搜档网
当前位置:搜档网 › 大学物理教程课后习题答案

大学物理教程课后习题答案

大学物理教程课后习题答案
大学物理教程课后习题答案

物理部分课后习题答案(标有红色记号的为老师让看的题)

27页 1-2 1-4 1-12

1-2 质点的运动方程为22,(1)x t y t ==-,,x y 都以米为单位,t 以秒为单位,

求:

(1) 质点的运动轨迹;

(2) 从1t s =到2t s =质点的位移的大小; (3) 2t s =时,质点的速度和加速度。

解:(1)由运动方程消去时间t 可得轨迹方程,将t =

21)y =

或 1=

(2)将1t s =和2t s =代入,有

11r i =, 241r i j =+

213r r r i j =-=-

位移的大小

231r =+=

(3) 2x dx

v t dt

=

= 2(1)y dy v t dt

==-

22(1)v ti t j =+-

2x

x dv a dt

==, 2y y dv a dt == 22a i j =+

当2t s =时,速度和加速度分别为

42/v i j m s =+

22a i j =+ m/s 2

1-4 设质点的运动方程为cos sin ()r R ti R t j SI ωω=+,式中的R 、ω均为常量。求(1)质点的速度;(2)速率的变化率。

解 (1)质点的速度为

sin cos d r

v R ti R t j dt

ωωωω=

=-+ (2)质点的速率为

v R ω==

速率的变化率为

0dv dt

= 1-12 质点沿半径为R 的圆周运动,其运动规律为232()t SI θ=+。求质点在t 时刻的法向加速度n a 的大小和角加速度β的大小。

解 由于 4d t dt

θ

ω=

= 质点在t 时刻的法向加速度n a 的大小为

2216n a R Rt ω==

角加速度β的大小为 24/d rad s dt

ω

β==

77

页2-15, 2-30, 2-34,

2-15 设作用于质量1m kg =的物体上的力63()F t SI =+,如果物体在这一力作用

下,由静止开始沿直线运动,求在0到2.0s 的时间内力F 对物体的冲量。

解 由冲量的定义,有

2.0

2.0

2.02

(63)(33)

18I Fdt t dt t t N s ==+=+=?

?

2-21 飞机着陆后在跑道上滑行,若撤除牵引力后,飞机受到与速度成正比的阻力

(空气阻力和摩擦力)f kv =-(k 为常数)作用。设撤除牵引力时为0t =,初速度为0v ,求(1)滑行中速度v 与时间t 的关系;(2)0到t 时间内飞机所滑行的路程;(3)飞机停止前所滑行的路程。

解 (1)飞机在运动过程中只受到阻力作用,根据牛顿第二定律,有

dv

f m

kv dt ==- 即 dv k dt v m

=- 两边积分,速度v 与时间t 的关系为

2-31 一质量为m 的人造地球卫星沿一圆形轨道运动,离开地面的高度等于地球

半径的2倍(即

2R )

,试以,m R 和引力恒量G 及地球的质量M 表示出: (1) 卫星的动能;

(2) 卫星在地球引力场中的引力势能.

解 (1) 人造卫星绕地球做圆周运动,地球引力作为向心力,有

2

2

(3)3Mm v G m R R

= 卫星的动能为 2126k GMm

E mv R =

=

(2)卫星的引力势能为

3p GMm

E R

=-

00v t v dv k dt v m =-??

2-37 一木块质量为1M kg =,置于水平面上,一质量为2m g =的子弹以500/m s

的速度水平击穿木块,速度减为100/m s ,木块在水平方向滑行了20cm 后停止。求:

(1) 木块与水平面之间的摩擦系数; (2) 子弹的动能减少了多少。

解 子弹与木块组成的系统沿水平方向动量守恒

12mv mv Mu =+

对木块用动能定理

21

02

Mgs Mu μ-=-

得 (1) 2212()2m v v Mgs

μ-==

322

(210)(500100)0.16219.80.2-??-=??? (2) 子弹动能减少

22

12121()2402

k k E E m v v J -=

-= 114页3-11,3-9,

例3-2 如图所示,已知物体A 、B 的质量分别为A m 、B m ,滑轮C 的质量为C m ,

半径为R ,不计摩擦力,物体B 由静止下落,求

(1)物体A 、B 的加速度; (2)绳的张力;

(3)物体B 下落距离L 后的速度。

分析: (1)本题测试的是刚体与质点的综合运动,由于滑轮有质量,在运动时就变成含有刚体的运动了。滑轮在作定轴转动,视为圆盘,转动惯量为

21

2

J mR =

。 (2)角量与线量的关系:物体A 、B 的加速度就是滑轮边沿的切向加速度,有

t a R β=。

(3)由于滑轮有质量,在作加速转动时滑轮两边绳子拉力12T T ≠。 分析三个物体,列出三个物体的运动方程: 物体A 1A T m a = 物体B 2B B m g T m a -= 物体C '

'

22111

()22

C C T T R J m R m Ra ββ-==

= 解 (1)1

2

B A B C

m g a m m m =

++。

(2)112A B A B C m m g T m m m =++, 21()21

2

A C A

B C

m m g T m m m +=++。

(3)对B

来说有,2

2

02v v aL

v -===

例3-4 有一半径为R 的圆形平板平放在水平桌面上,平板与水平桌面的摩擦系数为

μ,若平板绕通过其中心且垂直板面的固定轴以角速度ω0开始旋转,它将在旋转几圈后停止?(已知圆形平板的转动惯量22

1

mR J =

,其中m 为圆形平板的质量) 分析: 利用积分求圆形平板受桌面的摩擦力矩,运用转动定律求出平板的角加速度,再用运动学公式求转动的圈数.

解:在距圆形平板中心r 处取宽度为dr 的环带面积,环带受桌面的摩擦力矩为

r r r R

mg

M d 2d 2

?π?π=μ

总摩擦力矩为

mgR M M R

μ3

2

d 0

=

=? 故平板的角加速度为

2

2

2 M J

β=

可见圆形平板在作匀减速转动,又末角速度0ω=,因此有

2022M J

θ

ωβθ==

设平板停止前转数为n ,则转角2n θπ=,可得

22

00

3416J R n M ωωμ==πg

π

3-2:如题3-2图所示,两个圆柱形轮子内外半径分别为R 1和R 2,质量分别

为M 1和M 2。二者同轴固结在一起组成定滑轮,可绕一水平轴自由转动。今在两轮上各绕以细绳,细绳分别挂上质量为m 1和m 2的两个物体。求在重力作用下,定滑轮的角加速度。

解: m 1:1111

a m g m T

=-

m 2:2

222a m T g m

=-

转动定律:βJ T R T R =-1122

其中:

2

2

22112

121R M R M J += 运动学关系:

2

211R a R a =

=β 解得:

2

2

2221111122)2/()2/()(R m M R m M g

R m R m +++-=β

3-6 一质量为m 的质点位于(11,y x )处,速度为j v i v v y x

+=, 质点受到一个沿x 负

方向的力f 的作用,求相对于坐标原点的角动量以及作用于质点上的力的力矩.

解: 由题知,质点的位矢为

j y i x r

11+=

作用在质点上的力为

i f f -=

所以,质点对原点的角动量为

v m r L

?=0)()(11j v i v m i y i x y x +?+=k

mv y mv x x y )(11-=

作用在质点上的力的力矩为

k f y i f j y i x f r M

1110)()(=-?+=?=

3-11 如题3-11图所示,一匀质细杆质量为m ,长为l ,可绕过一端O 的水平轴自由

转动,杆于水平位置由静止开始摆下.求:

(1)初始时刻的角加速度; (2)杆转过θ角时的角速度. 解: (1)由转动定律,有

21

23

()=l mg

ml β 则 l

g

23=β (2)由机械能守恒定律,有

22110232

()-=l

ml ωmg sin θ

题3-11图

所以有 l

g θ

ωsin 3=

3-13 一个质量为M 、半径为R 并以角速度ω转动着的飞轮 (可看作匀质圆盘),在某一瞬时突然有一片质量为m 的碎片从轮的边缘上飞出,见题3-13图.假定碎片脱离飞轮时

的瞬时速度方向正好竖直向上. (1)问它能升高多少?

(2)求余下部分的角速度、角动量和转动动能. 解: (1)碎片离盘瞬时的线速度即是它上升的初速度

ωR v =0

设碎片上升高度h 时的速度为v ,则有 题3-13图

gh v v 22

02-=

令0=v ,可求出上升最大高度为

2

22

0212ωR g

g v H ==

(2)圆盘的转动惯量212=

J MR ,碎片抛出后圆盘的转动惯量221

2

'=-J MR mR ,碎片脱离前,盘的角动量为J ω,碎片刚脱离后,碎片与破盘之间的内力变为零,但内力不影响系

统的总角动量,碎片与破盘的总角动量应守恒,即

'=+'0J ωJ ωmv R

式中ω'为破盘的角速度.于是

R mv mR MR MR 0222)21

(21+'-=ωω ωω'-=-)2

1

()21(2222mR MR mR MR 得ωω=' (角速度不变)

圆盘余下部分的角动量为

ω)2

1

(22mR MR - 转动动能为

222)2

1

(21ωmR MR E k -=

258页8-2,8-12,8-17

8-7 试计算半径为R 、带电量为q 的均匀带电细圆环的轴线(过环心垂直于圆环所在

平面的直线)上任一点P 处的场强(P 点到圆环中心的距离取为x ).

解 在圆环上任取一电荷元dq ,其在P 点产生的场强为 (

)

2

20

4R x dq

dE +=

πε,

方向沿dq 与P 点的连线.

将其分解为平

行于轴线的分量和垂直于轴线的分量,由电

荷分布的对称性可知,各dq 在P 点产生的垂直于轴线的场强分量相互抵消,而平行于

轴线的分量相互加强,所以合场强平行于轴线, 大小为:

E =E ∥=()()()

2

3

220212222044cos R x qx

R x x R x dq dE q

+=+?+=??πεπεθ 方向:q >0时,(自环心)沿轴线向外;q <0时,指向环心.

8-12 两个均匀带电的同心球面半径分别为R 1和R 2(R 2>R 1),带电量分别为q 1和q 2,

求以下三种情况下距离球心为r 的点的场强:(1)r <R 1;(2)R 1<r <R 2(3)r >R 2.并定性地画出场强随r 的变化曲线

解 过所求场点作与两带电球面同心的球面为高斯面,则由高斯定理可知: (1) 当r <R 1时,

0,04cos 2

=∴=?==Φ?

E r E dS E e πθ

(2) 当R 1<r <R 2 时,

2

010124,4cos r

q E q r E dS E e πεεπθ=∴=?==Φ?

(3) 当r >R 2 时,

解8-7图

E

12解8-12图 场强随r 的变化曲线

()()2

021021244cos r

q q E q q r E dS E e πεεπθ+=∴+=?==Φ?

8-13 均匀带电的无限长圆柱面半径为R ,每单位长度的电量(即电荷线密度)为λ.

求圆柱面内外的场强.

解 过所求场点作与无限长带电圆柱面同轴的、长为l 的封闭圆柱面,使所求场点在封闭圆柱面的侧面上.由电荷分布的对称性可知,在电场不为零的地方,场强的方向垂直轴线向外(设λ>0),且离轴线的距离相等的各点场强的大小相等. 所以封闭圆柱面两个底面的电通量为零,侧面上各点场强的大小相等,方向与侧面垂直(与侧面任一面积元的法线方向平行).设所求场点到圆柱面轴线的距离为r ,当r <R 即所求场点在带电圆柱面内时,因为

0,02000cos cos =∴=?=++==Φ??E rl E dS E dS E e πθ;

当r >R 即所求场点在带电圆柱面外时,r

E l rl E e 002,2πελελπ=∴=

?=Φ . 8-15 将q=2.5×10-8C 的点电荷从电场中的A 点移到B 点,外力作功5.0×10-6J .问电

势能的增量是多少?A 、B 两点间的电势差是多少?哪一点的电势较高?若设B 点的电势为

零,则A 点的电势是多少?

解 电势能的增量:J 100.56

-?==-=?外A W W W A B ;

A 、

B 两点间的电势差:

V 100.210

5.2100.52

8

6?-=??-=-=-=---q W W q W q W U U B A B A B A <0, ∴ B 点的电势较高;

若设B 点的电势为零,则 V 100.22

?-=A U .

8-17 求习题8-12中空间各点的电势.

解 已知均匀带电球面内任一点的电势等于球面上的电势

R

q 04πε,其中R 是球面的半

径;均匀带电球面外任一点的电势等于球面上的电荷全部集中在球心上时的电势.所以,由

电势的叠加原理得:

(1) 当r <R 1即所求场点在两个球面内时:2

021

0144R q R q U πεπε+

=

(2) 当R 1<r <R 2即所求场点在小球面外、大球面内时:2

0201

44R q r

q U πεπε+

=

当r >R 2即所求场点在两个球面外时:r

q q r

q r

q U 021*******πεπεπε+=

+

=

当r >R 2即所求场点在两个球面外时:r

q q r

q r

q U 02

10201444πεπεπε+=

+

=

285页9-3,9-4

9-3.如图,在半径为R 的导体球外与球心O 相距为a 的一点A 处放置一点电荷+Q ,在球

内有一点B 位于AO 的延长线上,OB = r ,求:(1)导体上的感应电荷在B 点产生的场强的大小和方向;(2)B 点的电势. 解:(1)由静电平衡条件和场强叠加原理可知,B 点的电场强度为点电荷q 和球面感应电荷在该处产生的矢量和,且为零,即

0413

0=+'=r r

E E p B πε r r a E B

3

0)

(41+-

=πε (2)由电势叠加原理可知,B 点的电势为点电荷q 和球面感应电荷在该处产生的电势的标量和,即

r

q V V B

B 04πε+'=

由于球体是一个等势体,球内任一点的电势和球心o 点的电势相等

a

q V V V B 0004πε+

'==

因球面上的感应电荷与球心o 的距离均为球的半径R ,且感应电荷的总电贺量为零,所以感应电荷在o 点产生的电势为零,且00V V =',因此

a

q V V B 004πε=

=

所以, B 点的电势 a

q V B 04πε=

9-4.如图所示,在一半径为R 1 = 6.0 cm 的金属球A 外面罩有一个同心的金属球壳B.已知

习题9.3图

球壳

B 的内、外半径分别为R 2 = 8.0 cm ,R 3 = 10.0 cm ,A 球带有总电量Q A = 3.0×10-8

C ,球壳B 带有总电量Q B = 2.0×10-8 C.求:(1)球壳B 内、外表面上所带的电量以及球A 和球壳B 的电势;(2)将球壳B 接地后再断开,再把金属球A 接地,求金属球A 和球壳B 的内、外表面上所带的电量,以及球A 和球壳B 的电势.

解:(1)在导体到达静电平衡后,A Q 分布在导体球A的表面上.由于静电感应,在B 球壳的内表面上感应出负电荷A Q ,外表面上感应出正电荷A Q ,则B 球壳外表面上的总电荷(B A Q Q +)。由场的分布具有对称性,可用高斯定理求得各区域的场强分布

)(4),(0212

0211R r R r Q E R r E A

<<=

<=πε

)(4),(032

04323R r r

Q Q E R r R E B

A >+=

<<=πε E 的方向眼径向外.

导体为有限带电体,选无限远处为电势零点。由电势的定义可计算两球的电势B A V V 和. A 球内任一场点的电势A V 为

)(

41443

210

20

204321321

3

32

21

1

R Q Q R Q R Q r

d r Q Q r d r Q r

d E r d E r d E r d E V B

A A A R

B A R R A R R R R R R r

A ++-=

++=?+?+?+?=??????∞∞πεπεπε

B 球壳内任一点的电势B V 为

3020

434433

3R Q Q dr r Q Q r

d E r d E V B A R B A R R r

B πεπε+=+=?+?=???∞

9-5.两块无限大带电平板导体如图排列,试证明:(1)相向的两面上(图中的2和3),

其电荷面密度大小相等而符号相反;(2)背向的两面上(图中的1和4),其电荷面密度大小相等且符号相同

习题9.4图

.

解:因两块导体板靠得很近,可将四个导体表面视为四个无限大带点平面。导体表面上的电荷分布可认为是均匀的,且其间的场强方向垂直导体表面。作如图所示的圆柱形高斯面,因导体在到达静电平衡后内部场强为零,导体外的场强方向与高斯面的侧面平行,由高斯定理可得

320

3

20σσεσσ-=∴+=

; 再由导体板内的场强为零,可知P 点合场强

0)2()2()2(20

4030201=-++-+εσ

εσεσεσ 由 32σσ-= 得41σσ-=

9-7. 一平行板电容器,充电后极板上的电荷面密度为σ = 4.5×10-5 C . m -2,现将两极板与电

源断开,然后再把相对电容率为εr = 2.0的电介质充满两极板之间.求此时电介质中的D 、E 和P .

解:当平行板电容器的两板与电源断开前后,两极板上所带的电荷量没有发生变化,所以自由电荷面密度也没有发生变化,由 1

-'

=

r r εσεσ ∴极化电荷面密度r

r )

(εεσσ1-=

'

对于平行板电容器σ'=P 0

r E εεσ)1(-'

=

1

-'

=

r r D εσε 且E D P

,,的方向均沿径向.

9-11.圆柱形电容器由半径为R 1的导线和与它同轴的导体圆筒构成,其间充满相对电容率为εr 的电介质.圆筒内半径为R 2.电容器长为L ,沿轴线单位长度上的电荷为± λ,略去边缘效应,试求:(1)两极的电势差;

(2)电介质中的电场强度、电位移、极化强度; (3)电介质表面的极化电荷面密度.

解:(1) 设导线上的电荷均匀地分布在导线的表面上,圆筒上的电荷均匀的分布在圆筒的内表面上,可由高斯定理求得各区域的场强

110R ,r

E <=

12022R r ,R r

E r >

>=

επελ

23,0R r E >= ∴两极的电位差1

2

01202ln 2ln 22

1

R R R R r l d E u r r R R επελεπελ==

?=

?

(2) 由第(1)问知,电介质中的电场强度 r

E r επελ

02=

电位移r

r r E D πλεε20=

= 极化强度 0)1(εε-=r P r

r r πελ

ε2)1(-=

习题图10-6

B

y

O

l

l

l

z

x

329页10-9,10-10

10-6 一边长为0.15l =m 的立方体如图放置,有一均匀磁

场(63 1.5)B i j k =++T 通过立方体所在区域.计算:

(1)通过立方体上阴影面积的磁通量; (2)通过立方体六面的总磁通量. 解:(1)立方体一边的面积2

S l =

2(63 1.5)(0.15)0.135B S i j k i Wb Φ==++=

(2)总通量0B ds Φ=

?=??

10-11 如图所示,已知相距为d 的两平行长直导线载有相同电流,求 (1)两导线所在平面与此两导线等距一点处的磁感应强度; (2)通过图中矩形面积的磁通量 ()31r r =

解 在两导线所在平面内,两导线之间的任一点P 处,两导线所产生的磁感应强度B 1和B 2

方向相同,都垂直纸面向外。故

P P P B B B 21+= 设P 点离导线1的距离为r ,则 R

I

B P πμ21=,()r d I B P -=πμ22

代入上式得

()

r d I

r I B P -+=

πμπμ22 (1) 在导线等距的点有 2d r =

, d

I B πμ2=

大学物理教程 (上)课后习题 答案

物理部分课后习题答案(标有红色记号的为老师让看的题) 27页 1-2 1-4 1-12 1-2 质点的运动方程为22,(1)x t y t ==-,,x y 都以米为单位,t 以秒为单位, 求: (1) 质点的运动轨迹; (2) 从1t s =到2t s =质点的位移的大小; (3) 2t s =时,质点的速度和加速度。 解:(1)由运动方程消去时间t 可得轨迹方程,将t = 代入,有 2 1) y =- 或 1= (2)将1t s =和2t s =代入,有 11r i = , 241r i j =+ 213r r r i j =-=- 位移的大小 r = = (3) 2x dx v t dt = = 2(1)y dy v t dt = =- 22(1)v ti t j =+- 2 x x dv a dt = =, 2y y dv a dt = = 22a i j =+ 当2t s =时,速度和加速度分别为 42/v i j m s =+ 22a i j =+ m/s 2 1-4 设质点的运动方程为cos sin ()r R ti R t j SI ωω=+ ,式中的R 、ω均为常 量。求(1)质点的速度;(2)速率的变化率。

解 (1)质点的速度为 sin cos d r v R ti R t j dt ωωωω==-+ (2)质点的速率为 v R ω = = 速率的变化率为 0dv dt = 1-12 质点沿半径为R 的圆周运动,其运动规律为232()t SI θ=+。求质点在t 时刻的法向加速度n a 的大小和角加速度β的大小。 解 由于 4d t d t θω= = 质点在t 时刻的法向加速度n a 的大小为 2 2 16n a R R t ω == 角加速度β的大小为 2 4/d ra d s d t ωβ== 77 页2-15, 2-30, 2-34, 2-15 设作用于质量1m kg =的物体上的力63()F t SI =+,如果物体在这一力作用 下,由静止开始沿直线运动,求在0到2.0s 的时间内力F 对物体的冲量。 解 由冲量的定义,有 2.0 2.0 2.02 (63)(33) 18I Fdt t dt t t N s = =+=+=? ? 2-21 飞机着陆后在跑道上滑行,若撤除牵引力后,飞机受到与速度成正比的阻力 (空气阻力和摩擦力)f kv =-(k 为常数)作用。设撤除牵引力时为0t =,初速度为0v ,求(1)滑行中速度v 与时间t 的关系;(2)0到t 时间内飞机所滑行的路程;(3)飞机停止前所滑行的路程。 解 (1)飞机在运动过程中只受到阻力作用,根据牛顿第二定律,有 dv f m kv dt ==- 即 d v k dt v m =- 两边积分,速度v 与时间t 的关系为 2-31 一质量为m 的人造地球卫星沿一圆形轨道运动,离开地面的高度等于地球

大学物理学第三版课后习题答案

1-4 在离水面高h 米的岸上,有人用绳子拉船靠岸,船在离岸S 处,如题1-4图所示.当人以0v (m ·1-s )的速率收绳时,试求船运动的速度与加速度的大小. 图1-4 解: 设人到船之间绳的长度为l ,此时绳与水面成θ角,由图可知 2 22s h l += 将上式对时间t 求导,得 t s s t l l d d 2d d 2= 题1-4图 根据速度的定义,并注意到l ,s 就是随t 减少的, ∴ t s v v t l v d d ,d d 0-==-=船绳 即 θ cos d d d d 00v v s l t l s l t s v ==-=-=船 或 s v s h s lv v 02/1220)(+==船 将船v 再对t 求导,即得船的加速度 1-6 已知一质点作直线运动,其加速度为 a =4+3t 2s m -?,开始运动时,x =5 m,v =0,

求该质点在t =10s 时的速度与位置. 解:∵ t t v a 34d d +== 分离变量,得 t t v d )34(d += 积分,得 122 34c t t v ++= 由题知,0=t ,00=v ,∴01=c 故 22 34t t v += 又因为 22 34d d t t t x v +== 分离变量, t t t x d )2 34(d 2+= 积分得 2322 12c t t x ++= 由题知 0=t ,50=x ,∴52=c 故 52 1232++=t t x 所以s 10=t 时 m 7055102 1102s m 190102310432101 210=+?+?=?=?+?=-x v 1-10 以初速度0v =201s m -?抛出一小球,抛出方向与水平面成幔 60°的夹角, 求:(1)球轨道最高点的曲率半径1R ;(2)落地处的曲率半径2R .

大学物理课后练习习题答案详解.docx

第一章质点运动学 1、( 习题: 一质点在 xOy 平面内运动,运动函数为 x = 2t, y = 4 t 2 8 。( 1)求质点的轨道方程; ( 2)求 t = 1 s 和 t = 2 s 时质点的位置、速度和加速度。 解:( 1)由 x=2t 得, y=4t 2 -8 ( 2)质点的位置 : r r 由 v d r / dt 则速度: r r 由 a d v / d t 则加速度: 则当 t=1s 时,有 r r 可得: y=x 2-8 r 即轨道曲线 r r (4t 2 r 2ti 8) j r r r v 2i 8tj r r a 8 j r r r r r r r 2i 4 j , v 2i 8 j , a 8 j 当 t=2s 时,有 r r r r r r r r r 4i 8 j , v 2i 16j , a 8 j 2、(习题): 质点沿 x 在轴正向运动,加速度 a kv , k 为常数.设从原点出发时速度为 v 0 ,求运动方程 x x(t) . 解: dv kv v 1 t kdt v v 0 e kt dt dv v 0 v dx v 0e k t x dx t kt dt x v 0 (1 e kt ) dt v 0 e k 3、一质点沿 x 轴运动,其加速度为 a 4 t (SI) ,已知 t 0 时,质点位于 x 10 m 处,初速度 v 0 .试求其位置和时间的关系式. 解: a d v /d t 4 t d v 4 t d t v t 4t d t v 2 t 2 dv d x 2 x t 2 3 2 x t d t x 2 t v /d t t /3+10 (SI) x 0 4、一质量为 m 的小球在高度 h 处以初速度 v 0 水平抛出,求: ( 1)小球的运动方程; ( 2)小球在落地之前的轨迹方程; v v ( 3)落地前瞬时小球的 dr , dv , dv . dt dt dt 解:( 1) x v 0 t 式( 1) y 1 gt 2 式( 2) v v 1 2 v h r (t ) v 0t i (h - gt ) j 2 2 ( 2)联立式( 1)、式( 2)得 y h 2 gx 2 2v 0 v v v v v v ( 3) dr 2h dr v 0i - gt j 而落地所用时间t 所以 v 0i - 2gh j dt g dt v v dv g 2 t g 2gh dv v 2 2 2 ( gt ) 2 dt g j v x v y v 0 dt 2 2 1 2 ( gt ) ] 2 2gh) [v 0 ( v 0 1 2

大学物理简明教程(吕金钟)第四章习题答案

第四章电磁学基础 静电学部分 4.2解:平衡状态下受力分析 +q受到的力为: 处于平衡状态: (1) 同理,4q 受到的力为: (2) 通过(1)和(2)联立,可得:, 4.3解:根据点电荷的电场公式: 点电荷到场点的距离为: 两个正电荷在P点产生的电场强度关于中垂线对称: 所以: 当与点电荷电场分布相似,在很远处,两个正电荷q组成的电荷系的电场分布,与带电量为2q的点电荷的电场分布一样。 4.4解:取一线元,在圆心处 产生场强: 分解,垂直x方向的分量抵消,沿x方向 的分量叠加: 方向:沿x正方向 4.5解:(1 (2)两电荷异号,电场强度为零的点在外侧。 4.7解:线密度为λ,分析半圆部分: 点电荷电场公式: + +

在本题中: 电场分布关于x 轴对称:, 进行积分处理,上限为,下限为: 方向沿x轴向右,正方向 分析两个半无限长: ,,, 两个半无限长,关于x轴对称,在y方向的分量为0,在x方向的分量: 在本题中,r为场点O到半无限长线的垂直距离。电场强度的方向沿x轴负方向,向左。那么大O点的电场强度为: 4.8解:E的方向与半球面的轴平行,那么 通过以R为半径圆周边线的任意曲面的 电通量相等。所以 通过S1和S2的电通量等效于通过以R为半 径圆面的电通量,即: 4.9解:均匀带电球面的场强分布: 球面 R 1 、R2的场强分布为: 根据叠加原理,整个空间分为三部分: 根据高斯定理,取高斯面求场强: 图4-94 习题4.8用图 S1 S2 R O

场强分布: 方向:沿径向向外 4.10解:(1)、这是个球对称的问题 当时,高斯面对包围电荷为Q 当,高斯面内包围电荷为q 方向沿径向 (2)、证明:设电荷体密度为 这是一个电荷非足够对称分布的带电体,不能直接用高斯定理求解。但可以把这一带电体看成半径为R、电荷体密度为ρ的均匀带电球体和半径为R`、电荷体密度为-ρ的均匀带电体球相叠加,相当于在原空腔同时补上电荷体密度为ρ和-ρ的球体。由电场 叠加原理,空腔内任一点P的电场强度为: 在电荷体密度为ρ球体内部某点电场为: 在电荷体密度为-ρ球体内部某点电场为: 所以 4.11解:利用高斯定理,把空间分成三部分

《大学物理(上册)》课后习题答案

第1章 质点运动学 P21 1.8 一质点在xOy 平面上运动,运动方程为:x =3t +5, y = 2 1t 2 +3t -4. 式中t 以 s 计,x ,y 以m 计。⑴以时间t 为变量,写出质点位置矢量的表示式;⑵求出t =1 s 时刻和t =2s 时刻的位置矢量,计算这1秒内质点的位移;⑶ 计算t =0 s 时刻到t =4s 时刻内的平均速度;⑷求出质点速度矢量表示式,计算t =4 s 时质点的速度;(5)计算t =0s 到t =4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算t =4s 时质点的加速度(请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式)。 解:(1)j t t i t r )432 1()53(2-+++=m ⑵ 1=t s,2=t s 时,j i r 5.081-= m ;2114r i j =+m ∴ 213 4.5r r r i j ?=-=+m ⑶0t =s 时,054r i j =-;4t =s 时,41716r i j =+ ∴ 140122035m s 404 r r r i j i j t --?+= ===+??-v ⑷ 1d 3(3)m s d r i t j t -==++?v ,则:437i j =+v 1s m -? (5) 0t =s 时,033i j =+v ;4t =s 时,437i j =+v 24041 m s 44 j a j t --?= ===??v v v (6) 2d 1 m s d a j t -==?v 这说明该点只有y 方向的加速度,且为恒量。 1.9 质点沿x 轴运动,其加速度和位置的关系为2 26a x =+,a 的单位为m/s 2, x 的单位为m 。质点在x =0处,速度为10m/s,试求质点在任何坐标处的速度值。 解:由d d d d d d d d x a t x t x ===v v v v 得:2 d d (26)d a x x x ==+v v 两边积分 210 d (26)d x x x =+? ?v v v 得:2322 250x x =++v ∴ 1m s -=?v 1.11 一质点沿半径为1 m 的圆周运动,运动方程为θ=2+33t ,式中θ以弧度计,t 以秒计,求:⑴ t =2 s 时,质点的切向和法向加速度;⑵当加速度 的方向和半径成45°角时,其角位移是多少? 解: t t t t 18d d ,9d d 2==== ωβθω ⑴ s 2=t 时,2 s m 362181-?=??==βτR a 2 222s m 1296)29(1-?=??==ωR a n ⑵ 当加速度方向与半径成ο45角时,有:tan 451n a a τ?== 即:βωR R =2 ,亦即t t 18)9(2 2=,解得:9 23= t 则角位移为:32 2323 2.67rad 9 t θ=+=+? = 1.13 一质点在半径为0.4m 的圆形轨道上自静止开始作匀角加速度转动,其角加速度为α=0.2 rad/s 2,求t =2s 时边缘上各点的速度、法向加速度、切向加速度和合加速度。 解:s 2=t 时,4.022.0=?== t αω 1s rad -? 则0.40.40.16R ω==?=v 1s m -? 064.0)4.0(4.022=?==ωR a n 2 s m -? 0.4 0.20.0a R τα==?=2s m -? 22222 s m 102.0)08.0()064.0(-?=+=+= τa a a n 与切向夹角arctan()0.06443n a a τ?==≈?

大学物理 简明教程 第二版 课后习题 答案 赵进芳

大学物理 简明教程 习题 解答 答案 习题一 1-1 |r ?|与r ?有无不同?t d d r 和t d d r 有无不同? t d d v 和t d d v 有无不同?其不同在哪里?试举例说明. 解:(1)r ?是位移的模,?r 是位矢的模的增量,即r ?12r r -=,12r r r -=?; (2)t d d r 是速度的模,即t d d r ==v t s d d . t r d d 只是速度在径向上的分量. ∵有r r ?r =(式中r ?叫做单位矢),则 t ?r ?t r t d d d d d d r r r += 式中t r d d 就是速度径向上的分量, ∴t r t d d d d 与 r 不同如题1-1图所示 . 题1-1图 (3)t d d v 表示加速度的模,即 t v a d d = ,t v d d 是加速度a 在切向上的分量. ∵有ττ (v =v 表轨道节线方向单位矢),所以 t v t v t v d d d d d d ττ += 式中dt dv 就是加速度的切向分量. (t t r d ?d d ?d τ 与 的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时, 有人先求出r =22y x +,然后根据v =t r d d ,及a =22d d t r 而求得结果;又有人先 计算速度和加速度的分量,再合成求得结果,即 v =2 2 d d d d ??? ??+??? ??t y t x 及a = 2 22222d d d d ? ??? ??+???? ??t y t x 你认为两种方法哪一种正确?为什么?两者差别何在? 解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有

大学物理学(课后答案)第1章

第1章 质点运动学 习 题 一 选择题 1-1 对质点的运动,有以下几种表述,正确的是[ ] (A)在直线运动中,质点的加速度和速度的方向相同 (B)在某一过程中平均加速度不为零,则平均速度也不可能为零 (C)若某质点加速度的大小和方向不变,其速度的大小和方向可不断变化 (D)在直线运动中,加速度不断减小,则速度也不断减小 解析:速度是描述质点运动的方向和快慢的物理量,加速度是描述质点运动速度变化的物理量,两者没有确定的对应关系,故答案选C 。 1-2 某质点的运动方程为)(12323m t t x +-=,则该质点作[ ] (A)匀加速直线运动,加速度沿ox 轴正向 (B)匀加速直线运动,加速度沿ox 轴负向 (C)变加速直线运动,加速度沿ox 轴正向 (D)变加速直线运动,加速度沿ox 轴负向 解析:229dx v t dt = =-,18dv a t dt ==-,故答案选D 。 1-3 一质点在平面上作一般曲线运动,其瞬时速度为v ,瞬时速率为v ,某一段时间内的平均速率为v ,平均速度为v ,他们之间的关系必定有[ ] (A)v =v ,v =v (B)v ≠v ,v =v (C)v ≠v ,v ≠v (D)v =v ,v ≠v 解析:瞬时速度的大小即瞬时速率,故v =v ;平均速率s v t ?=?,而平均速度t ??r v = ,故v ≠v 。答案选D 。 1-4 质点作圆周运动时,下列表述中正确的是[ ]

(A)速度方向一定指向切向,所以法向加速度也一定为零 (B)法向分速度为零,所以法向加速度也一定为零 (C)必有加速度,但法向加速度可以为零 (D)法向加速度一定不为零 解析:质点作圆周运动时,2 n t v dv a a dt ρ =+=+ n t n t a e e e e ,所以法向加速度一定不为零,答案选D 。 1-5 某物体的运动规律为 2dv kv t dt =-,式中,k 为大于零的常量。当0t =时,初速为0v ,则速率v 与时间t 的函数关系为[ ] (A)2012v kt v =+ (B)2011 2kt v v =+ (C)2012v kt v =-+ (D)2011 2kt v v =-+ 解析:由于2dv kv t dt =-,所以 02 0()v t v dv kv t dt =-? ? ,得到20 11 2kt v v =+,故答案选B 。 二 填空题 1-6 已知质点位置矢量随时间变化的函数关系为2=4t +( 2t+3)r i j ,则从0t =到1t s =时的位移为 ,1t s =时的加速度为 。 解析:45342=-=+-=+1010r r r i j j i j ,228d d dt dt = ==111v r a i 1-7 一质点以初速0v 和抛射角0θ作斜抛运动,则到达最高处的速度大小为 ,切向加速度大小为 ,法向加速度大小为 ,合加速度大小为 。 解析:以初速0v 、抛射角0θ作斜抛的运动方程:

大学物理课后习题答案详解

第一章质点运动学 1、(习题1.1):一质点在xOy 平面内运动,运动函数为2 x =2t,y =4t 8-。(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。 解:(1)由x=2t 得, y=4t 2-8 可得: y=x 2 -8 即轨道曲线 (2)质点的位置 : 2 2(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j = 则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8r i j v i j a j =+=+= 2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速 度为0v ,求运动方程)(t x x =. 解: kv dt dv -= ??-=t v v kdt dv v 001 t k e v v -=0 t k e v dt dx -=0 dt e v dx t k t x -?? =0 00 )1(0 t k e k v x --= 3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ? ?=v v 0 d 4d t t t v 2=t 2 v d =x /d t 2=t 2 t t x t x x d 2d 0 20 ?? = x 2= t 3 /3+10 (SI) 4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程; (2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的 d d r t ,d d v t ,t v d d . 解:(1) t v x 0= 式(1) 2gt 21h y -= 式(2) 201 ()(h -)2 r t v t i gt j =+ (2)联立式(1)、式(2)得 2 2 v 2gx h y -= (3) 0d -gt d r v i j t = 而落地所用时间 g h 2t = 所以 0d -2g h d r v i j t = d d v g j t =- 2 202y 2x )gt (v v v v -+=+= 21 20 212202)2(2])([gh v gh g gt v t g dt dv +=+=

大学物理课后习题答案详解

第一章质点运动学 1、(习题 1.1):一质点在xOy 平面内运动,运动函数为2 x =2t,y =4t 8-。(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。 解:(1)由x=2t 得, y=4t 2-8 可得: y=x 2 -8 即轨道曲线 (2)质点的位置 : 2 2(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j = 则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8r i j v i j a j =+=+= 2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时 速度为0v ,求运动方程)(t x x =. 解: kv dt dv -= ??-=t v v kdt dv v 001 t k e v v -=0 t k e v dt dx -=0 dt e v dx t k t x -??=000 )1(0t k e k v x --= 3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速 度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ? ?=v v 0 d 4d t t t v 2=t 2 v d =x /d t 2=t 2 t t x t x x d 2d 0 20 ?? = x 2= t 3 /3+10 (SI) 4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程; (2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的 d d r t ,d d v t ,t v d d . 解:(1) t v x 0= 式(1) 2gt 21h y -= 式(2) 201 ()(h -)2 r t v t i gt j =+ (2)联立式(1)、式(2)得 2 2 v 2gx h y -= (3) 0d -gt d r v i j t = 而落地所用时间 g h 2t = 所以 0d -2gh d r v i j t = d d v g j t =- 2 202y 2x )gt (v v v v -+=+= 21 20 212202)2(2])([gh v gh g gt v t g dt dv +=+=

大学物理课程教学基本要求

大学物理课程教学基本 要求 文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

非物理类理工学科大学物理课程教学基本要求(正式报告稿)物理学是研究物质的基本结构、基本运动形式、相互作用的自然科学。它 的基本理论渗透在自然科学的各个领域,应用于生产技术的许多部门,是其他 自然科学和工程技术的基础。 在人类追求真理、探索未知世界的过程中,物理学展现了一系列科学的世 界观和方法论,深刻影响着人类对物质世界的基本认识、人类的思维方式和社 会生活,是人类文明发展的基石,在人才的科学素质培养中具有重要的地位。 一、课程的地位、作用和任务 以物理学基础为内容的大学物理课程,是高等学校理工科各专业学生一门 重要的通识性必修基础课。该课程所教授的基本概念、基本理论和基本方法是 构成学生科学素养的重要组成部分,是一个科学工作者和工程技术人员所必备 的。 大学物理课程在为学生系统地打好必要的物理基础,培养学生树立科学的 世界观,增强学生分析问题和解决问题的能力,培养学生的探索精神和创新意 识等方面,具有其他课程不能替代的重要作用。 通过大学物理课程的教学,应使学生对物理学的基本概念、基本理论和基 本方法有比较系统的认识和正确的理解,为进一步学习打下坚实的基础。在大 学物理课程的各个教学环节中,都应在传授知识的同时,注重学生分析问题和 解决问题能力的培养,注重学生探索精神和创新意识的培养,努力实现学生知 识、能力、素质的协调发展。 二、教学内容基本要求(详见附表)

大学物理课程的教学内容分为A、B两类。其中:A为核心内容,共74条,建议学时数不少于126学时,各校可在此基础上根据实际教学情况对A类内容各部分的学时分配进行调整;B为扩展内容,共51条。 1.力学 (A:7条,建议学时数14学时;B:5条) 2.振动和波 (A:9条,建议学时数14学时;B:4条) 3.热学 (A:10条,建议学时数14学时;B:4条) 4.电磁学 (A:20条,建议学时数40学时;B:8条) 5.光学 (A:14条,建议学时数18学时;B:9条) 6.狭义相对论力学基础 (A:4条,建议学时数6学时;B:3条) 7.量子物理基础 (A:10条,建议学时数20学时;B:4条) 8.分子与固体 (B:5条) 9.核物理与粒子物理 (B:6条)

大学物理学 第三版 课后习题答案

1-4 在离水面高h 米的岸上,有人用绳子拉船靠岸,船在离岸S 处,如题1-4图所示.当人以 0v (m ·1-s )的速率收绳时,试求船运动的速度和加速度的大小. 图1-4 解: 设人到船之间绳的长度为l ,此时绳与水面成θ角,由图可知 222s h l += 将上式对时间t 求导,得 t s s t l l d d 2d d 2= 题1-4图 根据速度的定义,并注意到l ,s 是随t 减少的, ∴ t s v v t l v d d ,d d 0-==- =船绳 即 θ cos d d d d 00v v s l t l s l t s v ==-=- =船 或 s v s h s lv v 0 2/1220)(+==船 将船v 再对t 求导,即得船的加速度 1-6 已知一质点作直线运动,其加速度为 a =4+3t 2s m -?,开始运动时,x =5 m , v =0, 求该质点在t =10s 时的速度和位置. 解:∵ t t v a 34d d +==

分离变量,得 t t v d )34(d += 积分,得 122 34c t t v ++= 由题知,0=t ,00=v ,∴01=c 故 22 34t t v += 又因为 22 34d d t t t x v +== 分离变量, t t t x d )2 3 4(d 2+= 积分得 2322 12c t t x ++= 由题知 0=t ,50=x ,∴52=c 故 52 1232++=t t x 所以s 10=t 时 1-10 以初速度0v =201s m -?抛出一小球,抛出方向与水平面成幔60°的夹角, 求:(1)球轨道最高点的曲率半径1R ;(2)落地处的曲率半径2R . (提示:利用曲率半径与法向加速度之间的关系) 解:设小球所作抛物线轨道如题1-10图所示. 题1-10图 (1)在最高点, 又∵ 1 2 11 ρv a n =

大学物理学第三版下册课后答案

习题八 8-1 电量都是q 的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题8-1图示 (1) 以A 处点电荷为研究对象,由力平衡知:q '为负电荷 2 220)3 3(π4130cos π412a q q a q '=?εε 解得 q q 3 3- =' (2)与三角形边长无 关. 题8-1图 题8-2图 8-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ ,如题8-2图所示.设小球的半径和线的质量都可以忽略不计, 求每个小球所带的 解: 如题8-2图示 ?? ? ?? ===220)sin 2(π41 sin cos θεθθl q F T mg T e 解得 θπεθtan 4sin 20mg l q = 8-3 根据点电荷场强公式2 04r q E πε= ,当被考察的场点距源点电荷很近(r →0)时,则场强 →∞,这是没有物理意义的,对此应如何理解 ?

解: 02 0π4r r q E ε= 仅对点电荷成立,当0→r 时,带电体不能再视为点电荷,再用上式求 场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大. 8-4 在真空中有A ,B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+q 和-q .则这两板之间有相互作用力f ,有人说f = 2 024d q πε,又有人说,因为f =qE ,S q E 0ε= ,所以f =S q 02 ε.试问这两种说法对吗?为什么? f 到底应等于多少 ? 解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强S q E 0ε= 看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个板的电场为S q E 02ε=,另一板受它的作用力S q S q q f 02 022εε= =,这是两板间相互作用的电场力. 8-5 一电偶极子的电矩为l q p =,场点到偶极子中心O 点的距离为r ,矢量r 与l 的夹角为 θ,(见题8-5图),且l r >>.试证P 点的场强E 在r 方向上的分量r E 和垂直于r 的分量θE 分别为 r E = 302cos r p πεθ, θE =3 04sin r p πεθ 证: 如题8-5所示,将p 分解为与r 平行的分量θsin p 和垂直于r 的分量θsin p . ∵ l r >> ∴ 场点P 在r 方向场强分量 3 0π2cos r p E r εθ = 垂直于r 方向,即θ方向场强分量 3 00π4sin r p E εθ =

大学物理学课后答案(湖南大学出版社)

12.12 真空中有两块相互平行的无限大均匀带电平面A 和B .A 平面的电荷面密度为2σ,B 平面的电荷面密度为σ,两面间的距离为d .当点电荷q 从A 面移到B 面时,电场力做的功为多少? [解答]两平面产生的电场强度大小分别为 E A = 2σ/2ε0 = σ/ε0,E B = σ/2ε0, 两平面在它们之间产生的场强方向相反,因此,总场强大小为 E = E A - E B = σ/2ε0, 方向由A 平面指向B 平面. 两平面间的电势差为 U = Ed = σd /2ε0, 当点电荷q 从A 面移到B 面时,电场力做的功为 W = qU = qσd /2ε0. 13.3 金属球壳原来带有电量Q ,壳内外半径分别为a 、b ,壳内距球心为r 处有一 点电荷q , 球心o 的电势为多少? [解答]点电荷q 在内壳上感应出负电荷-q ,不论电荷如何分布,距离球心 都为a .外壳上就有电荷q+Q ,距离球为b .球心的电势是所有电荷产生的电 势叠加,大小为 000 111444o q q Q q U r a b πεπεπε-+=++ 13.14 一平行板电容器板面积为S ,板间距离为d ,两板竖直放着.若电容器两板充电到电压为U 时,断开电源,使电容器的一半浸在相对介电常量为εr 的液体中.求:(1)电容器的电容C ;(2)浸入液体后电容器的静电能;(3)极板上的自由电荷面密度. [解答](1)如前所述,两电容器并联的电容为 C = (1 + εr )ε0S /2d . (2)电容器充电前的电容为C 0 = ε0S/d , 充电后所带电量为 Q = C 0U . 当电容器的一半浸在介质中后,电容虽然改变了,但是电量不变,所以静电能为 W = Q 2/2C = C 02U 2/2C = ε0SU 2/(1 + εr )d . (3)电容器的一半浸入介质后,真空的一半的电容为 C 1 = ε0S /2d ;介质中的一半的电容为 C 2 = ε0εr S /2d .设两半的所带自由电荷分别为Q 1和Q 2,则 Q 1 + Q 2 = Q . ① 由于C = Q/U ,所以 U = Q 1/C 1 = Q 2/C 2. ② 解联立方程得 0111221 1/C U C Q Q C C C C = = ++, 真空中一半电容器的自由电荷面密度为 001 12122/2(1/)(1)r C U U Q S C C S d εσε= == ++. 同理,介质中一半电容器的自由电荷面密度为 14.1通有电流I 的导线形状如图所示,图中ACDO 是边长为b 的正方形.求圆心O 处的磁感应强度B = ? [解答]电流在O 点的产生的磁场的方向都是垂直纸面向里的.根据毕-萨定 律:002 d d 4I r μπ? =l r B , 圆弧上的电流元与到O 点的矢径垂直,在O 点产生的磁场大小为 012d d 4I l B a μπ=, 由于 d l = a d φ, 积分得 11d L B B =?3/2 00 d 4I a πμ?π=?038I a μ= . OA 和OD 方向的直线在O 点产生的磁场为零.在AC 段,电流元在O 点产生的磁场为 图13.3

大学物理习题及综合练习答案详解

库仑定律 7-1 把总电荷电量为Q 的同一种电荷分成两部分,一部分均匀分布在地球上,另一部分均匀分布在月球上, 使它们之间的库仑力正好抵消万有引力,已知地球的质量M = 5.98l024 kg ,月球的质量m =7.34l022kg 。(1)求 Q 的最小值;(2)如果电荷分配与质量成正比,求Q 的值。 解:(1)设Q 分成q 1、q 2两部分,根据题意有 2 221r Mm G r q q k =,其中041πε=k 即 2221q k q GMm q q Q += +=。求极值,令0'=Q ,得 0122=-k q GMm C 1069.5132?== ∴k GMm q ,C 1069.51321?==k q GMm q ,C 1014.11421?=+=q q Q (2)21q m q M =Θ ,k GMm q q =21 k GMm m q mq Mq ==∴2122 解得C 1032.6122 2?==k Gm q , C 1015.51421?==m Mq q ,C 1021.51421?=+=∴q q Q 7-2 三个电量为 –q 的点电荷各放在边长为 l 的等边三角形的三个顶点上,电荷Q (Q >0)放在三角形 的重心上。为使每个负电荷受力为零,Q 值应为多大? 解:Q 到顶点的距离为 l r 33= ,Q 与-q 的相互吸引力为 20141r qQ F πε=, 两个-q 间的相互排斥力为 2 2 0241l q F πε= 据题意有 10 230cos 2F F =,即 2 022041300cos 41 2r qQ l q πεπε=?,解得:q Q 33= 电场强度 7-3 如图7-3所示,有一长l 的带电细杆。(1)电荷均匀分布,线密度为+,则杆上距原点x 处的线元 d x 对P 点的点电荷q 0 的电场力为何?q 0受的总电场力为何?(2)若电荷线密度=kx ,k 为正常数,求P 点的电场强度。 解:(1)线元d x 所带电量为x q d d λ=,它对q 0的电场力为 200200)(d 41 )(d 41 d x a l x q x a l q q F -+=-+= λπεπε q 0受的总电场力 )(4)(d 400020 0a l a l q x a l x q F l +=-+= ?πελπελ 00>q 时,其方向水平向右;00

大学物理学教程(第二版)(下册)答案

物理学教程下册答案9-16 第九章 静 电 场 9-1 电荷面密度均为+σ的两块“无限大”均匀带电的平行平板如图(A )放置,其周围空间各点电场强度E (设电场强度方向向右为正、向左为负)随位置坐标x 变化的关系曲线为图(B )中的( ) 题 9-1 图 分析与解 “无限大”均匀带电平板激发的电场强度为0 2εσ,方向沿带电平板法向向外,依照电场叠加原理可以求得各区域电场强度的大小和方向.因而正确答案为(B ). 9-2 下列说确的是( ) (A )闭合曲面上各点电场强度都为零时,曲面一定没有电荷 (B )闭合曲面上各点电场强度都为零时,曲面电荷的代数和必定为零 (C )闭合曲面的电通量为零时,曲面上各点的电场强度必定为零 (D )闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零 分析与解 依照静电场中的高斯定理,闭合曲面上各点电场强度都为零时,曲面电荷的代数和必定为零,但不能肯定曲面一定没有电荷;闭合曲面的电通量为零时,表示穿入闭合曲面的电场线数等于穿出闭合曲面的电场线数或没有电场线穿过闭合曲面,不能确定曲面上各点的电场强度必定为零;同理闭合曲面的电通量不为零,也不能推断曲面上任意一点的电场强度都不可能为零,因而正确答案为(B ). 9-3 下列说确的是( )

(A) 电场强度为零的点,电势也一定为零 (B) 电场强度不为零的点,电势也一定不为零 (C) 电势为零的点,电场强度也一定为零 (D) 电势在某一区域为常量,则电场强度在该区域必定为零 分析与解电场强度与电势是描述电场的两个不同物理量,电场强度为零表示试验电荷在该点受到的电场力为零,电势为零表示将试验电荷从该点移到参考零电势点时,电场力作功为零.电场中一点的电势等于单位正电荷从该点沿任意路径到参考零电势点电场力所作的功;电场强度等于负电势梯度.因而正确答案为(D). *9-4在一个带负电的带电棒附近有一个电偶极子,其电偶极矩p的方向如图所示.当电偶极子被释放后,该电偶极子将( ) (A) 沿逆时针方向旋转直到电偶极矩p水平指向棒尖端而停止 (B) 沿逆时针方向旋转至电偶极矩p水平指向棒尖端,同时沿电场线方向朝着棒尖端移动 (C) 沿逆时针方向旋转至电偶极矩p水平指向棒尖端,同时逆电场线方向朝远离棒尖端移动 (D) 沿顺时针方向旋转至电偶极矩p 水平方向沿棒尖端朝外,同时沿电场线方向朝着棒尖端移动 题9-4 图 分析与解电偶极子在非均匀外电场中,除了受到力矩作用使得电偶极子指向电场方向外,还将受到一个指向电场强度增强方向的合力作用,因而正确答案为(B). 9-5精密实验表明,电子与质子电量差值的最大围不会超过±10-21e,而中子电量与零差值的最大围也不会超过±10-21e,由最极端的情况考虑,一个有8个电子,8个质子和8个中子构成的氧原子所带的最大可能净电荷是多少?若将原子视作质点,试比较两个氧原子间的库仑力和万有引力的大小. 分析考虑到极限情况,假设电子与质子电量差值的最大围为2×10-21e,中子电量为10-21e,则由一个氧原子所包含的8个电子、8个质子和8个中子

大学物理学上册习题解答完整版

大学物理学上册习题解 答 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

大学物理学习题答案 习题一答案 习题一 1.1 简要回答下列问题: (1)位移和路程有何区别在什么情况下二者的量值相等在什么情况下二者的量值不相等 (2) 平均速度和平均速率有何区别在什么情况下二者的量值相等 (3) 瞬时速度和平均速度的关系和区别是什么瞬时速率和平均速率的关系和区别又是什么 (4)质点的位矢方向不变,它是否一定做直线运动质点做直线运动,其位矢的方向是否一 定保持不变 (5) (6)r ?和r ?有区别吗?v ?和v ?有区别吗? 0dv dt =和0d v dt =各代表什么运动? (7)设质点的运动方程为:()x x t =,()y y t =,在计算质点的速度和加速度时,有人先求 出r = dr v dt = 及 22d r a dt =

而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即 v = 及 a = 你认为两种方法哪一种正确两者区别何在 (7) 如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关 系是否也是线性的? (8)“物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因 此其法向加速度也一定为零.”这种说法正确吗? (9) (9) 任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么? (10) 质点沿圆周运动,且速率随时间均匀增大,n a 、t a 、a 三者的大小是否随时间改变? (11) 一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中如果石子抛出后,火车以恒定加速度前进,结果又如何

大学物理课后习题答案详解

第一章质点运动学 1、(习题:一质点在xOy 平面内运动,运动函数为2x =2t,y =4t 8-。(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。 解:(1)由x=2t 得, y=4t 2-8 可得: y=x 2-8 即轨道曲线 (2)质点的位置 : 22(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j = 则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8r i j v i j a j =+=+= 2、(习题): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速度为0v ,求运动方程)(t x x =. 解: kv dt dv -= ??-=t v v kdt dv v 001 t k e v v -=0 t k e v dt dx -=0 dt e v dx t k t x -?? =0 00 )1(0 t k e k v x --= 3、一质点沿x 轴运动,其加速度为a 4t (SI),已知t 0时,质点位于x 10 m 处,初速度v 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ??=v v 00d 4d t t t v 2=t 2

v d =x /d t 2=t 2 t t x t x x d 2d 020 ??= x 2= t 3 /3+10 (SI) 4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程; (2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的 d d r t ,d d v t ,t v d d . 解:(1) t v x 0= 式(1) 2 gt 21 h y -= 式(2) 201 ()(h -)2 r t v t i gt j =+ (2)联立式(1)、式(2)得 2 2 v 2gx h y -= (3) 0d -gt d r v i j t = 而落地所用时间 g h 2t = 所以 0d -2gh d r v i j t = d d v g j t =- 22 02y 2x )gt (v v v v -+= += 2 120 212202)2(2])([gh v gh g gt v t g dt dv += += 5、 已知质点位矢随时间变化的函数形式为22r t i tj =+,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。

相关主题