搜档网
当前位置:搜档网 › 高考数学复习直线与圆的位置关系

高考数学复习直线与圆的位置关系

高考数学复习直线与圆的位置关系
高考数学复习直线与圆的位置关系

7.6 直线与圆的位置关系

●知识梳理

直线和圆

1.直线和圆位置关系的判定方法一是方程的观点,即把圆的方程和直线的方程联立成方程组,利用判别式Δ来讨论位置关系.

①Δ>0,直线和圆相交.

②Δ=0,直线和圆相切.

③Δ<0,直线和圆相离.

方法二是几何的观点,即把圆心到直线的距离d 和半径R 的大小加以比较.

①d <R ,直线和圆相交.

②d =R ,直线和圆相切.

③d >R ,直线和圆相离.

2.直线和圆相切,这类问题主要是求圆的切线方程.求圆的切线方程主要可分为已知斜率k 或已知直线上一点两种情况,而已知直线上一点又可分为已知圆上一点和圆外一点两种情况.

3.直线和圆相交,这类问题主要是求弦长以及弦的中点问题.

●点击双基

1.设m >0,则直线2(x +y )+1+m =0与圆x 2+y 2=m 的位置关系为

A.相切

B.相交

C.相切或相离

D.相交或相切

解析:圆心到直线的距离为d =

2

1m +,圆半径为m . ∵d -r =21m +-m =21(m -2m +1)=2

1(m -1)2≥0, ∴直线与圆的位置关系是相切或相离.

答案:C

2.圆x 2+y 2-4x +4y +6=0截直线x -y -5=0所得的弦长等于 A.6 B.2

25 C.1 D.5 解析:圆心到直线的距离为

22,半径为2,弦长为222)22()2(-=6. 答案:A

3.圆x 2+y 2-4x =0在点P (1,3)处的切线方程为

A.x +3y -2=0

B.x +3y -4=0

C.x -3y +4=0

D.x -3y +2=0

解法一: x 2+y 2-4x =0

y =kx -k +3

?x 2-4x +(kx -k +3)2=0.

该二次方程应有两相等实根,即Δ=0,解得k =

33. ∴y -3=3

3(x -1),即x -3y +2=0. 解法二:∵点(1,3)在圆x 2+y 2-4x =0上,

∴点P 为切点,从而圆心与P 的连线应与切线垂直.

又∵圆心为(2,0),∴

1230--·k =-1. 解得k =3

3,∴切线方程为x -3y +2=0. 答案:D

4.圆心在直线2x -y -7=0上的圆C 与y 轴交于两点A (0,-4)、B (0,-2),则圆C 的方程为____________.

解析:∵圆C 与y 轴交于A (0,-4),B (0,-2),

∴由垂径定理得圆心在y =-3这条直线上.

又已知圆心在直线2x -y -7=0上, y =-3, 2x -y -7=0.

∴圆心为(2,-3),

半径r =|AC |=22)]4(3[2---+=5.

∴所求圆C 的方程为(x -2)2+(y +3)2=5.

答案:(x -2)2+(y +3)2=5

5.若直线y =x +k 与曲线x =21y -恰有一个公共点,则k 的取值范围是___________. 解析:利用数形结合.

答案:-1<k ≤1或k =-2

●典例剖析

【例1】 已知圆x 2+y 2+x -6y +m =0和直线x +2y -3=0交于P 、Q 两点,且OP ⊥OQ (O 为坐标原点),求该圆的圆心坐标及半径.

剖析:由于OP ⊥OQ ,所以k OP ·k OQ =-1,问题可解.

解:将x =3-2y 代入方程x 2+y 2+x -6y +m =0,得5y 2-20y +12+m =0.

设P (x 1,y 1)、Q (x 2,y 2),则y 1、y 2满足条件

y 1+y 2=4,y 1y 2=

5

12m +. ∵OP ⊥OQ ,∴x 1x 2+y 1y 2=0.

而x 1=3-2y 1,x 2=3-2y 2,

∴x 1x 2=9-6(y 1+y 2)+4y 1y 2. ∴联立 解得x =2,

∴m =3,此时Δ>0,圆心坐标为(-21,3),半径r =25. 评述:在解答中,我们采用了对直线与圆的交点“设而不求”的解法技巧,但必须注意这样的交点是否存在,这可由判别式大于零帮助考虑.

【例2】 求经过两圆(x +3)2+y 2=13和x 2+(y +3)2=37的交点,且圆心在直线x -y -4=0上的圆的方程. 剖析:根据已知,可通过解方程组

(x +3)2+y 2=13, x 2+(y +3)2=37

由圆心在直线x -y -4=0上,三个独立条件,用待定系数法求出圆的方程;

也可根据已知,设所求圆的方程为(x +3)2+y 2-13+λ[x 2+(y +3)2-37]=0,再由圆心在直线x -y -4=0上,定出参数λ,得圆方程.

解:因为所求的圆经过两圆(x +3)2+y 2=13和x 2+(y +3)2=37的交点,

所以设所求圆的方程为(x +3)2+y 2-13+λ[x 2+(y +3)2-37]=0. 展开、配方、整理,得(x +λ+13)2+(y +λλ+13)2=λλ++1284+22)

1()1(9λλ++. 圆心为(-

λ+13,-λ

λ+13),代入方程x -y -4=0,得λ=-7. 故所求圆的方程为(x +21)2+(y +27)2= 2

89. 评述:圆C 1:x 2+y 2+D 1x +E 1y +F 1=0,圆C 2:x 2+y 2+D 2x +E 2y +F 2=0,若圆C 1、C 2相交,那么过两圆公共点的圆系方程为(x 2+y 2+D 1x +E 1y +F 1)+λ(x 2+y 2+D 2x +E 2y +F 2)=0(λ∈R 且λ≠-1).它表示除圆C 2以外的所有经过两圆C 1、C 2公共点的圆.

特别提示 在过两圆公共点的图象方程中,若λ=-1,可得两圆公共弦所在的直线方程.

【例3】 已知圆C :(x -1)2+(y -2)2=25,直线l :(2m +1)x +(m +1)y -7m -4=0(m ∈R ).

(1)证明:不论m 取什么实数,直线l 与圆恒交于两点;

(2)求直线被圆C 截得的弦长最小时l 的方程.

剖析:直线过定点,而该定点在圆内,此题便可解得.

(1)证明:l 的方程(x +y -4)+m (2x +y -7)=0.

2x +y -7=0, x =3, x +y -4=0, y =1,

即l 恒过定点A (3,1).

∵圆心C (1,2),|AC |=5<5(半径),

∴点A 在圆C 内,从而直线l 恒与圆C 相交于两点.

(2)解:弦长最小时,l ⊥AC ,由k AC =-2

1, ∴l 的方程为2x -y -5=0.

评述:若定点A 在圆外,要使直线与圆相交则需要什么条件呢?

思考讨论

得圆上两点, ∵m ∈R ,∴ 得

求直线过定点,你还有别的办法吗?

●闯关训练

夯实基础

1.若圆(x -3)2+(y +5)2=r 2上有且只有两个点到直线4x -3y =2的距离等于1,则半径r 的范围是

A.(4,6)

B.[4,6)

C.(4,6]

D.[4,6]

解析:数形结合法解.

答案:A

2.已知直线ax +by +c =0(ab c ≠0)与圆x 2+y 2=1相切,则三条边长分别为|a |、|b |、|c |的三角形

A.是锐角三角形

B.是直角三角形

C.是钝角三角形

D.不存在 解析:由题意得

22|00|b a c b a ++?+?=1,即c 2=a 2+b 2,∴由|a |、|b |、|c |构成的三角形为直角三角形.

答案:B

3.若圆x 2+y 2+mx -

4

1=0与直线y =-1相切,且其圆心在y 轴的左侧,则m 的值为____________. 解析:圆方程配方得(x +2m )2+y 2=412+m ,圆心为(-2

m ,0). 由条件知-2

m <0,即m >0. 又圆与直线y =-1相切,则0-(-1)=4

12+m ,即m 2=3,∴m =3. 答案:3

4.直线x +2y =0被曲线x 2+y 2-6x -2y -15=0所截得的弦长等于____________.

解析:由x 2+y 2-6x -2y -15=0,得(x -3)2+(y -1)2=25.

知圆心为(3,1),r =5.

由点(3,1)到直线x +2y =0的距离d =5|

23|+=5. 可得2

1弦长为25,弦长为45. 答案:45

5.自点A (-3,3)发出的光线l 射到x 轴上,被x 轴反射,其反射光线所在的直线与圆x 2+y 2-4x -4y +7=0相切,求光线l 所在直线的方程.

解:圆(x -2)2+(y -2)2=1关于x 轴的对称方程是(x -2)2+(y +2)2=1. 设l 方程为y -3=k (x +3),由于对称圆心(2,-2)到l 距离为圆的半径1,从而可

得k 1=-

43,k 2=-3

4.故所求l 的方程是3x +4y -3=0或4x +3y +3=0. 6.已知M (x 0,y 0)是圆x 2+y 2=r 2(r >0)内异于圆心的一点,则直线x 0x +y 0y =r 2与此圆有何种位置关系?

分析:比较圆心到直线的距离与圆半径的大小. 解:圆心O (0,0)到直线x 0x +y 0y =r 2的距离为d =20202

y x r +.

∵P (x 0,y 0)在圆内,∴20

20y x +r ,故直线和圆相离.

培养能力

7.方程ax 2+ay 2-4(a -1)x +4y =0表示圆,求a 的取值范围,并求出其中半径最小的圆的方程.

解:(1)∵a ≠0时,方程为[x -a a )1(2-]2+(y +a 2)2=2

2)22(4a a a +-, 由于a 2-2a +2>0恒成立,

∴a ≠0且a ∈R 时方程表示圆.

(2)r 2=4·2

222a a a +-=4[2(a 1-21)2+21], ∴a =2时,r min 2=2.

此时圆的方程为(x -1)2+(y -1)2=2.

8.(文)求经过点A (-2,-4),且与直线l :x +3y -26=0相切于(8,6)的圆的方程. 解:设圆为x 2+y 2+Dx +Ey +F =0,依题意有方程组 3D -E =-36,

2D +4E -F =20,

8D +6E +F =-100.

D =-11,

E =3,

F =-30.

∴圆的方程为x 2+y 2-11x +3y -30=0.

(理)已知点P 是圆x 2+y 2=4上一动点,定点Q (4,0).

(1)求线段PQ 中点的轨迹方程;

(2)设∠POQ 的平分线交PQ 于R ,求R 点的轨迹方程.

解:(1)设PQ 中点M (x ,y ),则P (2x -4,2y ),代入圆的方程得(x -2)2+y 2=1.

(2)设R (x ,y ),由

||||RQ PR =||||OQ OP =21, 设P (m ,n ),则有

m =2

43-x , ∴

n =

2

3y , 代入x 2+y 2=4中,得

(x -34)2+y 2=9

16(y ≠0). 探究创新 9.已知点P 到两个定点M (-1,0)、N (1,0)距离的比为2,点N 到直线PM 的距离为1,求直线PN 的方程.

解:设点P 的坐标为(x ,y ), 由题设有|

|||PN PM =2, 即22)1(y x ++=2·22)1(y x +-,

整理得x 2+y 2-6x +1=0.

因为点N 到PM 的距离为1,|MN |=2,

所以∠PMN =30°,直线PM 的斜率为±

33. 直线PM 的方程为y =±

3

3(x +1). ②

将②代入①整理得x 2-4x +1=0.

解得x 1=2+3,x 2=2-3.

代入②得点P 的坐标为(2+3,1+3)或(2-3,-1+3);(2+3,-1-3)或(2-3,1-3).

直线PN 的方程为y =x -1或y =-x +1.

●思悟小结

1.直线和圆的位置关系有且仅有三种:相离、相切、相交.判定方法有两个:几何法,比较圆心到直线的距离与圆的半径间的大小;代数法,看直线与圆的方程联立所得方程组的解的个数.

2.解决直线与圆的位置关系的有关问题,往往充分利用平面几何中圆的性质使问题简化. ●教师下载中心

教学点睛

1.有关直线和圆的位置关系,一般要用圆心到直线的距离与半径的大小来确定.

2.当直线和圆相切时,求切线方程一般要用圆心到直线的距离等于半径,求切线长一般要用切线、半径及圆外点与圆心连线构成的直角三角形;与圆相交时,弦长的计算也要用弦心距、半径及弦长的一半构成的直角三角形.

3.有关圆的问题,注意圆心、半径及平面几何知识的应用.

4.在确定点与圆、直线与圆、圆与圆的位置关系时,经常要用到距离,因此,两点间的距离公式、点到直线的距离公式等应熟练掌握,灵活运用.

拓展题例

【例1】 已知圆的方程为x 2+y 2+ax +2y +a 2=0,一定点为A (1,2),要使过定点A (1,

2)作圆的切线有两条,求a 的取值范围.

解:将圆的方程配方得(x +2a )2+(y +1)2=4342a -,圆心C 的坐标为(-2

a ,-1),半径r =4

342

a -, 条件是4-3a 2>0,过点A (1,2)所作圆的切线有两条,则点A 必在圆外,即

22)12()2

1(+++a >4342a -. 化简得a 2+a +9>0.

4-3a 2>0, a 2+a +9>0,

-332<a <332, a ∈R .

∴-332<a <3

32. 故a 的取值范围是(-

332,3

32). 【例2】 已知⊙O 方程为x 2+y 2=4,定点A (4,0),求过点A 且和⊙O 相切的动圆圆心的轨迹.

剖析:两圆外切,连心线长等于两圆半径之和,两圆内切,连心线长等于两圆半径之差,由此可得到动圆圆心在运动中所应满足的几何条件,然后将这个几何条件坐标化,即得到它的轨迹方程.

解法一:设动圆圆心为P (x ,y ),因为动圆过定点A ,所以|P A |即动圆半径.

当动圆P 与⊙O 外切时,|PO |=|P A |+2;

当动圆P 与⊙O 内切时,|PO |=|P A |-2.

综合这两种情况,得||PO |-|P A ||=2.

将此关系式坐标化,得 |22y x +-22)4(y x +-|=2.

化简可得(x -2)2-

3

2

y =1. 解法二:由解法一可得动点P 满足几何关系

||OP |-|P A ||=2,

即P 点到两定点O 、A 的距离差的绝对值为定值2,所以P 点轨迹是以O 、A 为焦点,2为实轴长的双曲线,中心在OA 中点(2,0),实半轴长a =1,半焦距c =2,虚半轴长b =22a c -=3,所以轨迹方程为(x -2)2-32

y =1. 由 解之得

2020年高考文科数学《直线与圆》题型归纳与训练

冲刺高考 复习必备 2020年高考文科数学《直线与圆》题型归纳与训练 【题型归纳】 题型一 倾斜角与斜率 例1 直线l 310y +-=,则直线l 的倾斜角为( ) A. 0150 B. 0120 C. 060 D. 030 【答案】 A 【解析】由直线l 310y +-=,可得直线的斜率为3 3 - =k ,设直线的倾斜角为[)πα,0∈,则3 3 tan -=α,∴?=150α. 故选:A . 【易错点】基础求解问题注意不要算错 【思维点拨】直线方程的基础问题(倾斜角,斜率与方程,注意倾斜角为α为2 π ,即斜率k 不存在的情况)应对相关知识点充分理解,熟悉熟练 例2 已知三点()0,a A 、()7,3B 、()a C 9,2--在一条直线上,求实数a 的值. 【答案】2=a 或9 2=a 【解析】5 97,35a k a k CB AB += -= ∵A 、B 、C 三点在一条直线上,∴BC AB k k =,即 59735a a += -,解得2=a 或9 2 =a . 题型二 直线方程 例1 经过点()1,1M 且在两坐标轴上截距相等的直线是( ). A. 2x y += B. 1x y += C. 1x =或1y = D. 2x y +=或x y =

【答案】D 【解析】若直线过原点,则直线为y x =符合题意,若直线不过原点设直线为1x y m m +=, 代入点()1,1解得2m =,直线方程整理得20x y +-=,故选D . 【易错点】截距问题用截距式比较简单,但截距式1=+n y m x 中要求m ,n 均非零。故做题时应考虑此情形 【思维点拨】求解基本直线方程问题通常比较简单,考虑时注意每种形式的适用范围即可。不要漏解。 题型三 直线位置关系的判断 例1 直线()1:3230l kx k y +--=和()()2:2220l k x k y -++-=互相垂直,则实数k 的值是( ) A. 2-或1- B. 2或1- C. 2-或1 D. 2或1 【答案】D 【解析】根据直线垂直的充要条件得到: ()()()3*22*20k k k k -+-+= 化简为2 3201k k k -+=?= 或2 故选择D 【易错点】本题若采用斜率之积为-1求解,则容易错误。首先求斜率变形时分母不为0,分母为零,实际上上是一条竖线(k 不存在);其次垂直时应为:121-=k k (斜率均存在)或21k k ,中一为0,一不存在 若用0:1=++c by ax l ,0:2=++t ny mx l 垂直的充要条件:0=+bn am ,则避免上述问题 【思维点拨】 直线位置关系问题(平行与垂直)应熟练掌握其判断方法。一般而言,除一般式其他形式可能漏解(忽略了k 不存在的情况)。在做题时应该考虑全面,避免少解 题型四 对称与直线恒过定点问题 例1 点()2,4关于直线230x y +-=的对称点的坐标为_________. 【答案】()2,2- 【解析】设对称点坐标为()00,x y ,则对称点与已知点连线的中点为0024,22x y ++?? ??? ,

高考理科数学常考题型训练考点一直线与圆

第11题 考点一 直线与圆 1、P 为圆221x y +=上任一点,则P 与点(3,4)M 的距离的最小值是( ) A .1 B .4 C .5 D .6 2、已知圆22:40C x y mx ++-=上存在两点关于直线30x y -+=对称,则实数m 的值为( ) A.8 B.-4 C.6 D.无法确定 3、若x y 、满足2 2 24200x y x y +--=+,则2 2 x y +的最小值是( ) A 5 B .5 C .30- D .无法确定 4、直线20x y ++=分别与x 轴,y 轴交于,A B 两点,点P 在圆22(2)2x y -+=上,则ABP △面积的取值范围是( ) A .[2,6] B .[4,8] C . D . 5、在平面直角坐标系中,记d 为点()cos ,sin P θθ到直线20x my --=的距离,当,m θ变化时,d 的最大值为( ) A.1 B.2 C.3 D.4 6、在圆225x y x +=内,过点53,22?? ??? 有n 条弦的长度成等差数列,最小弦长为数列的首 项1a ,最大弦长为n a ,若公差11,63d ?? ∈???? ,那么n 的取值集合为( ) A.4,5,{6,7} B.{4,5,6} C.3,4,{5,6} D.3,4,5{,6,7} 7、过点(1,)1-的圆2224200x y x y +---=的最大弦长与最小弦长的和为( ) A. 17 B. 18 C. 19 D. 20 8、设直线过点()0,a ,其斜率为1,且与圆222x y +=相切,则a 的值为( ) A .B .2± C .± D .4± 9、已知圆22220x y x y a +-++=截直线40x y +-=所得弦的长度小于6,则实数a 的取值范围为( )

点、直线、圆与圆的位置关系

点、直线、圆与圆的位置关系 【要点梳理】 要点一、点和圆的位置关系 1.点和圆的三种位置关系: 由于平面上圆的存在,就把平面上的点分成了三个集合,即圆内的点,圆上的点和圆外的点,这三类点各具有相同的性质和判定方法;设⊙O的半径为r,点P到圆心的距离为d,则有 2.三角形的外接圆 经过三角形的三个顶点的圆叫做三角形的外接圆,外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心. 三角形的外心到三角形三个顶点的距离相等. 要点诠释: (1)点和圆的位置关系和点到圆心的距离的数量关系是相对应的,即知道位置关系就可以确定数量关系;知道数量关系也可以确定位置关系; (2)不在同一直线上的三个点确定一个圆. 要点二、直线和圆的位置关系 1.直线和圆的三种位置关系: (1) 相交:直线与圆有两个公共点时,叫做直线和圆相交.这时直线叫做圆的割线. (2) 相切:直线和圆有唯一公共点时,叫做直线和圆相切.这时直线叫做圆的切线,唯一的公共点叫做切点. (3) 相离:直线和圆没有公共点时,叫做直线和圆相离. 2.直线与圆的位置关系的判定和性质. 直线与圆的位置关系能否像点与圆的位置关系一样通过一些条件来进行分析判断呢? 由于圆心确定圆的位置,半径确定圆的大小,因此研究直线和圆的位置关系,就可以转化为直线和点(圆心)的位置关系.下面图(1)中直线与圆心的距离小于半径;图(2)中直线与圆心的距离等于半径;图(3)中直线与圆心的距离大于半径.

如果⊙O的半径为r,圆心O到直线的距离为d,那么 要点诠释: 这三个命题从左边到右边反映了直线与圆的位置关系所具有的性质;从右边到左边则是直线与圆的位置关系的判定. 要点三、切线的判定定理、性质定理和切线长定理 1.切线的判定定理: 经过半径的外端并且垂直于这条半径的直线是圆的切线. 要点诠释: 切线的判定定理中强调两点:一是直线与圆有一个交点,二是直线与过交点的半径垂直,缺一不可. 2.切线的性质定理: 圆的切线垂直于过切点的半径. 3.切线长: 经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长. 要点诠释: 切线长是指圆外一点和切点之间的线段的长,不是“切线的长”的简称.切线是直线,而非线段. 4.切线长定理: 从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角. 要点诠释: 切线长定理包含两个结论:线段相等和角相等. 5.三角形的内切圆: 与三角形各边都相切的圆叫做三角形的内切圆. 6.三角形的内心: 三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心. 三角形的内心到三边的距离都相等. 要点诠释: (1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形; (2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径). 名称确定方法图形性质

(完整版)高中数学直线和圆知识点总结

直线和圆 一.直线 1.斜率与倾斜角:tan k θ=,[0,)θπ∈ (1)[0,)2π θ∈时,0k ≥; (2)2πθ=时,k 不存在;(3)(,)2πθπ∈时,0k < (4)当倾斜角从0?增加到90?时,斜率从0增加到+∞; 当倾斜角从90?增加到180? 时,斜率从-∞增加到0 2.直线方程 (1)点斜式:)(00x x k y y -=- (2)斜截式:y kx b =+ (3)两点式:1 21121x x x x y y y y --=-- (4)截距式:1x y a b += (5)一般式:0C =++By Ax 3.距离公式 (1)点111(,)P x y ,222(,)P x y 之间的距离:12PP = (2)点00(,)P x y 到直线0Ax By C ++= 的距离:d = (3)平行线间的距离:10Ax By C ++=与20Ax By C ++= 的距离:d = 4.位置关系 (1)截距式:y kx b =+形式 重合:1212 k k b b == 相交:12k k ≠ 平行:1212 k k b b =≠ 垂直:121k k ?=- (2)一般式:0Ax By C ++=形式 重合:1221A B A B =且1221A C A C =且1212B C C B = 平行:1221A B A B =且1221A C A C ≠且1212B C C B ≠

垂直:12120A A B B += 相交:1221A B A B ≠ 5.直线系 1112220A x B y C A x B y C λ++++=+()表示过两直线1111:0l A x B y C ++=和2222:0l A x B y C ++=交点的所有直线方程(不含2l ) 二.圆 1.圆的方程 (1)标准形式:222 ()()x a y b R -+-=(0R >) (2)一般式:220x y Dx Ey F ++++=(2240D E F +->) (3)参数方程:00cos sin x x r y y r θθ=+??=+? (θ是参数) 【注】题目中出现动点求量时,通常可采取参数方程转化为三角函数问题去解决. (4)以11(,)A x y ,22(,)B x y 为直径的圆的方程是:()()()()0A B A B x x x x y y y y --+--= 2.位置关系 (1)点00(,)P x y 和圆222 ()()x a y b R -+-=的位置关系: 当22200()()x a y b R -+-<时,点00(,)P x y 在圆222()()x a y b R -+-=内部 当22200()()x a y b R -+-=时,点00(,)P x y 在圆222()()x a y b R -+-=上 当22200()()x a y b R -+->时,点00(,)P x y 在圆222()()x a y b R -+-=外 (2)直线0Ax By C ++=和圆222()()x a y b R -+-=的位置关系: 判断圆心(,)O a b 到直线0Ax By C ++= 的距离d = R 的大小关系 当d R <时,直线和圆相交(有两个交点); 当d R =时,直线和圆相切(有且仅有一个交点); 当d R <时,直线和圆相离(无交点);

直线与圆的位置关系(教案)

《直线与圆的位置关系》的教学设计 一、教学课题:人民教育出版社出版的普通高中课程标准实验教科书A版数学②第四章第二节“直 线与圆的位置关系”第一课时。 二、设计要点:学生在初中平面几何中已学过直线与圆的三种位置关系,在前面几节课学习了直线与圆的方程,因此,本节课主要以问题为载体,通过教师几个环节的设问,让学生利用已有的知识,自己去探究用坐标法研究直线与圆的位置关系的方法。用过学生的参与和一个个问题的解决,让学生体验有关的数学思想,提高学生自主学习、分析问题和解决问题的能力,培养学生“用数学”及合作学习的意识。 三、教学目标: 1.知识目标:能根据给定直线、圆的方程判断直线与圆的位置关系,并解决相关的问题;2.能力目标:通过理论联系实际培养学生建模能力,培养学生数形结合思想与方程的思想;3.情感目标:通过学生的自主探究,培养学生学习的主动性和合作交流的学习习惯。 四、教学重点、难点、关键: (1)重点:用坐标法判断直线与圆的位置关系 (2)难点:学生对用方程组的解来判断直线与圆的位置关系方法的理解 (3)关键:展现数与形的关系,启发学生思考、探索。 五、教学方法与手段: 1.教学方法:探究式教学法 2。教学手段:多媒体、实物投影仪 六、教学过程: 1.创设情境,提出问题 教师利用多媒体展示如下问题: 问题:一艘轮船在沿直线返回港口的途中,接到气象台的台风预报:台风中心位于轮船正西50km 处,受到影响的范围是半径长为30km的圆形区域,已知港口位于台风中心正北50km处,如果 这艘轮船不改变航线,那么它是否会受到台风的影响? 教师提出:利用初中所学的平面几何知识,你能解决这个问题吗?请同学们动手试一下。 设计意图:让学生从数学角度看日常生活中的问题,体验数学与生活的密切联系,激发学生的探索热情。 2.切入主题,提出课题 (1)由学生将问题数学建模,展示平面几何解决方法,得出结论。教师带领学生一起回顾初中所学直线与圆的三种位置关系及判断方法。

高考数学专题直线和圆练习题

专题七:直线与圆 例1:不等式063<-+ay x )0(>a 表示的平面区域是在直线063=-+ay x ( ) 的点的集合。 (A )左上方 (B )右上方 (C )左下方 (D )右下方 [思路分析] 作出直线063=-+ay x ,又因为06003<-?+?a ,所以原点在区域内侧表示直线的左下方,故选取C 。 [简要评述] 用特殊值法解选择题是常用的方法。 例2:若直线k x y +=与曲线21y x -=恰有一个公共点,则k 的取值范围是 ( ) (A )2±=k (B )[)(]2,,2-∞-+∞ (C )() 2,2- (D )2-=k 或(-1,1] [思路分析] 数形结合的思想,k x y += 表示一组斜率为1的平行直线,21y x -= 表示y 轴的右半圆。如图可知,选(D ) [简要评述] 数形结合思想的灵活运用,此题 可以进一步拓展,21y x --=,21x y -±=等。 例3:如果实数x 、y 满足()322=+-y x ,那么x y 的最大值是 。 [思路分析] 解法一:设直线l :kx y =,则x y 表示直线l 的斜率,直线l 与圆 ()322=+-y x 距离为半径即可。 解法二:设圆的参数方程:?????=+=θ θsin 3cos 32y x 则 θ θcos 32sin 3+=x y 据三角知识求解。 解法三:设x y =t ,则???==+-tx y y x 3)2(22 只要解方程组,利用0=?可得解。

解法四:如图,联结圆心C 与切点M ,则由OM ⊥CM ,又Rt △OMC 中,OC=2,CM=3 所以,OM=1,得3==OM MC x y [简要评述] 小题小做,选方法四最为简单,数形结合的数学思想的灵活运用。 例4:已知两点)2,(m A ,)1,3(B ,求直线AB 的斜率与倾斜角。 [思路分析] 注意斜率存在的条件。当3=m 时,k 不存在。α= 2π,当3≠m 时, 31312tan -=--==m m k α;当3>m 时,3 1arctan -=m α,当30,b>0) ∴)0,(a A 、),0(b B 。 ∵⊥ ∴b a b a 2100)4()4()2()2(-=?=-?-+-?- ∵a>0 0

讲义_直线与圆的位置关系

一、直线和圆的位置关系的定义、性质及判定 1、设O ⊙的半径为r ,圆心O 到直线l 的距离为d ,则直线和圆的位置关系如下表: 从另一个角度,直线和圆的位置关系还可以如下表示:

二、切线的性质及判定 1. 切线的性质: 定理:圆的切线垂直于过切点的半径. 推论1:经过圆心且垂直于切线的直线必经过切点. 推论2:经过切点且垂直于切线的直线必经过圆心. 2. 切线的判定: 定义法:和圆只有一个公共点的直线是圆的切线; 距离法:到圆心距离等于半径的直线是圆的切线; 定理:经过半径的外端并且垂直于这条半径的直线是圆的切线. 3. 切线长和切线长定理: ⑴ 切线长:在经过圆外一点的圆的切线上,这点和切点之间的线段的长,叫做这点到圆的切线长. ⑵ 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角. ①切线的判定定理 设OA 为⊙O 的半径,过半径外端A 作l ⊥OA ,则O 到l 的距离d=r ,∴l 与⊙O 相切.因此,我们得到:切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线. 注:定理的题设①“经过半径外端”,②“垂直于半径”,两个条件缺一不可.结论是“直线是圆的切线”.举例说明:只满足题设的一个条件不是⊙O 的切线. _A _ l _ l _A _ l

上 ②切线的性质定理及其推论 切线的性质定理:圆的切线垂直于过切点的半径. 三、三角形内切圆 1. 定义:和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形. 2. 多边形内切圆:和多边形的各边都相切的圆叫做多边形的内切圆,这个多边形叫做圆的外切多边形. 3.直角三角形的内切圆半径与三边关系 (1) (2) 图(1)中,设a b c ,,分别为ABC ?中A B C ∠∠∠,,的对边,面积为S 则内切圆半径(1)s r p =,其中()12p a b c =++; 图(2)中,90C ∠=?,则()1 2 r a b c =+- 四、典例分析:切线的性质及判定 _ O _F _E _ D _ C _ B _ A _ C _ B _ A _ C _ B _ A _c _ b _a _c _ b _a _T _A

直线与圆的位置关系(解析版)

直线与圆的位置关系 班级:____________ 姓名:__________________ 一、选择题(每小题5分,共40分) 1.如果a2+b2=c2,那么直线ax+by+c=0与圆x2+y2=1的位置关系是() A.相交 B.相切 C.相离 D.相交或相切 2.设直线过点(a,0),其斜率为-1,且与圆x2+y2=2相切,则a的值为() A.± B.±2 C.±2 D.±4 3.直线x+2y-5+=0被圆x2+y2-2x-4y=0截得的弦长为() A.1 B.2 C.4 D.4 4.过点P(-2,4)作圆O:(x-2)2+(y-1)2=25的切线l,直线m:ax-3y=0与直线l平行,则直线l与m间的距离为() A.4 B.2 C. D. 5.过原点的直线与圆x2+y2+4x+3=0相切,若切点在第三象限,则该直线的方程是() A.y=x B.y=-x C.y=x D.y=-x 6.已知圆C:(x-a)2+(y-2)2=4(a>0)及直线l:x-y+3=0,当直线l被圆C截得的弦长为2时,a 等于() A. B.2- C.-1 D.+1 7.由直线y=x+1上的一点向圆(x-3)2+y2=1引切线,则切线长的最小值为() A.1 B.2 C. D.3 8.过点P(-,-1)的直线l与圆x2+y2=1有公共点,则直线l的倾斜角α的取值范围是() A.0°<α<30° B.0°<α≤60° C.0°≤α≤30° D.0°≤α≤60° 二、填空题(每小题5分,共10分) 9.过点A(1,)的直线l将圆(x-2)2+y2=4分成两段弧,当劣弧所对的圆心角最小时,直线l 的斜率k=________.

高中数学直线和圆知识点总结

直线和圆 一.直线 1.斜率与倾斜角:tan k θ=,[0,)θπ∈ (1)[0, )2 π θ∈时,0k ≥; (2)2 πθ=时,k 不存在;(3)( ,)2 π θπ∈时,0k < (4)当倾斜角从0? 增加到90? 时,斜率从0增加到+∞; 当倾斜角从90? 增加到180? 时,斜率从-∞增加到0 2.直线方程 (1)点斜式:)(00x x k y y -=- (2)斜截式:y kx b =+ (3)两点式: 1 21121x x x x y y y y --=-- (4)截距式: 1x y a b += (5)一般式:0C =++By Ax 3.距离公式 (1)点111(,)P x y ,222(,)P x y 之间的距离:12PP = (2)点 00(,)P x y 到直线0Ax By C ++=的距离:d = (3)平行线间的距离: 10Ax By C ++=与20Ax By C ++=的距离:d = 4.位置关系 (1)截距式:y kx b =+形式 重合:1212 k k b b == 相交:12k k ≠ 平行:1212 k k b b =≠ 垂直:121k k ?=- (2)一般式:0Ax By C ++=形式 重合:1221A B A B =且1221A C A C =且1212B C C B = 平行:1221A B A B =且1221A C A C ≠且1212B C C B ≠

垂直:12120A A B B += 相交:1221A B A B ≠ 5.直线系 1112220A x B y C A x B y C λ++++=+()表示过两直线1111:0l A x B y C ++=和2222:0l A x B y C ++=交点的所 有直线方程(不含2l ) 二.圆 1.圆的方程 (1)标准形式:2 2 2 ()()x a y b R -+-=(0R >) (2)一般式:2 2 0x y Dx Ey F ++++=(22 40D E F +->) (3)参数方程:00cos sin x x r y y r θ θ =+?? =+?(θ是参数) 【注】题目中出现动点求量时,通常可采取参数方程转化为三角函数问题去解决. (4)以11(,)A x y ,22(,)B x y 为直径的圆的方程是:()()()()0A B A B x x x x y y y y --+--= 2.位置关系 (1)点00(,)P x y 和圆222 ()()x a y b R -+-=的位置关系: 当22200()()x a y b R -+-<时,点00(,)P x y 在圆222 ()()x a y b R -+-=部 当22200()()x a y b R -+-=时,点00(,)P x y 在圆222 ()()x a y b R -+-=上 当22200()()x a y b R -+->时,点00(,)P x y 在圆222 ()()x a y b R -+-=外 (2)直线0Ax By C ++=和圆2 2 2 ()()x a y b R -+-=的位置关系: 判断圆心(,)O a b 到直线0Ax By C ++= 的距离d =R 的大小关系 当d R <时,直线和圆相交(有两个交点); 当d R =时,直线和圆相切(有且仅有一个交点); 当d R <时,直线和圆相离(无交点); 判断直线与圆的位置关系常见的方法 (1)几何法:利用圆心到直线的距离d 和圆半径r 的大小关系. (2)代数法:联立直线与圆的方程消元后利用Δ判断. (3)点与圆的位置关系法:若直线恒过定点且定点在圆可判断直线与圆相交.

九年级数学:《直线与圆的位置关系》(教学方案)

( 数学教案 ) 学校:_________________________ 年级:_________________________ 教师:_________________________ 教案设计 / 精品文档 / 文字可改 九年级数学:《直线与圆的位置 关系》(教学方案) Mathematics is a tool subject, it is the basis for learning other subjects, and it is also a subject that improves people's judgment, analysis, and comprehension abilities.

九年级数学:《直线与圆的位置关系》(教 学方案) 教材:华东师大版实验教材九年级上册 一、教材分析: 1、教材的地位和作用 圆的有关性质,被广泛地应用于工农业生产、交通运输等方面,所涉及的数学知识较为广泛;学好本章内容,能提高解题的综合能力。而本节的内容紧接点与圆的位置关系,它体现了运动的观点,是研究有关性质的基础,也为后面学习圆与圆的位置关系及高中继续学习几何知识作铺垫。 2、教学目标 知识目标:使学生从具体的事例中认知和理解直线与圆的三种

位置关系并能概括其定义,会用定义来判断直线与圆的位置关系,通过类比点与圆的位置关系及观察、实验等活动探究直线与圆的位置关系的数量关系及其运用。 过程与方法:通过观察、实验、讨论、合作研究等数学活动使学生了解探索问题的一般方法;由观察得到“圆心与直线的距离和圆半径大小的数量关系对应等价于直线和圆的位置关系”从而实现位置关系与数量关系的转化,渗透运动与转化的数学思想。 情感态度与价值观:创设问题情景,激发学生好奇心;体验数学活动中的探索与创造,感受数学的严谨性和数学结论的正确性,在学习活动中获得成功的体验;通过“转化”数学思想的运用,让学生认识到事物之间是普遍联系、相互转化的辨证唯物主义思想。 3、教学重、难点 重点:理解直线与圆的相交、相离、相切三种位置关系; 难点:学生能根据圆心到直线的距离d与圆的半径r之间的数量关系,揭示直线与圆的位置关系;直线与圆的三种位置关系判定方法的运用。

高考数学复习直线与圆的位置关系

7.6 直线与圆的位置关系 ●知识梳理 直线和圆 1.直线和圆位置关系的判定方法一是方程的观点,即把圆的方程和直线的方程联立成方程组,利用判别式Δ来讨论位置关系. ①Δ>0,直线和圆相交. ②Δ=0,直线和圆相切. ③Δ<0,直线和圆相离. 方法二是几何的观点,即把圆心到直线的距离d 和半径R 的大小加以比较. ①d <R ,直线和圆相交. ②d =R ,直线和圆相切. ③d >R ,直线和圆相离. 2.直线和圆相切,这类问题主要是求圆的切线方程.求圆的切线方程主要可分为已知斜率k 或已知直线上一点两种情况,而已知直线上一点又可分为已知圆上一点和圆外一点两种情况. 3.直线和圆相交,这类问题主要是求弦长以及弦的中点问题. ●点击双基 1.设m >0,则直线2(x +y )+1+m =0与圆x 2+y 2=m 的位置关系为 A.相切 B.相交 C.相切或相离 D.相交或相切 解析:圆心到直线的距离为d = 2 1m +,圆半径为m . ∵d -r =21m +-m =21(m -2m +1)=2 1(m -1)2≥0, ∴直线与圆的位置关系是相切或相离. 答案:C 2.圆x 2+y 2-4x +4y +6=0截直线x -y -5=0所得的弦长等于 A.6 B.2 25 C.1 D.5 解析:圆心到直线的距离为 22,半径为2,弦长为222)22()2(-=6. 答案:A 3.圆x 2+y 2-4x =0在点P (1,3)处的切线方程为 A.x +3y -2=0 B.x +3y -4=0 C.x -3y +4=0 D.x -3y +2=0 解法一: x 2+y 2-4x =0

直线与圆的位置关系教案

【课题】4.2.1直线与圆的位置关系 【教材】人民教育出版社(A版)高中数学必修2第126页至128页【课时安排】 1个课时 【教学对象】高中一年级 【授课教师】 【教学重点】掌握直线和圆的几种位置关系,学会判定直线与圆的位置关系的两种方法: (1)直线到圆心距离与圆半径的大小关系,写出判定直线与圆的位置关系。 (2)通过解直线与圆方程组成的方程,根据解的个数,写出判定直线与圆的位置关系。 【教学难点】由位置关系得出大小关系式从而判断解的个数 【教学目标】 知识与技能 掌握直线和圆的几种位置关系,熟练掌握判断位置关系的两种方法。判断直线到圆心距离与圆半径的大小关系法和求解个数法 过程与方法 1、理解直线和圆的三种位置关系,感受直线和圆的位置与它们的方程所组成的二元二次方程组的解的对应关系; 2、体验通过比较圆心到直线的距离和半径之间的大小判断直线与圆的位置关系; 3、领会数形结合的数学思想方法,提高发现问题、分析问题、

解决问题的能力。 情感态度与价值观 让学生亲身经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣,感受“方程思想”、“坐标法”等数学思想的内涵,养成良好的思维习惯。 【教学方法】教师启发讲授、学生探究学习 【教学手段】PowerPoint,动画演示 【教学过程设计】 1、回顾旧知(3分钟) 平面几何中,直线与圆有哪几种位置关 系?在初中,我们怎样判断直线与圆的位 置关系? 一艘轮船在沿直线返回港口的途中,接到气象台的台风预 报:台风中心位于轮船正西70km处,受影响的范围是半径 教师 运用 边提 问边 回答 的形 式引 导学 生回 忆知 识点 老师 引导 学生 思考 学生 回忆 并回 答问 题 学生 观察 动画 并思 考如 何解 决 回顾知识点 的益处在于 不仅复习了 以前学习的 知识,又为 今后的学习 作铺垫 与学生进行 互动交流, 学生更积极 思考,并可 活跃课堂氛 围

直线与圆的位置关系

直线与圆、圆与圆的位置关系 1.判断直线与圆的位置关系常用的两种方法 (1)几何法:利用圆心到直线的距离d 和圆半径r 的大小关系. d r ?相离. (2)代数法:――→判别式 Δ=b 2-4ac ????? >0?相交=0?相切<0?相离 [知识拓展] 圆的切线方程常用结论 (1)过圆x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程为x 0x +y 0y =r 2. (2)过圆(x -a )2+(y -b )2=r 2上一点P (x 0,y 0)的圆的切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2.

(3)过圆x2+y2=r2外一点M(x0,y0)作圆的两条切线,则两切点所在直线方程为x0x+y0y=r2. 2.圆与圆的位置关系 设圆O1:(x-a1)2+(y-b1)2=r21(r1>0), 圆O2:(x-a2)2+(y-b2)2=r22(r2>0). [ 常用结论 (1)两圆的位置关系与公切线的条数:①内含:0条;②内切:1条;③相交:2条;④外切:3条;⑤外离:4条. (2)当两圆相交时,两圆方程(x2,y2项系数相同)相减便可得公共弦所在直线的方程. 【思考辨析】 判断下面结论是否正确(请在括号中打“√”或“×”) (1)“k=1”是“直线x-y+k=0与圆x2+y2=1相交”的必要不充分条件.(×) (2)如果两个圆的方程组成的方程组只有一组实数解,则两圆外切.(×) (3)如果两圆的圆心距小于两圆的半径之和,则两圆相交.(×) (4)从两圆的方程中消掉二次项后得到的二元一次方程是两圆的公共弦所在的直线方程.(×) (5)过圆O:x2+y2=r2上一点P(x0,y0)的圆的切线方程是x0x+y0y=r2.(√) (6)过圆O:x2+y2=r2外一点P(x0,y0)作圆的两条切线,切点分别为A,B,则O,P,A,B四点共圆且直线AB的方程是x0x+y0y=r2.(√)

高考数学直线与圆

[课时跟踪检测] [A 级——基础小题提速练] 一、选择题 1.已知直线l :y =k (x +3)和圆C :x 2+(y -1)2=1,若直线l 与圆C 相切,则k =( ) A .0 B. 3 C.3 3或0 D.3或0 解析:选D 因为直线l 与圆C 相切,所以圆心C (0,1)到直线l 的距离d =|-1+3k |k 2 +(-1) 2 =1,解得k =0或k =3,故选D. 2.(2019·宁波模拟)直线3x +y -23=0截圆x 2+y 2=4所得劣弧所对的圆心角的大小为( ) A.π6 B.π4 C.π3 D.π2 解析:选C 因为圆心(0,0)到直线的距离为d = |23|3+1 =3,圆的半径为2, 所以可知直线截圆所得弦长为2,所以可知该直线截圆所得劣弧所对的圆心角的大小为π 3,故选C. 3.直线l :y =kx +1与圆O :x 2+y 2=1相交于A ,B 两点,则“k =1”是“|AB |=2”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 解析:选A 依题意,注意到|AB |=2=|OA |2+|OB |2等价于圆心O 到直 线l 的距离等于22,即有 1 k 2+(-1) 2=2 2,k =±1.因此,“k =1”是“|AB |=2”

的充分不必要条件. 4.若三条直线l1:4x+y=3,l2:mx+y=0,l3:x-my=2不能围成三角形,则实数m的取值最多有() A.2个B.3个 C.4个D.6个 解析:选C三条直线不能围成三角形,则至少有两条直线平行或三条直线 相交于同一点.若l1∥l2,则m=4;若l1∥l3,则m=-1 4;若l2∥l3,则m的值不存 在;若三条直线相交于同一点,则m=1或-5 3.故实数m的取值最多有4个,故 选C. 5.在直角坐标系xOy中,已知点A(0,-1),B(2,0),过A的直线交x轴于点C(a,0),若直线AC的倾斜角是直线AB倾斜角的2倍,则a=() A.1 4 B. 3 4 C.1 D.4 3 解析:选B设直线AC的倾斜角为β,直线AB的倾斜角为α, 即有tan β=tan 2α= 2tan α1-tan2α . 又tan β=1 a,tan α= 1 2, 所以1 a= 2× 1 2 1- 1 4 ,解得a= 3 4. 6.与直线x+y-2=0和曲线x2+y2-12x-12y+54=0都相切的半径最小的圆的标准方程是() A.(x+2)2+(y-2)2=2 B.(x-2)2+(y+2)2=2 C.(x+2)2+(y+2)2=2

数学必修直线与圆的位置关系教案

直线与圆的位置关系 教学目标 1、知识与能力目标 A.知道直线和圆相交,相切,相离的定义并会根据定义来判断直线和圆的位置关系; B.能根据圆心到直线的距离与圆的半径之间的数量关系来揭示直线和圆的位置关系;也能根据联立方程组的解的个数来判断直线与圆的位置关系。 C.掌握直线和圆的位置关系的应用,能解决弦长、切线以及最值问题。 2、过程与方法目标 让学生通过观察,看图,分析,能找出圆心到直线的距离和圆的半径之间的数量关系,揭示直线和圆的位置关系。此外,通过直线和圆的相对运动,培养学生运动变化的辨证唯物主义观点,通过对研究过程的反思,进一步强化对分类和把几何形成的结论转化为代数方程的形式的思想。培养学生借助直观解决抽象问题的能力,也就是由数到形,有形到数;有直观到抽象、由抽象到直观的转化能力(数形结合的思想)。 3、情感态度与价值观目标 通过师生互动,生生互动的教学活动过程,形成学生的体验性认识,体会成功的愉悦,提高数学学习的兴趣,树立学好数学的信心,培养锲而不舍的钻研精神和合作交流的科学态度。 教学重点与难点 教学重点:直线和圆位置关系的判断和应用 教学难点:通过解方程组来研究直线和圆的位置关系。 教学准备

制作多媒体课件,学生准备计算器,直尺,量角器。 教学过程: 一、复习 1.直线方程的形式 2.圆的方程形式 3.点与圆的位置关系 4直线与圆的位置关系: (1)直线与圆相交,有两个公共点; (2)直线与圆相切,只有一个公共点; (3)直线与圆相离,没有公共点; 二、新课讲解 1.问题情境 问题1.一艘轮船在沿直线返回港口的途中,接到气象台的台风预报:台风中心位于轮船正西70km处,受影响的范围是半径长为50km的圆形区域.已知港口位于台风中心正北70km处,如果这艘轮船不改变航线,那么它是否会受到台风的影响? 师生活动:让学生进行讨论、交流,启发学生由图形获取判断直线与圆的位置关系的直观认知,引入新课. 师:你怎么判断轮船受不受影响? 生:台风所在的圆与轮船航线所在直线是否相交. 师:(板书标题)这个问题,其实可以归结为直线与圆的位置关系. 学生解决方法一:设O为台风中心,A为轮船开始位置,B为

高考数学直线和圆的方程专题复习(专题训练)

专题六、解析几何(一) 直线和圆 1.直线方程:0=+++=c by ax t kx y 或 2.点关于特殊直线的对称点坐标: (1)点),(00y x A 关于直线方程x y =的对称点),(n m A '坐标为:0y m =,0x n =; (2) 点),(00y x A 关于直线方程b x y +=的对称点),(n m A '坐标为:b y m -=0,b x n +=0; (3)点),(00y x A 关于直线方程x y -=的对称点),(n m A '坐标为:0y m -=,0x n -=; (4)点),(00y x A 关于直线方程b x y +-=的对称点),(n m A '坐标为:b y m +-=0,b x n +-=0; 3.圆的方程:()()2 2 2 x a y b r -+-=或() 2222040x y Dx Ey F D E F ++++=+->, 无xy 。

4.直线与圆相交: (1)利用垂径定理和勾股定理求弦长: 弦长公式:222d r l -=(d 为圆心到直线的距离),该公式只适合于圆的弦长。 若直线方程和圆的方程联立后,化简为:02 =++c bx ax ,其判别式为?,则 弦长公式(万能公式):12l x =-= a k a c a k ? +=--+=2 2214b 1)( 注意:不需要单独把直线和圆的两个交点的坐标求出来来求弦长,只要设出它们的坐标即可, 再利用直线方程和圆的联立方程求解就可达到目标。这是一种“设而不求”的技巧,它可以简化运算,降低思考难度,在解析几何中具有十分广泛的应用。 5.圆的切线方程: (1)点在圆外: 如定点()00,P x y ,圆:()()2 2 2 x a y b r -+-=,[()()2 2 2 00x a y b r -+->] 第一步:设切线l 方程()00y y k x x -=-;第二步:通过d r =,求出k ,从而得到切线方程,这里的切线方程的有两条。特别注意:当k 不存在时,要单独讨论。 (2)点在圆上: 若点P ()00x y ,在圆()()2 2 2 x a y b r -+-=上,利用点法向量式方程求法,则切线方程为: ?=--+--0)(()((0000b y y y a x x x ))()()()()200x a x a y b y b r --+--=。 点在圆上时,过点的切线方程的只有一条。 由(1)(2)分析可知:过一定点求某圆的切线方程,要先判断点与圆的位置关系。 (3)若点P ()00x y ,在圆()()222x a y b r -+-=外,即()()22 200x a y b r -+->, 过点P ()00x y ,的两条切线与圆相交于A 、B 两点,则AB 两点的直线方程为: 200))(())((r b y b y a x a x =--+--。 6.两圆公共弦所在直线方程: 圆1C :2 2 1110x y D x E y F ++++=,圆2C :2 2 2220x y D x E y F ++++=, 则()()()1212120D D x E E y F F -+-+-=为两相交圆公共弦方程。 7.圆的对称问题: (1)圆自身关于直线对称:圆心在这条直线上。 (2)圆C 1关于直线对称的圆C 2:两圆圆心关于直线对称,且半径相等。 (3)圆自身关于点P 对称:点P 就是圆心。 (4)圆C 1关于点P 对称的圆C 2:两圆圆心关于点P 对称,且半径相等。

2020年高考数学试题分类汇编——直线与圆选择

2020年高考数学试题分类汇编——直线与圆选择 一、选择题 〔2018江西理数〕8.直线3y kx =+与圆()()22 324x y -+-=相交于M,N 两点,假设23MN ≥么k 的取值范畴是 A. 304??-????, B. []304??-∞-+∞????,, C. 3333?-???, D. 203??-????, 【答案】A 【解析】考查直线与圆的位置关系、点到直线距离公式,重点考察数形结合 的运用. 解法1:圆心的坐标为〔3.,2〕,且圆与y 轴相切.当|MN |3=时,由点到直线距离公式,解得3[,0]4 -; 解法2:数形结合,如图由垂径定理得夹在两直线之间即可, 不取+∞, 排除B ,考虑区间不对称,排除C ,利用斜率估值,选A 〔2018安徽文数〕〔4〕过点〔1,0〕且与直线x-2y-2=0平行的直线方程是 〔A 〕x-2y-1=0 (B)x-2y+1=0 (C)2x+y-2=0 〔D 〕x+2y-1=0 4.A 【解析】设直线方程为20x y c -+=,又通过(1,0),故1c =-,所求方程为210x y --=. 【方法技巧】因为所求直线与与直线x-2y-2=0平行,因此设平行直线系方程为20x y c -+=,代入此直线所过的点的坐标,得参数值,进而得直线方程.也能够用验证法,判定四个选项中方程哪一个过点〔1,0〕且与直线x-2y-2=0平行. 〔2018重庆文数〕〔8〕假设直线y x b =-与曲线2cos ,sin x y θθ=+?? =?〔[0,2)θπ∈〕有两个不同的公共点,那么实数b 的取值范畴为 〔A 〕(22,1)- 〔B 〕[22,22] 〔C 〕(,22)(22,)-∞++∞ 〔D 〕(22,22)-+ 解析:2cos ,sin x y θθ =+??=?化为一般方程22(2)1x y -+=,表示圆, 21,2b -<解得2222b <<

相关主题