搜档网
当前位置:搜档网 › 通信网基本概念与主体结构(第二版)答案Ch8

通信网基本概念与主体结构(第二版)答案Ch8

通信网基本概念与主体结构(第二版)答案Ch8
通信网基本概念与主体结构(第二版)答案Ch8

Solutions to Chapter 8

8.1. The IP header checksum only verifies the integrity of IP header. Discuss the pros and cons of doing the checksum on the header part versus on the entire packet.

Solution:

Error checking in the header is more important because the packet is routed according to the header information. In addition, the delivery of the data at the destination to the higher layers also requires the header information. Thus error checking of the header protects against misdelivery of the information. Restricting the error checking to the header also simplifies the implementation in the nodes, requires less checksum bits, and prevents unnecessary packet discard. Some higher layers can tolerate some data errors, and higher layers also have the option of performing retransmission.

8.2. Identify the address class of the following IP addresses: 200.58.20.165; 128.167.23.20; 16.196.128.50; 50.156.10.10; 250.10.24.96.

Solution:

An IP address has a fixed length of 32 bits, where the most significant bits identify the particular class. Therefore, to identify the address class we need to convert the dotted-decimal notation back into its binary counterpart, and compare the binary notation to the class prefixes shown in Figure

8.5 in the text. (Recall that the dotted-decimal notation was devised to communicate addresses

more readily to other people. In this notation, the 32 bits are divided into four groups of 8 bits – separated by periods – and then converted to their decimal counterpart.) The first few bits (shown in red) of the address can be used to determine the class.

27 26252423222120

64 32 16 8 4 2 1

128

200.58.20.165

11001000.00111010.00010100.10100101

Class C

128.167.23.20

10000000.10100111.00010111.00010100

Class B

16.196.128.50

00010000.11000100.10000000.00110010

Class A

150.156.10.10

10010110.10011100.00001010.00001010

Class B

250.10.24.96

11111010.00001010.00011000.01100000

Class E

8.3. Convert the IP addresses in Problem 8.2 to their binary representation.

Solution:

27 26252423222120

64 32 16 8 4 2 1

128

200.58.20.165

11001000.00111010.00010100.10100101

128.167.23.20

10000000.10100111.00010111.00010100

16.196.128.50

00010000.11000100.10000000.00110010

150.156.10.10

10010110.10011100.00001010.00001010

250.10.24.96

11111010.00001010.00011000.01100000

8.4. Identify the range of IPv4 addresses spanned by Class A, Class B, and Class C.

Solution:

The range of IPv4 addresses spanned by each class is:

Class A: 1.0.0.0 to 127.255.255.255

Class B: 128.0.0.0 to 191.255.255.255

Class C: 192.0.0.0 to 223.255.255.255

8.5. What are all the possible subnet masks for the Class C address space? List all the subnet masks in dotted-decimal notation, and determine the number of hosts per subnet supported for each subnet mask.

Solution:

255.255.255.128 supports 126 hosts (not including the broadcast address)

255.255.255.192 supports 62 hosts

255.255.255.224 supports 30 hosts

255.255.255.240 supports 14 hosts

255.255.255.248 supports 7 hosts

255.255.255.252 supports 3 hosts

255.255.255.254 and 255.255.255.255 are not practically usable.

8.6. A host in an organization has an IP address 150.32.64.34 and a subnet mask 255.255.240.0. What is the address of this subnet? What is the range of IP addresses that a host can have on this subnet?

Solution:

Address: 10010110 00100000 01000000 00100010

Mask: 11111111 11111111 11110000 00000000

Subnet: 10010110 00100000 01000000 00000000

Host:

From: 10010110 00100000 01000000 00000001

To: 10010110 00100000 01001111 11111110

8.7. A university has 150 LANs with 100 hosts in each LAN.

Solutions follow questions:

(a)Suppose the university has one Class B address. Design an appropriate subnet addressing scheme.

A Class

B address has 14 bits for the network ID and 16 bits for the host ID. To design an

appropriate subnet addressing scheme we need to decide how many bits to allocate to the host ID versus the subnet ID. We can choose either 7 bits or 8 bits to identify the hosts.

If we allocate 8 bits for to identify the host, as shown below, then there are sufficient subnet-id bits to cover up to 28=256 LANs and enough host-id bits to cover up to 256 hosts for each LAN. The subnet mask in this case is 255.255.255.0

Subnet-id Host-id

1 0Network-id

0 1 15 16 23 24 31

Subnet mask: 255.255.255.0

If we allocate 7 bits for to identify the host, as shown below, then there are sufficient subnet-id bits to cover up to 29=512 LANs and enough host-id bits to cover up to 128 hosts for each LAN. The subnet mask in this case is 255.255.255.128.

The choice between 7 or 8 bits to represent the hosts depends on which is likely to grow more, the number of subnets or the number of hosts in a LAN. Alternatively a variable-length prefix scheme using 7-bit host addresses, and grouping these form larger subnets provides greater flexibility in accommodating future changes.

(b)Design an appropriate CIDR addressing scheme.

CIDR addressing scheme involves devising a prefix length that indicates the length of the network mask. In this case, 8 bits are required to identify each LAN (since 127 < 150 < 255) and 7 bits are required to identify each host in each LAN (since 63 < 100 < 127). Therefore a CIDR address would use a 17-bit prefix, and thus have an address of the form address/17.

8.8. A small organization has a Class C address for seven networks each with 24 hosts. What is an appropriate subnet mask?

Solution:

A Class C address requires 21 bits for its network ID, leaving 8 bits for the host ID and subnet ID to

share. One possible scheme would assign 4 bits to the host and 4 to the subnet ID, as shown below. The number of bits assigned to the host can be increased to 5 as well.

Network-id Subnet-id Host-id

0 23 24 27 28 31

Subnet mask: 255.255.255.224

8.9. A packet with IP address 150.100.12.55 arrives at router R1 in Figure 8.8. Explain how the packet is delivered to the appropriate host.

Solution:

The packet with IP address 150.100.12.55 arrives from the outside network. R1 has to know the next-hop router or host to send the packet to. The address corresponds to the binary string

10010110.01100100.00001100.00110111. R1 knows that a 9 bit subnet field is in use so it applies the following mask to extract the subnetwork address from the IP address.

11111111.11111111.11111111.10000000

The resulting IP address is 10010110.01100100.00001100.00000000 and corresponds

150.100.12.0. This indicates that the host is in subnet 150.100.12.0, so the router transmits the IP packet on this (attached) LAN.

8.10. In Figure 8.8 assign a physical layer address 1, 2, … to each physical interface starting from the top row, moving right to left, and then moving down. Suppose H4 sends an IP packet to H1. Show the sequence of IP packets and Ethernet frames exchanged to accomplish this transfer.

Solution:

1. Send IP packet from H4 to R1:

Source address 150.100.12.55 to destination IP address 150.100.12.176

Source Ethernet 4 to Receive Ethernet 6

2. Forward IP packet from R1 to H1

Source address 150.100.12.55 to destination IP address 150.100.12.176

Source Ethernet 3 to Receive Ethernet 2

8.11. ARP is used to find the MAC address that corresponds to an IP address; RARP is used to find the IP address that corresponds to a MAC address. True or false?

Solution:

True, ARP is used to find the MAC address for a given IP address.

True, Reverse ARP is used by a device to find its IP address given its MAC address.

8.12. Perform CIDR aggregation on the following /24 IP addresses: 128.56.24.0/24; 128.56.25.0./24;

128.56.26.0/24; 128.56.27.0/24.

Solution:

128.56.24.0/22 = 10000000.00111000.00011000.00000000

128.56.25.0/22 = 10000000.00111000.00011001.00000000

128.56.26.0/22 = 10000000.00111000.00011010.00000000

128.56.27.0/22 = 10000000.00111000.00011011.00000000

mask = 11111111.11111111.11111100.00000000

The resulting prefix is 128.56.24.0/22.

8.13. Perform CIDR aggregation on the following /24 IP addresses: 200.96.86.0/24; 200.96.87.0/24;

200.96.88.0/24; 200.96.89.0/24.

Solution:

200.96.86.0/20 = 11001000.01100000.01010110.00000000

200.96.87.0/20 = 11001000.01100000.01010111.00000000

200.96.88.0/20 = 11001000.01100000.01011000.00000000

200.96.89.0/20 = 11001000.01100000.01011001.00000000

mask = 11111111.11111111.11110000.00000000

The resulting prefix is 200.96.80.0/20.

8.14. The following are estimates of the population of major regions of the world: Africa 900 million; South America 500 million; North America 400 million; East Asia 1500 million; South and Central Asia 2200 million; Russia 200 million; Europe 500 million.

Solutions follow questions:

(a)Suppose each region is to be assigned 100 IP addresses per person. Is this possible? If not, how many

addresses can be assigned per person? Repeat for IPv6.

The total number of IPv4 addresses is: 232 which is approximately 4.29 billion. The above world population estimate totals 6.2 billion, so it is not possible to assign an individual address to each person. IPv6 is required to provide 100 addresses per person.

(b)Design an appropriate CIDR scheme to provide the addressing in part (a).

bits

128

(millions) (millions) IPV6

Regions Population IP/Person Net-id Host-id

Africa 900

37

91

90000

36

50000

92

500

America

South

92

36

40000

America 400

North

90

150000

38

East

Asia

1500

South C. Asia 2200 220000 90 38

20000

35

93

200

Russia

92

36

500

Europe

50000

8.15. Suppose four major ISPs were to emerge with points of presence in every major region of the world. How should a CIDR scheme treat these ISPs in relation to addressing for each major region?

Solution:

The networks of these ISPs will span across national and geographical boundaries and will connected in a non-hierarchical manner. These large global ISPs constitute major transit routing domains, so it makes sense to assign them blocks of unique IP addresses and to require that domains attached to them should begin with the transit domain’s prefix. The blocks of addresses should be managed so that fragmentation of the CIDR block does not take place. For example, when a customer of the ISP changes to another ISP, the customer is required to return the block of addresses. This policy enables CIDR to be effective in controlling the size of routing tables.

8.16. Discuss the difficulties with using actual time in the TTL field.

Solution:

Unlike the number of hops, which is predictable if a packet is routed correctly, the actual time that it takes to go through the route is not predictable. Therefore the amount of time that a packet stays in the network is not necessarily an indication of misrouting. To allow an upper limit for delay across the network TTL field would become a very large number. It is also more complex to track and update the TTL according to actual time as the packet traverses the network.

8.17. Lookup the netstat command in the manual for your system. Use the command to display the routing table in your host. Try the different command options.

Solution:

The exact command depends on your computing environment. In a DOS (Windows) environment, the command may be netstat -r. In a SUN/UNIX environment, the command may be netstat -a. See the answer to problem 45 in Chapter 1 for an example routing table. The figure below shows a screen capture of the parameters for the command in Windows XP.

8.18. Suppose a router receives an IP packet containing 600 data bytes and has to forward the packet to a network with maximum transmission unit of 200 bytes. Assume that the IP header is 20 bytes long. Show the fragments that the router creates and specify the relevant values in each fragment header (i.e., total length, fragment offset, and more bit).

Solution:

Given:

IP packet = 600 data bytes

MTU = 200 bytes

IP header = 20 header bytes

Maximum possible data length per fragment = MTU – IP header = 200 – 20 = 180 bytes.

The data length of each fragment must be a multiple of eight bytes; therefore the maximum number of data bytes that can be carried per fragment is 22*8=176.

The data packet must be divided into 4 frames, as shown by the following calculations:

176 + 176 + 176 + 72 = 600

20 + 20 + 20 + 20

196 196 196 92

The sequence of frames and packet headers is shown below:

Total length Id Mf Fragment Offset

620

x 0 0

Packet

Original

x 1 0

Fragment 1 196

196

x 1 22

2

Fragment

x 1 44

196

Fragment

3

x 0 66

92

Fragment

4

8.19. Design an algorithm for reassembling fragments of an IP packet at the destination IP.

Solution:

I. Set data = Null

II. Verify that all fragments for id = x have arrived

III. Sort fragments in ascending order based on fragment offset

IV. For each fragment starting with fragment offset = 0, move data = data + data-in-fragment I

V. Data contains the reassembled information

8.20. Does it make sense to do reassembly at intermediate routers? Explain.

Solution:

No, because the packet may be de-fragmented again, and all the time required to wait for all fragments and to reassemble the packet will be wasted. Also it is not guaranteed that all fragments go through the same path and arrive at the same node in a datagram network such as IP.

8.21. Describe the implementation issues of IPv4 packet processing.

Solution:

The router performs error checking: the header checksum is computed; the version and total length fields are checked for valid values. The router finds the next-hop by consulting its routing table. The

router then updates various fields, including the TTL and checksum fields. The packet is then forwarded.

8.22. Use Ethereal to capture ARP packets to find the MAC addresses in a LAN.

Solution:

The following screen captures show and ARP request and the corresponding ARP reply.

8.23. Abbreviate the following IPv6 addresses:

Solutions follow questions:

(a)0000:0000:0F53:6382:AB00:67DB:BB27:7332

::F53:6382:AB00:67DB:BB27:7332

(b)0000:0000:0000:0000:0000:0000:004D:ABCD

::4D:ABCD

(c)0000:0000:0000:AF36:7328:0000:87AA:0398

::AF36:7328:0:87AA:398

(d)2819:00AF:0000:0000:0000:0035:0CB2:B271

2819:AF::35:CB2:B271

8.24. What is the efficiency of IPv6 packets that carry 10 ms of 64 kbps voice? Repeat if an IPv6 packet carries 1 frame of 4 Mbps MPEG2 video, assuming a frame rate of 30 frames/second.

Solution:

10 ms of 64 kbps voice = 10x10-3 x 64x103 = 640 bits = 80 bytes

Header = 40 bytes; Efficiency = 80/(80 +40) = 2/3 = 0.6666 = 66.7%.

1 frame of video is: 4x106/30 = 133,333 bits = 16666 bytes

Efficiency = 16666/(16666+40) = 99.76%.

8.25. Why does IPv6 allow fragmentation at the source only?

Solution:

The task of fragmenting a packet uses processing resources in a router. By requiring that all fragmentation be done at the source, routers are relieved of the fragmentation processing load, and hence they can operate faster on the basic routing task.

8.26. Assuming the population estimates in problem 8.14, how many IP addresses does IPv6 provide per capita?

Solution:

Based on the estimates in problem 10, there are 6,200 x 106 humans which in turn means

5.4 x 1028 IPv6 addresses per capita.

8.27. Suppose that IPv6 is used over a noisy wireless link. What is the effect of not having header error checking?

Solution:

The transmission over the noisy wireless link will introduce errors in the transmitted frames. If the frames do not contain error-checking, then assuming the frame is recognizable, erroneous packets may be passed to the router and unpredictable behavior may ensue. However, error checking (and retransmission) is included in most noisy wireless links; thus the effect of transmission errors is to trigger retransmission of frames in the link layer. Only packets that arrive in frames that pass error-checking are transferred to the IP layer.

8.28. Explain how the use of hierarchy enhances scalability in the following aspects of Internet:

Solutions follow questions:

(a)Domain name system

The use of hierarchy helps to speed up the translation of a domain name into an internet address.

The search starts from the highest level (for example, .com, .org, .net) and eventually down to the specific hostname information. The hierarchy also helps to organize the database architecture of the DNS. Moreover, with a hierarchical system, it is not necessary for each DNS server to contain every single domain name in the network. There are different levels of DNS servers each

containing the essential information for its own domain.

(b)IP addressing

Classful IP addressing uses hierarchy to arrange the address space in several discrete classes of addresses that correspond to networks of different sizes. CIDR IP addressing uses a variable-length prefix and a subnet mask to represent networks at a finer granularity of network size. In doing so, CIDR addressing increases the utilization of the address space. When combined with address allocation policies that aggregate routes, CIDR makes it possible to reduce the size of the routing tables required in router.

(c)OSPF routing

OSPF uses a two-level hierarchy that allows an AS to be partitioned into several groups called areas each interconnected by a central backbone area. This localization reduces the amount of routing information that needs to be maintained by individual routers. It also reduces the number of routing messages that need to be exchanged within the network.

(d)Interdomain routing

Interdomain routing uses the Border Gateway Protocol (BGP) to exchange routing information between AS’s that in turn allows IP packets to flow across the AS border. Thus interdomain routing enables the scalability of the overall Internet by enabling various AS’s to become interconnected. 8.29. The TCP in station A sends a SYN segment with ISN = 1000 and MSS = 1000 to station B. Station B replies with a SYN segment with ISN = 5000 and MSS = 500. Suppose station A has 10,000 bytes to transfer to B. Assume the link between stations A and B is 8 Mbps and the distance between them is 200 m. Neglect the header overheads to keep the arithmetic simple. Station B has 3000 bytes of buffer available to receive data from A. Sketch the sequence of segment exchanges, including the parameter values in the segment headers, and the state as a function of time at the two stations under the following situations:

Solutions follow questions:

(a)Station A sends its first data segment at t = 0. Station B has no data to send and sends an ACK segment

every other frame.

At a transmission rate of 8 megabits per second, a single byte has a transmission time of 8 bits / 8x106 bits/second = 1 microsecond. A distance of 200 meters in optical fiber has a propagation time of 200 meters / 2x108 meters/second = 1 microsecond. Therefore a segment of 500 bytes requires 501 microseconds to arrive completely at the receiver. In the following we also assume that the send window is replenished by the receiver as soon as it receives a segment. The time scale below is in microseconds.

TA 0

500 1000 1003 1500 2000 2003

9500

TB

501

1001

1002

1501

2001

2002 SYN, Seq_no=5000, ACK, Ack_no=1001, win=3000

Seq_no=1001, ACK, Ack_no=5001

Seq_no=1001, Ack_no=5001, DATA (500 bytes)

Seq_no=1501, Ack_no=5001, DATA (500 bytes)

Seq_no=5001, Ack_no= 2001, win=3000 Seq_no=2001, Ack_no=5001, DATA (500 bytes)

Seq_no=2501, Ack_no=5001, DATA (500 bytes)

Seq_no=5001, Ack_no=3001, ACK, win=3000

SYN, Seq_no=1000, MSS=1000

.

.

.

Seq_no=3001, Ack_no=5001, DATA (500 bytes)

FIN, Seq_no=11001, Ack_no=5001

ACK, Ack_no=11002

Seq_no=5001, Ack_no=11001, ACK, win=3000

Seq_no=9501, Ack_no=5001, DATA (500 bytes)

(b) Station A sends its first data segment at t=0. Station B has 6000 bytes to send, and it sends its first data

segment at t = 2 ms. The main feature of this problem is that the acknowledgments are delayed longer because of the long segments that are transmitted from B to A.

SN=1001, AN=5001, DATA (500 bytes) SN=1501, AN=5001, DATA (500 bytes)

SN=5001, AN= 2001SN=2001, AN=5001, DATA (500 bytes) SN=2501, AN=5001, DATA (500 bytes) SN=5001, AN=2501, DATA (1000 bytes).SN=7001, AN=4501, DATA (1000 bytes)

.

SN=5501, AN=7001, DATA (500 bytes) .SN=6001, AN=7001, DATA (500 bytes)

SN=3501, AN=5001, DATA (500 bytes) SN=4001, AN=5001, DATA (500 bytes) 2000

3001

1000

SN=3001, AN=5001, DATA (500 bytes) SN=5001, AN=6001, DATA (500 bytes)

4000

SN=6501, AN=8001, DATA (500 bytes)

SN=8001, AN=5501, DATA (1000 bytes)

5000

SN=4501, AN=6001, DATA (500 bytes)

SN=6001, AN=3502, DATA (1000 bytes)

TA

TB 501

1001

2000

3000

4000

5000

8.30. Suppose that the TCP in station A sends information to the TCP in station B over a two-hop path. The data link in the first hop operates at a speed of 8 Mbps, and the data link in the second hop operates at a speed of 400 kbps. Station B has a 3 kilobyte buffer to receive information from A, and the application at station B reads information from the receive buffer at a rate of 800 kbps. The TCP in station A sends a SYN segment with ISN = 1000 and MSS = 1000 to station B. Station B replies with a SYN segment with ISN = 5000 and MSS = 500. Suppose station A has 10,000 bytes to transfer to B. Neglect the header overheads to keep the arithmetic simple. Sketch the sequence of segment exchanges, including the parameter values in the segment headers, and the state as a function of time at the two stations. Show the contents of the buffers in the intermediate switch as well as at the source and destination stations.

Solution:

It takes 500 microseconds to transmit 500 bytes from station A to the intermediate station, but it takes 10 milliseconds to send the same 500 bytes from the intermediate station to station B.

Hence, segments will accumulate at the intermediate station until station A exhausts its send

window of 3000 bytes. Eventually station A will receive acknowledgments that allow it to resume transmission. Note that the rate at which acknowledgments are returned to station A is controlled by the rate at which segments arrive at station B from the bottleneck at the intermediate node.

t = 3.0 ms send window exhausted

1002, DATA (500 bytes) . . .

..

.

5001, ACK, 2501, WIN= 3000

5001, ACK, 1501, WIN= 3000t = 0.5 ms

t = 3.0 ms, buffer at intermediate station has almost 3000 bytes 5001, ACK, 2501, WIN= 3000 5001, DATA (500 bytes)

5001, ACK, 2001, WIN= 30004001, DATA (500 bytes)

4501, DATA (500 bytes)

5001, ACK, 1501, WIN= 3000 3001, DATA (500 bytes) 3501, DATA (500 bytes)

2001, DATA (500 bytes) 1501, DATA (500 bytes) 2501, DATA (500 bytes)

5001, ACK, 2001, WIN= 30001501, DATA (500 bytes) t = 21 ms, second ACK arrives

t = 11 ms, first ACK arrives

t = 0

t = 10.5 ms,

first segment arrives t = 15.5 ms, first segment removed

t = 20.5 ms, second segment arrives

t = 25.5 ms, second segment removed

t = 30.5 ms, second segment arrives

8.31. Suppose that the delays experienced by TCP segments traversing the network is equally likely to be any value in the interval [50 ms, 75 ms]. (See Equations 5.17 to 5.20.)

Solutions follow questions:

(a)Find the mean and standard deviation of the delay.

The delay lies between interval [50ms, 75ms] and is a uniform random variable. The mean is: E[X] = (50 + 75) / 2 = 62.5 ms.

The standard deviation of delay is:

STD[x] = VAR[x]1/2 = [(75 – 50)2 / 12]1/2 = 7.217

(b)Most computer languages have a function for generating uniformly distributed random variables. Use

this function in a short program to generate random times in the above interval. Also, calculate t RTT and

d RTT and compar

e to part (a).

See below for sample program written in C.

/* Communication Networks - Chapter 8 */

/* Question 25 (b) */

/* Description - Generate a random value */

/* between 50 to 75 ms. Calculate t_RTT */

/* and d_RTT */

/* The min, max and avg value of t_RTT */

/* and d_RTT are also recorded */

#include

#include

#include

int main (void)

{

int i;

float temp, t_n, t_rtt_new, t_rtt_old;

float d_rtt_new, d_rtt_old;

float t_rtt_min, t_rtt_sum, t_rtt_max;

float d_rtt_min, d_rtt_sum, d_rtt_max;

const float alpha = 0.875;

const float beta = 0.25;

srand (time(NULL));

t_rtt_old = 0;

d_rtt_old = 0;

t_rtt_sum = t_rtt_max = 0;

d_rtt_sum = d_rtt_max = 0;

t_rtt_min = d_rtt_min = 500;

for (i = 0; i < 500; i++)

{

/* Generate a random value between 0 to 1 */

temp = (float) rand() / RAND_MAX;

/* Scale the random value to fit between 50 to 75 */

t_n = temp * 25 + 50;

/* Calculate t_RTT and d_RTT */

t_rtt_new = (alpha * t_rtt_old) + ((1 - alpha) * t_n);

d_rtt_new = (beta * d_rtt_old) + ((1 - beta) * fabs (t_n - t_rtt_old));

if (t_rtt_new < t_rtt_min)

t_rtt_min = t_rtt_new;

if (t_rtt_new > t_rtt_max)

t_rtt_max = t_rtt_new;

if (d_rtt_new < d_rtt_min)

d_rtt_min = d_rtt_new;

if (d_rtt_new > d_rtt_max)

d_rtt_max = d_rtt_new;

t_rtt_sum += t_rtt_new;

d_rtt_sum += d_rtt_new;

printf ("t_RTT: %f d_RTT: %f\n", t_rtt_new, d_rtt_new);

t_rtt_old = t_rtt_new;

d_rtt_old = d_rtt_new;

}

printf ("t_RTT min: %f t_RTT max: %f t_RTT avg: %f\n",

t_rtt_min, t_rtt_max, (t_rtt_sum / 500.0));

printf ("d_RTT min: %f d_RTT max: %f d_RTT avg: %f\n",

d_rtt_min, d_rtt_max, (d_rtt_sum / 500.0));

}

We ran the preceding program and obtained the average values of t RTT = 61.6924 and d RTT =

7.1139. These values are averaged from a sample of 500 values.

8.32. Suppose that the advertised window is 1 Mbyte long. If a sequence number is selected at random from the entire sequence number space, what is the probability that the sequence number falls inside the advertised window?

Solution:

If the sequence number field is 32 bits in length and the advertised window is 1Mbyte long, the probability that the sequence number falls inside the advertised window is:

P = (1 x 106) / 232 = 2.33 x 10-4

8.33. Explain the relationship between advertised window size, RTT, delay-bandwidth product, and the maximum achievable throughput in TCP.

Solutions follow questions:

(a)Plot the maximum achievable throughput versus delay-bandwidth product for an advertised window size

of 65,535 bytes.

First consider delay-bandwidth product, DBP = R*2t p. Here delay 2t p is the propagation time that elapses from when a bit is sent by a source to the destination to when the bit can be returned back to the source. This is the minimum time that elapses from when a packet leaves a source to when the acknowledgment is received. The delay-bandwidth product DBP is then the number of bits (or bytes) that are in the network when the source transmits continuously at the maximum rate and when the bits return immediately back to the source.

The round-trip time RTT is the time that actually elapses from when a packet is sent to when its acknowledgment is received. RTT includes not only the propagation delay, but also queueing and

processing delays. The advertised window, W, places a limit on the amount of information that a source can have outstanding in the network.

Consider the time from when a byte leaves the source to when its acknowledgment is received (that is, consider a RTT ). In that time, the source will have transmitted at most a window-full of bytes into the network. Therefore the window size divided by the RTT places a limit on the throughput r , that is, the rate at which information can be transmitted into the network: r < W /RTT .

The throughput cannot exceed the maximum bit rate R = DBP /2t p that is available for the source to transmit into the network. Therefore, the throughput increases as the window size is increased, but cannot exceed the bit rate R :

Throughput = r = min{R , W/RTT } = min{DBP /2*t p , W/RTT }

Suppose that the window size is less than the delay-bandwidth product. We then expect that the source cannot transmit at the maximum bit rate R . Indeed, we have that:

r < W /RTT < W /2t p .

Therefore we have that: r/R < W/(R*2t p ) = W/DBP .

We conclude that the ratio of the maximum achievable throughput to R is less than the ratio of the window size to the DBP , as shown in the figure below.

65,536 bytes

DBP

r/R

(b) In the above plot include the maximum achievable throughput when the above window size is scaled up

by a factor of 2K , where K = 4, 8, 12. The following figure shows the case where the window size is doubled. r/R

2W 1

W 1

(c)Place the following scenarios in the plot obtained in part (b): Ethernet with 1 Gbps and distance 100

meters; 2.4 Gbps and distance of 6000 km; satellite link with speed of 45 Mbps and RTT of 500 ms; 40 Gbps link with distance of 6000 km.

Case DBP implied

Ethernet R = 1 Gbps D = 100 m T p = 100 / 2.5x108

T p = 4x10-7

DBP = 2*T p*R

DBP = 8x10-7 * 1x109 DBP = 8 x 10 2

DBP = 800 bits

Link

R = 2.4 Gbps D = 6000 km T p = 6 x 103 / 2.5x105

T p = 2.4 x 10-2

DBP = 2*T p*R

DBP = 2 * 2.4 x10-2 * 2.4x109

DBP = 11.52 x 107

DBP = 115.2 Mbits (14.4 Mbytes)

Satellite link

R = 45 Mbps

RTT = 500 ms (5x10-1 sec) DBP= RTT*R

DBP = 5x10-1 * 45x106

DBP = 225 x 105 bits

DBP = 22.5 Mbits (2.85Mbytes)

link

R = 40 Gbps

D = 6000 km (6x106 m) T p = 6 x 103 / 2.5x105

T p = 2.4 x 10-2

DBP = 2*T p*R

DBP = 2 * 2.4 x10-2 * 40x109 DBP = 192 x 107

DBP = 1.92 Gbits (240 Mbytes)

8.34. Consider the three-way handshake in TCP connection setup.

Solutions follow questions:

(a)Suppose that an old SYN segment from station A arrives at station B, requesting a TCP connection.

Explain how the three-way handshake procedure ensures that the connection is rejected.

In a three-way handshake procedure, one must ensure the selection of the initial sequence number is always unique. If station B receives an old SYN segment from A, B will acknowledge the request based on the old sequence number. When A receives the acknowledgment segment from B, A will find out that B received a wrong sequence number. A will discard the acknowledgment packet and reset the connection.

(b)Now suppose that an old SYN segment from station A arrives at station B, followed a bit later by an old

ACK segment from A to a SYN segment from B. Is this connection request also rejected?

If an old SYN segment from A arrives at B, followed by an old ACK segment from A to a SYN segment from B, the connection will also be rejected. Initially, when B receives an old SYN

segment, B will send a SYN segment with its own distinct sequence number set by itself. If B receives the old ACK from A, B will notify A that the connection is invalid since the old ACK

sequence number does not match the sequence number previously defined by B. Therefore, the connection is rejected.

8.35. Suppose that the Initial Sequence Number (ISN) for a TCP connection is selected by taking the 32 low-order bits from a local clock.

Solutions follow questions:

(a)Plot the ISN versus time assuming that the clock ticks forward once every 1/R c seconds. Extend the plot

so that the sequence numbers wrap around.

232 - 1

Host in time_wait state

(b)To prevent old segments from disrupting a new connection, we forbid sequence numbers that fall in the

range corresponding to 2MSL seconds prior to their use as an ISN. Show the range of forbidden

sequence numbers versus time in the plot from part (a).

See above graph.

(c)Suppose that the transmitter sends bytes at an average rate R > R c. Use the plot from part (b) to show

what goes wrong.

If the transmitter sends data at an average rate R > R c , the ISN will lag behind the transmitter’s sequence number. In particular, if the source uses all the sequence numbers in less than 2 MSL, then all the sequence numbers would be forbidden as ISNs for the next connection.

(d) Now suppose that the connection is long-lived and that bytes are transmitted at a rate R that is much

lower than R c . Use the plot from part (b) to show what goes wrong. What can the transmitter do when it sees that this problem is about to happen?

When the connection is long-lived and R < R

c , the ISN sequence number will wrap aroun

d at a much faster rat

e than the transmitter sequence number. When a new connection is established, it is possible for the ISN to be selected within the range o

f sequence numbers used by the slow connection.

8.36. Suppose that during the TCP connection closing procedure, a machine that is in the TIME_WAIT state crashes, reboots within MSL seconds, and immediately attempts to reestablish the connection using the same port numbers. Give an example that shows that delayed segments from the previous connections can cause problems. For this reason RFC 793 requires that for MSL seconds after rebooting TCP is not allowed to establish new connections.

Solution:

A delayed FIN from the earlier connection causes the new connection to be closed prematurely. (TIME-WAIT) Crash

2MSL

钢结构期末试卷及答案

班级_______________ 学号______________ 姓名___________________ (第 页, 共 页) ----------密--------封--------线--------密--------封--------线--------密--------封--------线--------密--------封--------线--------密--------封--------线--------密--------封--------线--------密--------封--------线--------密--------封--------线----------- I 卷 时间: 120 分钟 适应专业:土木工程(房屋建筑方向) 【考试】【闭卷】 题型 一 二 三 四 五 六 七 八 九 十 总分 分数 20 10 30 40 得分 评卷人: 合分人: 得 分 一、单项选择题(2×10=20分) 1.大跨度结构常采用钢结构的主要原因是钢结构( B ) A.密封性好 B.钢材的轻质高强 C.制造工厂化 D.便于拆装 2.钢结构的承载能力极限状态是指( C ) A.结构发生剧烈振动 B.结构的变形已不能满足使用要求 C.结构达到最大承载力产生破坏 D.使用已达五十年 3.钢号Q345A 中的345表示钢材的( C ) A.f p 值 B.f u 值 C.f y 值 D.f vy 值 4.结构钢材最易发生脆性破坏的应力状态为( A ) A.三向同号等值拉应力作用 B.两向异号等值正应力作用 C.单向拉应力作用 D.三向等值剪应力作用 5.钢材塑性破坏的特点是( D ) A.变形小 B.破坏经历时间非常短 C.无变形 D.变形大 6.普通螺栓抗剪工作时,要求被连接构件的总厚度≤螺栓直径的5倍,是防止( A ) A.螺栓杆弯曲破坏 B.螺栓杆剪切破坏 C.构件端部冲剪破坏 D.板件挤压破坏 7.焊接残余应力不影响构件的( B ) A.整体稳定性 B.静力强度 C.刚度 D.局部稳定性 8.在动荷载作用下,侧面角焊缝的计算长度不宜大于( A ) A.40h f B.60h f C.80h f D.120h f 9.确定轴心受压实腹柱腹板和翼缘宽厚比限值的原则是( B ) A.等厚度原则 B.等稳定原则 C.等强度原则 D.等刚度原则 10.发生弯扭屈曲的理想轴心受压构件截面形式为( B ) A.双轴对称工字形截面 B.单角钢截面 C.H 型钢截面 D.箱形截面 得 分 二、填空题(1×10=10分) 1.在弯矩作用下,摩擦型高强度螺栓群的中和轴位于 。 2.在结构承载能力极限状态计算时,应采用荷载的 值。 3.型钢代号L100×8中,L 表示 。 4.Q235B 钢中的235表示 。 5.动力荷载作用下钢材抵抗脆性破坏的性能指标为 。 6.部分T 型钢是半个 型钢。 7.在计算两端简支工字形轴压柱 板的临界应力时,它的支承条件简化为四 边简支。 8.在承受静力荷载的角焊缝中,侧面角焊缝的强度设计值比正面角焊缝 。 9.工字形截面梁按弹性设计时,应使翼缘的宽厚比b 1/t 1≤ 。 10.下图所示格柱截面中,虚轴指的是 轴。 得 分 三、简答题(30分) 1、钢结构的破坏形式有哪两种?其特点如何? (7分) 2、影响钢材机械性能的主要因素有哪些?各因素大致有哪些影响?(8分)

《通信网》作业答案

思考题一 1(ok)构成现代通信网的结构和要素有哪些?它们各自完成的功能有哪些? 它们之间的相互协调通信通过什么机制来实现? 现代通信网络的三大组成部分:传输、交换和终端设备,其发展是和这些通信设备、电子器件、计算机技术的发展紧密相关的。 通信网构成要素 实际的通信网是由软件和硬件按特定的方式构成的通信系统,从硬件构成来看:通信网由终端节点、交换节点、业务节点和传输系统构成,完成接入、交换和传输;软件设施包括了信令、协议、控制、管理、计费等,完成网络的控制、管理、运营和维护、实现通信网的智能化。 上述的网络在传输信息的类型、方式、所提供的服务的种类等方面各不相同,但它们在网络结构、基本功能、实现原理上都是相似的,它们都实现了以下四种功能: (1)信息传送 它是通信网的基本任务,传送的信息有三大类:用户信息、信令信息、管理信息,信息传输主要由交换节点、传输系统来完成。 (2)信息处理 网络对信息的处理方式对最终用户是不可见的,主要目的是增强通信的有效性、可靠性和安全性。 (3)信令机制 它是通信网上任意两个通信实体间为实现某一通信任务,进行控制信息交换的机制,如NO.7信令、TCP/IP协议等。 (4)网络管理 它负责网络的运营管理、维护管理、资源管理,以保证网络在正常和故障情况下的服务质量。是整个网络中最具有智能的部分,已形成的网络管理标准有:电信管理网标准TMN系列,计算机网络管理标准SNMP等。

2(ok)在通信网中,交换节点主要完成哪些功能?分组交换与电路交换的各自方式和特点? (1)电路交换(Circuit Switching) ITU定义为:“根据请求,从一套入口和出口中,建立起一条为传输信息而从指定入口到指定出口的连接”。电路交换是一种电路间的实时交换,所谓实时,是指任意用户呼叫另一用户时,应立即在两用户之间建立通信电路的连接,这时通信网内的相关设备和线路都被这一对用户占用着,不能再为其他用户服务,这种在一次呼叫中由通信网根据用户要求在指定的呼叫路由上固定分配设备的交换方式,称之为电路交换方式。 电路交换的主要特点:话音或数据的传输时延小且无抖动,“透明”传输。无需存储、分析和处理、传输效率比较高;但是,电路的接续时间较长,电路资源被通信双方独占,电路利用率低。 (2)分组交换(Packet Switching) 分组交换也称包交换,它将用户的一整份报文分割成若干数据块,即分组。 分组交换是一种综合电路交换和报文交换的优点而又尽量避免两者的缺点的第三种交换方式。它的基本原理是“存储——转发”,是以更短的、被规格化了的“分组”为单位进行交换、传输。 分组交换相对于电路交换的方式来说,具有高效、灵活、迅速、可靠等特点。

主体结构试题及答案

试题 姓名:分数 一、填空题(每空5分,共25分) 1.粘贴、喷抹质量检验的取样,应符合下列规定:梁、柱类构件以同规格、同型号的构件为一个检验批。每批构件随机抽取的受检构件应按该批构件总数的 10%确定,但不得少于3根;以每根受检构件为一检验组;每组3个检验点。板、墙类构件应以同种类、同规格个构件为一个检验批,每批按实际粘贴、喷抹的加固材料表面积(不论粘贴的层数)均划分为若干区,每区 100m2,且每一楼层不得少于1区;以每区为一个检验组,每组 3个检验点。 2.植筋锚固件质量的非破损检验,对重要结构构件及生命线工程的非结构构件,应取每一检验批植筋总数的 3%且不少于5件进行检验。对一般结构构件,应取每一检验批植筋总数的 1%且不少于3件进行检验;对非生命线工程的非结构构件,应取每一检验批锚固件总数的 0.1%且不得少于3件进行检验。 3.采用水泥基胶粘贴外墙饰面时,可按胶粘剂使用说明书的规定时间或在粘贴外墙饰面砖14d及以后进行饰面砖粘结强度检验。粘贴后28d以内达不到标准或有争议时,应以28~60d内约定时间检验的粘结强度为准。 二、选择(每题5分,共15分) 1.后锚固件应进行抗拔承载力现场非破损检验,满足下列条件( B )时,还应进行破坏性检验: A、安全等级为甲级的后锚固构件 B、悬挑结构和构件 C、重要结构构件 D、非结构构件

2.后锚固承载力检测,进行非破损检验时,荷载检验值应取 A、0.9?yk A s B、0.8N RK,* C、0.9?yk D、0.9?yk A s和0.8N RK,*的较小值 3、监理单位应从粘贴外墙饰面砖的施工人员中随机抽选一人,在每种类型的基层上应各粘结至少( D )饰面砖样板件,每种类型的样板件应各制取一组()饰面砖粘结强度试样。 A、 3㎡、1个 B、1㎡、1个 C、3㎡、3个 D、1㎡、3个 三、解答题(每题20分,共60分) 1.混凝土后锚固承载力抗拉拔试验的适用范围? 适用于以钢筋混凝土、预应力混凝土以及素混凝土为基材的后锚固连接的设计、施工与验收;不适用于以砌体、轻骨料混凝土及特种混凝土为基材的后锚固连接。 2.加固材料粘贴、喷抹质量按组检验结果的合格评定,应符合什么规定? 1)当组内每一试样的正拉粘结强度fti均达到fti≥1.5MPa,且为混凝土内聚破坏的要求时,应评定该组为检验合格组; 2)若组内仅一个试样达不到上述要求,允许以加倍试样重新作一组检验,如检验结果全数达到要求,则仍可评定该组为检验合格组; 3)若重作试验中,仍有一个试样达不到要求,则应评定该组为检验合格组。 3.简述外墙饰面砖粘结强度现场检测的取样数量。 答:现场粘贴饰面砖粘结强度检验应以每1000mm2同类墙体饰面砖为一个检验批,不足1000mm2应按1000mm2计,每批应取一组3个试样,每相邻的三个楼层应至少取一组试样,试样应随机抽取,取样间距不得小于500mm。

钢结构试卷及参考答案

钢结构试卷及参考答案 一、选择题(每题2分,共30分) 1.摩擦型高强螺栓连接与承压型高强螺栓连接的主要区别是D。 (A)摩擦面处理不同(B)材料不同 (C)预拉力不同(D)设计计算时所取极限状态不同 2.在静力荷载作用下,钢材承受三向拉应力时,易发生B。 (A)塑性破坏(B)脆性破坏(C)疲劳破坏(D)无法判定 3.进行强度验算时,荷载应采用C。 (A)将永久荷载的标准值乘以永久荷载分项系数 (B)将可变荷载的标准值乘以可变荷载分项系数 (C)永久荷载和可变荷载的标准值,均不乘以各自的分项系数 (D)将永久荷载和可变荷载的标准值均乘以各自的分项系数 4.钢结构焊接节点设计中,应尽可能选用A的焊接位置。 (A)俯焊(B)仰焊(C)立焊(D)任意 5.在缀条稳定验算式中,系数是C。 (A)考虑塑性发展的系数(B)考虑重要性的调整系数 (C)考虑单角钢单面连接偏心受力的系数(D)考虑安全的附加系数 6.图示T型截面拉弯构件弯曲正应力强度计算的最不利点为B。 (A)截面上边缘1点 (B)截面下边缘2点 (C)截面中和轴处3点 (D)可能是1点也可能是2点 7.结构或节点的疲劳强度与A关系不大。 (A)钢材的种类(B)应力循环次数(C)节点的制作工艺和质量(D)应力集中系数 8.为提高梁在弯矩作用下的强度和刚度,应尽可能使梁的D。 (A)翼缘厚而窄(B)翼缘宽薄而腹板窄厚(C)腹板厚而窄(D)腹板薄而宽 9.对于钢结构用钢材,对化学成分的定义为B。 (A)C为不可缺少元素,Mn、S、P均为有害元素 (B)C为不可缺少元素,Mn为脱氧剂,S、P为有害元素 (C)C、Mn、S、P均为有害元素 (D)C、Mn为有害元素,S、P为不可缺少元素 10.规范规定缀条式格构柱单肢的长细比(为柱两个主轴方向长细比的最大值),是为了C。 (A)保证柱平面内的整体稳定(B) 保证柱平面外的整体稳定

主体结构检测测试题

主体结构检测试题 一、单项选择题(在所选项中,只有一个选项正确,每题1分) 1.《回弹法检测混凝土抗压强度技术规程》JGJ/T 23-2011规程适用于普通混凝土的( B )检测。A.表面硬度 B.抗压强度 C.表面强度 D.抗折强度 2.《回弹法检测混凝土抗压强度技术规程》JGJ/T 23-2011中指的普通混凝土系主要由水泥、砂、石、外加剂、掺合料和水配置的密度为( D )Kg/m3的混凝土。 A.2000~2400 B.2200~2800 C.2400~2800 D.2000~2800 3.回弹法检测构件混凝土强度时的一个检测单元称为( B )。 A.测点 B.测区 C.测域 D.以上均不对 4.由测区的()值和()值通过测强曲线或强度换算表得到的测区现龄期混凝土强度值称为测区混凝土强度换算值。( D ) A.最大,最小 B.平均,最小 C.最大,碳化深度 D.平均,碳化深度 5.混凝土强度推定值相应于强度换算值总体分布中保证率不低于( B )的构建中的混凝土强度值。A.90% B.95% C.99% D.% 6.《回弹法检测混凝土抗压强度技术规程》JGJ/T 23-2011中一般用( D )符号表示碳化深度值。 A.R B.S C.f D.d 7.《回弹法检测混凝土抗压强度技术规程》JGJ/T 23-2011中一般用符号S表示下列( C )参数。A.碳化深度 B.测区强度修正量 C.标准差 D.回弹值 8.回弹仪除应符合《回弹仪》GB/T9138的规定外,在弹击时,弹击锤脱钩瞬间,回弹仪的标称能量应为( A )J。 A. B.3.207 C. D. 9.用于率定回弹仪的钢砧的洛氏硬度HRC应为( B )。 A.50±2 B.60±2 C.70±2 D.80±2 10.在洛氏硬度HRC为60±2的钢砧上,回弹仪的率定值应为( C )。 A.80±1 B.60±1 C.80±2 D.60±2 11.数字式回弹仪的数显回弹值与指针直读示值相差不应超过( A )。 A.1 B.1.5 C.2 D.

钢结构试卷(答案)

《钢结构》期末考试试题 一、单选题(15) 1、BBDAA ACBA C BBDAD 二、纠错题(10) 1、塑性变形是不可恢复的,因此塑性破坏比脆性破坏更危险。(4分) 错,因为构件脆性破坏时,没有足够的塑性变形,没有破坏征兆。 2、焊接将在焊件中产生残余盈利,这对构件的静力强度产生不良影响。(4分) 错,构件受静力时,可使全截面达到屈服,静力强度不变。 3、影响疲劳迁都最主要的因素是构造状况、作用的应力副σ?及重复荷载的循环次数n ,而和刚才的静力强度无明显关系。(2分) 对 三、简答题(30分) 1、 钢材塑性和韧性的定义。 答:塑性是指当应力超过屈服点后,能产生显著的变形而不立即断裂的性质;韧性是指塑性变形和断裂过程中吸收能量的能力。 2、 列出低碳钢构件拉伸试验中,构件历经的几个阶段名称,并画出应力应变曲线。 答:弹性阶段、弹塑性阶段、塑性阶段、强化阶段、破坏阶段 3、 为什么要限制角焊缝的最大、最小焊脚尺寸? 答: 焊脚尺寸太大施焊时较薄焊件容易烧穿;焊缝冷却收缩将产生较大的焊接变形;热影响区扩大容易产生脆裂。 焊脚尺寸太小,焊接时产生的热量较小,焊缝冷却快,容易产生裂纹。 4、 在缀条式轴心受压格构柱中,为什么要限制单肢的长细比? 答:为使格构柱单肢不先于整体失稳。 5、 试列举提高轴心受压杆件稳定性能的三种常用方法。 加大截面惯性矩、增加支座约束程度、减小构件支撑间距 6、 何谓截面的剪力中心?它与材料、受力情况有关吗? 答:荷载作用于截面平面内一点,而不会使截面发生扭转,这一点称为截面的剪力中心。它与材料和受力无关,它是截面的一个几何特性。 四、计算题(45分) 1、(10分)求图所示两种轴心受拉接头的承载力(该接头共8个螺栓,对称布置)。所有板件均为Q235,厚10mm ,采用8.8级摩擦型高强螺栓(摩擦面碰沙处理,45.0=μ),一个螺栓设计预拉力P =125kN 。

主体结构试题答案

主体结构试题一答案 一、填空题(10分) 1、当混凝土有下列情况之一时,不能按《回弹法检测混凝土抗压强度技术规程》(DBJ14-026-2004)进行混凝土强度的检测:(1)测试部位表层与内部的质量有明显差异或内部存在缺陷。 (2)遭受、、、。冻害、化学侵蚀、火灾、高温损伤。 2、预制构件结构重要性系数,当无专门要求时取。1.0 3、检测时应确保所使用的仪器设备在或周期内,并处于。仪器设备的精度应满足的要求。检定、校准、正常状态、检测项目 4、《钻芯法检测混凝土抗压强度技术规程》DBJ14-029-2004适用于抗压强度为的普通混凝土抗压强度的检测。10~80MPa 5、后装拔出法检测混凝土抗压强度施加拔出力应,速度应控制在kN/s。每一结构或构件至少均匀布置个测点。在构件的及部位应布置测点,相邻两测点的间距不应小于mm,测点距构件边缘不应小于mm。 连续均匀、0.5~1.0kN/s、3、受力较大、薄弱部位、250、100 二、判断题(10分) 1、混凝土回弹仪在钢砧上的率定值在80±2时,则说明回弹仪完全正常,不需要检定。(×) 2、采用回弹法检测砌筑砂浆强度不用考虑砂浆原材料品种。(×) 3、砂浆试块贯入深度—砂浆试块抗压强度曲线比砌体灰缝砂浆贯入深度—砂浆试块抗压强度曲线,更能够准确、科学、合理地反映出测钉贯入砂浆的深度和砌筑砂浆抗压强度间的相关关系。(×) 4、超声仪声时显示是否正确,可用空气声速标定值与实测空气声速比较的方法进行校验。(√) 5、荷载效应组合是指按极限状态设计时,为保证结构的可靠性而对同时出现的各种荷载效应设计值规定的组合。(√) 三、选择题(10) 1、预制混凝土构件承载能力极限状态检验,受力主筋拉断对应检验系数允许值是(C )。 A、1.20 B、1.30 C、1.50 D、1.55 2、回弹法检测混凝土抗压强度,按批抽样检测时,应根据结构或构件类型和受力特征布置测区,测区数量不得少于( C )个。 A、5 B、10 C、3 D、1 3、《钻芯法检测混凝土抗压强度技术规程》DBJ14-029-2004规定,芯样试件的直径应为( A )mm。 A、150,100,75 B、100,75,50 C、200,150,100 D、200,100,75

主体结构检测考试试题

一.填空 1、工程质量检测的主要内容包括:建筑材料检测、地基及基础检测、主体结构检测、室内环境检测、 建筑节能检测、钢结构检测、建筑幕墙检测、建筑门窗检测、建筑智能系统检测等。 2、检测机构应对出具的检测数据与结论的真实性、规范性与准确性负法律责任 3、环境条件记录应包括环境参数测量值、记录次数、记录时间、监控仪器编号、记录人签名等、 4、用于工程检测的回弹仪必须具有产品合格证及检定单位的检定合格证。 5、回弹仪累计弹击次数超过 6000 次时应送检定单位检定。 6、回弹法测混凝土强度时,混凝土测区的面积不宜大于0、04㎡。 7、检测混凝土强度就是,如果采用钻芯修正,直径100㎜的混凝土试件,钻取芯样数量不应少于6个,若采用直径小于70㎜的芯样,则数量不应少于9个。 8、碳化深度值测量时,采用浓度为 1% 的酚酞酒精溶液。 9、非金属超声检测仪如在较长时间内停用,每月应通电一次,每次不少于 l h。 10、平面换能器的工作频率宜在50~100kHz范围以内。 11、测量回弹值应在构件测区内超声波的发射与接收面各弹击8个点。超声波单面平测时,可在超声波的发射与接收测点之间弹击16个点,每一测点的回弹值测读精确至1。 12、钻芯法对结构混凝土造成局部损伤,就是一种微(半)破损的现场检测手段。 13、钻芯机应具有足够的刚度、操作灵活、固定与移动方便,并应有水冷却系统。 14、抗压试验的芯样试件宜使用标准芯样试件,其公称直径不宜小于骨料最大粒径的3倍,也可采用小直径芯样试件,但其公称直径不应小于70mm且不得小于骨料最大粒径的2倍。 15、当用钻芯法确定单个构件的混凝土强度推定值时,有效芯样试件的数量不应少于3个;对于较小的构件,有效芯样构件的数量不得少于2个;当用于钻芯修正时,标准芯样试件的数量不应少于6个,小直径芯样试件数量宜适当增加。 16.抗压芯样试件的高度与直径之比(H/d)宜为1、00。 17、芯样试件内不宜含有钢筋,不能满足此项要求时,标准芯样试件,每个试件内最多只允许有2根直径小于10mm的钢筋。 18、比较成熟的拔出法分为预埋或先装拔出法与后装拔出法两种。 19、拔出仪显示仪表的正常使用环境为4~40℃。 20、后装拔出法强度计算时,当构件3个拔出力中的最大与最小拔出力与中间值之差均小于中间值的15%时取最小值作为该构件拔出力计算值。 21、构件的结构性能载荷试验,按其在被测构件或结构上作用载荷特性的不同,可分为静荷载试验

《钢结构》期末考试/试题库(含答案)

钢结构期末考试题型(汇集) 一、选择题 1.反应钢材的最大抗拉能力的是( D )。 A.比例极限 B. 弹性极限 C. 屈服强度 D .极限强度 2.钢材的冷弯试验是判别钢材( C )的指标。 A.强度 B.塑性 C.塑性及冶金质量 D .韧性及可焊性 3.在构件发生断裂破坏前,有明显先兆的情况是( B )的典型特征 A.脆性破坏 B.塑性破坏 C.强度破坏 D.失稳破坏 4.结构工程中使用钢材的塑性指标,目前最主要用()表示。 A .流幅 B. 冲击韧性 C .可焊性 D. 伸长率 5.产生焊接残余应力的主要因素之一是( C ) A. 钢材的塑性太低 B. 钢材的弹性模量太大 C .焊接时热量分布不均匀 D. 焊缝的厚度太小 6.在构件发生断裂破坏前,有明显先兆的情况是( B )的典型特征。 A脆性破坏 B塑性破坏 C强度破坏 D失稳破坏 7.同类钢种的钢板,厚度越大()。 A.强度越低 B.塑性越好 C.韧性越好 D.内部构造缺陷越少 8.钢结构具有良好的抗震性能是因为( C )。 A.钢材的强度高 B.钢结构的质量轻 C.钢材良好的吸能能力和延性 D.钢结构的材质均匀 9.钢材经历了应变硬化应变强化之后( A )。 A. 强度提高 B.塑性提高 C. 冷弯性能提高 D. 可焊性提高 10.摩擦型高强度螺栓抗剪能力是依靠()。 A.栓杆的预拉力 B.栓杆的抗剪能力 C.被连接板件间的摩擦力 D.栓杆被连接板件间的挤压力 11.下列梁不必验算整体稳定的是( D )。 A.焊接工字形截面 B.箱形截面梁 C.型钢梁 D.有刚性铺板的梁 12.对直接承受动荷载的钢梁,其工作阶段为()。 A.弹性阶段 B.弹塑性阶段 C.塑性阶段 D.强化阶段 13.下列螺栓破坏属于构造破坏的是( B )。 A.钢板被拉坏 B.钢板被剪坏 C.螺栓被剪坏 D.螺栓被拉坏 14.在钢结构连接中,常取焊条型号与焊件强度相适应,对Q345钢构件,焊条宜采用( B )。 A . E43型 B . E50型 C . E55型 D. 前三种均可

2017主体结构试题及标准答案7

主体结构试题七 一、概念题(20分) 1、结构性能检验 针对结构构件的承载力、挠度、裂缝控制性能等各项指标所进行的检验。 2、混凝土内部钢筋保护层厚度 混凝土内部钢筋外边缘到混凝土表面的距离 3、回弹法检测混凝土抗压强度 是指通过检测结构或构件混凝土的回弹值和碳化深度值来推定该结构或构件混凝土抗压强度的方法。 4、混凝土强度检测总体修正量 ,与非破损全部测区混凝土抗压强度换算值的平均用芯样试件混凝土抗压强度换算值的平均值f c cor,m 值f c cu,mz ,进行比较,确定修正量。 5、抽样检测 从检测批中抽取样本,通过对样本的测试确定检测批质量的检测方法。 二、填空题(10分) 1、《回弹法检测砌筑砂浆强度技术规程》(DBJ14-030-2004),每一测区应记取个回弹值,相邻测点的净距一般不小于,读数精确至。检测过程中,回弹仪应始终处于,且不得移位。1 2、240mm、1、水平状态 2、检测人员必须经过培训取得,对特殊的检测项目,检测人员应有相应的。现场检测工作应由或检测人员承担。上岗资格、检测资格证书、2名、2名以上 3、混凝土内部钢筋保护层厚度检测对于具有饰面层的构件,其饰面层应、,并与基体混凝土结合。饰面层主体材料以及夹层均不得含有。对于含有金属材质的饰面层,应进行。对于厚度超过的饰面层,宜清除后进行检测,或者钻孔验证。不得在饰面层上进行检测。清洁、平整、良好、金属、清除、50mm、架空 4、结构性能检测,单跨简支结构构件和连续梁的支座除一端支座应为支座外,其它支座应为支座;安装时,各支座轴线应彼此并垂直于被检测结构构件的,各支座轴线间的距离取为结构构件的。固定铰、滚动铰、平行、纵轴线、检测跨度 三、判断题(10分) 1、在建工程,砌筑砂浆强度的检测与评定可按《回弹法检测砌筑砂浆强度技术规程》(DBJ14-030-2004)执行。()× 2、回弹法检测结构测区混凝土强度换算值相当于施工现场预留混凝土试块28天标养强度。( )× 3、对选定的梁类构件,应抽取不少于50%纵向受力钢筋的保护层厚度进行检验() × 4、超声回弹综合法检测混凝土抗压强度,非同一测区的回弹值、超声声速值及碳化深度值,在计算混凝土强度换算值时不得混用。( )√ 5、超声仪声时显示是否正确,可用空气声速标定值与实测空气声速比较的方法进行校验。()√ 四、选择题(10) 1、混凝土构件结构性能检验,在荷载标准值作用下,应持续( )。B A、15min B、30minC、1h 2、混凝土预制板结构性能检验裂缝测量,对正截面裂缝,应量测()处的最大裂缝宽度。B A、板底 B、受拉主筋 C、板侧 3、回弹法检测混凝土抗压强度强度推定值相应于强度换算值总体分布中保证率不低于( )的强度值。C A、90% B、85% C、95% 4、混凝土回弹仪校准有效期为( )。C

主体结构试题

主体结构试题二 一、概念题(20分) 1、局部破损检测方法 2、超声回弹综合法检测混凝土强度 3、回弹法检测砌筑砂浆强度 4、混凝土内部钢筋保护层厚度 5、抽样检测 二、填空题(10分) 1、检测单位应有固定的、健全的和相应的。 2、按检测批检测的项目,应进行,且宜符合GB/T50344-2004标准规定。 3、《钻芯法检测混凝土抗压强度技术规程》DBJ14-029-2004规定,芯样试件的直径应为 mm、 mm或 mm,且不应小于骨料最大粒径的倍。如结构或构件工作条件比较干燥,芯样试件应以状态进行试验;如结构工作条件比较潮湿,芯样试件应在状态进行试验。 4、《回弹法检测砌筑砂浆强度技术规程》DBJ14-030-2004不适用于下列情况砌筑砂浆的检测:(1)测试部位与的质量有明显差异或内部存在。(2)遭受、或。 5、钢筋混凝土构件和允许出现裂缝的预应力混凝土构件结构性能检验的检验内容包括:、和。 三、判断题(10分) 1、回弹法检测结构测区混凝土强度换算值相当于施工现场预留混凝土试块28天标养强度。() 2、后装拔出法检测结构混凝土强度,每一结构或构件上至少均匀布置3个测点。() 3、贯入深度测量表由百分表改制而成,应按计量仪器要求进行管理。() 4、原位轴压法属原位测试砌体抗压强度方法,测试结果除能反映砖和砂浆的强度外,还反映了砌筑质量对砌体抗压强度的影响,因此原位轴压法测试结果综合反映了砌体的抗压、抗剪等性能。() 5、混凝土构件结构性能检验裂缝宽度可用精度为0.2mm的刻度放大镜等进行观测。( )

四、选择题(10) 1、后置埋件锚固质量检测,对于重要结构构件及生命线工程非结构构件,应采用( )检验。 A 、破坏性 B 、非破坏性 C 、抗压承载力 2、混凝土构件挠度检验,应量测构件( )。 A 、跨中位移 B 、跨中位移和支座沉陷 C 、构件自重产生挠度和跨中挠度 3、超声回弹综合法检测混凝土抗压强度时,超声测距量测应精确至( )。 A 、0.1mm B 、1mm C 、0.5mm 4、回弹法检测混凝土抗压强度,被测混凝土龄期应为( ) A 、14~1000天 B 、28~1100天 C 、14~1100天 5、砌体的受压工作应力检测应采用( )法。 A 、原位轴压 B 、扁顶 C 、点荷 五、简答题(20分) 1、预制混凝土构件抗裂检验,开裂荷载实测值如何确定? 2、如何检测混凝土的碳化深度值? 3、混凝土回弹仪在什么情况下应送进行校准或技术性能测试? 4、按《后装拔出法检测混凝土抗压强度技术规程》DBJ14-028-2004检测混凝土抗压强度时,测点布置有哪些要求? 六、论述题(10分) 回弹仪应如何保养? 七、计算题(20分) 1、某烧结砖砌体结构住宅楼主体施工完毕,三层砌筑砂浆试块抗压强度未达到设计要求,建设单位要求检测三层砌筑砂浆强度,现场调查,砌筑砂浆为混合砂浆,设计强度等级为M7.5,采用符合国家标准的R32.5普通硅酸盐水泥,中砂,自然养护,龄期3个月,为减少对结构损伤,确定采用回弹法检测,原始记录见下表1,计算三层砌筑砂浆强度推定值。 注:回弹法检测砌筑砂浆强度山东地区测强曲线 1、水泥砂浆测强曲线: ) 0156.0(4280 .2,,10 003542.0i m d i m i R f -= 2、混合砂浆测强曲线: ) 0132.0(9249 .2,,10 0006384.0i m d i m i R f -=

钢结构检测员试题目(含答案)

钢结构检测试题 一.单选题(共70题,共70分)进度:2/85 1.JG/T203-2007中规定,钢结构焊缝不允许的缺陷是_D__。()(1分) A.反射波幅位于I区的缺陷 B.反射波幅位于II区的缺陷 C.反射波幅位于III区的缺陷 D.反射波幅位于IV区的缺陷 2.GB/T29712-2013中规定,灵敏度设定和随后的焊缝检测,应_a__。()(1分) A.采用同种技术 B.采用任一技术 C.采用至少两种技术 D.采用至少三种技术 3.采用GB/T11345-2013、GB/T29712-2013对厚度为40mm的钢结构焊缝进行超声检测及评定,检测等级为 B级,按技术1设定参考灵敏度,按验收等级2级验收,发现一长度为20mm的显示,其验收等级为_b__。()(1分) A.H0 B.H0-4dB C.H0-10dB D.H0-14dB 4.《门式刚架轻型房屋钢结构技术规范》GB51022-2015中规定:门式刚架结构计算考虑应力蒙皮效应, 可按平面结构分析内力。()(1分) A.应 B.不宜 C.必须 D.一定 5.GB/T29712-2013中规定,超过记录等级的___最大累计长度,对于验收等级2级,不应大于焊缝长度Lw 的20%。(D)(1分) A.所有显示的 B.所有可验收显示的 C.所有不可验收显示的 D.所有单独的可验收显示的| 6.竣工总图的比例尺,宜选用比例。(B)(1分) A.1:200 B.1:500

7.钢板和钢带的应符合GB/T709的规定。(D)(1分) A.尺寸、外形、重量 B.尺寸、外形、允许偏差 C.尺寸、重量及允许偏差 D.尺寸、外形、重量及允许偏差 8.依据GBT26951-2011规定,同一类型和灵敏度等级的试片,未经退火处理的比经退火处理的试片的灵敏度 约高_A倍。()(1分) A.1 B.2 C.3 D.4 9.《门式刚架轻型房屋钢结构技术规范》GB51022-2015中规定:刚架构件的翼缘与端板或柱底板的连接,当翼缘厚度大于12mm时宜采用对接焊缝。(A)(1分) A.全熔透 B.非熔透 C.点焊接 D.以上均可以 10.JG/T203-2007中规定,当缺陷回波有多个波高点时,采用_D__测定缺陷指示长度。()(1分) A.6dB测长法 B.底波法 C.绝对灵敏度法 D.端点波高法 11.GB/T11345-2013中规定,_A__声束扫查应覆盖整个检测区域。()(1分) A.任何情况下 B.合同约定时 C.特殊情况时 D.一般情况下 12.根据GBT50621-2010规定,被测工件表面应有足够的照明,对细小缺陷进行鉴别时,光照度不得低于_ lx。(D)(1分) A.300 B.420 C.480 D.540 13.按GB/T11345-2013中的要求,不宜用于超声检测耦合剂是_D__。()(1分) A.水

通信网的组成

通信网的组成 文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

通信网的组成 一、通信网的概念 通信网是在分处异地的用户之间传递信息的系统。属于电磁系统的也称电信网。它是由相互依存、相互制约的许多要素所组成的一个有机整体,以完成规定的功能。通信网的功能就是要适应用户呼叫的需要,以用户满意的程度沟通网中任意两个或多个用户之间的信息。 通信网是一种使用交换设备,传输设备,将地理上分散用户终端设备互连起来实现通信和信息交换的系统。通信最基本的形式是在点与点之间建立通信系统,但这不能称为通信网,只有将许多的通信系统(传输系统)通过交换系统按一定拓扑结构组合在一起才能称之为通信。也就是说,有了交换系统才能使某一地区内任意两个终端用户相互接续,才能组成通信网。通信网由用户终端设备,交换设备和传输设备组成。交换设备间的传输设备称为中继线路(简称中继线),用户终端设备至交换设备的传输设备称为用户路线(简称用户线)。 二、通信网的分类 按照信源的内容可以分为:电话网、数据网、电视节目网和综合业务数字网(ISDN)等。其中,数据网又包括电报网、电传网、计算机网等; 按通信网络所覆盖的地域范围可以分为:局域网、城域网、广域网等;

按通信网络所使用的传输信道可以分为:有线(包括光纤)网、短波网、微波网、卫星网等。 三、电信网的组成 电信网由核心网、接入网(AN)和用户驻地网(CPN)三大部分组成。核心网和接入网属于公共电信网,CPN为用户自有通信网,传统CPN是单用户。接入网的一侧是核心网,核心网主要由各类业务网构成,另一侧是用户。接入网起到承上启下的作用,通过接入网将核心网的业务提供给用户。接入网是一种透明传输体系,本身不提供业务,由用户终端与核心网配合提供各类业务。 核心网的技术发展走势和用户分布特点及用户对业务需求的特点决定了接入网技术的选择。为了进一步认识接入网,下面首先对接入网的两端,即核心网和用户进行分析: 核心网的业务接口特点: ①核心业务网目前主要分语音网和数据网两大类。语音网通常指公共电话网(PSTN),是一种典型的电路型网络。接入网接入PSTN时多数采用V5.2接口,也有部分采用V5.1、Z、U等接口。 ②传统的数据通信网主要包括公用分组交换网(PSPDN)、数字数据网(DDN)、帧中继网(FR)三种,可以看到这三种数据网是通信网发展过中的过渡性网络。DDN是电路型网络,而PSPDN和FR是分组型网络。接入网在接入这些网络时,一般采用E1、V.24、V.35、2B1Q“U”接口,其余类型的接口使用较少。现有的综合类的接入网大多都有上述接口,运营

主体结构工程检测与地基基础检测考试题修订版

主体结构工程检测与地基基础检测考试题修订 版 IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】

2018年主体结构工程检测与地基基础检测考试题 判断题 1.同一根钢梁,用于锚桩横梁的反力装置和用于压重平台的反力装置,其允许使用最大试荷载是不同的。() 2.灰土挤密桩用于处理含水量大于24%、饱和度大于65%的粉土、黏性土、素填土、杂填土和湿陷性黄土等地基。() 3.一般而言,土压力仪测得的是土的有效应力。() 4.单桩水平静载试验主要检测目的是确定单桩竖向抗拔极限承载力;判定竖向抗拔极限承载力是否满足设计要求;通过桩身内力及变形测试,测定桩的抗拔摩阻力。() 5.强夯法加固地基的机理的中,预压变形作用指的是各种颗粒成份在结构上的重新排列,还包括颗粒结构或型态的改变。(√) 6.单桩竖向抗压静载试验主要检测目的是确定单桩竖向抗压极限承载力;判定竖向抗压承载力是否满足设计要求;通过桩身内力及变形测试,测定桩侧、桩端阻力;验证高应变法的单桩竖向抗压极限承载力检测结果。() 7.单桩竖向静载试验中,当工程桩作锚桩时,锚桩上拔量已达到允许值时应终止加载。()

8.人工地基检测应在竖向增强体满足设计要求及地基施工后周围土体达到休止稳定后进行,其中稳定时间对黏性土地基不宜少于28d,对于粉土地基不宜少于14d天,其他地基不应少于7d。() 9.单桩竖向抗拔静载试验主要检测目的是确定单桩平临界和极限承载力,推定土抗力系数;判定水平承载力是否满足设计要求;通过桩身内力及变形测试测定桩身弯矩。() 10.标准贯入试验(SPT)是用质量为63.5kg的穿心锤,以76cm的落距自由下落,将标准规格的贯入器自钻孔孔底预打15cm,测记再打入30cm的锤击数的原位测试。() 11.回弹法检测混凝土抗压强度碳化深度测量,每次读数精确至1mm。() 12.建筑结构检测对于通用的检测项目,应选用国家标准或行业标准;对于有地区特点的检测项目,可选用地方标准。() 13.动力触探试验时,每贯入0.1m所需锤击数连续三次超过50击时,可停止试验。() 14.排水固结法加固地基,可采用钻探取样试验,原位测试等方法进行土体强度检查。规范要求每加一级荷载后,都应进行一次检查。() 15.单桩竖向静载试验中,当荷载沉降曲线呈缓变型时,可加载至桩顶总沉降量 60~80mm时终止加载。()

(完整word版)《钢结构设计原理》期末考试试卷及答案(2).docx

天津大学试卷专用纸学院建筑工程学院专业土木工程专业班年级学号姓名共4页第1页 20xx ~20xx 学年第 x2 学期期末考试试卷《建筑钢结构设计》(A 卷共5页)4、简述吊车对厂房结构产生的三种荷载;(4分) 答:竖向荷载,由吊车体系的自重产生;横向水平制动力,由吊车小车的启动与刹车产生;纵向水平制动力,由吊车大车的启动与刹车产生。 (考试时间:年月日) 题号一二成绩核分人签字5、简述多层钢结构体系的主要类型;( 4 分) 得分答:柱—支撑体系:框架梁柱节点均为铰接,在纵向与横向沿柱高设置竖向柱间支撑; 一、简答题(共30 分)纯框架体系:在纵横两个方向均为多层刚接框架;框架支撑体系:一个方向为柱—支撑 1、写出钢结构排架承载力极限状态设计公式 n 体系,另一个方向为纯框架体系的混合体系。0 ( G C G G kQ 1 C Q1 Q 1k i 2 ci Qi C Qi Q ik ) R 中符号(, )的含义;(4分)6、高层钢结构体系的主要类型;(4 分) 答:0为重要性系数;G ,Qi 为永久荷载及可变荷载的分项系数;为组合系数。答:框架结构体系、框架—剪力墙结构体系、外筒式结构体系、筒中筒式结构体系、筒束式结构体系及钢—混凝土组合结构体系。 2、单层厂房钢结构屋盖支撑体系由哪些支撑构成;(4 分) 7、高层钢结构不宜采用Q390 钢的原因是什么?( 2 分) 答:上(下)弦横向水平支撑;下弦纵向水平支撑;垂直支撑。 答: Q390钢伸长率为 18%,不符合伸长率大于 20%的规定; 8、简述采用时程分析法时地震波的选取原则;(4 分) 3、简述单层厂房横向框架的两种主要类型及其特点;( 4 分)答:至少应采用 4条能反映当地场地特性的地震加速度波,其中宜包括一条本地区历史 答:( 1)横梁与柱铰接,特点是对柱基沉降的适应性较强,且安装方便,计算简单,受 上发生的实测地震记录波。如当地没地震记录,可根据当地场地条件选用合适的其他地 力明确,缺点是下段柱的弯矩较大,厂房的横向刚度较差。(2)横梁与柱刚接,特点是 区的地震记录。如没有合适的地震记录,可采用根据当地地震危险性分析结果获得的人 对减少下段柱弯矩,增加厂房横向刚度有利。由于下段柱截面高度小,从而可以减少厂 工模拟地震波,但 4 条波不得全用人工模拟的地震波。地震波的持续时间不宜过短,应 房的建筑面积,却使屋架受力复杂,连接构造亦麻烦,且对柱基础的差异沉降比较敏感。 取 10-20s或更长。

通信网的基本要素功能

通信网的基本要素功能(基本要素:传输、交换、终端) (1) 传输:传输系统指完成信号传输的介质和设备的总称,其在终端设备与交换设备之间以及交换系统相互之间链接起来形成网络。按传输介质分为有限传输和无线传输系统。(2)交换设备以节点的形式与邻接的传输链路构成各种拓扑结构的通信网,是现代通信网的核心。 (3)终端设备是通信网中的源点和终点。终端设备的主要功能是将输入信息变换为易于在信道中传送的信号;用于发送和接收用户信息;与网络交换控制信息;通过网络实现呼叫和接入服务。如:电话机、传真机、计算机、智能多媒体终端设备等。 简述电信网的组成及作用 1.业务网:用于向公众提供诸如话音、视频、数据、多媒体等业务。 (1)传送网:指在不同地点的各点之间完成信息传递功能的网络; (2)交换网:交换设备是核心,由交换节点和通信链路组成,功能是完成对接入交换节 点的传输链路的汇集、转接接续和分配。 2.支撑网 (1)信令网:信令的功能是控制电信网中各种通信连接的建立和拆除,并维护通信网的 正常运行。 (2)数字同步网:保证数字交换局之间、数字交换局与数字传输设备之间的信号时钟同 步,并使通信网中所有数字交换系统和数字传输系统工作在同一时钟频率下。 (3)电信管理网:各种不同应用的管理系统按照标准接口互连,在有限点上与电信网接 口及电信网络互通,达到控制和管理目的。 通信网常用拓扑结构有哪些?试分析各种拓扑结构的特点。 简述模拟信号的数字化过程 抽样—量化---编码 抽样:每隔一定时间间隔T,抽取语音信号的一个瞬时幅度值,抽样后所得到的一条列在时间上离散的抽样值称为样值序列

量化:对抽样后的信号进行离散化处理,对幅值进行化零取整处理 编码:抽样、量化后的信号还不是数字信号,需将此信号转换成数字编码脉冲。 什么是基带传输?数字信号传输的主要技术内容有哪些? 基带是由消息转换而来的原始信号所固有的频带,不搬移基带信号的频谱而直接进行传输的方式称为基带传输。从数字通信终端送出的数字信号,称为基带信号。 1. 再生中继技术 再生中继的作用是对基带信号进行放大和均衡,对已失真的信号进行判决,再生出与发送信号相同的标准波形。在传输通路的适当地点设置再生中继器,使信号在传输过程中的衰减得到补偿,并消除干扰的影响。再生后的信号与未受干扰的信号一样,继续往前传,从而延长通信距离。 2. 均衡技术 定义:对传输系统中的线性失真进行补偿或者校正的过程称为均衡。 频域均衡:是使整个传输系统(包括均衡器在内)满足无失真传输条件。基本思想是分别校正幅频特性和群时延特性,利用可调滤波器的频率特性去补偿基带系统的频率特性。 时域均衡:以传输信号的时域脉冲响应为出发点,力求传输系统(包括其本身在内)所形成的接收波形接近于无失真信号波形,目的是消除取样点上的码间干扰(而不要求整个信号波形无失真)。 时域均衡关注取样点的瞬时值,使该点上的码间干扰和噪声对判决的影响达到最小,从而提高取样判决的正确率。 什么是调制?什么是解调?简述调制的作用和分类。 调制是在发送端把基带信号的频谱搬移到传输信道通带内的过程。 解调:在接收端把已调制信号还原成基带信号的过程,是调制的逆过程。 模拟调制:基带信号是连续变化的模拟量。——幅度调制、频率调制、相位调制。 数字调制:用数字基带信号对载波进行调制,使基带信号的频谱搬移到载波频率上。——幅度键控、频移键控、绝对相移键控、相对(差分)相移键控。 信道中的差错主要包括哪两类?常用的差错控制方式有哪些? 2. 差错的分类 ①随机差错:由随机噪声导致,表现为独立、稀疏和互不相关发生的差错。 ②突发差错:相对集中出现,即在短时段内有很多错码出现,而在其间有较长的无错码时间段,例如有脉冲干扰引起的错码。 差错控制方式: ①前向纠错方式 发送端对信息码元进行编码处理,使发送的码组具有纠错能力。接收端收到该码组后,通过译码能自动发现并纠正传输中出现的错误。不需反向通道,系统实时性好。 ②检错重发方式 发送端经过编码后发出能够检错的码组,接收端收到后,若检测出错误,则通过反向信道通

《建筑构造》试题及答案 精华!!!!!!!!!!!!!!

《建筑构造》试题及答案精华!!!!!!!!!!!!!! 来源:张学利的日志 第一章绪论 一、填空题 1、建筑物的耐火等级分为()级。 2、砖混结构是承重墙为(),楼板和屋顶为()的建筑。 3、建筑按使用功能分为()、()、()三大类。 4、模数分为()和(),基本模数的数值为(),1M=()。 5、一般民用建筑由()、()、( )、( )、( )、()和门窗组成。 6、耐火等级标准主要根据房屋主要构件的( )和它的( )来确定。 7、新的建筑方针:()、()、()、()(简称八字方针)。 8、地震的强弱程度用()和()。国家规定()地区必须抗震设防。 9、横向定位轴线之间的距离称为(),一般是按()的模数数列选定的;纵向定位轴线之间的距离称为(),一般是按()的模数数列选定的。 10、()是实现建筑工业化的前提。 11、楼房的层高是指该层楼面上表面至()的垂直距离。 12、7~9层为()建筑。 二、判断题 1、内骨架结构、外墙为承重墙,不需设构造和圈梁。() 2、建筑物的二级耐久年限为100年以上。() 3、标志尺寸应符合模数、数列的规定,用以标注建筑物定位轴线之间的距离。() 4、地面竖向定位轴线应与楼地面面层上表面重合。()

5、建筑物的模数系列中“3M”数列常用于确定民用建筑中开间、进深、门窗洞口的尺寸() 6、标志尺寸等于构造尺寸加减允许偏差。() 7、构造尺寸是指建筑构配件的设计尺寸,它符合模数。() 8、震级越大,烈度越大;距震中越远,烈度越小。() 三、选择题 1、建筑物最下面的部分是() A首层地面B首层墙或柱C基础D地基 2、符合模数数列规定的尺寸为() A构造尺寸B标志尺寸C实际尺寸D允许偏差值 3、按建筑物主体结构的耐久年限,二级建筑物为() A25~50年B40~80年C50~100年D100年以上 4、多层住宅一般选用的结构形式为() A砖木结构B钢筋混凝土结构C砖混结构D钢结构 5、下列()组数字符合建筑模数统一制的要求。 Ⅰ3000mm Ⅱ3330mm Ⅲ50mm Ⅳ1560mm AⅠⅡBⅠⅢCⅡⅢDⅠⅣ 6、民用建筑中的开间,进深等其他模数尺寸是选用() A1/2MB1MC3MD6M 7、民用建筑按其用途分为() A居住建筑及公共建筑B居住建筑C大型建筑D大量民用建筑8、下列说法正确的是()

相关主题