搜档网
当前位置:搜档网 › 单片机C语言的延时计算

单片机C语言的延时计算

单片机C语言的延时计算
单片机C语言的延时计算

标准的C语言中没有空语句。但在单片机的C语言编程中,经常需要用几个空指令产生短延时的效果。

这在汇编语言中很容易实现,写几个nop就行了。

在keil C51中,直接调用库函数:

#include // 声明了void _nop_(void);

_nop_(); // 产生一条NOP指令

作用:对于延时很短的,要求在us级的,采用“_nop_”函数,这个函数相当汇编NOP 指令,延时几微秒。

NOP指令为单周期指令,可由晶振频率算出延时时间,对于12M晶振,延时1uS。

对于延时比较长的,要求在大于10us,采用C51中的循环语句来实现。

在选择C51中循环语句时,要注意以下几个问题

第一、定义的C51中循环变量,尽量采用无符号字符型变量。

第二、在FOR循环语句中,尽量采用变量减减来做循环。

第三、在do…while,while语句中,循环体内变量也采用减减方法。

这因为在C51编译器中,对不同的循环方法,采用不同的指令来完成的。

下面举例说明:

unsigned char I;

for(i=0;i<255;i++);

unsigned char I;

for(i=255;i>0;i--);

其中,第二个循环语句C51编译后,就用DJNZ指令来完成,相当于如下指令:

MOV09H,#0FFH

LOOP:DJNZ09H,LOOP

指令相当简洁,也很好计算精确的延时时间。

同样对do…while,while循环语句中,也是如此

例:

unsigned char n;

n=255;

do{n--}

while(n);

n=255;

while(n)

{n--};

这两个循环语句经过C51编译之后,形成DJNZ来完成的方法,

故其精确时间的计算也很方便。

其三:对于要求精确延时时间更长,这时就要采用循环嵌套

的方法来实现,因此,循环嵌套的方法常用于达到ms级的延时。对于循环语句同样可以采用for,do…while,while结构来完

成,每个循环体内的变量仍然采用无符号字符变量。

unsigned char i,j

for(i=255;i>0;i--)

for(j=255;j>0;j--);

unsigned char i,j

i=255;

do{j=255;

do{j--}

while(j);

i--;

}

while(i);

unsigned char i,j

i=255;

while(i)

{j=255;

while(j)

{j--};

i--;

}

这三种方法都是用DJNZ指令嵌套实现循环的,由C51编

译器用下面的指令组合来完成的

MOV R7,#0FFH

LOOP2:MOV R6,#0FFH

LOOP1:DJNZ R6,LOOP1

DJNZ R7,LOOP2

这些指令的组合在汇编语言中采用DJNZ指令来做延时用,

因此它的时间精确计算也是很简单,假上面变量i的初

值为m,变量j的初值为n,则总延时时间为:m×(n×T+T),其中T为DJNZ指令执行时间(DJNZ指令为双周期指令)。

这里的+T为MOV这条指令所使用的时间。

同样对于更长时间的延时,可以采用多重循环来完成。

只要在程序设计循环语句时注意以上几个问题。

下面给出有关在C51中延时子程序设计时要注意的问题

1、在C51中进行精确的延时子程序设计时,尽量不要

或少在延时子程序中定义局部变量,所有的延时子程

序中变量通过有参函数传递。

2、在延时子程序设计时,采用do…while,结构做循

环体要比for结构做循环体好。

3、在延时子程序设计时,要进行循环体嵌套时,采用

先内循环,再减减比先减减,再内循环要好。

unsigned char delay(unsigned char i,unsigned char j,unsigned char k)

{unsigned char b,c;

b="j";

c="k";

do{

do{

do{k--};

while(k);

k="c";

j--;};

while(j);

j=b;

i--;};

while(i);

}

这精确延时子程序就被C51编译为有下面的指令组合完成

delay延时子程序如下:

MOV R6,05H

MOV R4,03H

C0012:DJNZ R3,C0012

MOV R3,04H

DJNZ R5,C0012

MOV R5,06H

DJNZ R7,C0012

RET

假设参数变量i的初值为m,参数变量j的初值为n,参数

变量k的初值为l,则总延时时间为:l×(n×(m×T+2T)+2T)+3T,

其中T为DJNZ和MOV指令执行的时间。当m=n=l时,精确延时为9T,最短;当m=n=l=256时,精确延时到16908803T,最长。

-----------------------------------------------------------------------------------------

采用软件定时的计算方法

利用指令执行周期设定,以下为一段延时程序:

指令周期

MOV 1

DJNZ 2

NOP 1

采用循环方式定时,有程序:

MOV R5,#TIME2 ;周期1

LOOP1: MOV R6,#TIME1 ; 1

LOOP2: NOP ; 1

NOP ; 1

DJNZ R6,LOOP2 ; 2

DJNZ R5,LOOP1 ; 2

定时数=(TIME1*4+2+1)*TIM2*2+4

刚刚又学了一条,用_nop_();时记得加上#include 头文件

如:

//==================

#include //包含库函数

......

......

//============

......

......

_nop_(); //引用库函数

敬礼。

我一直都是借助仿真软件编。一点一点试时间。

C语言最大的缺点就是实时性差,我在网上到看了一些关于延时的讨论,其中有篇文章

51单片机Keil C 延时程序的简单研究,作者:InfiniteSpace Studio/isjfk

写得不错,他是用while(--i);产生DJNZ 来实现精确延时,后来有人说如果while里面不能放其它语句,否则也不行,用do-while就可以,具体怎样我没有去试.所有这些都没有给出具体的实例程序来.还看到一些延时的例子多多少少总有点延时差.为此我用for循环写了几个延时的子程序贴上来,希望能对初学者有所帮助.(晶振12MHz,一个机器周期1us.)

一. 500ms延时子程序

程序:

void delay500ms(void)

{

unsigned char i,j,k;

for(i=15;i>0;i--)

for(j=202;j>0;j--)

for(k=81;k>0;k--);

}

产生的汇编:

C:0x0800 7F0F MOV R7,#0x0F

C:0x0802 7ECA MOV R6,#0xCA

C:0x0804 7D51 MOV R5,#0x51

C:0x0806 DDFE DJNZ R5,C:0806

C:0x0808 DEFA DJNZ R6,C:0804

C:0x080A DFF6 DJNZ R7,C:0802

C:0x080C 22 RET

计算分析:

程序共有三层循环

一层循环n:R5*2 = 81*2 = 162us DJNZ 2us

二层循环m:R6*(n+3) = 202*165 = 33330us DJNZ 2us + R5赋值1us = 3us 三层循环: R7*(m+3) = 15*33333 = 499995us DJNZ 2us + R6赋值1us = 3us 循环外: 5us 子程序调用2us + 子程序返回2us + R7赋值1us = 5us 延时总时间= 三层循环+ 循环外= 499995+5 = 500000us =500ms

计算公式:延时时间=[(2*R5+3)*R6+3]*R7+5

二. 200ms延时子程序

程序:

void delay200ms(void)

{

unsigned char i,j,k;

for(i=5;i>0;i--)

for(j=132;j>0;j--)

for(k=150;k>0;k--);

}

产生的汇编

C:0x0800 7F05 MOV R7,#0x05 C:0x0802 7E84 MOV R6,#0x84 C:0x0804 7D96 MOV R5,#0x96 C:0x0806 DDFE DJNZ R5,C:0806 C:0x0808 DEFA DJNZ R6,C:0804 C:0x080A DFF6 DJNZ R7,C:0802 C:0x080C 22 RET

三. 10ms延时子程序

程序:

void delay10ms(void)

{

unsigned char i,j,k;

for(i=5;i>0;i--)

for(j=4;j>0;j--)

for(k=248;k>0;k--);

}

产生的汇编

C:0x0800 7F05 MOV R7,#0x05 C:0x0802 7E04 MOV R6,#0x04 C:0x0804 7DF8 MOV R5,#0xF8 C:0x0806 DDFE DJNZ R5,C:0806 C:0x0808 DEFA DJNZ R6,C:0804 C:0x080A DFF6 DJNZ R7,C:0802 C:0x080C 22 RET

四. 1s延时子程序

程序:

void delay1s(void)

{

unsigned char h,i,j,k;

for(h=5;h>0;h--)

for(i=4;i>0;i--)

for(j=116;j>0;j--)

for(k=214;k>0;k--);

}

产生的汇编

C:0x0800 7F05 MOV R7,#0x05

C:0x0802 7E04 MOV R6,#0x04

C:0x0804 7D74 MOV R5,#0x74

C:0x0806 7CD6 MOV R4,#0xD6

C:0x0808 DCFE DJNZ R4,C:0808

C:0x080A DDFA DJNZ R5,C:0806

C:0x080C DEF6 DJNZ R6,C:0804

C:0x080E DFF2 DJNZ R7,C:0802

C:0x0810 22 RET

在精确延时的计算当中,最容易让人忽略的是计算循环外的那部分延时,在对时间要求不高的场合,这部分对程序不会造成影响.

STC12系列单片机C语言的延时程序

STC12系列单片机C语言的延时程序 本举例所用CPU 为STC12C5412 系列12 倍速的单片机,只要修改一下参数值其它系例单片机也通用,适用范围宽。共有三条延时函数说明如下:函数调用 分两级:一级是小于10US 的延时,二级是大于10US 的延时 //====================小于10US 的【用1US 级延时】 ====================//----------微秒级延时---------for(i=X;i>X;i--) 延时时间 =(3+5*X)/12 提示(单位us, X 不能大于255)//================大于10US0;Ms--)for(i=26;i>0;i--);}i=[(延时值-1.75)*12/Ms-15]/4 如想延时60US 则 i=[(60-1.75)*12/6-15]/4=25.375≈26; 修改i 的值=26,再调用上面的【10US 级延时函数】Delay10us(6); 则就精确延时60US;如果想延时64US 可以用这二种函数组合来用: Delay10us(6); for(i=9;i>X;i--) 共延时64US//============== 对于大于20Ms 的可用中断来实现程序运行比较好===============中断用定 时器0, 1Ms 中断:void timer0(void) interrupt 1{ TL0=(0xffff-1000+2)% 0x100;TH0=(0xffff-1000+2)/0x100; //每毫秒执行一次if(DelayMs_1>0) DelayMs_1--;//大于20Ms 延时程序}函数调用void DelayMs(uint a)//延时 a 乘以1(ms)的时间。{ DelayMs_1=a; while(DelayMs_1);}如果延时50Ms 则函数值为DelayMs(50)tips:感谢大家的阅读,本文由我司收集整编。仅供参阅!

单片机一些常用的延时与中断问题及解决方法

单片机一些常用的延时与中断问题及解决方法 延时与中断出错,是单片机新手在单片机开发应用过程中,经常会遇到的问题,本文汇总整理了包含了MCS-51系列单片机、MSP430单片机、C51单片机、8051F的单片机、avr单片机、STC89C52、PIC单片机…..在内的各种单片机常见的延时与中断问题及解决方法,希望对单片机新手们,有所帮助! 一、单片机延时问题20问 1、单片机延时程序的延时时间怎么算的? 答:如果用循环语句实现的循环,没法计算,但是可以通过软件仿真看到具体时间,但是一般精精确延时是没法用循环语句实现的。 如果想精确延时,一般需要用到定时器,延时时间与晶振有关系,单片机系统一般常选用 2 MHz、12 MHz或6 MHz晶振。第一种更容易产生各种标准的波特率,后两种的一个机器周期分别为1 μs和2 μs,便于精确延时。本程序中假设使用频率为12 MHz的晶振。最长的延时时间可达216=65 536 μs。若定时器工作在方式2,则可实现极短时间的精确延时;如使用其他定时方式,则要考虑重装定时初值的时间(重装定时器初值占用2个机器周期)。 2、求个单片机89S51 12M晶振用定时器延时10分钟,控制1个灯就可以 答:可以设50ms中断一次,定时初值,TH0=0x3c、TL0=0xb0。中断20次为1S,10分钟的话,需中断12000次。计12000次后,给一IO口一个低电平(如功率不够,可再加扩展),就可控制灯了。 而且还要看你用什么语言计算了,汇编延时准确,知道单片机工作周期和循环次数即可算出,但不具有可移植性,在不同种类单片机中,汇编不通用。用c的话,由于各种软件执行效率不一样,不会太准,通常用定时器做延时或做一个不准确的延时,延时短的话,在c中使用汇编的nop做延时 3、51单片机C语言for循环延时程序时间计算,设晶振12MHz,即一个机器周期是1us。for(i=0,i<100;i++) for(j=0,j<100;j++) 我觉得时间是100*100*1us=10ms,怎么会是100ms 答: 不可能的,是不是你的编译有错的啊

51单片机的几种精确延时

51单片机的几种精确延时实现延时 51单片机的几种精确延时实现延时通常有两种方法:一种是硬件延时,要用到定时器/计数器,这种方法可以提高CPU的工作效率,也能做到精确延时;另一种是软件延时,这种方法主要采用循环体进行。 1 使用定时器/计数器实现精确延时 单片机系统一般常选用11.059 2 MHz、12 MHz或6 MHz晶振。第一种更容易产生各种标准的波特率,后两种的一个机器周期分别为1 μs和2 μs,便于精确延时。本程序中假设使用频率为12 MHz的晶振。最长的延时时间可达216=65 536 μs。若定时器工作在方式2,则可实现极短时间的精确延时;如使用其他定时方式,则要考虑重装定时初值的时间(重装定时器初值占用2个机器周期)。 在实际应用中,定时常采用中断方式,如进行适当的循环可实现几秒甚至更长时间的延时。使用定时器/计数器延时从程序的执行效率和稳定性两方面考虑都是最佳的方案。但应该注意,C51编写的中断服务程序编译后会自动加上PUSH ACC、PUSH PSW、POP PSW和POP ACC 语句,执行时占用了4个机器周期;如程序中还有计数值加1语句,则又会占用1个机器周期。这些语句所消耗的时间在计算定时初值时要考虑进去,从初值中减去以达到最小误差的目的。 2 软件延时与时间计算 在很多情况下,定时器/计数器经常被用作其他用途,这时候就只能用软件方法延时。下面介绍几种软件延时的方法。 2.1 短暂延时 可以在C文件中通过使用带_NOP_( )语句的函数实现,定义一系列不同的延时函数,如Delay10us( )、Delay25us( )、Delay40us( )等存放在一个自定义的C文件中,需要时在主程序中直接调用。如延时10 μs的延时函数可编写如下: void Delay10us( ) { _NOP_( ); _NOP_( ); _NOP_( ); _NOP_( ); _NOP_( ); _NOP_( ); } Delay10us( )函数中共用了6个_NOP_( )语句,每个语句执行时间为1 μs。主函数调用Delay10us( )时,先执行一个LCALL指令(2 μs),然后执行6个_NOP_( )语句(6 μs),最后执行了一个RET指令(2 μs),所以执行上述函数时共需要10 μs。可以把这一函数

单片机C延时时间怎样计算

C程序中可使用不同类型的变量来进行延时设计。经实验测试,使用unsigned char类型具有比unsigned int更优化的代码,在使用时 应该使用unsigned char作为延时变量。以某晶振为12MHz的单片 机为例,晶振为12M H z即一个机器周期为1u s。一. 500ms延时子程序 程序: void delay500ms(void) { unsigned char i,j,k; for(i=15;i>0;i--) for(j=202;j>0;j--) for(k=81;k>0;k--); } 计算分析: 程序共有三层循环 一层循环n:R5*2 = 81*2 = 162us DJNZ 2us 二层循环m:R6*(n+3) = 202*165 = 33330us DJNZ 2us + R5赋值 1us = 3us 三层循环: R7*(m+3) = 15*33333 = 499995us DJNZ 2us + R6赋值 1us = 3us

循环外: 5us 子程序调用 2us + 子程序返回2us + R7赋值 1us = 5us 延时总时间 = 三层循环 + 循环外 = 499995+5 = 500000us =500ms 计算公式:延时时间=[(2*R5+3)*R6+3]*R7+5 二. 200ms延时子程序 程序: void delay200ms(void) { unsigned char i,j,k; for(i=5;i>0;i--) for(j=132;j>0;j--) for(k=150;k>0;k--); } 三. 10ms延时子程序 程序: void delay10ms(void) { unsigned char i,j,k; for(i=5;i>0;i--) for(j=4;j>0;j--) for(k=248;k>0;k--);

单片机应用技术(c语言版 第3版)[王静霞]_习题答案

习题 1 1.1 单项选择题 (1) A (2)C (3)C 1.2 填空题 (1)硬件系统、软件系统 (2)时钟电路、复位电路 (3)XTAL1、XTAL2、RESET、EA (4)晶振 1.3 问答题 什么是单片机它由哪几部分组成什么是单片机应用系统 答:单片微型计算机(Single Chip Microcomputer)简称单片机,是指集成在一个芯片上的微型计算机,它的各种功能部件,包括CPU(Central Processing Unit)、存储器(memory)、基本输入/输出(Input/Output,简称I/O)接口电路、定时/计数器和中断系统等,都制作在一块集成芯片上,构成一个完整的微型计算机。 单片机应用系统是以单片机为核心,配以输入、输出、显示等外围接口电路和控制程序,能实现一种或多种功能的实用系统。 1.4 上机操作题 (1) 参考程序: #include //包含头文件reg51.h,定义了51单片机的专用寄存器 //函数名:delay //函数功能:实现软件延时 //形式参数:无符号整型变量i,控制空循环的循环次数 //返回值:无 void delay(unsigned int i) //延时函数 { unsigned int k; for(k=0;k //包含头文件reg51.h,定义了51单片机的专用寄存器 //函数名:delay

51单片机精确延时源程序

51单片机精确延时源程序 一、晶振为 11.0592MHz,12T 1、延时 1ms: (1)汇编语言: 代码如下: DELAY1MS: ;误差 -0.651041666667us MOV R6,#04H DL0: MOV R5,#71H DJNZ R5,$ DJNZ R6,DL0 RET (2)C语言: void delay1ms(void) //误差 -0.651041666667us { unsigned char a,b; for(b=4;b>0;b--) for(a=113;a>0;a--); } 2、延时 10MS: (1)汇编语言: DELAY10MS: ;误差 -0.000000000002us MOV R6,#97H DL0: MOV R5,#1DH DJNZ R5,$ DJNZ R6,DL0

RET (2)C语言: void delay10ms(void) //误差 -0.000000000002us { unsigned char a,b; for(b=151;b>0;b--) for(a=29;a>0;a--); } 3、延时 100MS: (1)汇编语言: DELAY100MS: ;误差 -0.000000000021us MOV R7,#23H DL1: MOV R6,#0AH I

棋影淘宝店:https://www.sodocs.net/doc/3c12197973.html,QQ:149034219 DL0: MOV R5,#82H DJNZ R5,$ DJNZ R6,DL0 DJNZ R7,DL1 RET (2)C语言: void delay100ms(void) //误差 -0.000000000021us { unsigned char a,b,c; for(c=35;c>0;c--) for(b=10;b>0;b--) for(a=130;a>0;a--); } 4、延时 1S: (1)汇编语言: DELAY1S: ;误差 -0.00000000024us MOV R7,#5FH DL1: MOV R6,#1AH DL0: MOV R5,#0B9H DJNZ R5,$ DJNZ R6,DL0 DJNZ R7,DL1 RET (2)C语言: void delay1s(void) //误差 -0.00000000024us { unsigned char a,b,c; for(c=95;c>0;c--) for(b=26;b>0;b--)

单片机一些常用的延时与中断问题及解决方法

延时与中断出错,是单片机新手在单片机开发应用过程中,经常会遇到的问题,本文汇总整理了包含了MCS-51系列单片机、MSP430单片机、C51单片机、8051F的单片机、avr单片机、STC89C52、PIC单片机…..在内的各种单片机常见的延时与中断问题及解决方法,希望对单片机新手们,有所帮助! 一、单片机延时问题20问 1、单片机延时程序的延时时间怎么算的? 答:如果用循环语句实现的循环,没法计算,但是可以通过软件仿真看到具体时间,但是一般精精确延时是没法用循环语句实现的。 如果想精确延时,一般需要用到定时器,延时时间与晶振有关系,单片机系统一般常选用11.059 2 MHz、12 MHz或6 MHz晶振。第一种更容易产生各种标准的波特率,后两种的一个机器周期分别为1 μs和2 μs,便于精确延时。本程序中假设使用频率为12 MHz的晶振。最长的延时时间可达216=65 536 μs。若定时器工作在方式2,则可实现极短时间的精确延时;如使用其他定时方式,则要考虑重装定时初值的时间(重装定时器初值占用2个机器周期)。 2、求个单片机89S51 12M晶振用定时器延时10分钟,控制1个灯就可以 答:可以设50ms中断一次,定时初值,TH0=0x3c、TL0=0xb0。中断20次为1S,10分钟的话,需中断12000次。计12000次后,给一IO口一个低电平(如功率不够,可再加扩展),就可控制灯了。 而且还要看你用什么语言计算了,汇编延时准确,知道单片机工作周期和循环次数即可算出,但不具有可移植性,在不同种类单片机中,汇编不通用。用c的话,由于各种软件执行效率不一样,不会太准,通常用定时器做延时或做一个不准确的延时,延时短的话,在c中使用汇编的nop做延时 3、51单片机C语言for循环延时程序时间计算,设晶振12MHz,即一个机器周期是1us。for(i=0,i<100;i++) for(j=0,j<100;j++) 我觉得时间是100*100*1us=10ms,怎么会是100ms 答: 不可能的,是不是你的编译有错的啊 我改的晶振12M,在KEIL 4.0 里面编译的,为你得出的结果最大也就是40ms,这是软件的原因, 不可能出现100ms那么大的差距,是你的软件的原因。 不信你实际编写一个秒钟,利用原理计算编写一个烧进单片机和利用软件测试的秒程序烧进单片机,你会发现原理计算的程序是正确的

单片机延迟函数

单片机延迟函数 /*************************************************************** *************** 12M 延时计算公式= 4.17+(n-1)*0.5 us 8M 延时计算公式= 6.25+(n-1)*0.75 us 7.3728M 延时计算公式= 6.78+(n-1)*0.81 us 或者6.51+(n-1)*0.82 us 4M 延时计算公式= 12.5+(n-1)*1.5 us 3.6864M 延时计算公式= 13.56+(n-1)*1.63 us 2M 延时计算公式= 25.00+(n-1)*3.0 us 1M 延时计算公式= 50.00+(n-1)*6.0 us **************************************************************** ***************/ void delay (unsigned int n) { unsigned int i; i = n; while (i--)

; } } /*************************************************************** *************** 12M 延时计算公式= 4.0+(n-1)*0.5 us 8M 延时计算公式= 6.0+(n-1)*0.75 us 7.3728M 延时计算公式= 6.51+(n-1)*0.81 us 或者6.51+(n-1)*0.82 us 4M 延时计算公式= 12.0+(n-1)*1.5 us 3.6864M 延时计算公式= 13.02+(n-1)*1.63 us 2M 延时计算公式= 24.00+(n-1)*3.0 us 1M 延时计算公式= 48.00+(n-1)*6.0 us **************************************************************** ***************/ void delay (unsigned int n) { unsigned int i; for (i=n;i>0;i--) { ;

用单片机实现延时(自己经验及网上搜集).

标准的C语言中没有空语句。但在单片机的C语言编程中,经常需要用几个空指令产生短延时的效果。这在汇编语言中很容易实现,写几个nop就行了。 在keil C51中,直接调用库函数: #include // 声明了void _nop_(void; _nop_(; // 产生一条NOP指令 作用:对于延时很短的,要求在us级的,采用“_nop_”函数,这个函数相当汇编NOP指令,延时几微秒。NOP指令为单周期指令,可由晶振频率算出延时时间,对于12M晶振,延时1uS。对于延时比较长的,要求在大于10us,采用C51中的循环语句来实现。 在选择C51中循环语句时,要注意以下几个问题 第一、定义的C51中循环变量,尽量采用无符号字符型变量。 第二、在FOR循环语句中,尽量采用变量减减来做循环。 第三、在do…while,while语句中,循环体内变量也采用减减方法。 这因为在C51编译器中,对不同的循环方法,采用不同的指令来完成的。 下面举例说明: unsigned char i; for(i=0;i<255;i++; unsigned char i; for(i=255;i>0;i--;

其中,第二个循环语句C51编译后,就用DJNZ指令来完成,相当于如下指令: MOV 09H,#0FFH LOOP: DJNZ 09H,LOOP 指令相当简洁,也很好计算精确的延时时间。 同样对do…while,while循环语句中,也是如此 例: unsigned char n; n=255; do{n--} while(n; 或 n=255; while(n {n--}; 这两个循环语句经过C51编译之后,形成DJNZ来完成的方法, 故其精确时间的计算也很方便。 其三:对于要求精确延时时间更长,这时就要采用循环嵌套的方法来实现,因此,循环嵌套的方法常用于达到ms级的延时。对于循环语句同样可以采用for,do…while,while结构来完成,每个循环体内的变量仍然采用无符号字符变量。 unsigned char i,j for(i=255;i>0;i--

项目单片机应用技能实训C语言教案

单片机应用技能实训(C语言)教案—项目2 项目2 广告灯电路制作 任务1 MCS-51单片机I/O端口及C语言相关指令

二、教学实施过程 实 施 环 节 教学内容导 学 方 法组 织 教 学 1、检查学生出勤情况并做好记录。 2、调整学生的注意力,为上课作准备。 互 动 交 流复 习 提 问 1、MCS-51单片机由哪几部分组成 2、MCS-51单片机有多少个I/O口引脚 提 问 导 思导 入 夜晚的商业街上,各种各样的广告彩灯光彩夺目,变幻无穷,非常好看。那么功能强大的单片机是否能完成广告彩灯的控制任务呢本项目的任务就是制作一个用单片机控制的广告灯电路。为完成项目制作,先进行相关基本知识的学习。 启 发 学 习 积 极 性讲 授 新 课 一、MCS-51单片机并行接口 1、P0口的结构和工作原理 P0口每一位的结构如图2-2所示,它由一个输出锁存器,上下两个三态缓冲器,一个输出驱动电路和一个输出控制电路组成。 图2-2 P0口的结构 从P0口输出数据的方法有两种,一种是执行以P0口为目的操作数的数据传送指令来实现,另一种是执行以P0口位为目的操作数的位操作指令来实现。分别举例如下: P0=0x66; 12 fsoc 1 ?12 10 6 1 6 ? ? sμ

1、

89C1’ex),默认情况下该项未被选中,如果要写片做硬件实验,就必须选中该项,这一点是初学者易疏忽的,在此特别提醒注意。 4、编译、连接 在设置好工程后,即可进行编译、连接。点击Build target 按钮,对当前工程进行连接,如果当前文件已修改,软件会先对该文件进行编译,然后再连接以产生目标代码。 编译过程中的信息将出现在输出窗口中的Build页中,如果源程序中有语法错误,会有错误报告出现。 三、布置作业学生练习,老师指导。 1、单片机控制广告灯电路的仿真验证。 2、观察现实中广告灯的变化情况,通过改写程序,完成不同的灯光效果。比一比,看谁制作的变化效果又多又好。 3、本项目中采用低电平驱动,是否能采用高电平驱动,试一试,想想为什么利用多媒体或机房相关软件进行操作演示。讲解各步骤的含义。 讲解各步骤的含义。完成程序编译后,展示仿真效果。 课堂小结1、proteus的基本操作步骤。 2、keil的操作步骤。

单片机几个典型延时函数

软件延时:(asm) 晶振12MHZ,延时1秒 程序如下: DELAY:MOV 72H,#100 LOOP3:MOV 71H,#100 LOOP1:MOV 70H,#47 LOOP0:DJNZ 70H,LOOP0 NOP DJNZ 71H,LOOP1 MOV 70H,#46 LOOP2:DJNZ 70H,LOOP2 NOP DJNZ 72H,LOOP3 MOV 70H,#48 LOOP4:DJNZ 70H,LOOP4 定时器延时: 晶振12MHZ,延时1s,定时器0工作方式为方式1 DELAY1:MOV R7,#0AH ;;晶振12MHZ,延时0.5秒 AJMP DELAY DELAY2:MOV R7,#14H ;;晶振12MHZ,延时1秒DELAY:CLR EX0 MOV TMOD,#01H ;设置定时器的工作方式为方式1 MOV TL0,#0B0H ;给定时器设置计数初始值 MOV TH0,#3CH SETB TR0 ;开启定时器 HERE:JBC TF0,NEXT1 SJMP HERE NEXT1:MOV TL0,#0B0H MOV TH0,#3CH DJNZ R7,HERE CLR TR0 ;定时器要软件清零 SETB EX0 RET

C语言延时程序: 10ms延时子程序(12MHZ)void delay10ms(void) { unsigned char i,j,k; for(i=5;i>0;i--) for(j=4;j>0;j--) for(k=248;k>0;k--); } 1s延时子程序(12MHZ)void delay1s(void) { unsigned char h,i,j,k; for(h=5;h>0;h--) for(i=4;i>0;i--) for(j=116;j>0;j--) for(k=214;k>0;k--); }

单片机精确毫秒延时函数

单片机精确毫秒延时函数 实现延时通常有两种方法:一种是硬件延时,要用到定时器/计数器,这种方法可以提高CPU的工作效率,也能做到精确延时;另一种是软件延时,这种方法主要采用循环体进行。今天主要介绍软件延时以及单片机精确毫秒延时函数。 单片机的周期介绍在电子技术中,脉冲信号是一个按一定电压幅度,一定时间间隔连续发出的脉冲信号。脉冲信号之间的时间间隔称为周期;而将在单位时间(如1秒)内所产生的脉冲个数称为频率。频率是描述周期性循环信号(包括脉冲信号)在单位时间内所出现的脉冲数量多少的计量名称;频率的标准计量单位是Hz(赫)。电脑中的系统时钟就是一个典型的频率相当精确和稳定的脉冲信号发生器。 指令周期:CPU执行一条指令所需要的时间称为指令周期,它是以机器周期为单位的,指令不同,所需的机器周期也不同。对于一些简单的的单字节指令,在取指令周期中,指令取出到指令寄存器后,立即译码执行,不再需要其它的机器周期。对于一些比较复杂的指令,例如转移指令、乘法指令,则需要两个或者两个以上的机器周期。通常含一个机器周期的指令称为单周期指令,包含两个机器周期的指令称为双周期指令。 时钟周期:也称为振荡周期,一个时钟周期= 晶振的倒数。对于单片机时钟周期,时钟周期是单片机的基本时间单位,两个振荡周期(时钟周期)组成一个状态周期。 机器周期:单片机的基本操作周期,在一个操作周期内,单片机完成一项基本操作,如取指令、存储器读/写等。 机器周期=6个状态周期=12个时钟周期。 51单片机的指令有单字节、双字节和三字节的,它们的指令周期不尽相同,一个单周期指令包含一个机器周期,即12个时钟周期,所以一条单周期指令被执行所占时间为12*(1/ 晶振频率)= x s。常用单片机的晶振为11.0592MHz,12MHz,24MHz。其中11.0592MHz 的晶振更容易产生各种标准的波特率,后两种的一个机器周期分别为1 s和2 s,便于精确延时。 单片机精确毫秒延时函数对于需要精确延时的应用场合,需要精确知道延时函数的具体延

51单片机延时时间计算和延时程序设计

一、关于单片机周期的几个概念 ●时钟周期 时钟周期也称为振荡周期,定义为时钟脉冲的倒数(可以这样来理解,时钟周期就是单片机外接晶振的倒数,例如12MHz的晶振,它的时间周期就是1/12 us),是计算机中最基本的、最小的时间单位。 在一个时钟周期内,CPU仅完成一个最基本的动作。 ●机器周期 完成一个基本操作所需要的时间称为机器周期。 以51为例,晶振12M,时钟周期(晶振周期)就是(1/12)μs,一个机器周期包 执行一条指令所需要的时间,一般由若干个机器周期组成。指令不同,所需的机器周期也不同。 对于一些简单的的单字节指令,在取指令周期中,指令取出到指令寄存器后,立即译码执行,不再需要其它的机器周期。对于一些比较复杂的指令,例如转移指令、乘法指令,则需要两个或者两个以上的机器周期。 1.指令含义 DJNZ:减1条件转移指令 这是一组把减1与条件转移两种功能结合在一起的指令,共2条。 DJNZ Rn,rel ;Rn←(Rn)-1 ;若(Rn)=0,则PC←(PC)+2 ;顺序执行 ;若(Rn)≠0,则PC←(PC)+2+rel,转移到rel所在位置DJNZ direct,rel ;direct←(direct)-1 ;若(direct)= 0,则PC←(PC)+3;顺序执行 ;若(direct)≠0,则PC←(PC)+3+rel,转移到rel 所在位置 2.DJNZ Rn,rel指令详解 例:

MOV R7,#5 DEL:DJNZ R7,DEL; rel在本例中指标号DEL 1.单层循环 由上例可知,当Rn赋值为几,循环就执行几次,上例执行5次,因此本例执行的机器周期个数=1(MOV R7,#5)+2(DJNZ R7,DEL)×5=11,以12MHz的晶振为例,执行时间(延时时间)=机器周期个数×1μs=11μs,当设定立即数为0时,循环程序最多执行256次,即延时时间最多256μs。 2.双层循环 1)格式: DELL:MOV R7,#bb DELL1:MOV R6,#aa DELL2:DJNZ R6,DELL2; rel在本句中指标号DELL2 DJNZ R7,DELL1; rel在本句中指标号DELL1 注意:循环的格式,写错很容易变成死循环,格式中的Rn和标号可随意指定。 2)执行过程

最新项目9单片机应用技能实训(C语言)教案教学内容

单片机应用技能实训(C语言)教案—项目9 项目9 点阵LED屏显示电路制作 任务1 项目相关知识学习

二、教学实施过程 实施环节教学内容导学方法组织教学1、检查学生出勤情况并做好记录。 2、调整学生的注意力,为上课作准备。 互动交流 复习提问1、项目8中数码管的显示方式是动态显示还是静态显示? 2、以同学们的理解,LED屏是什么? 本项目的终极目标是制作一个单片机控制的LED屏显示电路。 提问导思 导入在项目6和项目8中,用数码管来显示数字,也可以用来显示一些字符,但是,显示字符时有一定局限性,所以,当要显示一 些英文字符时,考虑用LED屏。在进行项目制作之前,学习LED 屏的相关知识。启发学习积极性 讲授新课一、LED点阵显示模块的结构、工作原理及显示方式 1、LED点阵显示模块结构及工作原理 LED点阵显示模块是一种能显示图形、字符和汉字的显示器件。一个LED点阵显示模块一般由8×8个LED发光二极管方阵组成,其外形如图9-2所示。8×8LED点阵显示模块原理结构如图9-3所示。我们可以把每一个LED发光点理解为一个像素,8×8点阵显示屏可以显示在64像素范围内的任何图形。 图9-3 图9-2 2、LED点阵显示模块的显示方式 LED点阵显示模块的显示方法必须采用动态扫描方式,一般采用逐行扫描。以图9-3所示为例,一幅图形的每行由一个8位二进制数据构成,将这些数据称为显示数据点阵码。比如显示字符“O”的点阵码为:3CH、42H、42H、42H、42H、42H、42H、3CH(如图9-4所示)。一般显示汉字采用的是16×16的点阵模式或者更多,但是原理是相同的。用多媒体展示图9-2、图9-3。对照图9-3介绍其工作原理。 细致说明点阵码的含义。

单片机写延时程序的几种方法

单片机写延时程序的几种方法 1)空操作延時(12MHz) void delay10us() { _NOP_(); _NOP_(); _NOP_(); _NOP_(); _NOP_(); _NOP_(); } 2)循環延時 (12MHz) Void delay500ms() { unsigned char i,j,k; for(i=15;i>;0;i--) for(j=202;j>;0;j--) for(k=81;k>;0;k--); }

延時總時間=[(k*2+3)*j+3]*i+5 k*2+3=165 us 165*j+3=33333 us 33333*i+5=500000 us=500 ms 3)計時器中斷延時(工作方式2) (12MHz) #include; sbit led=P1^0; unsigned int num=0; void main() { TMOD=0x02; TH0=6; TL0=6; EA=1; ET0=1; TR0=1; while(1) { if(num==4000) { num=0;

led=~led; } } } void T0_time() interrupt 1 { num++; } 4)C程序嵌入組合語言延時 #pragma asm …… 組合語言程序段 …… #pragma endasm KEIL軟件仿真測量延時程序延時時間

這是前段事件總結之延時程序、由於不懂組合語言,故NO.4無程序。希望對你有幫助!!! 對於12MHz晶振,機器周期為1uS,在執行該for循環延時程式的時候 Void delay500ms() { unsigned char i,j,k; for(i=15;i>;0;i--) for(j=202;j>;0;j--) for(k=81;k>;0;k--); } 賦值需要1個機器周期,跳轉需要2個機器周期,執行一次for循環的空操作需要2個機器周期,那么,對於第三階循環 for(k=81;k>;0;k--);,從第二階跳轉到第三階需要2機器周期,賦值需要1個機器周期,執行81次則需要2*81個機器周期,執行一次二階for循環的事件為81*2+1+2;執行了220次,則(81*2+3)*220+3,執行15次一階循環,則 [(81*2+3)*220+3]*15,由於不需要從上階跳往下階,則只加賦值的一個機器周期,另外進入該延時子函數和跳出該函數均需要2個機器周期,故

单片机应用技术(C语言)试题

一、选择题 1、单片机8031的/EA引脚(C)。 A. 可悬空 B. 必须接+5V电源 C. 必须接地 D. 以上三种情况视需要而定 2、MCS-51单片机的4个并行I/O端口作为通用I/O端口使用,在输出数据时,必须外接上拉电阻的是(A)。 A. P0口 B. P1口 C. P2口 D. P3口 3、当MCS-51单片机应用系统需要扩展外部存储器或其它接口芯片时,(A)可作为低8位地址总线使用。 A. P0口 B. P1口 C. P2口 D. P0口和P2口 4、系统复位后,堆栈指针SP的内容是(B)。 A. 08H B. 07H C. 30H D. 50H 5、MCS-51单片机的位寻址区位于内部RAM的( D )单元。 A. 00H~7FH B. 20H~7FH C. 00H~1FH D. 20H~2FH 6、PSW中的RS1和RS0用来(A)。 A. 选择工作寄存器组 B. 指示复位 C. 选择定时器 D. 选择工作方式 7、MCS-51单片机规定一个机器周期共有(A)个节拍。 A. 12 B. 6 C. 8 D. 16 8、下面叙述不正确的是(C)。 A. 一个C源程序可以由一个或多个函数组成 B. 一个C源程序必须包含一个函数main() C. 在C51中,注释说明只能使用/*……*/注释 D. C程序的基本组成单位是函数 9、在C51程序中常常把(D)作为循环体,用于消耗CPU时间,产生延时效果。 A. 赋值语句 B. 表达式语句 C. 循环语句 D. 空语句 10、在单片机应用系统中,LED数码管显示电路通常有(C )显示方式。 A. 静态 B. 动态 C. 静态和动态 D. 查询 11、共阳极LED数码管加反向器驱动时显示字符“6”的段码是(B)。 A. 06H B. 7DH C. 82H D. FAH 12、LED数码管若采用动态显示方式,下列说法错误的是(C)。 A. 将各位数码管的段选线并联 B. 将段选线用一个8位I/O端口控制 C. 将各位数码管的公共端直接连接在+5V或者GND上 D. 将各位数码管的位选线用各自独立的I/O端口控制 13、按键开关的结构通常是机械弹性元件,在按键按下和断开时,触点在闭合和断开瞬间会产生接触不稳定,为消除抖动引起的不良后果,常采用的方法有(C)。 A. 硬件去抖动 B. 软件去抖动 C. 硬、软件两种方法 D. 单稳态电路去抖方法

AVR单片机常用的延时函数

AVR单片机常用的延时函数 /******************************************************************** *******/ //C header files:Delay function for AVR //MCU:ATmega8 or 16 or 32 //Version: 1.0beta //The author: /******************************************************************** *******/ #include void delay8RC_us(unsigned int time) //8Mhz内部RC震荡延时Xus { do { time--; } while(time>1); } void delay8RC_ms(unsigned int time) //8Mhz内部RC震荡延时Xms { while(time!=0) { delay8RC_us(1000); time--; } } /******************************************************************** **********/ void delay1M_1ms(void) //1Mhz延时1ms { unsigned char a,b,c; for(c=1;c>0;c--) for(b=142;b>0;b--) for(a=2;a>0;a--); } void delay1M_xms(unsigned int x) //1Mhz延时xms { unsigned int i; for(i=0;i

单片机应用技术C语言版

1.1单片微型计算机(Single Chip Microcomputer)简称单片机,是指集成在一个芯片上的微型计算机,它的各种功能部件,包括CPU(Central Processing Unit)、存储器(memory)、基本输入/输出(Input/Output,简称I/O)接口电路、定时/计数器和中断系统等 1.2软件是在硬件的基础上对其资源进行合理调配和使用,从而完成应用系统所要求的任务,二者相互依赖,缺一不可 1.3单片机的发展经历了由4位机到8位机,再到16位机的发展过程 1.4中央处理器CPU:8位,运算和控制功能 内部RAM:共256个RAM单元,用户使用前128个单元, 用于存放可读写数据,后128个单元被专用寄存器占用。 内部ROM:4KB掩膜ROM,用于存放程序、原始数据和表格。 定时/计数器:两个16位的定时/计数器,实现定时或计数功能。 并行I/O口:4个8位的I/O口P0、P1、P2、P3。 串行口:一个全双工串行口。 中断控制系统:5个中断源(外中断2个,定时/计数中断2个,串行中断1个) 时钟电路:可产生时钟脉冲序列,允许晶振频率6MHZ和12MHZ 1.5按键手动复位,有电平方式和脉冲方式两种。 1.6寄存器SP的复位电路07H 寄存器P0-P3的复位电路FFH 寄存器PC的复位电路0000H 寄存器B的复位电路00H 1.7单片机的时序概念从小到大依次是:节拍、状态、机器周期和指令周期 1.8机器周期:一个机器周期分为6个状态:S1~S6。每个状态又分为两拍:P1和P2 1.9指令周期:是执行一条指令所需的机器周期数。 1.10P0口:双向8位三态I/O口,此口为地址总线(低8位)及数据总线分时复用口,可驱动8个LS型TTL负载。 1.11 P3.0 RXD(串行输入口) P3.1 TXD(串行输出口) P3.2 INT0*(外部中断0) P3.3 INT1*(外部中断1) P3.4 T0(定时器0外部计数输入) P3.5 T1(定时器1外部计数输入) P3.6 WR*(外部数据存储器写选通) P3.7 RD*(外部数据存储器读选通) 1.12P0口输出高电平必须接上拉电阻。P1~P3口输出高电平不必接上拉电阻。 1.13对SFR只能使用直接寻址方式,书写时可使用寄存器符号,也可用寄存器单元地址。 1.14直接寻址:直接通过地址访问(00H~7FH) 1.15 data 直接访问内部数据存储器(128字节),访问速度最快 1.16C5l的数据类型有位型(bit)、无符号字符(unsigned char)、有符号字符(signed char)、无符号整型(unsigned int)、有符号整型(signed int)、无符号长型(unsigned long)、有符号长型(signed long)、浮点(float)和指针类型等。其中short与long属整型数据、float与double 型属浮点型数据。 1.17bit flag; // 将flag定义为位变量sfr P1 = 0x90; //定义P1口,地址90H #define uchar unsigned char宏定义 sbit P1_0=P1^0变量声明 void delay(uchar i);被调函数声明void main() 定义主函数

单片机延时程序分析#(优选.)

上一次课中,我们已经知道,程序中的符号R7、R6是代表了一个个的RAM单元,是用来放一些数据的,下面我们再来看一下其它符号的含义。 DELAY:MOV R7,#250;(6) D1:MOV R6,#250 ;(7) D2:DJNZ R6,D2 ;(8) DJNZ R7,D1;(9) RET ;(10) 〈单片机延时程序〉 MOV:这是一条指令,意思是传递数据。说到传递,我们都很清楚,传东西要从一本人的手上传到另一本人的手上,也就是说要有一个接受者,一个传递者和一样东西。从指令M OV R7,#250中来分析,R7是一个接受者,250是被传递的数,传递者在这条指令中被省略了(注意:并不是每一条传递指令都会省的,事实上大部份数据传递指令都会有传递者)。它的意义也很明显:将数据250送到R7中去,因此执行完这条指令后,R7单元中的值就应当是250。在250前面有个#号,这又是什么意思呢?这个#就是用来说明250就是一个被传递的东西本身,而不是传递者。那么MOV R6,#250是什么意思,应当不用分析了吧。 DJNZ:这是另一条指令,我们来看一下这条指令后面跟着的两个东西,一个是R6,一个是D2,R6我们当然已知是什么了,查一下D2是什么。D2在本行的前面,我们已学过,这称之为标号。标号的用途是什么呢?就是给本行起一个名字。DJNZ指令的执行过程是这样的,它将其后面的第一个参数中的值减1,然后看一下,这个值是否等于0,如果等于0,就往下执行,如果不等于0,就转移,转到什么地方去呢?可能大家已猜到了,转到第二个参数所指定的地方去(请大家用自已的话讲一下这条语句是怎样执行的)。本条指令的最终执行结果就是,在原地转圈250次。

单片机应用技术(C语言~)教学大纲

单片机应用技术(C语言)教学大纲 一、说明 1、课程的性质和内容 本课程是高级技校应用电子专业的专业课。主要内容包括:认识单片机,点亮彩灯,简易数字钟,简易计算器,键控彩灯,简易频率计,单片机双机通信,简易波形发生器,简易数字电压表,移动字幕的制作,校园打铃系统。 2、课程的任务和要求 本课程的主要任务是让学生熟悉AT89S51系列单片机的硬件结构,会使用常见的单片机外围器件,会用单片机组成具有特定功能电子电路,能用C语言编程驱动单片机AT89S51完成各种基本控制功能,能用单片机实现简单的系统电路,具备初步的单片机应用开发能力。 通过本课程的学习,学生应达到以下几个方面的要求: (1)熟悉单片机AT89S51的结构、引脚功能及工作原理。 (2)熟悉C语言程序的编写方法。 (3)能设计以单片机为核心、相关外围电路组成并能完成特定功能的电路。 (4)能根据单片机的工作原理和外围电路的功能要求进行软件设计,会分析程序设计思路和设计方法。 (5)具有初步的单片机控制应用系统硬件和软件设计能力。 3、教学中应注意的问题 (1)教学中注意以学生为中心,做到教师边讲解边演示,学生边学边练习实践,培养学生的应用开发能力。 (2)任课教师应根据本学校设备及学生的具体情况进行教学。 (3)在教学实施过程中,教师应多联系生产实际和相关课程,还可选用一些更合适的应用实例进行讲解,以激发学生的兴趣,培养学生解决实际问题的能力。 (4)教学中应根据学生情况掌握好讲练比例,充分利用多媒体设备、实验设备和实验电路等进行直观教学。 二、学时分配表

三、教学要求、内容及建议 课题一认识单片机 教学要求 1、熟悉AT89S51的PDIP40\TQFP44和PLCC44三种封装形式,熟练掌握AT89S51单片机的各引脚功能。 2、掌握用AT89S51构成的单片机最小系统及各部分电路的功能。 3、认识实验电路板上的主要元器件包括AT89S51单片机、晶体振荡器、锁存器74HC573、MAX232芯片、RS-232串口端、数码管显示电路、发光二极写显示电路、键盘电路、排阻等元件。 4、会正确插装电路元件,能优质焊接电路元件。 5、会正确使用压线钳,良好压接连接线和下载线的金属插头;熟悉下载线的作有和使用方法。 教学内容 1、认识单片机AT89S51及引脚功能。 2、安装单片机最小系统及实验电路,并认识单片机最小系统的外围扩展电路。 3、正确无误地安装实验电路板和下载线,并进行检查。 教学建议 着重介绍AT89S51引脚功能。 课题二点亮彩灯 教学要求 1、理解单片机端口控制外接彩灯电路的工作原理。

相关主题