搜档网
当前位置:搜档网 › 三 设计地震动反应谱确定的规范方法

三 设计地震动反应谱确定的规范方法

三 设计地震动反应谱确定的规范方法
三 设计地震动反应谱确定的规范方法

三设计地震动反应谱确定的规范方法

设计地震动是通过对地震环境和场地环境的分析判断和分类方法确定。工程勘察单位至少提供:

设计基本地震加速度和设计特征周期

场地环境:覆盖层厚度、剪切波速、土层钻孔资料

1.设计基本地震加速度和设计特征周期

根据场地在中国地震动参数区划图上的位置判断确定。

土层剪切波速的测量应符合下列要求:

1 在场地初步勘察阶段对大面积的同一地质单元测量土层剪切波速的钻孔数量不宜少于3。

2 在场地详细勘察阶段对单幢建筑测量土层剪切波速的钻孔数量不宜少于2 个数据变化较大时可适量增加对小区中处于同一地质单元的密集高层建筑群测量土层剪切波速的钻孔数量可适量减少但每幢高层建筑下不得少于一个。

3 对丁类建筑及层数不超过10 层且高度不超过30m 的丙类建筑当无实测剪切波速时可根据岩土名称和性状按表 4.1.3 划分土的类型再利用当地经验在下表的剪切波速范围内估计各土层的剪切波速.

建筑场地覆盖层厚度的确定应符合下列要求:

1 一般情况下应按地面至剪切波速大于500m/s 的土层顶面的距离确定(且其下卧层沿途的剪切波速均不小于500m/s)。

2 当地面5m 以下存在剪切波速大于(其上部各土层)相邻上层土剪切波速2.5 倍的土层且其下卧岩土的剪切波速均不小于400m/s 时可按地面至该土层顶面的距离确定

3 剪切波速大于500m/s 的孤石、透镜体应视同周围土层

4.土层中的火山岩硬夹层应视为刚体其厚度应从覆盖土层中扣除

例题:某类建筑场地位于7度烈度区,设计地震分组为第一组,设计基本地震加速度为0.1g,建筑结构自振周期T=1.4s,阻尼比为0.08,该场地在建筑多遇地震条件下地震影响系数a为多少。

同一个场地上甲乙两座建筑物的结构自震周期分别为T甲=0.25sT乙=0.60s,一建筑场地类别为Ⅱ类,设计地震分组为第一组,若两座建筑的阻尼比都取0.05,问在抗震验算时甲、乙两座建筑的地震影响系数之比最接近下列那个选项。

A 1.6

B 1.2

C 0.6

D 条件不足无法计算

例题:吉林省松原市某民用建筑场地地质资料如下:

(1)0-5m粉土,=150 =180m/s

(2) 5-12m中砂土=200 =240m/s

(3)12-24m粗砂土=230 =310m/s

(4) 24-45m硬塑粘土=260 =300m/s

(5)45-60m泥岩=500 =520m/s

建筑物采用浅基础,埋深2m,地下水位2.0m,阻尼比为0.05,自震周期为1.8s该建筑进行抗震设计时

(1)进行第一阶段设计时,地震影响系数应取多少

(2)进行第二阶段设计时,地震影响系数应取多少

例题:吉林省松原市某民用建筑场地地质资料如下:

(1)0-5m粉土,=150 =180m/s

(2) 5-12m中砂土=200 =240m/s

(3)12-24m粗砂土=230 =310m/s

(4) 24-45m硬塑粘土=260 =300m/s

(5)45-60m泥岩=500 =520m/s

建筑物采用浅基础,埋深2m,地下水位2.0m,阻尼比为0.05,自震周期为1.8s该建筑进行抗震设计时

(1)进行第一阶段设计时,地震影响系数应取多少

(2)进行第二阶段设计时,地震影响系数应取多少

抗震设计中反应谱的应用

抗震设计中反应谱的应用 一.什么是反应谱理论 在房屋工程抗震研究中,反应谱是重要的计算由结构动力特性所产生共振效应的方法。它的书面定义是“在给定的地震加速度作用期间内,单质点体系的最大位移反应、速度反应和加速度反应随质点自振周期变化的曲线。用作计算在地震作用下结构的内力和变形”,反应谱理论考虑了结构动力特性与地震动特性之间的动力关系,通过反应谱来计算由结构动力特性(自 振周期、振型和阻尼)所产生的共振效应,但其计算公式仍保留了早期静力理论的形式。地震时结构 所受的最大水平基底剪力,即总水平地震作用为: FEK = kβ(T)G 式中,k为地震系数,β(T)则是加速度反应谱Sa(T)与地震动最大加速度a的比值,它表示地震 时结构振动加速度的放大倍数。 β(T)=Sa(T)/a 反应谱理论建立在以下基本假定的基础上:1)结构的地震反应是线弹性的,可以采用叠加原理进行振型组合;2)结构物所有支承处的地震动完全相同:3)结构物最不利地震反应为其最大地震反应:4)地震动的过程是平稳随机过程。 二.实际房屋抗震设计中的应用 为了进行建筑结构的抗震设计,必须首先求得地震作用下建筑结构各构件的内力。一般而言,求解建筑结构在地震作用下构件内力的方法主要有两种,一种是建立比较精确的动力学模型进行动力时程分析计算,这种方法比较费时费力,其精确度取决于动力学模型的准确性和所选取地震波是否适当,并且对于工程技术人员来说,这种方法不易掌握;第二种方法是根据地震作用下建筑结构的加速度反映,求出该结构体系的惯性力,将此惯性力作为一种反映地震影响的等效力,即地震作用,然后进行抗震计算,抗震规范实际上采用了第二种方法,即地震作用反应谱法。实践也证明此方法更适合工程技术人员采用。 由于目前抗震规范中的地震作用反应谱仅考虑结构发生弹性变形情况下所得的反应谱,因此当结构某些部位发生非线性变形时,抗震规范中的反应谱就不能适用,而应采用弹塑性反应谱来进行计算。因此选用合适的弹塑性反应谱并提出适当的地震作用计算方法在我国抗震设计中具有重要的现实意义。弹塑性反应谱种类繁多,主要包括等延性强度需求谱和等强度延性需求谱,其实质是确定强度折减系数R,延性系数μ,以及结构周期T之间的关系。下面就普通房屋设计中的弹塑性反应谱设计来举例说明。 反应谱是指单自由度体系对于某地面运动加速度的最大反应与体系的自振特性(自振周期和阻尼比)之间的函数关系。抗震规范中所采用的弹性反应谱如图1所示?,它是在计算了大量地面运 动加速度的基础上,确定地震影响系数α与特征周期T之间关系的曲线

反应谱

5.1.4 建筑结构的地震影响系数应根据烈度、场地类别、设计地震分组和结构自振周期以及阻尼比确定。其水平地震影响系数最大值应按表5.1.4-1采用;特征周期应根据场地类别和设计地震分组按表 5.1.4-2采用,计算罕遇地震作用时,特征周期应增加0.05s。 注:周期大于6.Os的建筑结构所采用的地震影响系数应专门研究。 注:括号中数僮分别用于设计基本地震加速度为0. 15g和0.30g的地区。 5.1.5 建筑结构地震影响系数曲线(图 5.1.5)的阻尼调整和形状参数应符合下列要求: 1 除有专门规定外,建筑结构的阻尼比应取0.05,地震影响系数曲线的阻尼调整系数应按1.O采用,形状参数应符合下列规定: 1)直线上升段,周期小于0.1s的区段。 2)水平段,自0.1s至特征周期区段,应取最大值(αmax)。 3)曲线下降段,自特征周期至5倍特征周期区段,衰减指数应取0.9。 4)直线下降段,自5倍特征周期至6s区段,下降斜率调整系数应取0.02。 图5.1.5 地震影响系数曲线 α一地震影响系数;αmax一地震影响系数最大值; η1一直线下降段的下降斜率调整系数;γ—衰减指数; Tg一特征周期;η2—阻尼调整系数;T—结构自振周期 2 当建筑结构的阻尼比按有关规定不等于0.05时,地震影响系数曲线的阻

尼调整系数和形状参数应符合下列规定: 1)曲线下降段的衰减指数应按下式确定: γ=0.9+(0.05-ζ)/(0.3+6ζ)…………(5.1.5-1) 式中:γ——曲线下降段的衰减指数; ζ——阻尼比。 2)直线下降段的下降斜率调整系数应按下式确定: η1=0.02+(0.05-ζ)/(4+32ζ)…………(5.1.5-2) 式中:η1——直线下降段的下降斜率调整系数,小于0时取O。 3)阻尼调整系数应按下式确定: η2=1+(0.05-ζ)/(0.08+1.6ζ)…………(5.1.5-3) 式中:η2——阻尼调整系数,当小于0.55时,应取0.55。 5.1.5 弹性反应谱理论仍是现阶段抗震设计的最基本理论,规范所采用的设计反应谱以地震影响系数曲线的形式给出。 本规范的地震影响系数的特点是: 1 同样烈度、同样场地条件的反应谱形状,随若震源机制、震级大小、震中距远近等的变化,有较大的差别,影响,因素很多。在继续保留烈度概念的基础上,用设计地震分组的特征周期Tg予以反映。其中,Ⅰ、Ⅱ、Ⅲ类场地的特征周期值,2001规范较89规范的取值增大了0.05s;本次修订,计算罕遇地震作用时,特征周期Tg值又增大0.05s。这些改进,适当提高了结构的抗震安全性,也比较符合近年来得到的大量地震加速度资料的统计结果。 2 在T≤0.1s的范围内,各类场地的地震影响系数一律采用同样的斜线,使之符合T=O时(刚体)动力不放大的规律;在T≥Tg时,设计反应谱在理论上存在二个下降段,即速度控制段和位移控制段,在加速度反应谱中,前者衰减指数为1,后者衰减指数为2。设计反应谱是用来预估建筑结构在其设计基准期内可能经受的地震作用,通常根据大量实际地震记录的反应谱进行统计并结合工程经验判断加以规定。为保持规范的延续性,地震影响系数在T≤5Tg范围内与2001规范维持一致,各曲线的衰减指数为非整数;在T>5Tg的范围为倾斜下降段,不同场地类别的最小值不同,较符合实际反应谱的统计规律。对于周期大于6s的结构,地震影响系数仍专门研究。 3 按二阶段设计要求,在截面承载力验算时的设计地震作用,取众值烈度下结构按完全弹性分析的数值,据此调整了本规范相应的地震影响系数最大值,其取值继续与按78规范各结构影响系数C折减的平均值大致相当。在罕遇地震的变形验算时,按超越概率2%~3%提供了对应的地震影响系数最大值。 4 考虑到不同结构类型建筑的抗震设计需要,提供了不同阻尼比(0.02~0.30)地震影响系数曲线相对于标准的地震影响系数(阻尼比为0.05)的修正方法。根据实际强震记录的统计分析结果,这种修正可分二段进行:在反应谱平台段(α=αmax),修正幅度最大;在反应谱上升段(TTg),修正幅度变小;在曲线两端(Os和6s),不同阻尼比下的α系数趋向接近。 本次修订,保持2001规范地震影响系数曲线的计算表达式不变,只对其参

反应谱与时程理论对比

反应谱是在给定的地震加速度作用期间内,单质点体系的最大位移反应、速度反应和加速度反应随质点自振周期变化的曲线。用作计算在地震作用下结构的内力和变形。更直观的定义为:一组具有相同阻尼、不同自振周期的单质点体系,在某一地震动时程作用下的最大反应,为该地震动的反应谱。 反应谱理论考虑了结构动力特性与地震动特性之间的动力关系,通过反应谱来计算由结构动力特性(自振周期、振型和阻尼)所产生的共振效应,但其计算公式仍保留了早期静 力理论的形式。地震时结构所受的最大水平基底剪力,即总水平地震作用为: FEK= αG 其中α为地震影响系数,即单质点弹性体系在地震时最大反应加速度。另一方面地震影响系数也可视为作用在质点上的地震作用与结构重力荷载代表值之比。 目前,反应谱分析法比较成熟,一些主要国家的抗震规范均将它作为基本设计方法。不过,它主要适合用于规则结构。对于不规则结构以及高层建筑,各国规范多要求采用时程分析法进行补充计算。 地震作用反应谱分析本质上是一种拟动力分析,它首先使用动力法计算质点地震响应,并使用统计的方法形成反应谱曲线,然后使用静力法进行结构分析。但它并不是结构真实的动力响应分析,只是对于结构动力响应最大值进行估算的近似方法,在线弹性范围内,反应谱分析法被认为是高效而且合理的方法。反应谱分为加速度反应谱、速度反应谱和位移反应谱。基于不同周期结构相应峰值的大小,我们可以绘制结构速度及加速度的反应谱曲线。一般情况下,随着周期的延长,位移反应谱为上升曲线,速度反应谱为平直曲线,加速度反应谱为下降曲线,目前结构设计主要依据加速度反应谱。 加速度反应谱在短周期部分为快速上升曲线,并且在结构周期与场地特征周期接近时出现峰值,后面更大范围为逐渐下降阶段。峰值出现的时间与对应的结构周期和场地特征周期有关。一般来说结构自振周期的延长,地震作用将减小。当结构自振周期接近场地特征周期时,地震作用最大。 反应谱分析方法需要先求解一个方向地震作用响应,再基于三个正交方向的分量考虑结构总响应,即基于振型组合求解一个方向的地震响应,再基于方向组合求解结构总响应。 振型组合方法有SRSS法,CQC法。 1.SRSS法 SRSS法是平方和平方根法,这种方法假定所有最大模态值在统计上都是相互独立的,通过求各参与阵型的平方和平方根来进行组合。该法不考虑各振型间的藕联作用,实际上结构模态都是相互关联的,不可避免的存在藕联效应,对那些相邻周期几乎相等的结构,或者不规则结构不适用此法。《抗规》GB50011-2010规定的SRSS法为如下所示:

建筑结构抗震设计课后习题答案

武汉理工大学《建筑结构抗震设计》复试 第1章绪论 1.震级和烈度有什么区别和联系? 震级是表示地震大小地一种度量,只跟地震释放能量地多少有关,而烈度则表示某一区域地地表和建筑物受一次地震影响地平均强烈地程度.烈度不仅跟震级有关,同时还跟震源深度.距离震中地远近以及地震波通过地介质条件等多种因素有关.一次地震只有一个震级,但不同地地点有不同地烈度. 2.如何考虑不同类型建筑地抗震设防? 规范将建筑物按其用途分为四类: 甲类(特殊设防类).乙类(重点设防类).丙类(标准设防类).丁类(适度设防类). 1 )标准设防类,应按本地区抗震设防烈度确定其抗震措施和地震作用,达到在遭遇高于当地抗震设防烈度地预估罕遇地震影响时不致倒塌或发生危及生命安全地严重破坏地抗震设防目标. 2 )重点设防类,应按高于本地区抗震设防烈度一度地要求加强其抗震措施;但抗震设防烈度为9度时应按比9度更高地要求采取抗震措施;地基基础地抗震措施,应符合有关规定.同时,应按本地区抗震设防烈度确定其地震作用. 3 )特殊设防类,应按高于本地区抗震设防烈度提高一度地要求加强其抗震措施;但抗震设防烈度为9度时应按比9度更高地要求采取抗震措施.同时,应按批准地地震安全性评价地结果且高于本地区抗震设防烈度地要求确定其地震作用. 4 )适度设防类,允许比本地区抗震设防烈度地要求适当降低其抗震措施,但抗震设防烈度为6度时不应降低.一般情况下,仍应按本地区抗震设防烈度确定其地震作用. 3.怎样理解小震.中震与大震? 小震就是发生机会较多地地震,50年年限,被超越概率为63.2%; 中震,10%;大震是罕遇地地震,2%. 4.概念设计.抗震计算.构造措施三者之间地关系? 建筑抗震设计包括三个层次:概念设计.抗震计算.构造措施.概念设计在总体上把握抗震设计地基本原则;抗震计算为建筑抗震设计提供定量手段;构造措施则可以在保证结构整体性.加强局部薄弱环节等意义上保证抗震计算结果地有效性.他们是一个不可割裂地整体. 5.试讨论结构延性与结构抗震地内在联系. 延性设计:通过适当控制结构物地刚度与强度,使结构构件在强烈地震时进入非弹性状态后仍具有较大地延性,从而可以通过塑性变形吸收更多地震输入能量,使结构物至少保证至少“坏而不倒”. 延性越好,抗震越好.在设计中,可以通过构造措施和耗能手段来增强结构与构件地延性,提高抗震性能. 第2章场地与地基 1.场地土地固有周期和地震动地卓越周期有何区别和联系? 由于地震动地周期成分很多,而仅与场地固有周期T接近地周期成分被较大地放大,因此场地固有周期T也将是地面运动地主要周期,称之为地震动地卓越周期. 2.为什么地基地抗震承载力大于静承载力? 地震作用下只考虑地基土地弹性变形而不考虑永久变形.地震作用仅是附加于原有静荷载上地一种动力作用,并且作用时间短,只能使土层产生弹性变形而来不及发生永久变形,其结果

三 设计地震动反应谱确定的规范方法

三设计地震动反应谱确定的规范方法 设计地震动是通过对地震环境和场地环境的分析判断和分类方法确定。工程勘察单位至少提供: 设计基本地震加速度和设计特征周期 场地环境:覆盖层厚度、剪切波速、土层钻孔资料 1.设计基本地震加速度和设计特征周期 根据场地在中国地震动参数区划图上的位置判断确定。

土层剪切波速的测量应符合下列要求: 1 在场地初步勘察阶段对大面积的同一地质单元测量土层剪切波速的钻孔数量不宜少于3。 2 在场地详细勘察阶段对单幢建筑测量土层剪切波速的钻孔数量不宜少于2 个数据变化较大时可适量增加对小区中处于同一地质单元的密集高层建筑群测量土层剪切波速的钻孔数量可适量减少但每幢高层建筑下不得少于一个。 3 对丁类建筑及层数不超过10 层且高度不超过30m 的丙类建筑当无实测剪切波速时可根据岩土名称和性状按表 4.1.3 划分土的类型再利用当地经验在下表的剪切波速范围内估计各土层的剪切波速.

建筑场地覆盖层厚度的确定应符合下列要求: 1 一般情况下应按地面至剪切波速大于500m/s 的土层顶面的距离确定(且其下卧层沿途的剪切波速均不小于500m/s)。 2 当地面5m 以下存在剪切波速大于(其上部各土层)相邻上层土剪切波速2.5 倍的土层且其下卧岩土的剪切波速均不小于400m/s 时可按地面至该土层顶面的距离确定 3 剪切波速大于500m/s 的孤石、透镜体应视同周围土层 4.土层中的火山岩硬夹层应视为刚体其厚度应从覆盖土层中扣除

例题:某类建筑场地位于7度烈度区,设计地震分组为第一组,设计基本地震加速度为0.1g,建筑结构自振周期T=1.4s,阻尼比为0.08,该场地在建筑多遇地震条件下地震影响系数a为多少。 同一个场地上甲乙两座建筑物的结构自震周期分别为T甲=0.25sT乙=0.60s,一建筑场地类别为Ⅱ类,设计地震分组为第一组,若两座建筑的阻尼比都取0.05,问在抗震验算时甲、乙两座建筑的地震影响系数之比最接近下列那个选项。 A 1.6 B 1.2 C 0.6 D 条件不足无法计算 例题:吉林省松原市某民用建筑场地地质资料如下: (1)0-5m粉土,=150 =180m/s (2) 5-12m中砂土=200 =240m/s (3)12-24m粗砂土=230 =310m/s (4) 24-45m硬塑粘土=260 =300m/s (5)45-60m泥岩=500 =520m/s 建筑物采用浅基础,埋深2m,地下水位2.0m,阻尼比为0.05,自震周期为1.8s该建筑进行抗震设计时 (1)进行第一阶段设计时,地震影响系数应取多少 (2)进行第二阶段设计时,地震影响系数应取多少 例题:吉林省松原市某民用建筑场地地质资料如下: (1)0-5m粉土,=150 =180m/s (2) 5-12m中砂土=200 =240m/s

抗震设计中反应谱的应用

抗震设计中反应谱的应用 一.什么就是反应谱理论 在房屋工程抗震研究中,反应谱就是重要的计算由结构动力特性所产生共振效应的方法。它的书面定义就是“在给定的地震加速度作用期间内,单质点体系的最大位移反应、速度反应与加速度反应随质点自振周期变化的曲线。用作计算在地震作用下结构的内力与变形”,反应谱理论考虑了结构动力特性与地震动特性之间的动力关系,通过反应谱来计算由结构动力特性(自振周期、振型与阻尼)所产生的共振效应,但其计算公式仍保留了早期静力理论的形式。地震时结构所受的最大水平基底剪力,即总水平地震作用为: FEK = kβ(T)G 式中,k为地震系数,β(T)则就是加速度反应谱Sa(T)与地震动最大加速度a的比值,它表示地震时结构振动加速度的放大倍数。 β(T)=Sa(T)/a 反应谱理论建立在以下基本假定的基础上:1)结构的地震反应就是线弹性的,可以采用叠加原理进行振型组合;2)结构物所有支承处的地震动完全相同:3)结构物最不利地震反应为其最大地震反应:4)地震动的过程就是平稳随机过程。 二.实际房屋抗震设计中的应用 为了进行建筑结构的抗震设计,必须首先求得地震作用下建筑结构各构件的内力。一般而言,求解建筑结构在地震作用下构件内力的方法主要有两种,一种就是建立比较精确的动力学模型进行动力时程分析计算,这种方法比较费时费力,其精确度取决于动力学模型的准确性与所选取地震波就是否适当,并且对于工程技术人员来说,这种方法不易掌握;第二种方法就是根据地震作用下建筑结构的加速度反映,求出该结构体系的惯性力,将此惯性力作为一种反映地震影响的等效力,即地震作用,然后进行抗震计算,抗震规范实际上采用了第二种方法,即地震作用反应谱法。实践也证明此方法更适合工程技术人员采用。 由于目前抗震规范中的地震作用反应谱仅考虑结构发生弹性变形情况下所得的反应谱,因此当结构某些部位发生非线性变形时,抗震规范中的反应谱就不能适用,而应采用弹塑性反应谱来进行计算。因此选用合适的弹塑性反应谱并提出适当的地震作用计算方法在我国抗震设计中具有重要的现实意义。弹塑性反应谱种类繁多,主要包括等延性强度需求谱与等强度延性需求谱,其实质就是确定强度折减系数R,延性系数,以及结构周期T之间的关系。下面就普通房屋设计中的弹塑性反应谱设计来举例说明。 反应谱就是指单自由度体系对于某地面运动加速度的最大反应与体系的自振特性(自振周期与阻尼比)之间的函数关系。抗震规范中所采用的弹性反应谱如图1所示? ,它就是在计算了大量地面运动加速度的基础上,确定地震影响系数与特征周期T之间关系的曲线

反应谱理论与人工模拟地震波技术简介

第33卷第26期?106?2007年9月山西建筑 SHANXIARCHITECTURE Vd33No.26 Sep.2007 文章编号:1009—6825{2007)26—0106—03 反应谱理论与人工模拟地震波技术简介 邱玉国王玉富 摘要:介绍了反应谱理论的发展历程和国内外研究现状,分析了研究问题的思路,指出了利用反应谱理论来解决实际工程时遇到的问题,并简单介绍了国外对人工模拟地震波技术的应用和研究,为抗震理论提供了参考依据。 关键词:反应谱理论,地震波,随机振动,非弹性地震波 中图分类号:TU352文献标识码:A 1概述 反应谱理论是建筑结构抗震设计的重要理论基础之一。从20世纪50年代开始,反应谱理论逐渐成为结构抗震设计的重要方法,经过50多年的发展,目前这种方法已经为世界上大多数国家的设计规范所采用。但是,由于地震产生机理和作用效果的复杂性,采用反应谱理论进行分析和设计与工程实践还存在很多与实际不相符合之处。此外,对于反应地震重要特性的时间问题,反应谱法也无能为力。 人工模拟地震波技术是近年来才发展起来的一项新的结构抗震设计的技术手段,目前主要用于计算机模拟和特别重要结构模型的振动台试验。它能够通过模拟地震波的特性来用于对结构进行时程分析,是~种新兴的、具有革命性意义的试验手段。 图2数值模拟结果2.3计算结果分析 通过数值模拟和试验得到瓦斯管承载力等数值如表2所示。 表2数值模拟和试验结果 I研究方法承载力仆但a最大应变/%最大剪应力/SPaI数值模拟7.14O.0842160室内试验6.620.0964 3结语 通过对丁集煤矿瓦斯管材质和整体抗外压的试验研究以及数值模拟分析,可以获得如下重要结论: 1)通过对管材材质的试验研究表明:工作管材质采用Q345,尺寸为柘30rfllTl×14inln,能够满足强度和稳定性要求。 2)瓦斯管整体抗外压试验结果表明:工作管抗外压承载力为6,62MPa;通过大变形有限元数值计算,采用变形稳定性控制其承载力,结果为7.14MPa,两者数值十分接近,说明用文中方法模拟大直径瓦斯管的承载力是可行的。 参考文献: [1]李正来.瓦斯抽排钻孔定向技术的改进[J].安徽科技,2006(3):49—50. [2]汪东生.瓦斯抽排技术治理本煤层采空区瓦斯涌出的实践[J].煤矿安全,2006(1):13—15. [3]张敦伍,任胜杰.瓦斯抽排钻孔防偏斜实践[J].矿业安全与环保,2005(8):67—68. [4]刘克功,范再良,赵新华.采空区瓦斯抽排法治理综放面瓦斯超限[J].煤,1998(2):48—50. Studyingonradialstabilitynumericalsimulationoflargepipeinmine TONGWen-lin Abstract:TheexperimentalandvaluesimulationmethodshavestudiedtheDingiicoalminelargediametergastubeundermechanicscharacter—istie.Resultindicated:thelargediametergastubeispresentedstabilityfailuremodelinencirclespressesshape,itssafetyfactorreaches3.0,itisdesignthelargediametergastubeandtheconstructpmvidesthereference. Keywords:largediametergastube,experimentalinlab,numericalsimulation,stabilityfailuremodel 收稿日期:2007.04.06 作者简介:邱玉国(1973。),男,工程师,辽宁工程技术大学软件学院,辽宁阜新123000 王玉富(1970.),男,工程师,中铁十九局集团第三工程有限公司,辽宁辽阳111000

水工建筑物抗震设计规范

中华人民共和国行业标准 SL203-97 水工建筑物抗震设计规范 Specificatins for seismic design of hydraulic structures 1997-08-04发布 1997-10-01实施 中华人民共和国水利部发布 中华人民共和国行业标准 主编单位:中国水利水电科学研究院 批准部门:中华人民共和国水利部施行日期:1997年10月1日 中华人民共和国水利部 关于发布《水工建筑物抗震设计规范》SL203-97的通知 水科技[1997]439号 根据部水利水电技术标准制定,修订计划,由水利水电规划设计总院主持,以中国水利水电科学研究院为主编单位修订的《水工建筑物抗震设计规范》,经审查批准为水利行业标准,现予以发布.标准的名称和编号为:SL203-97.原《水工建筑物抗震设计规范》SDJ10-78同时废止. 本标准自1997年10月1日起实施.在实施过程中各单位应注意总结经验,如有问题请函告主持部门,并由其负责解释. 本标准文本由中国水利水电出版社出版发行.一九九七年八月四日 前言 本规范是根据原能源部,水利部水利水电规划设计总院(91)水规设便字第35号文的通知,由中国水利水电科学研究院会同有关设计研究院和高等院校对原水利电力部于1978年发布试行的SDJ10-78《水工建筑物抗震设计规范》进行修订而成. 本规范在修订过程中,主编单位会同各协编单位开展了广泛的专题研究,调查总结了近年来国内外大地震的经验教训,吸收采用了地震工程新的科研成果,考虑了我国的经济条件和工程实际,提出修订稿后,在全国广泛征求了有关设计,施工,科研,教学单位及管理部门和有关专家的意见,经过反复讨论,修改和试设计,最后由电力工业部水电水利规划设计管理局会同水利部水利水电规划设计管理局组织审查定稿. 本规范为强制性行业标准,替代SDJ10-78. 本规范共分11章和1个标准的附录.这次修订的主要内容有:进一步明确了规范适用的烈度范围,水工建筑物等级和类型,并扩大了建筑物类型和坝高的适用范围;提出了对重要水工建筑物进行专门的工程场地地震危险性分析以确定地震动参数的要求,并给出了相应的设防概率水准;增加了场地分类标准,并相应修改了设计反应谱;改进了地基中可液化土的判别方法和抗液化措施;根据1994年国家批准发布的GB50199-94《水利水电工程结构可靠度设计统一标准》的原则和要求,在保持规范连续性的条件下,区别不同情况,把各类主要水工建筑物的抗震计算从定值安全系数法向分项系数概率极限状态的体系"转轨,套改",并给出了各类水工建筑物相应的结构系数;采用了对混凝土水工建筑物以计入结构,地基和库水相互作用的动力法为主和拟静力法为辅的抗震计算方法,对土石坝采用按设计烈度取相应动态分布系数的拟静力抗震计算方法;在编写的格局上改为按水工建筑物类型分章,各章分别给出抗震计算和抗震措施,并补充了内容. 希望有关单位在执行本规范的过程中,结合工程实际,注意总结经验和积累资料,如发现需要修改和补充之处,请将意见和有关资料寄交归口管理单位,以便今后再次修订时考虑. 本规范由原能源部,水利部水利水电规划设计总院提出修订. 本规范由水利部水利水电规划设计管理局归口.

抗震设计方法概述

本学期的“工程结构抗震分析”课程首先介绍了地震与地震震害以及结构抗震分析的必要性和其方法的发展过程,然后简单回顾了一下结构动力学基础,接下来认识了地震波与强震地面运动的特性,以及地震作用下结构的动力方程,最后重点讲述了几种抗震设计分析方法——反应谱分析法,时程分析法(弹性和弹塑性),和静力弹塑性分析法。通过一个学期的学习,本人对强震地面运动特征和抗震设计原理和方法有了一定的了解和把握。 在进行建筑、桥梁以及其它结构物的抗震设计时,一般都要遵循以下五个步骤:抗震设防标准选定、抗震概念设计、地震反应分析、抗震性能验算以及抗震构造设计,其流程如图1 所示。 本文将着眼于图1流程中的第3个步骤, 从我国现行规范中的3种最常用的结构响应分 析方法出发,简单介绍一下其各自的基本概念 和适应范围(具体原理和计算过程在此不再详 述,读者可另查阅相关课本和规范),以及现有 抗震设计规范中存在的问题,以便初学者对结 构抗震设计分析方法有个初步的认识,也作为 本人对本课程的学习总结。 一.3种最常用的结构响应分析方法 1.底部剪力法 定义:根据地震反应谱理论,以工程结构 底部的总地震剪力与等效单质点的水平地震作 用相等来确定结构总地震作用的一种计算方 法。 底部剪力法适用于基本振型主导的规则和 高宽比很小的结构,此时结构的高阶振型对于 结构剪力的影响有限,而对于倾覆弯矩则几乎 没有什么影响,因此采用简化的方式也可满足 工程设计精度的要求。 高规规定:高度不超过40m、以剪切变形 为主且质量和刚度沿高度分布比较均匀的高层 建筑结构,可采用底部剪力法。 底部剪力法尚有一个重要的意义就是我们可以用它的理念,简化的估算建筑结构的地震响应,从而至少在静力的概念上把握结构的抗震能力,它还是很有用的。 2.振型分解反应谱法 定义:振型分解反应谱法是用来计算多自由度体系地震作用的一种方法。该法是利用单自由度体系的加速度设计反应谱和振型分解的原理,求解各阶振型对应的等效地震作用,然后按照一定的组合原则对各阶振型的地震作用效应进行组合,从而得到多自由度体系的地震作用效应。振型分解反应谱法一般可考虑为计算两种类型的地震作用:不考虑扭转影响的水平地震作用和考虑平扭藕联效应的地震作用。 反应谱的振型分解组合法常用的有两种:SRSS和CQC。虽然说反应谱法是将并非同一时刻发生的地震峰值响应做组合,仅作为一个随机振动理论意义上的精确,但是从实际上它对于结构峰值响应的捕捉效果还是很不错的。一般而言,对于那些对结构反应起重要作用的振型所对应频率稀疏的结构,并且地震此时长,阻尼不太小(工程上一般都可以满足)时,SRSS是精确的,频率稀疏表面上的反应就是结构的振型周期拉的比较开;而对于那些结构

反应谱

1.2 弹性反应谱 在Maurice A. Biot []首先提出弹性反应谱的概念之后,经若干学者的发展,反应谱的概念已得到了较大程度的推广,且反应谱现在已被广泛地应用于地震工程的各个方面(如地震危险性分析、结构抗震设计、地震加速度记录的选择和调整及基于性能的地震工程等)。目前,反应谱主要包括:傅立叶谱、弹性反应谱、弹塑性反应谱、能量反应谱和损伤谱等。以下主要介绍弹性反应谱的定义,其余反应谱的定义与弹性反应谱类似。 所谓弹性反应谱就是在给定的地震加速度输入下,单自由度弹性系统的最大反应和体系的自振特征(自振周期或频率和阻尼比)之间的函数关系。单自由度弹性系统的最大反应可以是:相对于地面的最大位移、相对于地面的最大速度、最大绝对加速度、拟速度和拟加速度。 在地面加速度的激励下,单自由度弹性系统的动力平衡方程为: )()()()(t u m t ku t u c t u m g -=++ (1.1) 式(1)的解可由Duhamel 积分求得: ττωτωτξωd t e u t u D t t g D )(sin )(1 )() (0 -- =--? (1.2) 将式(1.2)求导可得相对速度反应为: ττωτωτξωd t e u t u D t t g D )(sin )(1 )()(0 --=--? (1.3) 将式(1.3)求导再与地面加速度相加可得绝对加速度反应为: ττωτωτξωd t e u t u t u D t t g D g )(sin )(1 )()()(0 -- =+--? (1.4) 在式(1.1)~(1.4)中,m 为单自由度弹性体系的质量;c 为阻尼系数;k 为体系的刚度系数;u(t)为体系相对于地面的位移;)(t u 为体系的相对速度;)(t u 为体系的相对加速度;)(t u g 为地面加速度;ω为体系的无阻尼自振圆频率(ω2=2π/T=k/m );T 为体系自振周期;ζ为阻尼比(ζ=c/2m ω);ωD 为体系的有阻尼自振圆频率(21ξωω-=D )。 根据弹性反应谱的定义可知,绝对加速度反应谱、速度反应谱和位移反应谱分别为: ττωτωξτξωd t e u t u t u T S D t t g D g a )(sin )(1 )()(),() (0 max --=+=--? (1.5) ττωτωξτξωd t e u t u T S D t t g D v )(sin )(1 )(),() (0 max --==--? (1.6)

反应谱曲线及公式

4.2地震作用和地震反应计算 4.2.1隔震房屋为砌体房屋或与砌体房屋结构基本周期相当的房屋,并且满足第4.1.1条的要求时,可采用等效侧力法计算。 4.2.2采用等效侧力法时,隔震房屋的地震作用可按第4.2.3~4.2.9条和第4.2.13条计算。采用时程分析法时,隔震房屋的地震作用可按第4.2.10~4.2.14条计算。 4.2.3 结构阻尼比为0.05时的地震影响系数α,应根据烈度、场地类别、特征周期分区和结构自振周期按图4.2.3采用,其最大值αmax按第4.2.5条的规定确定。场地特征周期T g,根据场地类别和特征周期分区按《建筑抗震设计规范》GB50011的有关规定确定。隔震结构的自振周期T可采用与隔震结构相应的计算模型经计算确定。

图4.2.3 地震影响系数曲线 图中,α—地震影响系数; max α—地震影响系数最大值; T —结构自振周期; T g —场地相关反应谱特征周期,按《建筑抗震设计规范》GB50011确定; γ—曲线下降段的衰减指数 1η—直线下降段的斜率; 2η—阻尼调整系数。 4.2.4结构阻尼比不等于0.05时,水平地震影响系数α曲线仍按图4.2.3确定,其中的形状参数应按下列规定调整: 1 曲线下降段的衰减指数,应按下式确定: ζ ζ γ55.005.09.0+-+ = (4.2.4-1) 式中 γ—曲线下降段的衰减指数; ζ—阻尼比,隔震结构可近似取隔震层的有效阻尼比。 2 直线下降段的斜率,应按下式确定: 8 05.002.01ζ η-+ = (4.2.4-2) 式中 η1—直线下降段的斜率,当η1小于零时应取η1=0。 4.2.5计算隔震房屋地震作用时,应符合下列规定: 1 结构阻尼比为0.05时,房屋结构的水平地震影响系数最大值应按表4.2.5采用。 表4.2.5 水平地震影响系数最大值α (阻尼比0.05)及设计基本地震加速度值 max 45.0αmax 2αη0 0.1 T g 5T g 6.0 α

抗震设计中反应谱的应用

抗震设计中反应谱的应用 一.什么是反应谱理论 在房屋工程抗震研究中,反应谱是朿要的计算由结构动力特性所产生共振效应的方法。它的书 面定义是“在给定的地震加速度作用期间内,单质点体系的最大位移反应、速度反应利加速度反应随 质点自振周期变化的曲线。用作计算在地震作用I、?结构的内力和变形”,反应谱理论占虑了结构动 力特性与地震动特性z间的动力关系,通过反应谱来计算由结构动力持性(n 掠周期、振型和阻尼)所 产生的共振效应,但人计算公式仍保留了早期静力理论的形式。地虑时结构所受的最大水平基底剪 力,即总水平地震作用为: FEK 二kp(T)G 式中,k为地震系数,B(T)则是加速度反应谱Sa仃)与地経动最大加速度a的比值,它表示地震 时结构振动加速度的放大倍数。 B(T)二Sa(T)/a 反应谱理论建立在以卜?基本假定的基础上:1)结构的地震反应是线弹性的,可以采用叠加原理进行撮型组合;2)结构物所有支承处的地震动完全柑同:3)结构物故不利地震反应为其最人地震反应:4)地震动的过程是平稳随机过程。 二.实际房屋抗震设计中的应用 为了进行建筑结构的抗震设计,必须首先求得地震作用卜?建筑结构各构件的内力。一般而言,求解建筑结构在地喪作用卜构件内力的方法主要有两种,一种是建立比较精确的动力学模型进行动力时程分析计算,这种方法比较费时费力,其精确度取决丁?动力学模型的准确性和所选取地震波是否适当,并且对于工程技术人员來说,这种方法不易掌握:第二种方法是根据地爲作用下建筑结构的加速度反映,求出该结构体系的惯性力,将此惯性力作为一种反映地農影响的等效力,即地飛作用,然后进行抗喪计算,抗焦规范实际上釆用了第二种方法,即地篦作用反应谱法。丈践也证明此方法更适合工稈技术人员采用。 由于目前抗震规范中的地窓作用反应谱仅考堪结构发生弹性变形情况下所得的反应谱,因此为结构某比部位发生非线性变形时,抗農规范中的反应谱就不能适用,而布弟用弹塑性反应谱来进行计算。因此选用合适的弹型性反应诰并提出适当的地震作用计算方法在我国抗震设计中只令巫要的现实意义。弹塑性反应谱种类繁多,主要包括等延性强度需求谱和等强度延性需求谱,其实质是确定强度折减系数R,延性系数卩,以及结构周期T之间的关系。下面就普通房屋设计中的弹塑性反应谱设计来举例说明。 反应谱是指单自由度体系对于某地面运动加速度的最大反应与体系的自振特性(自振周期和阻尼比)Z间的函数关系。抗震规范中所采用的弹性反应谱如图1所示???,它是在计算了大量地而运动加速度的基础上,确定地孫影响系数a与特征周期T之间关系的曲线

近几十年抗震设计反应谱发展概况

抗震设计反应谱发展概况 摘要:文章重点论述了抗震设计反应谱法的基本概念以及在我国的发展概况和在大跨度桥梁设计应用中存在的一些问题,为进行桥梁抗震分析提供参考,以确保桥梁工程在地震过程中有足够的抗震能力和合理的安全度。 关键词:抗震设计;反应谱;阻尼比;长周期;反应谱组合 1、 引言 我国在抗震设计中引用地震反应谱作为一般工业与民用建筑地震荷载一理论基础,最早是由刘恢先教授提出来的。1962年中国科学院土木建筑研究所章在墉等根据国外的一些已有成果总结出标准加速度反应谱的一些特征。到了1964年,为了制定地震区建筑设计规范中国科学院工程力学所刘恢先、周锡元、陈达生等对强震地面运动的谱特性进行了深入研究,发表了一些十分有价值的成果,为《六四规范》提供了有力的理论依据。1974年在制定工业与民用建筑杭震设计规范(TJll 一74)时,陈达生等依据我国、关国及日本等的强震资料,对抗震设计反应谱进行了统计分析,这一成果为国家建委正式颁布的TJ11一74抗震设计规范所采用。1975年在我国重工业区附近发生了海城大地震(7.3级),一年之后又在人口稠密的河北唐山市发生了7.8级特大地震。这二次大地震有助于对已有的抗震设计规范作出很好的检验。为此,胡丰贤教授曾对抗震规范设计反应谱的修正发表了许多独到的见解。刘恢先教授也根据多年来的悉心研究发表了对抗震设计中烈度应用方面的重要成果。这些解对我国抗震设计反应谱的修订都具有十分重要的指导意义。此外,交通部赵之兰曾对TJll 一78规范中Ⅲ类场地反应谱提出了改进意见,哈尔滨建筑工程学院佘师和对竖向抗震设计反应谱也进行了研究。下文将介绍我国在抗震设计反应谱方面所取得的成果及发展概况。 2、 反应谱中相关公式及重要系数研究 2.1应谱的荷载公式 刘恢先教授在较早的研究中曾建议用如下两个无量纲参数作为烈度的定量指标:地震系数和动力系数。《六四地震区建筑设计规范》(草案)曾采用如下公式计算结构基底剪力: 0Q c k q W β=???? k 表示地震系数,β表示动力系数,q 为振型系数,c 为结构系数,W 为总重量 1972年中国科学院工程力学研究所的研究者又对上述公式作了进一步简化: 0Q C W α=?? 式中,a=K ·β称为地震影响系数,反映地震地面运动的特性;C=c ·q ,称为结构影响系数,反映结构的特征。这种形式曾为《七四规范》所采用。 由上不难看出,我国应用地震反应谱求地震荷载的传统做法是,以地震数系k 和动力系数β乘积形式表示地震作用。已有的工作表明,对一定的烈度而言,k 、β和α都有很大的离散性,规范中的值都是依据统计而给出的。 2.2地震系数k 的研究 较早的工作是由陈达生进行的,、当时由于缺乏强震观测资料,只好借助于国外已有的成果加以确定。表l 所示的结果表明烈度侮增高一度,最大地而加速度约增高一倍。

振型分解反应谱法

振型分解反应谱法 振型分解反应谱法是用来计算多自由度体系地震作用的一种方法。该法是利用单自由度体系的加速度设计反应谱和振型分解的原理,求解各阶振型对应的等效地震作用,然后按照一定的组合原则对各阶振型的地震作用效应进行组合,从而得到多自由度体系的地震作用效应。振型分解反应谱法一般可考虑为计算两种类型的地震作用:不考虑扭转影响的水平地震作用和考虑平扭藕联效应的地震作用。 适用条件 (1)高度不超过40米,以剪切变形为主且质量和刚度沿高度分布比较均匀的结构,以及近似于单质点体系的结构,可采用底部剪力法计算。(此为底部剪力法的适用范围) (2)除上述结构以外的建筑结构,宜采用“振型分解反应谱法”。 (3)特别不规则的建筑、甲类建筑和规范规定的高层建筑,应采用时程分析法进行补充计算。 刚重比 刚重比是指结构的侧向刚度和重力荷载设计值之比,是影响重力二阶效应的主要参数 刚重比=Di*Hi/Gi Di-第i楼层的弹性等效刚度,可取该层剪力与层间位移的比值 Hi-第i楼层层高 Gi-第i楼层重力荷载设计值 刚重比与结构的侧移刚度成正比关系;周期比的调整将导致结构

侧移刚度的变化,从而影响到刚重比。因此调整周期比时应注意,当某主轴方向的刚重比小于或接近规范限值时,应采用加强刚度的方法;当某主轴方向刚重比大于规范限值较多时,可采用削弱刚度的方法。同样,对刚重比的调整也可能影响周期比。特别是当结构的周期比接近规范限值时,应采用加强结构外围刚度的方法 规范上限主要用于确定重力荷载在水平作用位移效应引起的二 阶效应是否可以忽略不计。见高规5.4.1和5.4.2及相应的条文说明。刚重比不满足规范上限要求,说明重力二阶效应的影响较大,应该予以考虑。规范下限主要是控制重力荷载在水平作用位移效应引起的二阶效应不致过大,避免结构的失稳倒塌。见高规5.4.4及相应的条文说明。刚重比不满足规范下限要求,说明结构的刚度相对于重力荷载过小。但刚重比过分大,则说明结构的经济技术指标较差,宜适当减少墙、柱等竖向构件的截面面积。 长细比 长细比=计算长度/回转半径。 所以很显然,减小计算长度或者加大回转半径即可。 这里需要注意的是,计算长度并非实际长度,而是实际长度乘以长度系数,长度系数则与柱子两端的约束刚度有关。说白了就是要看与柱相连的梁或者基础是否给力,如果这些构件的刚度越高,那么长度系数就越小,柱子的计算长度也就越短。 具体公式你可以去看钢结构规范,我记得长度系数的具体算法是附录

建筑结构抗震设计课后习题答案

《建筑结构抗震设计》课后习题解答 第1章绪论 1、震级和烈度有什么区别和联系? 震级是表示地震大小的一种度量,只跟地震释放能量的多少有关,而烈度则 表示某一区域的地表和建筑物受一次地震影响的平均强烈的程度。烈度不仅跟震级 有关,同时还跟震源深度、距离震中的远近以及地震波通过的介质条件等多种因素 有关。一次地震只有一个震级,但不同的地点有不同的烈度。 2.如何考虑不同类型建筑的抗震设防? 规范将建筑物按其用途分为四类: 甲类(特殊设防类)、乙类(重点设防类)、丙类(标准设防类)、丁类 (适度设防类)。 1 )标准设防类,应按本地区抗震设防烈度确定其抗震措施和地震作用,达 到在遭遇高于当地抗震设防烈度的预估罕遇地震影响时不致倒塌或发生危及生命安 全的严重破坏的抗震设防目标。 2 )重点设防类,应按高于本地区抗震设防烈度一度的要求加强其抗震措施;但抗震设防烈度为9度时应按比9度更高的要求采取抗震措施;地基基础的抗震措施,应符合有关规定。同时,应按本地区抗震设防烈度 确定其地震作用。 3 )特殊设防类,应按高于本地区抗震设防烈度提高一度的要求 加强其抗震措施;但抗震设防烈度为9度时应按比9度更高的要求采取抗震措施。同时,应按批准的地震安全性评价的结果且高于本地区抗震设防烈度的要求确定其 地震作用。4 )适度设防类,允许比本地区抗震设防烈度的要求适当降低其抗震措施,但抗震设防烈度为6度时不应降低。一般情况下,仍应按本地区抗震设防烈度确定其地震作用。 3.怎样理解小震、中震与大震?

小震就是发生机会较多的地震,50年年限,被超越概率为63.2%; 中震,10%;大震是罕遇的地震,2%。 4、概念设计、抗震计算、构造措施三者之间的关系? 建筑抗震设计包括三个层次:概念设计、抗震计算、构造措施。概念设计在 总体上把握抗震设计的基本原则;抗震计算为建筑抗震设计提供定量手段;构造措 施则可以在保证结构整体性、加强局部薄弱环节等意义上保证抗震计算结果的有效性。他们是一个不可割裂的整体。 5.试讨论结构延性与结构抗震的内在联系。 延性设计:通过适当控制结构物的刚度与强度,使结构构件在强烈地震时进 入非弹性状态后仍具有较大的延性,从而可以通过塑性变形吸收更多地震输入能 量,使结构物至少保证至少“坏而不倒”。延性越好,抗震越好.在设计中,可以通过构造措施和耗能手段来增强结构与构件的延性,提高抗震性能。 第2章场地与地基 1、场地土的固有周期和地震动的卓越周期有何区别和联系? ;由于地震动的周期成分很多,而仅与场地固有周期T接近的周期成分被较大的放大,因此场地固有周期T也将是地面运动的主要周期,称之为地震动的卓越周期。 2、为什么地基的抗震承载力大于静承载力? 地震作用下只考虑地基土的弹性变形而不考虑永久变形。地震作用仅是附加 于原有静荷载上的一种动力作用,并且作用时间短,只能使土层产生弹性变形而来

相关主题