搜档网
当前位置:搜档网 › 完整word版,PSS在电力系统稳定性中的应用仿真开题报告

完整word版,PSS在电力系统稳定性中的应用仿真开题报告

完整word版,PSS在电力系统稳定性中的应用仿真开题报告
完整word版,PSS在电力系统稳定性中的应用仿真开题报告

一、选题的目的及研究意义

电力系统的发展,互联电力网络变得越来越大。如此的发展趋势在给电力系统以巨大的技术和经济效益的同时,也使得稳定性破坏事故所波及的范围更加广泛,电力市场的日益开放会使运行方式更加灵活多变,对稳定性的实时性判断要求更高。与此同时,由于受到环境和经济等因素的制约,区域间联网和远距离大容量输电系统的不断出现,系统运行更加接近极限状态,这使得电力系统稳定性问题日趋严重,电力系统一旦失去稳定,往往造成大范围、较长时间停电,在最严重的情况下,则可能使电力系统崩溃和瓦解,因此,准确、快速地分析电力系统在扰动下的稳定性行为,必要时采取适当的控制措施,以保证系统稳定性的要求,是电力系统设计及运行人员最重要也是最复杂的任务之一。

从技术和安全上考虑直接进行电力试验可能性很小,迫切要求运用电力仿真来解决这些问题依据电网用电供电系统电路模型要求。因此,利用MATLAB的动态仿真软件Simulink搭建了单机—无穷大电力系统的仿真模型,能够满足电网在其可能遇到的多种故障方面运行的需要。

二、综述与本课题相关领域的研究现状、发展趋势、研究方法及应用领域等

实际上, 如何保证和提高电力系统的稳定性是从多个方面进行考虑的。在系统规划阶段应合理选择发电厂厂址, 采用合理的输电方案以及配置相应的保护和自动装置等。在运行管理方面, 控制中心对运行方式的良好安排也有助于保证电力系统的安全稳定运行。当系统遭受扰动后,施加控制是改善和提高电力系统稳定性最经济有效的方法之一, 而严重故障后的紧急控制措施可将由于安全性破坏而对系统造成的影响减小到最低程度。

目前暂态稳定分析的基本方法可分为两类:数值解法和直接法。

数值解法(时域仿真法)是暂态稳定分析基本方法,它以稳态工况或潮流解为初值,对上述方程组联立求解或交替求解,逐步求得状态量和代数量,并根据发电机的转子摇摆曲线来判定系统在扰动下能否保持同步。

目前时域仿真法主要采用的数值计算方法包括显式积分法和隐式积分法。前者包括欧拉法、龙格-库塔法和线形多步法等。后者包括改进的欧拉法和隐式积分法。欧拉法的精度低,数值稳定性较差,一般适用于简单模型和较短的暂态持续时间。龙格-库塔法拟合了泰勒级数的高阶项,具有比较高的精度,数值稳定性好。它的缺点是计算量大,计算速度慢。线形多步法精度高,运算量比龙格一库塔法小,但计算结果受初始值的影响较大,需要选择适当的起步算法来保证其精度。改进的欧拉法用隐式积分校正欧拉法的结果,精度比欧拉法有所提高。隐式梯形积分法在联立求解微分一代数方程时可以消除交接误差,具有较好的数值稳定性,可以采用较大的步长。虽然时域仿真法可以考虑电机的详细模型,而且能够得到足够准确的结果,但是随着网络规模的扩大,时域仿真法的计算量将很大,计算速度不能满足在线监测和控制的要求,并且其不能定量给出系统的稳定裕度。所以对电力系统暂态稳定研究致力于寻找一种快速、准确、实用的暂态分析算法。我国电力科学界对稳定分析的直接法与快速算法的研究大致始于80年代,其中最早发表的一篇是夏道止与Heydt等人关于分解-聚合法在线稳定的研究。随后有电力部电力科学研究院傅书逷等人关于PEBS法的研究:清华大学倪以信与美国Fouad等人对UEP法的直流输电模型与励磁系统模型的研究:1988年我国学者南京电力自动化研究院薛禹胜与比利时Pavella教授等人提出了扩展等面积法(EEAC法),将多机系统变成等值两机系统,利用等面积准则和泰勒展开式导出临界切除时间和稳定裕度的解析式,根据这一解析在注入空间定义稳态稳定域,推算联络潮流的稳定极限。近年来该法经不断完善,已扩展到动态EEAC法,使得计算精度大大提高。到了90年代,直接法与快速算法的研究尤为活跃,如哈尔滨工业大学郭志忠,柳焯等人用高阶Taylor 级数研究快速暂稳计算问题,上海交通大学刘笙等人关于PEBS法复杂模型的研究,东北电力

学院蔡泽祥和清华大学倪以信等人关于快关气门、电气制动和切机问题的研究等,都使得直接发在线稳定分析的研究进一步走向实用化。此外,关于应用人工神经网络、灾变理论和熵网络理论的研究也有不少论文发表。

李雅普诺夫稳定性理论在1892年提出的,它是从一个古典力学的概念发展而来。1947年美国学者Magnusson提出将其应用于电力系统暂态稳定分析领域当中。1958年,Aylett 提出了用于多机系统的能量积分准则。1966年,Gless和E1-Abiad等人又提出了不计电网中转移电导的李雅普诺夫函数。自上世纪70年代后,用李雅普诺夫法研究直接法稳定分析得文章逐渐增多,初期的研究只要集中于用不同的方法建立运用于电力系统的李雅普诺夫函数(V函数)和如何求不稳定平衡点(UEP)的方法,但是早期研究未计入故障地点和转移电导的作用,所以计算结果偏于保守。

1978年日本学者Kakimoto等人首次提出了势能界面法(PEBS)法,直接利用持续的故障轨迹求取临界势能,从而求取临界切除时间CCT,省去了求UEP的麻烦,使得速度大大加快。

1979年Athay等人提出的能量函数第一次计入了故障地点和转移电导的作用,使得能量函数法在客服保守性方面迈出了重要的第一步。

20世纪80年代以后,Michel等人提出了单机能量法。Fouad等人在动能修正、能量裕度以及求解相关UEP等方面作了大量研究工作进一步丰富和发展了暂态能量函数法的理论和方法。Padiyar等人给出了能够计入详细发电机,模型和复合模型的拓扑能量函数。1988年Chiang和Zaborsky等人提出了稳定域的概念,对势能界面法进行了理论分析,并提出了使势能界面法计算准确的条件。1991年Chiang等人在其稳定域理论的基础上,又提出了BCU 法(将UEP法和PEBS法结合起来的方法),是UEP法的实用化又进了一步。本文采用了Matlab 软件对电力系统稳定进行了仿真分析,运行于Simulink下的PSB(Power System Blockset)是针对电力系统的工具箱,从Matlab6.0开始它被重新命名为SPS(SimPowerSystems).该工具箱的研究领域是用微分方程刻画的电力系统动态过程,如电磁暂态与机电暂态分析以及电力电子设备的仿真。MATLAB SPS 提供了丰富的电力及电气系统元件模型,可以快速地组建仿真模型, 从而实现电力系统的仿真计算,效率高并且灵活方便。

三、对本课题将要解决的主要问题及解决问题的思路与方法、拟采用的研究方法(技术路线)或设计(实验)方案进行说明

目前电力系统普遍采用在励磁调节器上附加电力系统稳定器PSS的附加励磁控制方案。它能有效地增强发电机励磁系统的阻尼,抑制低频振荡的发生,是提高电力系统动态稳定性的最经济和最有效的的措施。

因为很多因素导致电力系统的动态仿真研究将不能在实验室进行的电力系统运行模拟得以实现。所以可以首先在计算机上进行动态仿真研究来判断其设计的可行性,它的突出优点是可行、简便、经济。并且Matlab电力系统工具箱中包含有很多丰富的模块,所以使用起来更加的灵活方便。MATLAB SPS 提供了丰富的电力及电气系统元件模型, 在Simulink运行环境下, 用户只需应用鼠标拖放的方式将所需电气元件的模块添加到模型编辑窗口, 并将它们连接起来,就可以快速地组建仿真模型, 从而实现电力系统的仿真计算,用SPS 提供的模块构建一个单台发电机经过线路与无穷大功率母线相连的简单电力系统, 即单机—无穷大系统的Simulink仿真模型.

本设计在分析低频振荡的产生机理及发电机附加励磁控制对低频振荡的抑制原理的基础上,通过对一个典型的单机—无穷大系统在不同扰动方式下的动态过程仿真,研究附加励磁控制(PSS)对电力系统低频振荡及动态稳定性的影响。

[1]吴天明. MATLAB电力系统设计与分析[M].国防工业出版社,2007

[2]孟祥忠王博.电力系统自动化[M].北京:北京大学出版社,2006

[3]刘笙. 电气工程基础[M].北京:科学出版社,2002

[4]文峰. 现代发电厂概论[M] .北京:中国电力出版社,1999

[5]黄益庄.变电站综合自动化技术[M] .北京:中国电力出版社,2001

[6]于永源.电力系统分析[M] .北京:中国电力出版社,2007

[7]马永翔.高电压技术[M] .北京:北京大学出版社,2009

[8]马永翔王世荣.电力系统继电保护[M] .北京:北京大学出版社,2006

[9]陈德树.计算机继电保护原理与技术[M] .北京:中国水利水电出版社,2000

[10]陈庆红.变电运行[M] .北京:中国电力出版社,2005

[11]刘同娟,郭键,刘军. MATLAB建模仿真及应用[M].北京:中国电力出版社,2009

[12] 电力工业部西北电力设计院.电气工程设计手册电气一次部分[M].北京:中国电力出版社,1998

[13]https://www.sodocs.net/doc/3e11722395.html,ler,PowerSystemOperation,McGraw-HillBookCompany [M],NewYork.1983

[14] Ata.Elahi.Nerwork Communicationas Technology[M].北京:科学出版社,2001

[15] Naildu MS. etal. Hing-voltage Engineering[M]. New Delhi Tata McGraw-Hill, Publ,1982

2月28日——3月18日对于所做毕业设计的内容及任务书进行资料搜集整理,撰写开题报告。

3月21日——4月8日设计合理可行的方案。

4月11日——5月6日完成对系统的总体设计。

5月9日——5月20日撰写论文。

5月23日——6月3日制作PPT,准备答辩。

6月7日——6月17日毕业答辩。

电力系统稳定器(PSS)现场整定试验方案

电力系统稳定器(PSS)现场整定试验方案 1.试验目的: 随着电力系统规模的不断扩大和快速励磁系统的采用,电力系统低频振荡的问题越来越突出,将系统中有关发电机的电力系统稳定器(PSS)投入可以明显改善系统的阻尼情况。 2.试验条件: 2.1 试验机组和励磁系统处于完好状态,调节器除PSS外所有附加限制和保护功能投入运行。 2.2 与试验2与试验有关的继电保护投入运行。 2.3调节器厂家技术人员确认设备符合试验要求。 2.4试验人员熟悉相关试验方法和仪器,检查试验仪器工作正常。 2.5试验时,发电机保持有功0.8pu以上,无功在0---0.2pu以下。 2.6同厂同母线其他机组PSS退出运行,机组AGC退出运行。 3.试验接线: 3.1 将发电机PI三相电压信号,A、C两相1将发电机PI三相电压信号,A、C两相电流信号以及发电机转子电压信号接入WFLC录波仪,试验时记录发电机的电压,有功功率和转子电压信号,对于交流励磁系统,还应将励磁机电压信号接入WFLC录波仪。 3.2 将动态信号分析仪的白噪声信号接入调节器的TEST输2将动态信号分析仪的白噪声信号接入调节器的TEST输入端子。 4.试验目的: 4.1 系统滞后特性测量 PSS退出运行,在PSS输出信号迭加点(TEST端子)输入白噪声信号,从零逐步增加白噪声信号的电平至发电机无功功率及发电机机端电压有明显变化,用动态信号分析仪测量发电机电压对于PSS输出信号迭加点的相频特性既励磁系统滞后特性。 注意:试验端子开路有可能造成发电机强励或失磁,要保证在迭加的信号被屏蔽的情况下进行接线或拆线。 4.2 PSS超前滞后参数整定 根据励磁系统滞后特性和PSS的传递函数计算PSS相位补偿特性和PSS 的参数。 4.3 有补偿特性试验 在PSS投入运行的情况下,在PSS的信号输入端输入白噪声信号,用动态信号分析仪测量发电机电压对于PSS信号输入点的相频特性,校验PSS补偿特性的正确性。 4.4 PSS临界增益测量 逐步增加PSS的增益,观察发电机转子电压和无功功率的波动情况,确定PSS的临界增益。 4.5 PSS增益整定 PSS的实际增益取临界增益的20%——30%。

论电力系统稳定性

论电力系统稳定性 发表时间:2018-10-19T09:07:14.800Z 来源:《电力设备》2018年第17期作者:姚彦枝 [导读] 摘要:随着电力工业的迅速发展,我国发电机、变压器单机容量不断增大,电力系统正朝着“大机组、超高压、大电网”的方向发展。 摘要:随着电力工业的迅速发展,我国发电机、变压器单机容量不断增大,电力系统正朝着“大机组、超高压、大电网”的方向发展。在当今电力作为推动社会飞速发展的主动力时代,电力网是否稳定对社会的生产、生活、发展起着决定性的影响。因此,研究电力系统在各种条件下的稳定性问题对社会的发展具有特别重要的意义。 关键词:电力系统;稳定性;措施 1电力系统稳定性的作用及要求 1.1电力系统稳定性的作用 (1)对于企业的调配与服务有优化作用。之所以说电力系统稳定性的提供对企业的调配与服务功能有一定程度的优化作用,是因为相关人员在电力系统应用中,可以根据具体运行情况来开展工作,根据不同类型的电力设备特点,来实现设备利用的最优化,为电力企业工作效率的提升做好准备。相关人员可以全面掌握设备的利用情况,以此来对设备进行合理而科学的配置,实现设备的高效率运行,从而还能降低企业成本的使用率。对于传统电力技术而言,稳定性技术式是一个大胆创新,相关人员在实际作业中可以利用该技术实现对电力设备的协调配置。 (2)有利于促进电力企业的高效发展。电力系统稳定性对电力企业的经济效益具有促进作业。众所周知,电对于人们的生活是何等重要,可以说生活处处都需要电。一旦电力系统稳定性受到冲击,便会发生大面积停电的安全事故,这种现状会导致电力系统的运行受到干扰,对企业的生产,人们的生活都起到了很大的影响。电力系统稳定性技术则可以在这种情况下,对相关干扰进行及时排除,保障用户的正常用电。 1.2电力系统稳定性的要求 电力系统稳定性要求电网结构与设备的选用必须科学合理,供电可靠性必须相对较高,工作人员的技术也必须相对过硬,以此来保证电力系统的正常运行,其中,工作人员的技术具有关键作用,他们必须在实际操作前,做好相关准备,采取有效措施来应对突发故障。 2确保电力系统稳定性的措施 目前,我国电力系统已步入大电网、大机组、超高压、远距离输电时代,随着电力系统的发展及其互联,电力系统稳定问题也将越来越突出。有关电力系统稳定问题的研究已成为国内外电力界的热门课题之一。因此,在当前,研究电力系统稳定问题的机理、以及提高电力系统稳定性的控制措施,具有重要的意义。 2.1对送电系统的控制 改善发电机励磁调节系统的特性:由电力系统功率极限的简单表达式可知,减小发电机的电抗,可以提高电力系统功率极限和输送能力。 改善原动机的调节特性:我们根据发电机功角变化对于再热式轮机可以采用快速调节轮机汽门与带有微机控制和带有功角检测仪的高速系统来消除故障后发电机输入以及输出功率之间的不平衡,交替关、开快速汽门,以缩短振荡时间,提高暂态稳定。 快速操作汽阀(快关):当系统受到较大干扰时,输出的电磁功率突变,这时,如果原动机的调节装置非常的准确、灵敏和快速,使得原动机自身的功率能跟上相应的变化的电磁功率,则能极大让系统稳定性得以提高[2]。 切机:提高系统暂态稳定的基本措施包括减小原发电机大轴不平衡功率。方法有两个一个是减少原发动机的输入功率,第二个是增大发电机发出的电磁功率,当系统有充足的备用电机时,我们同时切除故障线,同时切除部门联锁发电机,这样就能有效的增大系统稳定性。 2.2采用附加装置提高电力系统的稳定性 在输电线路串联电容:利用电容器容抗和输电线路感抗性质相反的特点,在输电线路中串联电容补偿线路中的电感来提高超高压远距离输电的功率极限,从而起到提高系统稳定的作用。 在输电线路中并联电抗:改善远距离输电系统稳定性的重要措施之一就是将电抗并联到输电线路中。因为随着输电线路长度的增加,产生的电抗就会越大,随之容抗也会变大,而增加的电容则会给线路带来大量的无功,当线路负荷较轻情况下,线路中大量的无功会造成线路末端电压过高。为改善这种情况,我们将电抗器并联到输电线路上来吸收由长距离线路所产生的大电容造成的无功功率,这样,可以减小发电机的运行功角,提高发电机的电势从而提高长距离输电系统的稳定性。 将变压器中性点改为小阻抗接地:电力系统发生接地短路情况时产生的暂态稳定和变压器中性点接地情况有着重要的联系。为了提高中性点直接接地系统的稳定性,我们利用电流流过阻抗会消耗有功功率原理将系统中变压器的中性点改为经小阻抗接地,这样系统短路时产生的零序电流经过变压器中性点小阻抗后消耗有功这就增加了发电机的输出电磁功率,减小了发电机转轴上存在的不平衡功率,进而提高了系统的暂态稳定。 2.3非线性控制技术在暂态稳定控制中的应用 为提高电力系统运行的稳定性,除应对电网进行合理的规划、建设、采取紧急措施之外,最主要的就是对相关部件采取有效的控制手段。根据电力系统采用模型的不同可选取不同的方法。通常对非线性系统进行控制的方法有: Lyapunov直接法:在假设非线性控制系统的原点为平衡点,寻找一个正定Lyapunov函数,,且,在此基础上求出反馈控制规律,使得,这就是正定函数的思想,当时闭环系统才会逐渐的趋向稳定。由此可见,要想使受干扰后的系统动态过程以较快的速度趋向平衡点则需要V越负越大。自适应、滑膜等控制设计都可以用Lyapunov直接法。 变结构控制方法:20世纪70年代中期科学研究者们开始研究变结构控制方法,该方法不但能有很好的全局渐进稳定性,而且它有很强的鲁棒性,能抗外部干扰和参数的摄动。该方法的基本思想是:预先选定一个超平面,利用切换函数和高速开关将电力系统的相轨迹按照一定的规律驱动到超平面上,我们将该运动定义为滑动模态,其基本思想是,利用高速开关和切换函数将系统的相轨迹按一定的趋近律驱动到一个预先选定的超平面S(X)=0(称滑行面或切换面)上,超平面上的系统运动称为滑动模态(Slidingmode),且系统的滑动模态

电力系统稳定器装置说明

PSS-1型 数字式电力系统稳定控制装置使用说明书 中国电力科学研究院 2004年4月

前言 研究表明,在发电机励磁控制系统中,引入除发电机机端电压以外的附加控制信号,如同步发电机的电功率,轴速度和频率等信号或上述信号的组合,经过一定的相位处理后,再通过励磁调节器去控制发电机的励磁,可以增加机组的阻尼力矩,有效平息系统的低频振荡,提高电力系统的稳定性.电力系统稳定器(PSS-PowerSystemStabilizer)就是提供增加系统阻尼力矩的附加励磁控制部件. PSS-1型电力系统稳定控制装置适用于无电力系统稳定器的模拟式励磁调节器中,以增加励磁控制对系统低频振荡的阻尼作用.对于新型的数字式励磁调节器,在设计中都已经装备有稳定控制软件或硬件,一般不需要外加的PSS部件.在特殊的情况下,如无整定计算资料,调试方法等,也可以使用本装置. 国内一些厂家仿进口装置开发了模拟式电力系统稳定器,但普遍存在着零漂影响大,元件易老化,参数不易确定等缺点,目前正在试图以数字式电力系统稳定器替代模拟式电力系统稳定器. 接入PSS-1型数字式电力系统稳定器,需要220V或110V直流电源,励磁调节器(AVR)中要有相加点,输入信号为发电机端PT三相线电压(额定为100V)和发电机CT两相(A,C)电流.对于水轮发电机励磁控制,还需要操作有功的闭锁接点,以便在人工增减发电机有功功率时闭锁PSS输出,防止反调. PSS-1电力系统稳定器应用精确简单的算法原理,软、硬件采用模块化体系结构和高抗干扰设计,操作简单、实用,运行可靠。 PSS-1装置具有如下特点: 1.采用高性能的高速DSP(TMS320F243)单片数字信号处理控制器作为主控单元。 2.采用高速14位AD,极大提高测量精度。保护通道误差小于0.5%,量测通道误差小 于0.2%。 3.用大容量串行EEPROM存放参数定值,保证数据安全可靠。 4.采用全交流采样,软件数字滤波,彻底消除了硬件电路零漂的影响。 5.全中文液晶显示,操作界面直观简便。 6.装置具有完善的自检功能;三级Watchdog及电源监视功能,保证装置可靠运行。 7.所有定值和参数均可在面板上直接操作。 8.直接安装在励磁调节器柜上。 9.拔插式结构,CT回路采用自短路端子,便于检修。 10.电磁兼容设计,抗干扰能力强。 欢迎广大用户垂询并提出宝贵意见,我们将竭诚为用户服务。可按照用户要求特殊设计和生产。 一、用途及特点 PSS-1数字式电力系统稳定装置是新开发的自动装置。通过励磁控制系统,用来抑制

电力系统稳定与控制

电力系统稳定与控制 廖欢悦电自101 2 电力系统的功能是将能量从一种自然存在的形式转换为电的形式,并将它输送到各个用户。电能的优点是输送和控制相对容易,效率和可靠性高。为了可靠供电,一个大规模电力系统必须保持完整并能承受各种干扰。因此系统的设计和运行应使系统能承受更多可能的故障而不损失负荷(连接到故障元件的负荷除外),能在最不利的可能故障情况些不知产生不可靠的广泛的连锁反应式的停电。 由此,电力系统控制所要实现的目的: 1.运行成本的控制:系统应该以最为经济的方式供电; 2.系统安全稳定运行的控制:系统能够根据不断变化的负荷变化及发电资源变化情况调整功率 分配情况; 3.供电质量的控制:必须满足包括频率、电压以及供电可靠性在内的一系列基本要求;一.电力系统的稳定性设计与基本准则 首先,一个正确设计和运行的电力系统: 1.系统必须能适应不断变化的负荷有功和无功功率需求。与其他形式的能量不同,电能不能方便地以足够数量储存。因而,必须保持适当的有功和无功的旋转备用。 2.系统应以最低成本供电并具有最小的生态影响 3.考虑到如下因素,系统供电质量必须满足一定的最低标准: a)频率的不变性 b)电压的不变性 c)可靠性水平 对于一个大的互联电力系统,以最低成本保证其稳定性运行的设计是一个非常复杂的问题。通过解决这一问题能得到的经济效益是巨大的。从控制理论的观点来看,电力系统具有非常高阶的多变量过程,运行于不断变化的环境。由于系统的高维数和复杂性,对系统作简化假定并采用恰当详细详细的系统描述来分析特定的问题是非常重要的。 二、电力系统安全性及三道防线可靠性-安全性-稳定性 电力系统可靠性:是在所有可能的运行方式、故障下,供给所有用电点符合质量标准和所需数量的电力的能力。是保证供电的综合特性(安全性和充裕性)。可靠性是通过设备投入、合理结构及全面质量管理保证的。 电力系统安全性:是指电力系统在运行中承受故障扰动的能力。通过两个特征表征(1)电力系统能承受住故障扰动引起的暂态过程并过渡到一个可接受的运行工况,不发生稳定破坏、系统崩溃或连锁反应;(2)在新的运行工况下,各种运行条件得到满足,设备不过负荷、母线电压、系统频率在允许范围内。 电力系统充裕性:是指电力系统在静态条件下,并且系统元件负载不超出定额、电压与频率在允许范围内,考虑元件计划和非计划停运情况下,供给用户要求的总的电力和电量的能力。 电力系统稳定性:是电力系统受到事故扰动(例如功率或阻抗变化)后保持稳定运行的能力。包括功角稳定性、电压稳定性、频率稳定性。 正常运行状态下,通过调度手段让电力系统保持必要的安全稳定裕度以抵御可能遭遇的干扰。要实现预防性控制,首先应掌握当前电力系统运行状态的实时数据和必要的信息,并及时分析电网在发生各种可能故障时的稳定状况,如存在问题,则应提示调度人员立即调整运行方式,例如重新分配电厂有功、无功出力,限制某些用电负荷,改变联络线的送电潮流等,以改善系统的稳定状况。 目前电网运行方式主要靠调度运行方式人员预先安排,一般只能兼顾几种极端运行方式,且往往以牺牲经济性来确保安全性。调度员按照预先的安排和运行经验监视和调整电网的运行状态,但他并不清楚当前实际电网的安全裕度,也就无法通过预防性控制来增强电网抗扰动的能力。因此,实现电力系统在线安全稳定分析和决策,得出当前电网的稳定状况、存在问题、以及相应的处理措

电力系统暂态稳定实验

电力系统暂态稳定实验 一、实验目的 1 ?通过实验加深对电力系统暂态稳定内容的理解,使课堂理论教学与实践结合,提高学生的感性认识。 2?学生通过实际操作,从实验中观察到系统失步现象和掌握正确处理的措施 3?用数字式记忆示波器测出短路时短路电流的非周期分量波形图,并进行分析。 二、原理与说明 电力系统暂态稳定问题是指电力系统受到较大的扰动之后,各发电机能否继续保持同步运行的问题。在各种扰动中以短路故障的扰动最为严重。 正常运行时发电机功率特性为:P1=( Eo x Uo)x sin S i/X1 ; 短路运行时发电机功率特性为:P2=( Eo x Uo)x sin S 2X2 ; 故障切除发电机功率特性为:P3 =( Eo x Uo)x sin S 3/X3 ; 对这三个公式进行比较,我们可以知道决定功率特性发生变化与阻抗和功角特性有关。而系统保持稳定条件 是切除故障角S c小于S max S max可由等面积原则计算出来。本实验就是基于此原理,由于不同短路状态下,系统阻抗X2不同,同时切除故障线路不同也使X3不同,S max也不同,使对故障切除的时间要求也不同。 同时,在故障发生时及故障切除通过强励磁增加发电机的电势,使发电机功率特性中Eo增加,使S max增加,相应故障切除的时间也可延长;由于电力系统发生瞬间单相接地故障较多,发生瞬间单相故障时采用自动重 合闸,使系统进入正常工作状态。这二种方法都有利于提高系统的稳定性。 三、实验项目与方法 (一)短路对电力系统暂态稳定的影响 1 ?短路类型对暂态稳定的影响 本实验台通过对操作台上的短路选择按钮的组合可进行单相接地短路,两相相间短路,两相接 地短路和三相短路试验。 固定短路地点,短路切除时间和系统运行条件,在发电机经双回线与“无穷大”电网联网运行时,某一回线发生某种类型短路,经一定时间切除故障成单回线运行。短路的切除时间在微机保护装置中设定,同时要设定重合闸是否投切。 在手动励磁方式下通过调速器的增 (减)速按钮调节发电机向电网的出力,测定不同短路运行时能保持系统稳定时发电机所能输出的最大功率,并进行比较,分析不同故障类型对暂态稳定的影响。将实验结果与理论分析结果进行分析比较。P max为系统可以稳定输出的极限,注意观察有功表 的读数,当系统出于振荡临界状态时,记录有功表读数,最大电流读数可以从YHB-川型微机保护 装置读出,具体显示为: GL- 三相过流值 GA- A相过流值

风电水电互补电力系统稳定性分析与计算

风电——水电互补电力系统稳定性分析与计算 摘要 本文介绍了含风力发电的风电一水电互补电力系统如何处理风力发电参数,进行稳定性分析与计算的方法,并结合新疆阿勒泰地区布尔津风电一水电互补电力系统计算实例验证其方法的正确性及可行性。 引言 近年来,由于当代科学技术的发展,加之能源短缺和环境保护等方面的影响,人类正在致力于寻找可再生的,取之不尽,用之不竭又是洁净的绿色能源,而水能与风能是绿色能源中最有发展潜力和前景的品种。同时水能与风能又都容易转化为能源的更高级形式一电能,其经济效益显著。 由于风力资源的随机性和季节性使风力发电的出力不平稳,风力发电不具备有功调节和无功调节的能力。风电的缺点也就是无风就无电,影响到风电的连续及稳定性。为了解决风电的连续性和稳定性问题就需要有一个互补系统。 在我国西北、华北、东北等内陆风区,风资源的季节分布特色大多为冬春季风大、夏秋季风小,与水能资源夏秋季丰水、冬春季枯水的季节分布正好形成互补特性,这是构建风能一水能互补系统的基础条件。如果在上述地区内,以带有蓄水调节水库的水电站为依托,在风资源丰富的地点建设适当容量的风电场,两者以电网连接实现季节性能量互补,以水库做为能源调剂手段,就能够实现风能与水能这两种最佳绿色能源的联姻,充分发挥绿色能源的优势,以风一水联手供电取代传统的水一火联合供电,这将是人类能源利用形式的历史性突破。由于阿勒泰地区的风资源和水资源具有极强的互补性,更由于阿勒泰地区具有较大的水电装机容量,而且其中有三个电站带有库容可观的调节水库,因此在该地区突破传统限制,在风电装机大大超出电网容量10%的条件下建设水电一风电互补系统,在技术上和经济上都是可行的。在我国类似阿勒泰那样资源条件的地区还有很多,都可以构建水电一风电互补系统解决供电问题,这将是对现有禁区的重要突破,有可能为阿勒泰及有类似条件地区的电源建设找到一条最为多快好省的途径。 1问题的提出 在电力系统中,传统的发电方式为水力发电和火力发电,一般均为同步电机。目前,风力发电这一新成员加入电网,一般都采用电容励磁感应异步发电机。使其分析计算复杂化。风电的加入使电网的稳定性受到影响。对风力发电机如何给定运行条件,如何建立数学模型、如何确定参数,是进行含风力发电的风电一水电互补电力系统静态和暂态及动态稳定性分析和计算的关键。本文介绍了含风力发电的风电一水电互补电力系统如何处理风力发电参数,进行稳定计算的方法。 2风力发电机的处理 电力系统是由发电厂、输电网络及电力负荷三大部分组成的能量生产、传输和使用系统。在过去的几十年间,同步发电机(水轮发电机或汽轮发电机)、输电网络及负荷的稳定计算已经成熟。只有风力发电技术在国内外都属于研究阶段,建立适合潮流计算、暂稳、动稳和静稳

电力系统稳定器

电力系统稳定器PSS模型学习资料 (徐伟华、陈小明) 电力系统稳定器(PSS)是一种自动控制装置,是为改善同步电机稳定性而设计的,其控制功能是与励磁绕组的励磁系统相配合而起作用的。 静态励磁系统具有高的增益和快速响应时间,这大大地帮助了瞬态稳定(同步力矩)。但与此同时,却趋向于降低对小信号的稳定(阻尼力矩)。PSS控制的目的是提供一个正阻尼系数,以阻尼发电机转子角度的摇摆。在电力系统中,其摇摆的频率是在一个很大的范围内变化。 PSS是用于提供一个正的阻尼力矩分量以弥补A VR所产生负阻尼,从而形成一个有补偿的系统,它增加了阻尼,并增强了小信号(静态)稳定。这是由于生成一个与转子转速同相的信号,并与A VR得出的参考值相加而得到的。再者,由于发电机励磁电流与A VR的功能之间有一种固有的相位滞后,为补偿这种效应,需要有一个相应的相位提前。 PSS的早期开发,曾广泛地以转速或频率输入信号作为设计和应用的基础。 另外一种选择是电气功率,它已经在某些市场中广泛地采用,如PSS1A。 最新一代的PSS是基于加速功率的原理,如PSS2A、PSS2B。 1、PSS1A型电力系统稳定器(简称PSS1A模型) 图15表示的单输入的电力系统稳定器的一般形式,通常电力系统稳定器的输入信号(Vsi)有:转速、频率、功率。 T6用于表示传感器时间常数,Ks表示电力系统稳定器的增益,信号的隔直由时间常数T5设置。在下一模块中,A1、A2是使高频扭转滤波器的一些低频效果起作用,如果不是为此目的,若有必要,该模块用于稳定器幅频、相频特性的整形。接下来的两个模块是两级超前、滞后补偿环节,由常数T1至T4设置。 稳定器的输出可以有多种方法限幅,它们并没有在图15中全部表示出来。该模型仅仅表示了简单的稳定器输出限制,V STMAX 和V STMIN。在有些系统中,如果机端电压偏离了一定的范围,稳定器的输出被闭锁,如图19所示的附加非连续励磁控制模块DEC3A。在其它的一些系统中,稳定器输出的限制是以机端电压函数的形式给出,如图17的DEC1A所示。稳定器的输出Vst,是附加非连续控制模块的输入,这里没有使用附加非连续控制模块,所以Vs=Vst。 2、PSS2A型电力系统稳定器(简称PSS2A模型) 图16所示的稳定器模型,用于代表多种双输入的稳定器,它综合了功率和转速或频率

电力系统稳定器(pss).doc

XXXX发电有限责任公司电力系统稳定器(PSS)动态投运试验方案 中国电力科学院 xxx电力试验研究所 xxxx年xx月xx日

批准: 审定: 审核: 编写: 1. 试验目的 XX电厂两台发电机使用东方电机厂生产的300MW发电机,励磁调节器为英国罗罗公司生产的TMR-A VR型微机励磁调节器,励磁系统采用自并励静止可控硅励磁方式,属快速励磁系统,由于联网运行时对系统动态稳定影响较大,应尽快将励磁系统中电力系统稳定器(PSS)投入运行,以抑制可能出现的电力系统低频振荡,提高电力系统稳定性。 2.编制依据 本方案按照中华人民共和国电力行业标准DL/T650-1998《大型汽轮机自并励静止励磁系统技术条件》有关要求编制。 3. 组织措施 为保证试验顺利进行,成立领导小组和试验小组。人员组成如下: 3.1 现场试验领导小组 组长:

副组长: 成员: 3.2 现场试验专业组 组长: 成员: 4.发电机励磁系统简介 XX电厂2台发电机的励磁系统为机端自并励方式,励磁调节器和整流装置由英国Rools- Royce 公司制造,是三模冗余静态励磁系统。自动调节方式为PID+PSS。PSS输入信号为△P有功信号。 4.1主要设备参数 4.1 .1发电机参数 制造厂:东方电机厂型号:QFSN-300-2-20 额定功率: 300MW 额定电压: 20kV 额定电流: 10190A 额定功率因数:0.85 额定励磁电压:463V 实测值 额定励磁电流:2203 A 实测值 空载励磁电压: 169V 实测值 空载励磁电流: 815A 实测值 最大励磁电压: 489V 实测值 励磁绕组电阻 ( 15°c): 0.1561Ω 纵轴同步电抗Xd(非饱和值)199.7% 纵轴瞬变(暂态)电抗Xd’(非饱和值/饱和值)26.61%/29.57% 纵轴超瞬变(次暂态)电抗Xd”(非饱和值/饱和值)16.18%/17.59% 横轴电抗Xq(非饱和值) 193%

电力系统暂态稳定性

10 电力系统暂态稳定性 10. 1习题 1) 什么是电力系统暂态稳定性? 2)电力系统大扰动产生的原因是什么? 3)为什么正常、短路、短路切除三种状态各自的总电抗不同?对单机无限大供电系统为什么Ⅰ<Ⅲ<Ⅱ?PⅠ·max>PⅢ·max>PⅡ·max? 4)短路情况下Ⅱ如何计算? 5)什么是加速面积?什么是减速面积?什么是等面积定则? 6)单机无限大供电系统,设系统侧发生三相短路,试问短路时功率极限是多少? 7)什么是极限切除角? 8)若系统发生不对称短路,短路切除后最大可能减速面积大于短路切除前的加速面积,系统能否暂态稳定?若最大可能减速面积小于加速面积发生什么不稳定? 9)分段法中t=0时和故障切除时过剩功率如何确定? 10)写出分段法的计算步骤。 11)为什么说欧拉法是折线法?每段折线如何确定? 12)改进欧拉法在何处做了改进? 13)写出改进欧拉法的计算步骤。 14)用图解说明单相自动重合闸为什么可以提高暂态稳定性? 15)试说明快关汽轮机汽门、连锁切机有何相同与不同? 16)提高电力系统暂态稳定的具体措施有哪些种?原理是什么? 17)提高电力系统暂态稳定的措施在正常运行时是否投入运行? 18)解列点的选择应满足什么要求? 19)异步运行时为什么系统需要有充足的无功功率?什么是振荡中心? 设已知系统短路前、短路时、短路切除后三种情况的以标幺值表示的功角特性曲线:=2、=0.5、=1.5及输入发电机的机械功率=1。 求极限切除角。 20)供电系统如图10- 1所示,各元件参数: 发电机G:P N=240MW,U N=10.5kV,,,X2=0.44,T J =6S,发 电机G电势以E‘表示;变器T1的S N为300MVA,U N为10.5/242kV,X T1=0.14 T2的S N为 280MVA,U N为220/121kV,X T2=0.14电力线路长l=230km每回单位长度的正序电抗X1= 0.42Ω/km,零序电抗X0=4X1。 P=220MW

电力系统稳定器(pps)

英文:power system stabilization 电力系统稳定器(pps)就是为抑制低频振荡而研究的一种附加励磁控制技术。它在励磁电压调节器中,引入领先于轴速度的附加信号,产生一个正阻尼转矩,去克服原励磁电压调节器中产生的负阻尼转矩作用。用于提高电力系统阻尼、解决低频振荡问题,是提高电力系统动态稳定性的重要措施之一。它抽取与此振荡有关的信号,如发电机有功功率、转速或频率,加以处理,产生的附加信号加到励磁调节器中,使发电机产生阻尼低频振荡的附加力矩。 由试验可见: (1)励磁控制系统滞后特性基本分为两种:自并励系统(约-40°~90°):励磁机励磁系统(约-40°~-150°)。 (2)同一频率角度范围,表示同一发电机励磁系统在不同的系统工况和发电机工况下有不同的滞后角度,从几度到十几度,其中也包含了测量误差。 (3)温州电厂与台州电厂虽采用同一励磁控制系统,因转子电压反馈和调节器放大倍数不同,励磁系统滞后特性发生明显变化。 (4)励磁调节器的PSS迭加点位置不同,励磁控制系统滞后特性也不同。 2.有补偿频率特性的测量 有补偿频率特性,由无补偿频率特性与PSS单元相频特性相加得到,用来反映经PSS相位补偿后的附加力矩相位。DL/T650-1998《大型汽轮发电机自并励静止励磁系统技术条件》提山,有补偿频率特性在该电力系统低频振荡区内要满足-80°~-135°的要求,此角度以机械功率方向为零度。根据试验的方便情况,可采用两种方法:(1)断开PSS信号输入端,在PSS输入端加噪声信号,测量机端电压相对PSS输入信号的相角:(2)PSS环节的相角加上励磁控制系统滞后相角。 由试验可见: (1)通过调整PSS参数,可以使有补偿频率特性在较宽的频率范围内满足要求。 (2)ALSTHOM机组PSS低频段相位补偿特性未能满足要求。 (3)北仑电厂1号机PSS在小于0.4Hz范围增大隔直环节时间常数,使之低频段有良好的相位补偿特性,而且提升放大倍数(0.2Hz处提高1.76倍)。 3.PSS放大倍数和输出限幅 PSS放大倍数都以标幺值表示。输入值按PSS信号是哪一种,取机组额定有功功率、额定转速或额定频率为基值。输出值以PSS迭加点额定机端电压为基值。当PSS迭加点与电压迭加点不一致时,要按低频振荡频率下的环节放大倍数折算额定机端电压值。因PSS中的超前滞后环节影响放大倍数,本文以1Hz下的放大倍数进行比较. 4.PSS开环频率特性 开环频率特性用于测量增益裕量及相角裕量,判断闭环控制系统的稳定性,判断PSS放大倍数是否适当。可在PSS输入端或PSS输出端解开闭环进行测量。 由表5可见,除台州电厂7、8号机和北仑电厂2号机以外,开环频率特性的增益裕量及相角裕量均符合DL/T650-1998标准的要求,增益裕量大于6dB、相角裕量大于40°。 5.负载电压给定阶跃响应 负载电压给定阶跃响应作为为验证试验项目,可以直接观察PSS投入引起地区内与本机有关振荡模式阻尼比的提高,从表6中可见振荡频率均在1.18Hz以上。阶跃响应不能检验区域间与本机有关振荡模式阻尼比的提高。试验结果表明,以上机组PSS的作用均有效。有的机组对负载电压阶跃反映迟钝,以至难以测量,这可能是调节器的一些环节滤去了阶跃信

pss电力系统稳定器)模型

按照标准技术语言:电力系统稳定器Power System Stabilizer简称PSS,是励磁调节器通过一种附加控制功能,借助于AVR控制励磁输出,阻尼同步电机的低频功率振荡,用以改善电力系统稳定性能的一个或一组单元。 按照陈小明理解的技术语言:PSS是励磁调节器自动通道(自动电压调节器AVR)的附加环节或者附加装置,以低频0.2~2.5Hz的有功功率摆动作为输入,经过放大和调整相位后叠加在AVR输出上,产生同发电机阻尼绕组一样效果的正阻尼,抵消单纯电压偏差调节的AVR所产生的负阻尼,防止电力系统出现低频振荡,提高电力系统动态稳定性。 显然,PSS只有一个叠加到AVR的输出量,至于输入量最少一个。按照PSS输入的不同可以划分出不同的PSS模型。按照其他方式划分,又有其他模型。无论什么理论,只要一说到分类,张三李四王麻子各有各的爱好,分类也就越来越多。幸好PSS源于美国,且数学模型研究不是中国人的特长,因此,PSS模型的划分还是比较简单的,美国电气和电子工程师协会(IEEE)1992年将PSS划分PSS1A型(单输入)和PSS2A型(双输入),2005年版的IEEE为将PSS划分PSS1A(单输入Single-input PSS)、PSS2B(双输入Dual-input PSS)、PSS3B(双输入Dual-input PSS)、PSS4B(多频段Multi-band PSS),这是目前PSS模型最权威的分类,也是学习和交流PSS技术的重要依据。 PSS1A,单输入PSS,两级超前滞后环节。最早的输入量是频率,现在普遍采用功率P,利用隔直环节得到ΔP,再对ΔP进行超前滞后处理,以达到抑制低频振荡之目的。PSS1A主要适用于火电厂,因为火电机组调负荷很慢,

电力系统暂态分析要点总结

第一章 1.短路的概念和类型 概念:指一切不正常的相与相与地(对于中性点接地的系统)之间发生通路或同一绕组之间的匝间非 正常连通的情况。类型:三相短路、两相短路、两相接地短路、单相接地短路。 2.电力系统发生短路故障会对系统本身造成什么危害? 1)短路故障是短路点附近的支路中出现比正常值大许多倍的电流,由于短路电流的电动力效应,导体间将产生巨大的机械应力,可能破坏导体和它们的支架。 2)比设备额定电流大许多倍的短路电流通过设备,会使设备发热增加,可能烧毁设备。 3)短路电流在短路点可能产生电弧,引发火灾。 4)短路时系统电压大幅度下降,对用户造成很大影响。严重时会导致系统电压崩溃,造成电网大面积停电。 5)短路故障可能造成并列运行的发电机失去同步,破坏系统稳定,造成大面积停电。这是短路故障的最严重后果。 6)发生不对称短路时,不平衡电流可能产生较大的磁通在邻近的电路内感应出很大的电动势,干扰附近的通信线路和信号系统,危及设备和人身安全。 7)不对称短路产生的负序电流和电压会对发电机造成损坏,破坏发电机的安全,缩短发电机的使用寿命。3.同步发电机三相短路时为什么进行派克变换? 目的是将同步发电机的变系数微分方程式转化为常系数微分方程式,从而为研究同步发电机的运行问 题提供了一种简捷、准确的方法。 4.同步发电机磁链方程的电感系数矩阵中为什么会有变数、常数或零? 变数:因为定子绕组的自感系数、互感系数以及定子绕组和转子绕组间的互感系数与定子绕组和转子绕 组的相对位置θ角有关,变化周期前两者为π,后者为2π。根本原因是在静止的定子空间有旋转的转子。 常数:转子绕组随转子旋转,对于其电流产生的磁通,其此路的磁阻总不便,因此转子各绕组自感系数 为常数,同理转子各绕组间的互感系数也为常数,两个直轴绕组互感系数也为常数。 零:因为无论转子的位置如何,转子的直轴绕组和交轴绕组永远互相垂直,因此它们之间的互感系数 为零。 5.同步发电机三相短路后,短路电流包含哪些分量?各按什么时间常数衰减? 1)定子短路电流包含二倍频分量、直流分量和交流分量;励磁绕组的包含交流分量和直流分量;D轴 阻尼绕组的包含交流分量和直流分量;Q轴阻尼包含交流分量。 2)定子绕组基频交流分量、励磁绕组直流分量和阻尼绕组直流分量在次暂态时按Td’’和Tq’’衰减,在暂 态情况下按Td’衰减;定子绕组的直流分量、二倍频分量和励磁绕组交流分量按Ta衰减。 6.用物理过程分析同步发电机三相短路后各绕组短路电流包含哪些分量? 短路前,定子电流为iwo,转子电流为ifo;三相短路时,定子由于外接阻抗减小,引起一个强制交流 分量△iw,定子绕组电流增大,相应电枢反应磁链增大。励磁绕组为保持磁链守恒,将增加一个直流分 量△ifɑ,其切割定子使定子产生交流分量△iw’。 定子绕组中iwo,iw,iw’不能守恒,所以必产生一个脉动直流,可将其分解为恒定直流分量和二倍频 交流分量。由于励磁绕组切割定子绕组磁场,因此励磁绕组与定子中脉动直流感应出一个交变电流△ifw。 又因为D轴阻尼与励磁回路平行,所以同样含有交流分量和直流分量。 由于假设定子回路电阻为零,定子基频交流只有直轴方向电枢反应因此Q轴绕组中只有基频交流分量 而没有直流分量。 第四章 1.额定转速同为3000转/分的汽轮发电机和水轮发电机,哪一个启动比较快? 水轮发电机启动较快。 2.水轮机的转动惯量比汽轮机大好几倍,为什么惯性时间常数Tj比汽轮机小? 水轮机极对数多于汽轮机的极对数,由n=60f/p得水轮机的额定转速小于汽轮机的转速,又因为惯性时 间常数为Tj=2.74GD2n2/(1000S B),所以T正比于n2,所以水轮机的Tj比汽轮机小。 3.什么是电力系统稳定性?什么是电力系统静态稳定、暂态稳定?区别? (1)电力系统稳定性:指当电力系统在某一运行状态下突然受到某种干扰后,能否经过一定时间后又

电力系统稳定器PSS模型介绍

电力系统稳定器PSS模型简介 长江电力溪洛渡电厂陈小明 按照标准技术语言,电力系统稳定器Power system stabilizer 简称PSS,是励磁调节器通过一种附加控制功能,借助于A VR控制励磁输出,阻尼同步电机的低频功率振荡,用以改善电力系统稳定性能的一个或一组单元。 按照我理解后的技术语言,PSS是励磁调节器自动通道(自动电压调节器AVR)的附加环节或者附加装置,以低频0.2~2.5Hz的有功功率摆动作为输入,经过放大和调整相位后叠加在AVR输出上,产生同发电机阻尼绕组一样效果的正阻尼,抵消单纯电压偏差调节的AVR 所产生的负阻尼,防止电力系统出现低频振荡,提高电力系统动态稳定性。 显然,PSS只有一个输出叠加到AVR调节量上,PSS的输入量至少有一个。按照PSS输入的不同可以划分出不同的PSS模型。按照其他方式划分,又有其他模型。无论什么理论,只要一说到分类,张三李四王麻子各有各的爱好,分类也就越来越多。幸好PSS源于美国,且数学模型研究不是中国人的特长,因此,PSS模型的划分还是比较简单的,美国电气和电子工程师协会(IEEE)1992年将PSS划分PSS1A型(单输入)和PSS2A型(双输入),2005年版的IEEE为将PSS划分PSS1A(单输入Single-input PSS)、PSS2B(双输入Dual-input PSS)、PSS3B (双输入Dual-input PSS)、PSS4B(多频段Multi-band PSS),这是目前PSS模型最权威的分类,也是学习和交流PSS技术的重要依据。 PSS1A,单输入PSS,两级超前滞后环节。最早的输入量是频率,

电力系统稳定器PSS现场整定试验方案

电力系统稳定器P S S 现场整定试验方案公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

电力系统稳定器(PSS)现场整定试验方案 1.试验目的: 随着电力系统规模的不断扩大和快速励磁系统的采用,电力系统低频振荡的问题越来越突出,将系统中有关发电机的电力系统稳定器(PSS)投入可以明显改善系统的阻尼情况。 2.试验条件: 2.1 试验机组和励磁系统处于完好状态,调节器除PSS外所有附加限制和保护功能投入运行。 2.2 与试验2与试验有关的继电保护投入运行。 2.3调节器厂家技术人员确认设备符合试验要求。 2.4试验人员熟悉相关试验方法和仪器,检查试验仪器工作正常。 2.5试验时,发电机保持有功以上,无功在以下。 2.6同厂同母线其他机组PSS退出运行,机组AGC退出运行。 3.试验接线: 3.1 将发电机PI三相电压信号,A、C两相1将发电机PI三相电压信号,A、C两相电流信号以及发电机转子电压信号接入WFLC录波仪,试验时记录发电机的电压,有功功率和转子电压信号,对于交流励磁系统,还应将励磁机电压信号接入WFLC录波仪。 将动态信号分析仪的白噪声信号接入调节器的TEST输入端子。 4.试验目的: 4.1 系统滞后特性测量 PSS退出运行,在PSS输出信号迭加点(TEST端子)输入白噪声信号,从零逐步增加白噪声信号的电平至发电机无功功率及发电机机端电压有明显变化,用动态信号分析仪测量发电机电压对于PSS输出信号迭加点的相频特性既励磁系统滞后特性。 注意:试验端子开路有可能造成发电机强励或失磁,要保证在迭加的信号被屏蔽的情况下进行接线或拆线。 4.2 PSS超前滞后参数整定 根据励磁系统滞后特性和PSS的传递函数计算PSS相位补偿特性和PSS 的参数。 4.3 有补偿特性试验 在PSS投入运行的情况下,在PSS的信号输入端输入白噪声信号,用动态信号分析仪测量发电机电压对于PSS信号输入点的相频特性,校验PSS补偿特性的正确性。 4.4 PSS临界增益测量 逐步增加PSS的增益,观察发电机转子电压和无功功率的波动情况,确定PSS的临界增益。 4.5 PSS增益整定 PSS的实际增益取临界增益的20%——30%。

PSS(电力系统稳定器)模型

按照标准技术语言:电力系统稳定器Power System Stabilizer简称PSS,是励磁调节器通过一种附加控制功能,借助于AVR控制励磁输出,阻尼同步电机的低频功率振荡,用以改善电力系统稳定性能的一个或一组单元。 按照陈小明理解的技术语言:PSS是励磁调节器自动通道(自动电压调节器AVR)的附加环节或者附加装置,以低频0.2~2。5Hz的有功功率摆动作为输入,经过放大和调整相位后叠加在AVR输出上,产生同发电机阻尼绕组一样效果的正阻尼,抵消单纯电压偏差调节的AVR所产生的负阻尼,防止电力系统出现低频振荡,提高电力系统动态稳定性。 显然,PSS只有一个叠加到AVR的输出量,至于输入量最少一个.按照PSS输入的不同可以划分出不同的PSS模型。按照其他方式划分,又有其他模型。无论什么理论,只要一说到分类,张三李四王麻子各有各的爱好,分类也就越来越多.幸好PSS源于美国,且数学模型研究不是中国人的特长,因此,PSS模型的划分还是比较简单的,美国电气和电子工程师协会(IEEE)1992年将PSS划分PSS1A型(单输入)和PSS2A型(双输入),2005年版的IEEE为将PSS划分PSS1A(单输入Single-input PSS)、PSS2B(双输入Dual-input PSS)、PSS3B(双输入Dual-inputPSS)、PSS4B(多频段Multi—band PSS),这是目前PSS模型最权威的分类,也是学习和交流PSS技术的重要依据。 PSS1A,单输入PSS,两级超前滞后环节。最早的输入量是频率,现在普遍采用功率P,利用隔直环节得到ΔP,再对ΔP进行超前滞后处理,以达到抑制低频振荡之目的.PSS1A主要适用于火电厂,因为火电机组调负

电力系统稳定器PSS简介

电力系统稳定器PSS简介 高级工程师许刚 一.低频振荡 由于电力系统规模扩大,大型发电机普遍采用了集成电路和可控硅组成的励磁调节器,使自动励磁调节器(AER)的时间常数从过去的几秒钟缩短到几十毫秒。快速励磁系统(晶闸管直接励磁或高起始响应励磁系统)的广泛采用,更使得励磁系统时间常数大为减少,从而降低了电力系统的阻尼。对联系较弱的电网系统影响较大,使系统中经常出现弱阻尼,甚至是负阻尼。因此,许多电力系统出现了每分钟几个至几十个周波的频率很低的自发性系统振荡。在这种情况下,当振荡严重时会破坏互联系统之间的并列运行,造成大面积停电,这种现象称为低频振荡。 从稳定性来看,电力系统振荡频率发生在0.2-2.5H Z范围内,它主要反映在各发电机的转子之间在输电线路交换功率过程中有相对运动形成振荡模。另外,某台发电机经过弱联系的辐射式输电线路连接到一个相对大的电力系统时所出现的振荡,被称为地区型振荡,其频率在0.8-1.8H Z范围内。当联络线一端的机组对另一端的机组产生相对摇摆,这种振荡型式被称为联络线型或区间振荡,其振荡频率在0.2-0.5H Z。如果在同一发电厂内的机组间发生振荡,这种振荡被称为内部振荡,其振荡频率在1.5-2.5H Z范围内。 川渝电网和华中电网实现联网的要求和联网稳定计算表明,联网后,系统中存在0.2Hz左右甚至更低频率的低频振荡。因此,为保证电网的安全,川渝电网和华中电网的主要发电机的励磁调节器应投入电力系统稳定器(PSS)。这些PSS除能抑制本机型低频振荡外,还应能有效地抑制区域型低频振荡,即PSS对于在0.1Hz-2.0Hz之内的振荡都有抑制作用。 黄桷庄电厂有两台200MW汽轮发电机组(#21、#22机),均采用南京南自科技发展公司生产的WKKL-1型励磁调节器。自带的PSS采用发电机电功率作为输入信号,均采用三机有刷励磁方式。由于联网运行时此两台机组对系统动态稳定影响较大,将PSS投入运行,以抑制可能出现的电力系统低频振荡,提高电力系统稳定性。 二.电力系统稳定器PSS模型 当采用快速响应的可控硅励磁调节器,输入信号仅用发电机的端电压时,会合使电力系统产生弱阻尼,这可能会引起电力系统增幅振荡的不稳定性。若在励磁控制系统中引入其他附加信号,可以增强电力系统的阻尼。该信号是由电力系统稳定器PSS(Power System Stabilizer)提供的。实际运行表明,它能有效克服多机间和互联系统间由于阻尼不足,甚至是负阻尼而产生的低频振荡。电

电力系统暂态稳定性研究

摘要 随着电力工业的迅速发展,电力系统的规模日益庞大和复杂,出现的各种故障,会给发电厂以及用户和电厂内的多种动力设备的安全带来威胁,并有可能导致电力系统事故的扩大,从技术和安全上考虑直接进行电力试验可能性很小,迫切要求运用电力仿真来解决这些问题,依据电网用电供电系统电路模型要求,因此,论文利用MATLAB的动态仿真软件Simulink搭建了单机—无穷大电力系统的仿真模型,能够满足电网可能遇到的多种故障方面运行的需要。 论文以MATLAB R2009b电力系统工具箱为平台,通过SimPowerSyetem 搭建了电力系统运行中常见的单机—无穷大系统模型,设计得到了在该系统发生各种短路接地故障并故障切除的仿真结果。 本文做的主要工作有: (1)Simulink下单机—无穷大仿真系统的搭建 (2)系统故障仿真测试分析 通过实例说明,若将该方法应用到电力系统短路故障的诊断中,快速实现故障的自动诊断、检测,对于提高电力系统的稳定性具有十分重要的意义。 关键词电力系统;暂态稳定;MATLAB;单机—无穷大;

Abstract With the rapid development of power industry, the scale of power system is increasingly large and complex, all kinds of fault, to power plants and power plants and users in a variety of power equipment safety threat, and is likely to lead to the expansion of power system accident, from the technical and safety considering direct electricity experiment was carried out on the possibility is very small, urge electric power simulation are used to solve these problems, according to the power supply system of power grid power circuit model, as a result, paper use MATLAB dynamic simulation software Simulink has set up a simulation model for the single - infinite power system, can satisfy the needs of the running of a fault may encounter a variety of ways. Paper R2009b with MATLAB toolbox power system as a platform, through SimPowerSyetem set up power system in the operation of the common single - infinity system model, design the various kinds of short-circuit ground fault occurs in the system and simulation results of fault removed. The main work is : (1) Building this simulation system of single - infinite under Simulink (2) Fault simulation test analysis of system Through examples, if this method to the power system fault diagnosis, fast fault detection and diagnosis, automatic for improving the stability of power system has important significance. keywords:Single—infinite;SimPowerSyetem;Short circuit faults;Wavelet transform

相关主题