. 5.如图,在平面直角坐标系中,抛物线交x轴于A,B两点(A在B的左侧),交y轴于点C. (1)求直线BC的解析式; (2)求抛物线的顶点及对称轴; (3)若点Q是抛物线对称轴上的一动点,线段AQ+CQ是否存在最小值?若存在,求出点Q的坐标;若不存在,说明理由; (4)若点P是直线BC上方的一个动点,△PBC的面积是否存在最大值?若存在,求出点P的坐标及此时△PBC 的面积;若不存在,说明理由.

单调性与最值

单调性与最值 1.已知()y f x =在定义域(1,1)-上是减函数,且(1)(21)f a f a -<-,则a 的取值范围是 . 2.若f(x)为R 上的增函数,则满足f(2-m)-≤-=0 , 20 , )(2x x x x x x f ,则)(x f 的最小值是 . 5.3y x x =+的单调增区间是 . 6.函数45)(2+-=x x x f 的单调递增区间是 . 7.函数312)(x x x f -=在区间]3,3[-上的最小值为 . 8.函数2()2f x x x =-的单调增区间是 . 9.已知函数2()23f x x mx =-+在[)2,x ∈-+∞上是增函数,则m 范围是 . 10.已知函数f(x)= 4x 2-kx-8在[4,10]上具有单调性,实数k 的取值范围是_________ 11.如果函数2 ()23f x ax x =+-在区间(),4-∞上是单调递增的,则实数a 的取值范围是__________

12.已知函数2 ()21f x x ax a =-++- , (1)若=2a ,求()f x 在区间[]0,3上的最小值; (2)若()f x 在区间[]0,1上有最大值3,求实数a 的值. 13.已知[]2,1,4329)(-∈+?-=x x f x x (1)设[]2,1,3-∈=x t x ,求t 的最大值与最小值; (2)求)(x f 的最大值与最小值;

二次函数的存在性问题(面积问题)

二次函数的存在性问题(面积问题) [08湖北荆州]已知:如图,R t △AOB 的两直角边OA 、OB 分别在x 轴的正半轴和y 轴的负 半轴上,C 为OA 上一点且OC =OB ,抛物线y=(x -2)(x -m )-(p-2)(p-m)(m 、p 为常数且m+2≥2p>0)经过A 、C 两点. (1)用m 、p 分别表示OA 、OC 的长; (2)当m 、p 满足什么关系时,△AOB 12220.(1)0 2)()(2)()0 )(2)0,222020 2,1(2),2 11 (2) 2211 (2)22 1 (2) 1 2(2)1 2 2()2 AOB AOB AO y x x m p p m x p x m p x p x m p m p m p p OA m p OC P OC OB S OA OB S OA OB P m p P m P m p m S =-----=---+=∴==+-+>>∴+->>∴=+-===∴==+-=-+++∴=-=+?-令得:(整理得:(当时,. B 最大 [08湖北荆州]如图,等腰直角三角形纸片AB C 中,AC =BC =4,∠ACB =90o,直角边AC 在x 轴上,B 点在第二象限,A (1,0),AB 交y 轴于E ,将纸片过E 点折叠使BE 与EA 所在直线重合,得到折痕EF (F 在x 轴上),再展开还原沿EF 剪开得到四边形BCFE ,然后把四边形BCFE 从E 点开始沿射线EA 平移,至B 点到达A 点停止.设平移时间为t (s ),移动速度为每秒1个单位长度,平移中四边形BCFE 与△AEF 重叠的面积为S. (1)求折痕EF 的长; (2)是否存在某一时刻t 使平移中直角顶点C 经过抛物线243y x x =++的顶点?若存在, 求出t 值;若不存在,请说明理由; (3)直接写出....S 与t 的函数关系式及自变量t 25.145101ABC BE EA FE EA Rt AC BC CAB EF EA A OA OE AE EF ∴⊥=∴∠=?∴=∴===∴=()折叠后与所在直线重合又中(,) ,折痕 ∥BA 交Y 轴于P , 2()存在.设CP 413 POC C CP AC OA OC OP ==∴==则为等腰直角三角形,直角顶点在射线上移动 ,

含有一元二次函数型单调性问题

导数含有一元二次函数型函数的单调性问题 莘县一中 田昌喜 1. 已知函数).0()(≠++ =x b x a x x f ,其中R b a ∈,,讨论函数)(x f 的单调性. 解: (1)21)('x a x f -=, 当0≤a 时,显然)('x f >0(x ≠0),这时f(x)在(-∞,0),(0,+∞)内是增函数; 当0>a 时,令)('x f =0,解得=x a ±, 当x 变化时,)('x f ,)(x f 的变化情况如下表: 2. 已知函数,)(2a ax x e x f x ++=其中a 为实数,当)(x f 的定义域为R 时,求)(x f 的单调区间. 解: )(x f 的定义域为R ,∴方程02=++a ax x 无实根,即042 <-=?a a ,解得:40<-a 即42<'x f , 若)0,2(a x -∈,则0)(<'x f ,所以)(x f 的增区间为),0(),2,(∞+--∞a ,减区间为)0,2(a -; 当02<-a 即20<'x f , 若)2,0(a x -∈,则0)(<'x f ,所以)(x f 的增区间为),2(),0,(∞+--∞a ,减区间为)2,0(a -. 3. 在实数集R 上定义运算:.)((为常数)a y a x y x -=?令x e x f =)(,

二次函数(存在性问题)

函数图象中点的存在性问题(强化训练) 切入点一:利用基本图形来作图(充分利用图形的特殊性质),并描述作图方法 切入点二:做好数据准备,计算尽量利用相似、数形结合(交轨法) 切入点三:紧扣不变量,善于使用前题所采用的方法或结论 切入点四:在题目中寻找多解的信息(不重不漏) 1.1因动点产生的平行四边形问题 1. 如图1,直线L:y=-x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线G:y=ax2+bx+c 与x轴的另一交点为A,顶点为P,且对称轴是直线x=2. (1)该抛物线G的解析式为; (2)将直线L沿y轴向下平移个单位长度,能使它与抛物线G只有一个公共点; (3)若点E在抛物线G的对称轴上,点F在该抛物线上,且以点A、B、E、F为顶点的四边形为平行四边形,求点E与点F坐标并直接写出平行四边形的周长. (4)连接AC,得△ABC.若点Q在x轴上,且以点P、B、Q为顶点的三角形与△ABC相似,求点Q 的坐标.

2. 在平面直角坐标系xOy中,已知二次函数y=ax2-2ax+c(a≠0)的图象与x轴交于A,B两点(点A在点B的左边),AB=4,与y轴交于点C,且过点(2,3). (1)求此二次函数的表达式; (2)若抛物线的顶点为D,连接CD、CB,问抛物线上是否存在点P,使得∠PBC+∠BDC=90°?若存在,求出点P的坐标;若不存在,请说明理由; (3)点K为抛物线上C关于对称轴的对称点,点G抛物线上的动点,在x轴上是否存在点F,使A、K、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由.

2014年高考一轮复习考点热身训练:2.2函数的单调性与最值

2014年高考一轮复习考点热身训练: 2.2函数的单调性与最值 一、选择题(每小题6分,共36分) 1.关于函数y= 3 x -的单调性的叙述正确的是( ) (A)在(-∞,0)上是递增的,在(0,+∞)上是递减的 ()在(-∞,0)∪(0,+∞)上递增 (C)在[0,+∞)上递增 (D)在(-∞,0)和(0,+∞)上都是递增的 2.(2013·厦门模拟)函数f(x)=2x 2 -mx+2当x ∈[-2,+∞)时是增函数,则m 的取值范围是( ) (A)(-∞,+∞) ()[8,+∞) ()(-∞,-8] (D)(-∞,8] 3.若函数f(x)=log a (x+1)(a>0,a ≠1)的定义域和值域都是[0,1],则a 等于 ( ) (A) 1 3 ( ( (D)2 4.(2012·龙岩模拟)函数()1 2x x x 4f x 1() x 42 -?≥? =??f(3) ()f(-1)=f(3) (D)f(0)=f(3) 6.(预测题)定义在R 上的函数f(x)满足f(x+y)=f(x)+f(y),当x<0时,f(x)>0,则函数f(x)在[a,b ]上有( ) (A)最小值f(a) ()最大值f(b) ()最小值f(b) (D)最大值f(a b 2 +) 二、填空题(每小题6分,共18分) 7.如果二次函数f(x)=x 2 -(a-1)x+5在区间( 1 2 ,1)上是增函数,那么f(2)的取值范围是__________. 8.函数 的最大值是_______.

-几何图形在二次函数中的存在性问题探解

---几何图形在二次函数中的存在性问题探解 二次函数是初中数学的重要内容,更是中考的重要考点之一,它以丰富的知识内涵,深远的知识综合,深厚的数学思想,灵活的解题方法,奇趣的知识背景等深深吸引着命题老师,更深刻启迪着每位同学.下面就把几何图形在二次函数中的存在性问题介绍给大家,供学习时借鉴. 一、.三角形的存在性 1.1 等腰三角形的存在性 例1 (2017年淮安)如图1-1,直线y=﹣x+3与x 轴、y 轴分别交于点B 、点C ,经过B 、C 两点的抛物线y=2x +bx+c 与x 轴的另一个交点为A ,顶点为P . (1)求该抛物线的解析式; (2)在该抛物线的对称轴上是否存在点M ,使以C ,P ,M 为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M 的坐标;若不存在,请说明理由; (3)当0<x <3时,在抛物线上求一点E ,使△CBE 的面积有最大值(图1-2、1-3供画图探究). 分析: 第一问考查的是待定系数法确定函数的解析式,思路有几个待定系数,解答时就需要确定几个点的坐标; 第二问探析等腰三角形的存在性,解答时,要做到一先一后,先清楚动点的位置与特点,后对等腰三角形进行科学分类,一是按边分类,一是按角分类; 第三问探求三角形面积的最大值,这是二次函数的看家本领,只需将三角形的面积适当分割,恰当表示,最后将三角形面积最大问题转化为二次函数的最值问题求解即可. 解: (1)因为直线y=﹣x+3与x 轴、y 轴分别交于点B 、点C ,所以B (3,0),C (0,3), 所以{c =39a+3b+c =0,解得{c =3b =4-,所以抛物线解析式为y=2x ﹣4x+3; (2)因为y=2x ﹣4x+3=2(x 2)-﹣1,所以抛物线对称轴为x=2,顶点P (2,﹣1), 设M (2,t ),因为△CPM 为等腰三角形,如图2所示, ①当MC=PC 时,过C 作CQ ⊥对称轴,垂足为Q ,则Q(2,3),所以QP=MQ=3-(-1)=4,所以M 到x 轴的距离8-1=7,所以1M 的坐标(2,7); ②当MP=MC 时,作PC 的垂直平分线交对称轴于点M ,所以222(t+1)2+(t-3)=,解得t=32,所以2M 的坐标(2, 32 );

函数的单调性与最值练习题(适合高三)

函数的单调性与最值练习题 学校:___________姓名:___________班级:___________考号:___________ 一、选择题(每小题4分) 1.函数2()log f x x =在区间[1,2]上的最小值是( ) A .1- B .0 C .1 D .2 2.已知2 12 ()log (2)f x x x =-的单调递增区间是( ) A.(1,)+∞ B.(2,)+∞ C.(,0)-∞ D.(,1)-∞ 3.定义在R 上的函数()f x 对任意两个不相等实数,a b ,总有()() 0f a f b a b ->-成立, 则必有( ) A.()f x 在R 上是增函数 B.()f x 在R 上是减函数 C.函数()f x 是先增加后减少 D.函数()f x 是先减少后增加 4.若 在区间(-∞,1]上递减,则a 的取值范围为( ) A. [1,2) B. [1,2] C. [1,+∞) D. [2,+∞) 5.函数y=x 2 ﹣2x ﹣1在闭区间[0,3]上的最大值与最小值的和是( ) A .﹣1 B .0 C .1 D .2 6.定义在),0(+∞上的函数()f x 满足对任意的))(,0(,2121x x x x ≠+∞∈,有 2121()(()())0x x f x f x -->.则满足(21)f x -<1 ()3 f 的x 取值范围是( ) A.(12,23) B.[13,23) C. (13,23) D.[12,23 ) 7.已知(x)=?? ?≥<+-) 1(log ) 1(4)13(x x x a x a a 是(-∞,+∞)上的减函数,那么a 的取 值范围是( ) A.(0,1) B.(0,3 1) C.[7 1,3 1) D.[7 1,1) 8.函数2 2log (23)y x x =+-的单调递减区间为( ) A .(-∞,-3) B .(-∞,-1) C .(1,+∞) D .(-3,-1) 9.已知函数()f x 是定义在[0,)+∞的增函数,则满足(21)f x -<1 ()3 f 的x 取值范围 是( ) (A )(∞-, 23) (B )[13,23) (C )(12,∞+) (D )[12,2 3 ) 10.下列函数中,在定义域内是单调递增函数的是( ) A .2x y = B .1y x = C .2 y x = D .tan y x = 11.已知函数 (a 为常数).若 在区间[-1,+∞)上是增函数,则a 的取

二次函数存在性问题总结

已知,抛物线322 --=x x y 交x 轴于点A 、B ,交y 轴于点C. 1、线段最值 ①线段和最小 点P 是抛物线对称轴上一动点,当点P 坐标为多少时,PA+PC 值最小. A B C O x y ②线段差最大 点Q 是抛物线对称轴上一动点,当点Q 坐标为多少时,|QA -QC|值最大. A B C O x y ③线段最值 连接BC,点M 是线段BC 上一动点,过点M 作MN//y 轴,交抛物线于点N,求线段MN 的最大值及点N 的坐标. A B C O x y N M 变式① 点N 是第四象限内抛物线上一动点,连接BN 、CN,求BCN S ?的最大值及点N的坐标 A B C O x y N

变式② 点N是第四象限内抛物线上一动点,求点N到线段BC 的最大距离及点N的坐标 A B C O x y N M 2、等腰三角形的存在性问题 点D 为抛物线322 --=x x y 的顶点,连接BC ,点P 是直线B C上一动点,是否存在点P,使△PAD 为等腰三角形,若存在,求出点P 的坐标,若不存在,说明理由. A B C O x y D 3、菱形的存在性问题 点D为抛物线322 --=x x y 的顶点,连接BC 点P 是直线BC 上一动点,点Q 为坐标平面内一点,是否存在以A 、D、P、Q 为顶点的四边形是菱形,若存在,求出点P 坐标,若不存在,说明理由. A B C O x y D 4、平行四边形的存在性问题 点D 为抛物线322 --=x x y 的顶点,点M 是抛物线上一动点,点N 为直线BC 上一动点,是否存在以O 、D 、M、N 为顶点的四边形是平行四边形,若存在,求出点M 坐标,若不存在,说明理由. A B C O x y D 5、直角三角形的存在性问题

中考数学二次函数存在性问题及参考答案

中考数学二次函数存在性问题及参考答案 一、二次函数中相似三角形的存在性问题 1.如图,把抛物线2 =向左平移1个单位,再向下平移4个单位,得到抛物线2 y x =-+. y x h k () 所得抛物线与x轴交于A,B两点(点A在点B的左边),与y轴交于点C,顶点为D. (1)写出h k 、的值;(2)判断△ACD的形状,并说明理由; (3)在线段AC上是否存在点M,使△AOM∽△ABC若存在,求出点M的坐标;若不存在,说明理由. 2.如图,已知抛物线经过A(﹣2,0),B(﹣3,3)及原点O,顶点为C. (1)求抛物线的解析式; (2)若点D在抛物线上,点E在抛物线的对称轴上,且A、O、D、E为顶点的四边形是平行四边形,求点D的坐标; (3)P是抛物线上的第一象限内的动点,过点P作PM⊥x轴,垂足为M,是否存在点P,使得以P、M、A为顶点的三角形△BOC相似若存在,求出点P的坐标;若不存在,请说明理由. 二、二次函数中面积的存在性问题

3.如图,抛物线()20y ax bx a >=+与双曲线k y x = 相交于点A ,B .已知点B 的坐标为(-2,-2),点A 在第一象限内,且tan ∠AOX =4.过点A 作直线AC ∥x 轴,交抛物线于另一点C . (1)求双曲线和抛物线的解析式; (2)计算△ABC 的面积; (3)在抛物线上是否存在点D ,使△ABD 的面积等于△ABC 的面积.若存在,请你写出点D 的坐标;若不存在,请你说明理由. 4.如图,抛物线y =ax 2+c (a >0)经过梯形ABCD 的四个顶点,梯形的底AD 在x 轴上, 其中A (-2,0),B (-1, -3). (1)求抛物线的解析式;(3分) (2)点M 为y 轴上任意一点,当点M 到A 、B 两点的距离之和为最小时,求此时点M 的坐标;(2分) (3)在第(2)问的结论下,抛物线上的点P 使S △PAD =4S △ABM 成立,求点P 的坐标.(4分) (4)在抛物线的BD 段上是否存在点Q 使三角形BDQ 的面积最大,若有,求出点Q 的坐标,若没有,请说明理由。 三、二次函数中直角三角形的存在性问题 5.如图,△ABC 是直角三角形,∠ACB=90,AC=BC,OA=1,OC=4,抛物线2y x bx c =++经过A ,B 两点, 抛物线的顶点为D . (1)求b ,c 的值;

二次函数的最大值和最小值问题

二次函数的最大值和最小值问题 高一数学组主讲人---------蒋建平 本节课的教学目标: 重点:掌握闭区间上的二次函数的最值问题 难点:理解并会处理含参数的二次函数的最值问题 核心: 区间与对称轴的相对位置 思想: 数形结合、分类讨论 一、复习引入 1、二次函数相关的知识点回顾。 (1)二次函数的顶点式: (2)二次函数的对称轴: (3)二次函数的顶点坐标: 2、函数的最大值和最小值的概念 设函数)(x f 在0x 处的函数值是)(0x f ,如果不等式)()(0x f x f ≥对于定义域内任意x 都成立,那么)(0x f 叫做函数)(x f y =的最小值。记作)(0min x f y = 如果不等式)()(0x f x f ≤对于定义域内任意x 都成立,那么)(0x f 叫做函数)(x f y =的最小值。记作)(0max x f y = 二、新课讲解:二次函数最大值最小值问题探究 类型一:无限制条件的最大值与最小值问题 例1、(1)求二次函数322 ++-=x x y 的最大值 . (2)求二次函数x x y 422-=的最小值 . 本题小结:求无条件限制时二次函数最值的步骤 1、配方,求二次函数的顶点坐标。 2、根据二次函数的开口方向确定是函数的最大值还是最小值。 3、求出最值。

类型二:轴定区间定的最大值与最小值问题 例2、(1)求函数])1,3[(,232-∈-+=x x x y 的最大值 ,最小值 . (2)求函数])3,1[(232∈-+=x x x y 的最大值 ,最小值 . (3)求函数])2,5[(232--∈-+=x x x y 的最大值 与最小值 . 本题小结:求轴定区间定时二次函数最值的步骤 1、配方,求二次函数的顶点坐标或求对称轴,画简图。 2、判断顶点的横坐标(对称轴)是否在闭区间内。 3、计算闭区间端点的值,并比较大小。 类型三:轴动区间定的最大值与最小值问题 例3、求函数)(32 R a ax x y ∈++=在]1,1[-上的最大值。

二次函数存在性问题总结

已知,抛物线322 --=x x y 交x 轴于点A、B,交y 轴于点C. 1、线段最值 ①线段和最小 点P 是抛物线对称轴上一动点,当点P 坐标为多少时,PA+PC值最小. A B C O x y ②线段差最大 点Q 是抛物线对称轴上一动点,当点Q 坐标为多少时,|Q A-QC |值最大. A B C O x y ③线段最值 连接B C,点M是线段BC 上一动点,过点M 作M N//y 轴,交抛物线于点N ,求线段MN 的最大值及点N 的坐标. A B C O x y N M 变式① 点N是第四象限内抛物线上一动点,连接BN、CN,求BCN S ?的最大值及点N 的坐标 A B C O x y N

变式② 点N 是第四象限内抛物线上一动点,求点N 到线段BC 的最大距离及点N 的坐标 A B C O x y N M 2、等腰三角形的存在性问题 点D为抛物线322 --=x x y 的顶点,连接BC ,点P 是直线BC 上一动点,是否存在点P ,使△PAD 为等腰三角形,若存在,求出点P 的坐标,若不存在,说明理由. A B C O x y D 3、菱形的存在性问题 点D为抛物线322 --=x x y 的顶点,连接BC 点P 是直线B C上一动点,点Q 为坐标平面内一点,是否存在以A 、D 、P 、Q 为顶点的四边形是菱形,若存在,求出点P坐标,若不存在,说明理由. A B C O x y D 4、平行四边形的存在性问题 点D 为抛物线322 --=x x y 的顶点,点M是抛物线上一动点,点N 为直线B C上一动点,是否存在以O、D、M 、N 为顶点的四边形是平行四边形,若存在,求出点M 坐标,若不存在,说明理由. A B C O x y D 5、直角三角形的存在性问题

相关主题