搜档网
当前位置:搜档网 › 高考物理微专题训练

高考物理微专题训练

高考物理微专题训练
高考物理微专题训练

微专题训练1自由落体和竖直上抛运动

1.(单选)从某高处释放一粒小石子,经过1 s从同一地点再释放另一粒小石子,则在它们落地之前,两粒石子间的距离将().A.保持不变B.不断增大

C.不断减小D.有时增大,有时减小

解析设第1粒石子运动的时间为t s,则第2粒石子运动的时间为(t-1)s,

两粒石子间的距离为Δh=1

2gt

2-

1

2g(t-1)

2=gt-

1

2g,可见,两粒石子间的距离

随t的增大而增大,故B正确.

答案B

2.(多选)从水平地面竖直向上抛出一物体,物体在空中运动,到最后又落回地面.在不计空气阻力的条件下,以下判断正确的是().A.物体上升阶段的加速度与物体下落阶段的加速度相同

B.物体上升阶段的加速度与物体下落阶段的加速度方向相反

C.物体上升过程经历的时间等于物体下落过程经历的时间

D.物体上升过程经历的时间小于物体下落过程经历的时间

解析物体竖直上抛,不计空气阻力,只受重力,则物体上升和下降阶段加速度相同,大小为g,方向向下,A正确,B错误;上升和下落阶段位移大小相等,加速度大小相等,所以上升和下落过程所经历的时间相等,C正确,D错误.

答案AC

3.(单选)取一根长2 m左右的细线,5个铁垫圈和一个金属盘.在线的一端系上第一个垫圈,隔12 cm再系一个,以后垫圈之间的距离分别为36 cm、60 cm、

84 cm,如图1所示.站在椅子上,向上提起线的另一端,让线自由垂下,且

第一个垫圈紧靠放在地面上的金属盘内.松手后开始计时,若不计空气阻力,则第2、3、4、5各垫圈().

图1

A.落到盘上的声音时间间隔越来越大

B.落到盘上的声音时间间隔相等

C.依次落到盘上的速率关系为1∶2∶3∶2

D.依次落到盘上的时间关系为1∶(2-1)∶(3-2)∶(2-3)

解析垫圈之间的距离分别为12 cm、36 cm、60 cm、84 cm,满足1∶3∶5∶7的关系,因此时间间隔相等,A项错误,B项正确.垫圈依次落到盘上的速率关系为1∶2∶3∶4∶…,垫圈依次落到盘上的时间关系为1∶2∶3∶4∶…,C、D项错误.

答案B

4.(单选)一物体自空中的A点以一定的初速度竖直向上抛出,1 s后物体的速率变为10 m/s,则此时物体的位置和速度方向可能是(不计空气阻力,g=10 m/s2)

().A.在A点上方,速度方向向下

B.在A点上方,速度方向向上

C.正在A点,速度方向向下

D.在A点下方,速度方向向下

解析做竖直上抛运动的物体,要先后经过上升和下降两个阶段,若1 s后物体处在下降阶段,即速度方向向下,速度大小为10 m/s,那么抛出时的速度大小为0,这显然与题中“以一定的初速度竖直向上抛出”不符,所以1 s 后物体只能处在上升阶段,即此时物体正在A点上方,速度方向向上.

答案B

5.(单选)一个从地面竖直上抛的物体,它两次经过一个较低的点a的时间间隔

是T a ,两次经过一个较高点b 的时间间隔是T b ,则a 、b 之间的距离为( ). A.18g (T 2a -T 2b ) B.14

g (T 2a -T 2b ) C.12g (T 2a -T 2b ) D.12

g (T a -T b ) 解析 根据时间的对称性,物体从a 点到最高点的时间为T a 2,从b 点到最高

点的时间为T b 2,所以a 点到最高点的距离h a =12g ? ??

??T a 22=gT 2a 8,b 点到最高点的距离h b =12g ? ??

??T b 22=gT 2b 8,故a 、b 之间的距离为h a -h b =18g (T 2a -T 2b ),故选A. 答案 A

6.(2013·淮阴模拟)(单选)如图2所示,小球从竖直砖墙某位置静止释放,用频闪照相机在同一底片上多次曝光,得到了图2中1、2、3、4、5…所示小球运动过程中每次曝光的位置.连续两次曝光的时间间隔均为T ,每块砖的厚度为d .根据图中的信息,下列判断错误的是 ( ).

图2

A .位置“1”是小球的初始位置

B .小球做匀加速直线运动

C .小球下落的加速度为d T 2

D .小球在位置“3”的速度为7d 2T

解析 由题图可知相邻的相等时间间隔的位移差相等都为d ,B 对;由Δx =aT 2=d 可知C 对;位置“3”是小球从位置“2”到位置“4”的中间时刻,据推论有

v 3=3d +4d 2T =7d 2T ,D 对;位置“1”到位置“2”的距离与位置“2”到位置“3”的距离之比为2∶3,位置“1”不是小球释放的初始位置,故选A.

答案 A

7.(单选)小球从空中某处由静止开始自由下落,与水平地面碰撞后上升到空中某一高度,此过程中小球速度随时间变化的关系如图3所示,则 ( ).

图3

A .在下落和上升两个过程中,小球的加速度不同

B .小球开始下落处离地面的高度为0.8 m

C .整个过程中小球的位移为1.0 m

D .整个过程中小球的平均速度大小为2 m/s

解析 v -t 图象斜率相同,即加速度相同,A 选项不正确;0~0.4 s 内小球做自由落体过程,通过的位移即为高度0.8 m ,B 选项正确;前0.4 s 小球自由下落0.8 m ,后0.2 s 反弹向上运动0.2 m ,所以整个过程中小球的位移为0.6 m ,C 选项不正确;整个过程中小球的平均速度大小为1m/s ,D 选项不正确. 答案 B

8.李煜课外活动小组自制一枚火箭,火箭从地面发射后,始终在垂直于地面的方向上运动,火箭点火后可认为做匀加速直线运动,经过4 s 到达离地面40 m 高处时燃料恰好用完,若不计空气阻力,取g =10 m/s 2,求:

(1)燃料恰好用完时火箭的速度;

(2)火箭离地面的最大高度;

(3)火箭从发射到残骸落回地面过程的总时间.

解析 (1)设火箭的速度为v

则12v t =h ,所以v =20 m/s

(2)最大高度h m =40 m +v 2

2g =60 m

(3)t 1=4 s ,t 2=v g =2 s ,t 3=2h m g =23s

t =t 1+t 2+t 3=(6+23)s =9.46 s

答案 (1)20 m/s (2)60 m (3)9.46 s

微专题训练2 汽车的“刹车”问题

1.(单选)汽车进行刹车试验,若速率从8 m/s 匀减速至零,需用时间1 s ,按规

定速率为8 m/s 的汽车刹车后拖行路程不得超过5.9 m ,那么上述刹车试验的拖行路程是否符合规定

( ).

A .拖行路程为8 m ,符合规定

B .拖行路程为8 m ,不符合规定

C .拖行路程为4 m ,符合规定

D .拖行路程为4 m ,不符合规定

解析 由x =v 02t 可得:汽车刹车后的拖行路程为x =82×1 m =4 m<5.9 m ,

所以刹车试验的拖行路程符合规定,C 正确.

答案 C

2.(单选)一辆公共汽车进站后开始刹车,做匀减速直线运动.开始刹车后的第1

s 内和第2 s 内位移大小依次为9 m 和7 m .则刹车后6 s 内的位移是( ).

A .20 m

B .24 m

C .25 m

D .75 m 解析 由Δx =aT 2得:a =-2 m/s 2,由v 0T +12aT 2=x 1得:v 0=10 m/s ,汽

车刹车时间t =0-v 0a =5 s<6 s ,故刹车后6 s 内的位移为x =0-v 202a =25 m ,

C 正确.

答案 C

3.(多选)匀速运动的汽车从某时刻开始刹车,匀减速运动直至停止.若测得刹

车时间为t ,刹车位移为x ,根据这些测量结果,可以求出

( ).

A .汽车刹车过程的初速度

B .汽车刹车过程的加速度

C .汽车刹车过程的平均速度

D .汽车刹车过程的制动力 解析 因汽车做匀减速直线运动,所以有x =12at 2=v -

t ,可以求出汽车刹车

过程的加速度a 、平均速度v -

,B 、C 正确;又v =at ,可求出汽车刹车过程的初速度,A 正确;因不知道汽车的质量,无法求出汽车刹车过程的制动力,D 错误.

答案 ABC

4.(多选)一汽车在公路上以54 km/h 的速度行驶,突然发现前方30 m 处有一障

碍物,为使汽车不撞上障碍物,驾驶员立刻刹车,刹车的加速度大小为6 m/s 2,则驾驶员允许的反应时间可以为

( ). A .0.5 s

B .0.7 s

C .0.8 s

D .0.9 s

解析 汽车在驾驶员的反应时间内做匀速直线运动,刹车后做匀减速直线

运动.根据题意和匀速直线运动、匀变速直线运动规律可得v 0t +v 202a ≤l ,代

入数据解得t ≤0.75 s.

答案 AB

5.某驾驶员以30 m/s 的速度匀速行驶,发现前方70 m 处车辆突然停止,如果

驾驶员看到前方车辆停止时的反应时间为0.5 s ,该汽车是否会有安全问题?已知该车刹车的最大加速度大小为7.5 m/s 2.

解析 汽车做匀速直线运动的位移为

x 1=v t =30×0.5 m =15 m

汽车做匀减速直线运动的位移:

x 2=0-v 22a =-302

2×(-7.5)

m =60 m 汽车停下来的实际位移为:

x =x 1+x 2=15 m +60 m =75 m

由于前方距离只有70 m ,所以会有安全问题.

答案 有安全问题

6.一辆汽车刹车前的速度为90 km/h ,刹车获得的加速度大小为10 m/s 2,求:

(1)汽车刹车开始后10 s 内滑行的距离x 0;

(2)从开始刹车到汽车位移为30 m 时所经历的时间t ;

(3)汽车静止前1 s 内滑行的距离x ′.

解析 (1)判断汽车刹车所经历的时间

由0=v 0+at 0及a =-10 m/s 2,v 0=90 km/h =25 m/s 得:t 0=-v 0a =2510 s =

2.5 s<10 s

汽车刹车后经过2.5 s 停下来,因此10 s 内汽车的位移只是2.5 s 内的位移 根据v 21-v 20=2ax 0得x 0=v 21-v 202a =0-2522×(-10)

m =31.25 m. (2)根据x =v 0t +12at 2

解得:t 1=2 s ,t 2=3 s>2.5 s(舍去).

(3)把汽车减速到速度为零的过程,看作反向的初速度为零的匀加速直线运

动过程,求出汽车以10 m/s 2

的加速度经过1 s 的位移,即:x ′=12(-a )t ′2=12×10×12m =5 m.

答案 (1)31.25 m (2)2 s (3)5 m

7.图是《驾驶员守则》中的安全距离图示和部分安全距离表格.

(1)如果驾驶员的反应时间一定,请在表格中填上A的数据;

(2)如果路面情况相同,请在表格中填上B、C的数据;

(3)如果路面情况相同,一名喝了酒的驾驶员发现前面50 m处有一队学生正在横穿马路,此时他的车速为72 km/h,而他的反应时间比正常时慢了0.1 s,请问他能在50 m内停下来吗?

解析(1)反应时间为t=s1

v1=0.9 s,A=v t=20 m.

(2)加速度a=

v2

2x刹车=

500

81m/s

2,B=

v2

2a=40 m,所以C=60 m.

(3)司机的反应距离为x1=v t=20×

(0.9+0.1)m=20 m

司机的刹车距离为x2=v2

2a=

202

1 000

162

m=32.4 m,x=x1+x2=52.4 m>50 m,

故不能.

答案(1)20 m(2)40 m60 m(3)不能

微专题训练3追及、相遇问题

1.(多选)如图1是做直线运动的甲、乙两个物体的位移—时间图象,由图象可知().

图1

A.乙开始运动时,两物体相距20 m

B.在0~10 s这段时间内,两物体间的距离逐渐增大

C.在10~25 s这段时间内,两物体间的距离逐渐变小

D.两物体在10 s时相距最远,在25 s时相遇

解析在0~10 s这段时间内,两物体纵坐标的差值逐渐增大,说明两物体间的距离逐渐增大;在10~25 s这段时间内,两物体纵坐标的差值逐渐减小,说明两物体间的距离逐渐变小,因此,两物体在10 s时相距最远;在25 s时,两图线相交,两物体纵坐标相等,说明它们到达同一位置而相遇.选项B、C、D正确.

答案BCD

2.(多选)a、b、c三个物体在同一条直线上运动,三个物体的x -t图象如图2所示,图象c是一条抛物线,坐标原点是抛物线的顶点,下列说法中正确的是().

图2

A.a、b两物体都做匀速直线运动,两个物体的速度相同

B.a、b两物体都做匀速直线运动,两个物体的速度大小相等,方向相反C.在0~5 s内,当t=5 s时,a、b两个物体相距最近

D.物体c一定做变速直线运动

解析a、b两物体都做匀速直线运动,两个物体的速度大小相等,方向相反,A错、B正确;在0~5 s内,当t=5 s时,a、b两个物体相距最远x=20 m,C错;根据x -t图象的斜率可判断D选项是正确的.

答案BD

3.(单选)A、B两物体相距s=7 m,物体A在水平拉力和摩擦力的作用下,正以v A=4 m/s的速度向右匀速运动,而物体B此时在摩擦力作用下正以v B=10 m/s的速度向右匀减速运动,加速度a=-2 m/s2,则A追上B所经历的时间是

().

图3

A.7 s B.8 s

C.9 s D.10 s

解析t=5 s时,物体B的速度减为零,位移大小x B=1

2at

2=25 m,此时A

的位移x A=v A t=20 m,A、B两物体相距Δs=s+x B-x A=7 m+25 m-20 m =12 m,再经过Δt=Δs/v A=3 s,A追上B,所以A追上B所经历的时间是5 s+3 s=8 s,选项B正确.

答案B

4.(2013·商丘二模)(单选)甲、乙两个物体从同一地点、沿同一直线同时做直线运动,其v -t图象如图4所示,则().

图4

A.1 s时甲和乙相遇

B.0~6 s内甲乙相距最大距离为1 m

C.2~6 s内甲相对乙做匀速直线运动

D.4 s时乙的加速度方向反向

解析两物体从同一地点出发,t=1 s之前乙的速度一直大于甲的速度,故两物体在t=1 s时不会相遇,A错误;在0~6 s内,在t=6 s时两物体间距最大,最大距离为8 m,B错误;因2~6 s内甲、乙两物体减速的加速度相

同,故v

甲-v

恒定不变,即甲相对乙做匀速直线运动,C正确,D错误.

答案C

5.(单选)汽车A在红灯前停住,绿灯亮时启动,以0.4 m/s2的加速度做匀加速运动,经过30 s后以该时刻的速度做匀速直线运动.设在绿灯亮的同

时,汽车B以8 m/s的速度从A车旁边驶过,且一直以相同的速度做匀速直线运动,运动方向与A车相同,则从绿灯亮时开始().A.A车在加速过程中与B车相遇

B.A、B相遇时速度相同

C.相遇时A车做匀速运动

D.两车不可能相遇

解析作出A、B两车运动的v -t图象如图所示,v -t图象所包围的“面积”

表示位移,经过30 s时,两车运动图象所围面积并不相等,所以在A车加速运动的过程中,两车并未相遇,所以选项A错误;30 s后A车以12 m/s的速度做匀速直线运动,随着图象所围“面积”越来越大,可以判断在30 s后某时刻两车图象所围面积会相等,即两车会相遇,此时A车的速度要大于B 车的速度,所以两车不可能再次相遇,选项C正确,选项B、D错误.

答案C

6.现有A、B两列火车在同一轨道上同向行驶,A车在前,其速度v A=10 m/s,B车速度v B=30 m/s.因大雾能见度低,B车在距A车600 m时才发现前方有A车,此时B车立即刹车,但B车要减速1 800 m才能够停止.

(1)B车刹车后减速运动的加速度多大?

(2)若B车刹车8 s后,A车以加速度a1=0.5 m/s2加速前进,问能否避免事故?

若能够避免则两车最近时相距多远?

解析(1)设B车减速运动的加速度大小为a,有0-v2B=-2ax1,解得:a=

0.25 m/s2.

(2)设B车减速t秒时两车的速度相同,有

v B-at=v A+a1(t-Δt)

代入数值解得t=32 s,

在此过程中B车前进的位移为x B=v B t-at2

2=832 m

A 车前进的位移为x A =v A Δt +v A (t -Δt )+12a 1(t -Δt )2=464 m ,

因x A +x >x B ,故不会发生撞车事故,

此时Δx =x A +x -x B =232 m.

答案 (1)0.25 m/s 2 (2)可以避免事故 232 m

7.甲、乙两车在平直公路上比赛,某一时刻,乙车在甲车前方L 1=11 m 处,乙车速度v 乙=60 m/s ,甲车速度v 甲=50 m/s ,此时乙车离终点线尚有L 2=600 m ,如图5所示.若甲车加速运动,加速度a =2 m/s 2,乙车速度不变,不计车长.求:

图5

(1)经过多长时间甲、乙两车间距离最大,最大距离是多少?

(2)到达终点时甲车能否超过乙车?

解析 (1)当甲、乙两车速度相等时,两车间距离最大,即v 甲+at 1=v 乙,得

t 1=v 乙-v 甲a =60-502

s =5 s ; 甲车位移x 甲=v 甲t 1+12at 21=275 m ,

乙车位移x 乙=v 乙t 1=60×5 m =300 m ,

此时两车间距离Δx =x 乙+L 1-x 甲=36 m

(2)甲车追上乙车时,位移关系x 甲′=x 乙′+L 1

甲车位移x 甲′=v 甲t 2+12at 22,乙车位移x 乙′=v 乙t 2,

将x 甲′、x 乙′代入位移关系,得v 甲t 2+12at 22

=v 乙t 2+L 1, 代入数值并整理得t 22-10t 2-11=0,

解得t 2=-1 s(舍去)或t 2=11 s ,

此时乙车位移x 乙′=v 乙t 2=660 m ,

因x 乙′>L 2,故乙车已冲过终点线,即到达终点时甲车不能追上乙车. 答案 (1)5 s 36 m (2)不能

微专题训练4“滑轮”模型和“死结”模型问题) 1.(单选)如图1所示,杆BC的B端用铰链接在竖直墙上,另一端C为一滑轮.重物G上系一绳经过滑轮固定于墙上A点处,杆恰好平衡.若将绳的A端沿墙缓慢向下移(BC杆、滑轮、绳的质量及摩擦均不计),则().

图1

A.绳的拉力增大,BC杆受绳的压力增大

B.绳的拉力不变,BC杆受绳的压力增大

C.绳的拉力不变,BC杆受绳的压力减小

D.绳的拉力不变,BC杆受绳的压力不变

解析选取绳子与滑轮的接触点为研究对象,对其受力分析,如图所示,绳中的弹力大小相等,即T1=T2=G,C点处于三力平衡状态,将三个力的示意图平移可以组成闭合三角形,如图中虚线所示,设AC段绳子与竖直墙壁

间的夹角为θ,则根据几何知识可知F=2G sin θ

2,当绳的A端沿墙缓慢向下

移时,绳的拉力不变,θ增大,F也增大,根据牛顿第三定律知,BC杆受绳的压力增大,B正确.

答案B

2.(单选)如图2所示,一条细绳跨过定滑轮连接物体A、B,A悬挂起来,B穿在一根竖直杆上,两物体均保持静止,不计绳与滑轮、B与竖直杆间的摩擦,

已知绳与竖直杆间的夹角θ,则物体A、B的质量之比m A∶m B等于().

图2

A.cos θ∶1B.1∶cos θ

C.tan θ∶1D.1∶sin θ

解析由物体A平衡可知,绳中张力F=m A g,物体B平衡,竖直方向合力为零,则有F cos θ=m B g,故得:m A∶m B=1∶cos θ,B正确.

答案B

图3

3.(2013·扬州调研)(单选)两物体M、m用跨过光滑定滑轮的轻绳相连,如图3所示,OA、OB与水平面的夹角分别为30°、60°,M、m均处于静止状态.则().

A.绳OA对M的拉力大小大于绳OB对M的拉力

B.绳OA对M的拉力大小等于绳OB对M的拉力

C.m受到水平面的静摩擦力大小为零

D.m受到水平面的静摩擦力的方向水平向左

解析设绳OA对M的拉力为F A,绳OB对M的拉力为F B,由O点合力为零可得:F A·cos 30°=F B·cos 60°即3F A=F B.故A、B均错误;因F B>F A,物体m有向右滑动的趋势,m受到水平面的摩擦力的方向水平向左,D正确,C错误.

答案D

4.(单选)在如图4所示的四幅图中,AB、BC均为轻质杆,各图中杆的A、C端都通过铰链与墙连接,两杆都在B处由铰链相连接.下列说法正确的是().

图4

A.图中的AB杆可以用与之等长的轻绳代替的有甲、乙

B.图中的AB杆可以用与之等长的轻绳代替的有甲、丙、丁

C.图中的BC杆可以用与之等长的轻绳代替的有乙、丙

D.图中的BC杆可以用与之等长的轻绳代替的有乙、丁

解析如果杆端受拉力作用,则可用等长的轻绳代替,若杆端受到沿杆的压力作用,则杆不可用等长的轻绳代替,如图甲、丙、丁中的AB杆受拉力作用,而甲、乙、丁中的BC杆均受沿杆的压力作用,故A、C、D均错误,只有B正确.

答案B

5.如图5所示,轻绳AD跨过固定在水平横梁BC右端的定滑轮挂住一个质量为10 kg的物体,∠ACB=30°,g取10 m/s2,求:

图5

(1)轻绳AC段的张力F AC的大小;

(2)横梁BC对C端的支持力大小及方向.

解析物体M处于平衡状态,根据平衡条件可判断,与物体相连的轻绳拉力大小等于物体的重力,取C点为研究对象,进行受力分析,如图所示.

(1)图中轻绳AD跨过定滑轮拉住质量为M的物体,物体处于平衡状态,绳

AC段的拉力大小为:

F AC=F CD=Mg=10×10 N=100 N

(2)由几何关系得:F C=F AC=Mg=100 N

方向和水平方向成30°角斜向右上方

答案(1)100 N

(2)100 N方向与水平方向成30°角斜向右上方

6.若上题中横梁BC换为水平轻杆,且B端用铰链固定在竖直墙上,如图6所示,轻绳AD拴接在C端,求:

图6

(1)轻绳AC段的张力F AC的大小;

(2)轻杆BC对C端的支持力.

解析物体M处于平衡状态,与物体相连的轻绳拉力大小等于物体的重力,取C点为研究对象,进行受力分析,如图所示.

(1)由F AC sin 30°=F CD=Mg得;

F AC=2Mg=2×10×10 N=200 N

(2)由平衡方程得:F AC cos 30°-F C=0

解得:F C=2Mg cos 30°=3Mg≈173 N

方向水平向右.

答案(1)200 N

(2)173 N,方向水平向右

微专题训练5平衡中的临界、极值问题1.(单选)如图1所示,在绳下端挂一物体,用力F拉物体使悬线偏离竖直方向的夹角为α,且保持其平衡.保持α不变,当拉力F有最小值时,F与水平方向的夹角β应是().

图1

A.0 B.π2

C.αD.2α

解析由题图可知当F与倾斜绳子垂直时具有最小值,所以β=α.

答案C

2.(多选)如图2甲所示,一物块在粗糙斜面上,在平行斜面向上的外力F作用下,斜面和物块始终处于静止状态.当外力F按照图乙所示规律变化时,下列说法正确的是().

图2

A.地面对斜面的摩擦力逐渐减小

B.地面对斜面的摩擦力逐渐增大

C.物块对斜面的摩擦力可能一直增大

D.物块对斜面的摩擦力可能一直减小

解析设斜面的倾角为θ,物块和斜面均处于平衡状态,以物块和斜面作为整体研究,在水平方向上有F f=F cos θ,外力不断减小,故地面对斜面的摩擦力不断减小,故A正确、B错误.对于物块m,沿斜面方向:(1)若F0>mg sin θ,随外力F不断减小,斜面对物块的摩擦力先沿斜面向下减小为零,再沿斜面向上逐渐增大;(2)若F0≤mg sin θ,随外力F不断减小,斜面对物块的摩擦力沿斜面向上不断增大,故C正确、D错误.

答案AC

3.(单选)如图3所示,光滑斜面的倾角为30°,轻绳通过两个滑轮与A相连,轻绳的另一端固定于天花板上,不计轻绳与滑轮的摩擦.物块A的质量为m,不计滑轮的质量,挂上物块B后,当动滑轮两边轻绳的夹角为90°时,A、B 恰能保持静止,则物块B的质量为().

图3

A.

2

2m B.2m

C.m D.2m

解析先以A为研究对象,由A物块受力及平衡条件可得绳中张力F T=mg sin 30°.再以动滑轮为研究对象,分析其受力并由平衡条件有m B g=2F T cos 45°=

2F T,解得m B=

2

2m,A正确.

答案A

4.(单选)如图4所示,质量为m的球放在倾角为α的光滑斜面上,用挡板AO 将球挡住,使球处于静止状态,若挡板与斜面间的夹角为β,则().

图4

A.当β=30°时,挡板AO所受压力最小,最小值为mg sin α

B.当β=60°时,挡板AO所受压力最小,最小值为mg cos α

C.当β=60°时,挡板AO所受压力最小,最小值为mg sin α

D.当β=90°时,挡板AO所受压力最小,最小值为mg sin α

解析以球为研究对象,球所受重力产生的效果有两个:对斜面产生的压力

F N1、对挡板产生的压力F N2,根据重力产生的效果将重力分解,如图所示.当

挡板与斜面的夹角β由图示位置变化时,F N1大小改变但方向不变,始终与斜面垂直,F N2的大小和方向均改变,由图可看出当挡板AO与斜面垂直,即β=90°时,挡板AO所受压力最小,最小压力F N2min=mg sin α,D项正确.答案D

5.(单选)如图5所示,三根长度均为l的轻绳分别连接于C、D两点,A、B两端被悬挂在水平天花板上,相距为2l.现在C点上悬挂一个质量为m的重物,为使CD绳保持水平,在D点上可施加的力的最小值为().

图5

A.mg B.

3

3mg

C.1

2mg D.

1

4mg

解析

如图所示,对C点进行受力分析,由平衡条件可知,绳CD对C点的拉力F CD =mg tan 30°;对D点进行受力分析,绳CD对D点的拉力F2=F CD=mg tan 30°,F1方向一定,则当F3垂直于绳BD时,F3最小,由几何关系可知,F3=F2sin

60°=1

2mg.

答案C

6.如图6所示,两个完全相同的球,重力大小均为G,两球与水平地面间的动摩擦因数都为μ,且假设最大静摩擦力等于滑动摩擦力,一根轻绳两端固结在两个球上,在绳的中点施加一个竖直向上的拉力,当绳被拉直后,两段绳间的夹角为α.问当F至少为多大时,两球将会发生滑动?

图6

解析对结点O受力分析如图(a)所示,由平衡条件得:

F1=F2=

F

2cos α2

2021年高考物理选择题专题训练含答案 (1)

2021模拟模拟-选择题专项训练之交变电流 本考点是电磁感应的应用和延伸.高考对本章知识的考查主要体现在“三突出”:一是突出考查交变电流的产生过程;二是突出考查交变电流的图象和交变电流的四值;三是突出考查变压器.一般试题难度不大,且多以选择题的形式出现.对于电磁场和电磁波只作一般的了解.本考点知识易与力学和电学知识综合,如带电粒子在加有交变电压的平行金属板间的运动,交变电路的分析与计算等.同时,本考点知识也易与现代科技和信息技术相联系,如“电动自行车”、“磁悬浮列车”等.另外,远距离输电也要引起重视.尤其是不同情况下的有效值计算是高考考查的主要内容;对变压器的原理理解的同时,还要掌握变压器的静态计算和动态分析. 北京近5年高考真题 05北京18.正弦交变电源与电阻R、交流电压表按照图1所示的方式连接,R=10Ω,交流电压表的示数是10V。图2是交变电源输出电压u随时间t变化的图象。则( ) A.通过R的电流i R随时间t变化的规律是i R=2cos100πt (A) B.通过R的电流 i R 随时间t变化的规律是i R=2cos50πt (A) C.R两端的电压u R随时间t变化的规律是u R=52cos100πt (V) D.R两端的电压u R随时间t变化的规律是u R=52cos50πt (V) 07北京17、电阻R1、R2交流电源按照图1所示方式连接,R1=10Ω,R2=20Ω。合上开关后S后,通过电阻R2的正弦交变电流i随时间t变化的情况如图2所示。则() A、通过R1的电流的有效值是1.2A B、R1两端的电压有效值是6V C、通过R2的电流的有效值是1.22A D、R2两端的电压有效值是62V 08北京18.一理想变压器原、副线圈匝数比n1:n2=11:5。原线圈与正弦交变电源连接,输入电压u如图所示。副线圈仅接入一个10 Ω的电阻。则() A.流过电阻的电流是20 A B.与电阻并联的电压表的示数是1002V C.经过1分钟电阻发出的热量是6×103 J D.变压器的输入功率是1×103 W 北京08——09模拟题 08朝阳二模16.在电路的MN间加一如图所示正弦交流电,负载电阻为100Ω,若不考 虑电表内阻对电路的影响,则交流电压表和交流电流表的读数分别为()A.220V,2.20 AB.311V,2.20 AC.220V,3.11A D.311V,3.11A t/×10-2s U/V 311 -311 1 2 3 4 A V M ~ R V 交变电源 ~ 图1 u/V t/×10-2s O U m -U m 12 图2

高三物理专题训练

高三物理专题训练 —连接体 一、选择题 1. 如图1-23所示,质量分别为m1=2kg,m2=3kg的二个物体置于光滑的水平面上,中间用一 轻弹簧秤连接。水平力F1=30N和F2=20N分别作用在m1和m2上。以下叙述正确的是: A. 弹簧秤的示数是10N。 B. 弹簧秤的示数是50N。 C. 在同时撤出水平力F 1、F2的瞬时,m1加速度的大小 13m/S2。 D. 若在只撤去水平力F1的瞬间,m1加速度的大小为13m/S2。 2. 如图1-24所示的装置中,物体A在斜面上保持静止,由此可知: A. 物体A所受摩擦力的方向可能沿斜面向上。 B. 物体A所受摩擦力的方向可能沿斜面向下。 C. 物体A可能不受摩擦力作用。 D. 物体A一定受摩擦力作用,但摩擦力的方向无法判定。 3. 两个质量相同的物体1和2紧靠在一起放在光滑水平桌面上,如图1-25所示。如果它们 分别受到水平推力F1和F2,且F1>F2,则1施于2的作用力的大小为: A. F 1 B. F2 C. (F1+F2)/2 D. (F1-F2)2 4. 两物体A和B,质量分别为m1和m2,互相接触放在光滑水平面上,如图1-26所示,对物 体A施于水平推力F,则物体A对物体B的作用力等于: A. m1F/(m1+m2) B. m2F/(m1+m2) C. F D. m1F/m2 5. 如图1-27所示,在倾角为θ的斜面上有A、B两个长方形物块,质量分别为m A、m B,在平 行于斜面向上的恒力F的推动下,两物体一起沿斜面向上做加速运动。A、B与斜面间的动摩擦因数为μ。设A、B之间的相互作用为T,则当它们一起向上加速运动过程中: A. T=m B F/(m A+m B) B. T=m B F/(m A+m B)+m B g(Sinθ+μCosθ) C. 若斜面倾角θ如有增减,T值也随之增减。 D. 不论斜面倾角θ如何变化(0?≤θ<90?),T值都保持不变。 6. 如图1-28所示,两个物体中间用一个不计质量的轻杆相连,A、 B质量分别为m1和m2,它们与斜面间的动摩擦因数分别为μ1和μ2。当它们在斜面上加速下滑时,关于杆的受力情况,以下说法中正确的是: A. 若μ1>μ2,则杆一定受到压力。 B. 若μ1=μ2,m1m2,则杆受到压力。 D. 若μ1=μ2,则杆的两端既不受拉力也不受压力。

高中物理公式大全.doc

高中物理公式大全 一、力学 1、胡克定律: F = kx (x为伸长量或压缩量;k为劲度系数,只与弹簧的原长、粗细和材料 有关) 2、重力: G = mg (g随离地面高度、纬度、地质结构而变化;重力约等于地面上物体受 到的地球引力) 3 、求F 1、F 2 两个共点力的合力:利用平行四边形定则。 注意:(1) 力的合成和分解都均遵从平行四边行法则。 (2) 两个力的合力范围:? F1-F2 ?≤ F≤ F1 + F2 (3) 合力大小可以大于分力、也可以小于分力、也可以等于分力。 4、两个平衡条件: (1)共点力作用下物体的平衡条件:静止或匀速直线运动的物体,所受合外力为零。 F合=0 或: F x合=0 F y合=0 推论:[1]非平行的三个力作用于物体而平衡,则这三个力一定共点。 [2]三个共点力作用于物体而平衡,其中任意两个力的合力与第三个力一定等值反向 (2* )有固定转动轴物体的平衡条件:力矩代数和为零.(只要求了解) 力矩:M=FL (L为力臂,是转动轴到力的作用线的垂直距离) 5、摩擦力的公式: (1) 滑动摩擦力: f= μ F N 说明:① F N为接触面间的弹力,可以大于G;也可以等于G;也可以小于G ②μ为滑动摩擦因数,只与接触面材料和粗糙程度有关,与接触面积大小、接触面相对运动快慢以及正压力N无关. (2) 静摩擦力:其大小与其他力有关,由物体的平衡条件或牛顿第二定律求解,不与正压力成正比. 大小范围: O≤ f静≤ f m (f m 为最大静摩擦力,与正压力有关)

说明: a 、摩擦力可以与运动方向相同,也可以与运动方向相反。 b、摩擦力可以做正功,也可以做负功,还可以不做功。 c、摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反。 d、静止的物体可以受滑动摩擦力的作用,运动的物体可以受静摩擦力的作用。 6、浮力: F= ρgV (注意单位) 7、万有引力: F=G m m r 12 2 (1)适用条件:两质点间的引力(或可以看作质点,如两个均匀球体)。 (2) G为万有引力恒量,由卡文迪许用扭秤装置首先测量出。 (3)在天体上的应用:(M--天体质量,m—卫星质量, R--天体半径,g--天体表面重力加速度,h— 卫星到天体表面的高度) a 、万有引力=向心力 G Mm R h m () + = 2 V R h m R h m T R h 2 2 2 2 2 4 () ()() + =+=+ ω π b、在地球表面附近,重力=万有引力 mg = G Mm R2 g = G M R2 c、第一宇宙速度 mg = m V R 2 V=gR GM R =/ 8、库仑力:F=K22 1 r q q (适用条件:真空中,两点电荷之间的作用力) 9、电场力:F=Eq (F 与电场强度的方向可以相同,也可以相反) 10、磁场力: (1)洛仑兹力:磁场对运动电荷的作用力。 公式:f=qVB (B⊥V) 方向--左手定则 (2)安培力:磁场对电流的作用力。

高考物理大题专题训练专用(带答案)

高考物理大题常考题型专项练习 题型一:追击问题 题型二:牛顿运动问题 题型三:牛顿运动和能量结合问题 题型四:单机械能问题 题型五:动量和能量的结合 题型六:安培力/电磁感应相关问题 题型七:电场和能量相关问题 题型八:带电粒子在电场/磁场/复合场中的运动 题型一:追击问题3 1. (2014年全国卷1,24,12分★★★)公路上行驶的两汽车之间应保持一定的安全距离。 当前车突然停止时,后车司机以采取刹车措施,使汽车在安全距离内停下而不会与前车相碰。通常情况下,人的反应时间和汽车系统的反应时间之和为1s。当汽车在晴天干燥沥青路面上以108km/h的速度匀速行驶时,安全距离为120m。设雨天时汽车轮胎与沥青路面间的动摩擦因数为晴天时的2/5,若要求安全距离仍为120m,求汽车在雨天安全行驶的最大速度。 答案:v=20m/s 2.(2018年全国卷II,4,12分★★★★★)汽车A在水平冰雪路面上行驶,驾驶员发现其 正前方停有汽车B,立即采取制动措施,但仍然撞上了汽车B.两车碰撞时和两车都完全停止后的位置如图所示,碰撞后B车向前滑动了4.5 m,A车向前滑动了2.0 m,已知A和B 的质量分别为2.0×103 kg和1.5×103kg,两车与该冰雪路面 间的动摩擦因数均为0.10,两车碰撞时间极短,在碰撞后车 轮均没有滚动,重力加速度大小g = 10m/s2.求: (1)碰撞后的瞬间B车速度的大小; (2)碰撞前的瞬间A车速度的大小. 答案.(1)v B′ = 3.0 m/s (2)v A = 4.3m/s 3.(2019年全国卷II,25,20分★★★★★)一质量为m=2000kg的汽车以某一速度在平直

高考物理必备公式大全

高考必背物理公式 质点运动 1.匀速直线运动:------t s v = ---vt s = v 表示速度,s 表示位移,t 表示时间。 2.变速直线运动:------t v s = 其中:s 表示位移,v 表示平均速度,t 表示时间。 3.匀变速直线运------基本公式:t v v a t 0-= t v s = 2 0t v v v += 导出公式:2021at t v s += 2 022v v as t -= t v v s t 2 += t v v 中中>+=2 v v 2t 2 0s 纸 带 法 :2 aT s =? 2 )(T N M S S a N M --= 2T 两侧中S v v t == 4.平抛运动:沿V 0方向 t v S x 0= 0v v x = 0=x a 0=x F y x t t = 沿垂直于V 0方向(竖直)---2 2 1gt S y = ---gt v y = ---g a y = ---mg F y = 各量方向------位移:θφtan 21 2tan 0===v gt S S x y ------速度:0tan v gt v v x y ==θ 其余量的求法:---位移:4 2220 224 1t g t v S S S y x +=+= ---速度:222022t g v v v v y x +=+= ---时间:g h t 2= 5.匀速率圆周运动: ---基本公式:---运动快慢---线速度:t s v = 其中:s 为t 时间内通过的弧长。 --转动快慢---角速度:t φ ω= 其中:φ为t 时间内转过的圆心角。 ---周期:f T 12= = ω π v r ?=π2 r v =ω ---向心力:心心ma v m r f m r T m r v m r m F =??=====ωππω2222 22 44 ---向心加速度:m F r f r T r v r a 心心=====2222 22 44ππωv ?=ω 力的表达式 1.重力---mg G =---不考虑地球自转的情况下 ,重力与万有引力相等2 R GMm mg = 2.弹力---不明显的形变---用动力学方程求解; 明显的形变---在弹性限度以内,满足胡克定律:x k f ??-= 3.摩擦力---静摩擦力---max 0f f ≤< 最大静摩擦力:N s F f μ=m a x 其中:s μ为最大静摩擦因数。 ---滑动摩擦力---N F f μ= 其中:μ为动摩擦因数,F N 为正压力。 4.力的合成和分解 ------合力的大小:θcos 2212221F F F F F ++=其中:θ为F 1与F 2的夹角; ------合力的方向: 6.核力:组成原子核的核子之间的作用力。 强力、短程力 7.电场力:------库仑力:2 2 1r Q kQ F = ------电场力:Eq F = 8.安培力:---当为有效长度均匀其中时l B l I B F I B ,,??=⊥;当0//=F I B 时。

高考物理专题一(受力分析)(含例题、练习题及答案)

高考定位 受力分析、物体的平衡问题是力学的基本问题,主要考查力的产生条件、力的大小方向的判断(难点:弹力、摩擦力)、力的合成与分解、平衡条件的应用、动态平衡问题的分析、连接体问题的分析,涉及的思想方法有:整体法与隔离法、假设法、正交分解法、矢量三角形法、等效思想等.高考试题命题特点:这部分知识单独考查一个知识点的试题非常少,大多数情况都是同时涉及到几个知识点,而且都是牛顿运动定律、功和能、电磁学的内容结合起来考查,考查时注重物理思维与物理能力的考核. 考题1对物体受力分析的考查 例1如图1所示,质量为m的木块A放在质量为M的三角形斜面B上,现用大小均为F,方向相反的水平力分别推A和B,它们均静止不动,则() 图1 A.A与B之间不一定存在摩擦力 B.B与地面之间可能存在摩擦力 C.B对A的支持力一定大于mg D.地面对B的支持力的大小一定等于(M+m)g 审题突破B、D选项考察地面对B的作用力故可以:先对物体A、B整体受力分析,根据平衡条件得到地面对整体的支持力和摩擦力;A、C选项考察物体A、B之间的受力,应当隔离,物体A受力少,故:隔离物体A受力分析,根据平衡条件求解B对A的支持力和摩擦力. 解析对A、B整体受力分析,如图, 受到重力(M+m)g、支持力F N和已知的两个推力,水平方向:由于两个推力的合力为零,故

整体与地面间没有摩擦力;竖直方向:有F N=(M+m)g,故B错误,D正确;再对物体A受力分析,受重力mg、推力F、斜面体B对A的支持力F N′和摩擦力F f,在沿斜面方向:①当推力F沿斜面分量大于重力的下滑分量时,摩擦力的方向沿斜面向下,②当推力F沿斜面分量小于重力的下滑分量时,摩擦力的方向沿斜面向上,③当推力F沿斜面分量等于重力的下滑分量时,摩擦力为零,设斜面倾斜角为θ,在垂直斜面方向:F N′=mg cos θ+F sin θ,所以B对A的支持力不一定大于mg,故A正确,C错误.故选择A、D. 答案AD 1.(单选)(2014·广东·14)如图2所示,水平地面上堆放着原木,关于原木P在支撑点M、N处受力的方向,下列说法正确的是() 图2 A.M处受到的支持力竖直向上 B.N处受到的支持力竖直向上 C.M处受到的静摩擦力沿MN方向 D.N处受到的静摩擦力沿水平方向 答案 A 解析M处支持力方向与支持面(地面)垂直,即竖直向上,选项A正确;N处支持力方向与支持面(原木接触面)垂直,即垂直MN向上,故选项B错误;摩擦力与接触面平行,故选项C、D错误. 2.(单选)如图3所示,一根轻杆的两端固定两个质量均为m的相同小球A、B,用两根细绳悬挂在天花板上,虚线为竖直线,α=θ=30°,β=60°,求轻杆对A球的作用力() 图3 A.mg B.3mg C. 3 3mg D. 3 2mg

高考物理 小题训练卷10

湖南省长沙市周南中学2016届高考物理 小题训练卷10 14.在“探究弹性势能的表达式”的活动中,为计算弹簧弹力所做的功,把拉伸弹簧的过程分为很多小段,拉力在每小段可以认为是恒力,用各小段做功的代数和代表弹力在整个过程所做的功,物理学中把这种研究方法叫做“微元法”。下列几个实例中应用到这一思想方法的是 ( ) A .在不需要考虑物体本身的大小和形状时,用点来代替物体,即质点 B .在推导匀变速直线运动位移公式时,把整个运动过程划分成很多小段,每一小段近似看作匀速直线运动,然后把各小段的位移相加 C .一个物体受到几个力共同作用产生的效果与某一个力产生的效果相同,这个力叫做那几个力的合力 D .在探究加速度与力和质量之间关系时,先保持质量不变探究加速度与力的关系,再保持力不变探究加速度与质量的关系 15 .如图所示,一理想变压器原线圈可通过滑动触头P 的移动改变其匝数,当P 接a 时,原 副线圈的匝数比为5:1,b 为原线圈的中点,副线圈接有电容器C 、灯泡L 、理想电流表○ A 以及R =88Ω的定值电阻。若原线圈接有u =311sin100πt V 的交变电压,下列判断正确的是( ) A. 当P 接a 时,灯泡两端电压为44V B .当P 接a 时,电流表的读数为2A C .P 接b 时灯泡消耗功率比P 接a 时大 D .P 固定在a 点不移动,原线圈改接u =311sin200πt V 的电压,灯泡亮度不变 16图为某探究活动小组设计的节能运输系统。斜面轨道的倾角为30°,质量为M 的木箱与轨道的动摩擦因数为36。木箱在轨道顶端时,自动装货装置将质量为m 的货物装入木箱,然后木箱载着货物为轨道无初速度滑下,当轻弹簧被压缩至最短时,自 动卸货装置立刻将货物卸下,然后木箱恰好被弹回到轨道顶端,再重复 上述过程。下列选项正确的是 A .m=M B .M=2m C .木箱不与弹簧接触时,上滑的加速度大于下滑的加速度 D .在木箱与货物从顶端滑到最低点的过程中,减少的重力势能全部转化为弹簧的弹性势能 17.2010年11月3日,我国发射的“嫦娥二号”卫星,开始在距月球表面约100 km 的圆轨道上进行长期的环月科学探测试验;2011年11月3日,交会对接成功的“天宫一号”和“神舟八号”连接体,在距地面约343 km 的圆轨道上开始绕地球运行。已知月球表面的重力加速度约为地球表面重力加速度的16,月球半径约为地球半径的14 。将“嫦娥二号”和“天宫一神八连接体”在轨道上的运动都看作匀速圆周运动,用T 1和T 2分别表示“嫦娥二号”和“天宫一神八连接体”在轨道上运行的周期,则2 1T T 的值最接近(可能用到的数据:地球的半径R 地=6400 km ,地球表面的重力加速度g=9.8m/s 2) ( ) A p a b R u ~ L

2020年高考物理必考考点题型

高考物理必考考点题型 必考一、描述运动的基本概念 【典题1】2010年11月22日晚刘翔以13秒48的预赛第一成绩轻松跑进决赛,如图所示,也是他历届亚运会预赛的最佳成绩。刘翔之所以能够取得最佳成绩,取决于他在110米中的( ) A.某时刻的瞬时速度大 B.撞线时的瞬时速度大 C.平均速度大 D.起跑时的加速度大 【解题思路】在变速直线运动中,物体在某段时间的位移跟发生这段位移所用时间的比值叫平均速度,是矢量,方向与位移方向相同。根据x=Vt可知,x一定,v越大,t越小,即选项C正确。 必考二、受力分析、物体的平衡 【典题2】如图所示,光滑的夹角为θ=30°的三角杆水平放置,两小球A、B分别穿在两个杆上,两球之 间有一根轻绳连接两球,现在用力将B球缓慢拉动,直到轻绳被拉直时,测出拉力F=10N则此时关于两个小球受到的力的说法正确的是() A、小球A受到重力、杆对A的弹力、绳子的张力 B、小球A受到的杆的弹力大小为20N C、此时绳子与穿有A球的杆垂直,绳子张力大小为 203 3N D、小球B受到杆的弹力大小为 203 3N 【解题思路】对A在水平面受力分析,受到垂直杆的弹力和绳子拉力,由平衡条件可知,绳子拉力必须垂直杆才能使A平衡,再对B在水平面受力分析,受到拉力F、杆的弹力以及绳子拉力,由平衡条件易得杆对A的弹力N等于绳子拉力T,即N=T=20N,杆对B的弹力N B= 203 3。 【答案】AB 必考三、x-t与v-t图象 【典题3】图示为某质点做直线运动的v-t图象,关于这个质点在4s内的运动情况,下列说法中正确的是() A、质点始终向同一方向运动 B、4s末质点离出发点最远 C、加速度大小不变,方向与初速度方向相同 D、4s内通过的路程为4m,而位移为0 【解题思路】在v-t图中判断运动方向的标准为图线在第一象限(正方向)还是第四象限(反方向),该图线穿越了t轴,故质点先向反方向运动后向正方向运动,A错;图线与坐标轴围成的面积分为第一象限(正方向位移)和第四象限(反方向位移)的面积,显然t轴上下的面积均为2,故4s末质点回到了出发点,B 错;且4s内质点往返运动回到出发点,路程为4m,位移为零,D对;判断加速度的标准是看图线的斜率, F θ A B t/s v/(m·s-2) 1 2 3 4 2 1 -2 -1 O

【物理】高考物理临界状态的假设解决物理试题解答题压轴题提高专题练习含详细答案

【物理】高考物理临界状态的假设解决物理试题解答题压轴题提高专题练习含 详细答案 一、临界状态的假设解决物理试题 1.如图甲所示,小车B 紧靠平台的边缘静止在光滑水平面上,物体A (可视为质点)以初速度v 0从光滑的平台水平滑到与平台等高的小车上,物体和小车的v -t 图像如图乙所示,取重力加速度g =10m /s 2,求: (1)物体A 与小车上表面间的动摩擦因数; (2)物体A 与小车B 的质量之比; (3)小车的最小长度。 【答案】(1)0.3;(2)1 3 ;(3)2m 【解析】 【分析】 【详解】 (1)根据v t -图像可知,A 在小车上做减速运动,加速度的大小 21241m /s 3m /s 1 v a t ==?-?= 若物体A 的质量为m 与小车上表面间的动摩擦因数为μ,则 1mg ma μ= 联立可得 0.3μ= (2)设小车B 的质量为M ,加速度大小为2a ,根据牛顿第二定律 2mg Ma μ= 得 1 3 m M = (3)设小车的最小长度为L ,整个过程系统损失的动能,全部转化为内能

2 20 1 1() 22 mgL mv M m v μ=-+ 解得 L =2m 2.壁厚不计的圆筒形薄壁玻璃容器的侧视图如图所示。圆形底面的直径为2R ,圆筒的高度为R 。 (1)若容器内盛满甲液体,在容器中心放置一个点光源,在侧壁以外所有位置均能看到该点光源,求甲液体的折射率; (2)若容器内装满乙液体,在容器下底面以外有若干个光源,却不能通过侧壁在筒外看到所有的光源,求乙液体的折射率。 【答案】(1)5n ≥甲;(2)2n >乙 【解析】 【详解】 (1)盛满甲液体,如图甲所示,P 点刚好全反射时为最小折射率,有 1 sin n C = 由几何关系知 2 2 2sin 2R C R R = ??+ ? ?? 解得 5n =则甲液体的折射率应为 5n ≥甲

2020年高考物理复习训练试题及答案:万有引力

2020年高考物理复习训练试题及答案:万有引力 一、选择题(本大题共10小题,每小题7分,共70分。每小题至少一个答案准确,选不全得3分) 1.(2020·安徽高考)我国发射的“天宫一号”和“神舟八号”在 对接前,“天宫一号”的运行轨道高度为350km,“神舟八号”的运行轨道高度为343km。它们的运行轨道均视为圆周,则( ) A.“天宫一号”比“神舟八号”速度大 B.“天宫一号”比“神舟八号”周期长 C.“天宫一号”比“神舟八号”角速度大 D.“天宫一号”比“神舟八号”加速度大 2.近年来,人类发射的多枚火星探测器已经相继在火星上着陆,正 在实行着激动人心的科学探究,为我们将来登上火星、开发和利用火星打下坚实的基础。如果火星探测器环绕火星做“近地”匀速圆周运动,并测得该运动的周期为T,若火星的平均密度为ρ。下列关系式中准确的是( ) A.ρ∝T B.ρ∝ C.ρ∝T2 D.ρ∝ 3.(2020·宁波模拟)1798年,英国物理学家卡文迪许测出万有引力常量G,所以卡文迪许被人们称为能称出地球质量的人。若已知万有引力常量G,地球表面处的重力加速度g,地球半径R,地球上一个昼夜的时间T1(地球自转周期),一年的时间T2(地球公转的周期),地球中心到月球中心的距离L1,地球中心到太阳中心的距离L2。你能计算出( ) A.地球的质量m地= B.太阳的质量m太= C.月球的质量m月=

D.可求月球、地球及太阳的密度 4.(2020·新课标全国卷)假设地球是一半径为R、质量分布均匀的球体。一矿井深度为d。已知质量分布均匀的球壳对壳内物体的引力为零。矿井底部和地面处的重力加速度大小之比为( ) A.1- B.1+ C.()2 D.()2 5.(2020·德州模拟)假设地球同步卫星的轨道半径是地球半径的n 倍,则下列相关地球同步卫星的叙述准确的是( ) A.运行速度是第一宇宙速度的倍 B.运行速度是第一宇宙速度的倍 C.向心加速度是地球赤道上物体随地球自转的向心加速度的n倍 D.向心加速度是地球赤道上物体随地球自转的向心加速度的倍 6.(2020·莱芜模拟)假设月亮和同步卫星都是绕地心做匀速圆周 运动的,下列说法准确的是( ) A.同步卫星的线速度大于月亮的线速度 B.同步卫星的角速度大于月亮的角速度 C.同步卫星的向心加速度大于月亮的向心加速度 D.同步卫星的轨道半径大于月亮的轨道半径 7.(2020·蚌埠模拟)2020年9月29日,我国成功发射“天宫一号”飞行器,“天宫一号”绕地球做匀速圆周运动的速度约为28 000 km/h,地球同步卫星的环绕速度约为3.1 km/s,比较两者绕地球的运动 ( ) A.“天宫一号”的轨道半径大于同步卫星的轨道半径 B.“天宫一号”的周期大于同步卫星的周期

高考物理必考知识点——常用的重要公式

高考物理必考知识点——常用的重要公式高中物理与九年义务教育物理或者科学课程相衔接,主旨在于进一步提高同学们的科学素养,与实际生活联系紧密,研究的重点是力学。如下为大家推荐了高考物理必考知识点,请大家仔细阅读,希望你喜欢。 1.平抛运动公式总结 1.水平方向速度:Vx=Vo 2.竖直方向速度:Vy=gt 3.水平方向位移:x=Vot 4.竖直方向位移:y=gt2/2 5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2) 6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2,合速度方向与水平夹角β:tg β=Vy/Vx=gt/V0 7.合位移:s=(x2+y2)1/2,位移方向与水平夹角α:tgα=y/x=gt/2Vo 8.水平方向加速度:ax=0;竖直方向加速度:ay=g 注: (1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成; (2)运动时间由下落高度h(y)决定与水平抛出速度无关; (3)θ与β的关系为tgβ=2tgα; (4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。 2.原子和原子核公式总结 1.α粒子散射试验结果a)大多数的α粒子不发生偏转;(b)少数α粒子发生了较大角度的偏转;(c)极少数α粒子出现大角度的偏转(甚至反弹回来)

2.原子核的大小:10-15~10-14m,原子的半径约10-10m(原子的核式结构) 3.光子的发射与吸收:原子发生定态跃迁时,要辐射(或吸收)一定频率的光子:hν=E初-E末{能级跃迁} 4.原子核的组成:质子和中子(统称为核子),{A=质量数=质子数+中子数,Z=电荷数=质子数=核外电子数=原子序数〔见第三册P63〕} 5.天然放射现象:α射线(α粒子是氦原子核)、β射线(高速运动的电子流)、γ射线(波长极短的电磁波)、α衰变与β衰变、半衰期(有半数以上的原子核发生了衰变所用的时间)。γ射线是伴随α射线和β射线产生的〔见第三册P64〕 6.爱因斯坦的质能方程:E=mc2{E:能量(J),m:质量(Kg),c:光在真空中的速度} 7.核能的计算ΔE=Δmc2{当Δm的单位用kg时,ΔE的单位为J;当Δm用原子质量单位u时,算出的ΔE单位为uc2;1uc2=931.5MeV}〔见第三册P72〕。 注: (1)常见的核反应方程(重核裂变、轻核聚变等核反应方程)要求掌握; (2)熟记常见粒子的质量数和电荷数; (3)质量数和电荷数守恒,依据实验事实,是正确书写核反应方程的关键; (4)其它相关内容:氢原子的能级结构〔见第三册P49〕/氢原子的电子云〔见第三册P53〕/放射性同位数及其应用、放射性污染和防护〔见第三册P69〕/重核裂变、链式反应、链式反应的条件、核反应堆〔见第三册P73〕/轻核聚变、可控热核反应〔见第三册P77〕/人类对物质结构的认识。

高三物理选择题专项训练题(全套)

2018届高三物理选择题专题训练1 14.在法拉第时代,下列验证“由磁产生电”设想的实验中,能观察到感应电流的是()A.将绕在磁铁上的线圈与电流表组成一闭合回路,然后观察电流表的变化 B.在一通电线圈旁放置一连有电流表的闭合线圈,然后观察电流表的变化 C.将一房间内的线圈两端与相邻房间的电流表相连,往线圈中插入条形磁铁后,再到相邻房间去观察电流表的变化 D.绕在同一铁环上的两个线圈,分别接电源和电流表,在给线圈通电或断电的瞬间,观察电流表的变化15.关于通电直导线在匀强磁场中所受的安培力,下列说法正确的是() A.安培力的方向可以不垂直于直导线 B.安培力的方向总是垂直于磁场的方向 C.安培力的大小与通电直导线和磁场方向的夹角无关 D.将直导线从中点折成直角,安培力的大小一定变为原来的一半 16.如图,MN为铝质薄平板,铝板上方和下方分别有垂直于图平面的匀强磁场(未画出)。一带电粒子从紧贴铝板上表面的P点垂直于铝板向上射出,从Q点穿越铝板后到达PQ的中点O。已知粒子穿越铝板时,其动能损失一半,速度方向和电荷量不变。 不计重力。铝板上方和下方的磁感应强度大小之比为() 2 A.2 B.2 C.1 D. 2 17.如图,用橡皮筋将一小球悬挂在小车的架子上,系绕处于平衡状态。现使小车从静止开始向左加速,加速度从零开始逐渐增大到某一值,然后保持此值,小球稳定地偏离竖直方向某一角度(橡皮筋在弹性限度内)。与稳定在竖直位置时相比,小球的高度()A.一定升高B.一定降低 C.保持不变D.升高或降低由橡皮筋的劲度系数决定 18.如图(a),线圈ab、cd绕在同一软铁芯上。在ab线圈中通以变化的电流,用示波器测得线圈cd间电压如图(b)所示。已知线圈内部的磁场与流经线圈的电流成正比,则下列描述线圈ab 中电流随时间变化关系的图中,可能正确的是()

高考物理必考公式整理

2019年高考物理必考公式整理高中物理与九年义务教育物理或者科学课程相衔接,主旨在于进一步提高同学们的科学素养,与实际生活联系紧密,研究的重点是力学。以下是查字典物理网为大家整理的高考物理必考公式,希望可以解决您所遇到的相关问题,加油,查字典物理网一直陪伴您。 一、平抛运动公式总结 1.水平方向速度:Vx=V o 2.竖直方向速度:Vy=gt 3.水平方向位移:x=V ot 4.竖直方向位移:y=gt2/2 5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2) 6.合速度Vt=(Vx2+Vy2)1/2=[V o2+(gt)2]1/2,合速度方向与水平夹 角:tg=Vy/Vx=gt/V0 7.合位移:s=(x2+y2)1/2,位移方向与水平夹角:tg=y/x=gt/2V o 8.水平方向加速度:ax=0;竖直方向加速度:ay=g 注: (1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成; (2)运动时间由下落高度h(y)决定与水平抛出速度无关; (3)与的关系为tg=2tg (4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。 二、原子和原子核公式总结

1.粒子散射试验结果a)大多数的粒子不发生偏转;(b)少数粒子发生了较大角度的偏转;(c)极少数粒子出现大角度的偏转(甚至反弹回来) 2.原子核的大小:10-15~10-14m,原子的半径约10-10m(原子的核式结构) 3.光子的发射与吸收:原子发生定态跃迁时,要辐射(或吸收)一定频率的光子:h=E初-E末{能级跃迁} 4.原子核的组成:质子和中子(统称为核子),{A=质量数=质子数+中子数,Z=电荷数=质子数=核外电子数=原子序数〔见第三册P63〕} 5.天然放射现象:射线(粒子是氦原子核)、射线(高速运动的电子流)、射线(波长极短的电磁波)、衰变与衰变、半衰期(有半数以上的原子核发生了衰变所用的时间)。射线是伴随射线和射线产生的〔见第三册P64〕 6.爱因斯坦的质能方程:E=mc2{E:能量(J),m:质量(Kg),c:光在真空中的速度} 7.核能的计算E=mc2{当m的单位用kg时,E的单位为J;当m用原子质量单位u时,算出的E单位为uc2;1uc2=931.5MeV}〔见第三册P72〕。 注: (1)常见的核反应方程(重核裂变、轻核聚变等核反应方程)要求掌握; (2)熟记常见粒子的质量数和电荷数; (3)质量数和电荷数守恒,依据实验事实,是正确书写核反应方程的关键;

2021高考物理大题专题训练含答案 (3)

物理:2021模拟高三名校大题天天练(八) 1.(12分)如图所示,在绕竖直轴匀速转动的水平圆盘盘面上,离轴心r=20cm处放置一小物块A,其质量为m=2kg,A与盘面间相互作用的静摩擦力的最大值为其重力的k倍(k=0.5),试求: ⑴当圆盘转动的角速度ω=2rad/s时, 物块与圆盘间的摩擦力大小多大?方向如何? ⑵欲使A与盘面间不发生相对滑动, 则圆盘转动的最大角速度多大?(取g=10m/s2) 2.(10 分)如图所示,A物体用板托着,位于离地h=1.0m处,轻质细绳通过光滑定滑轮与A、B相连,绳子处于绷直状态,已知A物体质量M=1.5㎏,B物体质量m=1.0kg,现将板抽走,A将拉动B上升,设A与地面碰后不反弹,B上升过程中不会碰到定滑轮, 求:B物体在上升过程中离地的最大高度为多大?取g =10m/s2. A h B 3.(15分)如图所示,某人乘雪橇从雪坡经A点滑至B点,接着沿水平路面滑至C点停止.人与雪橇的 总质量为70kg.表中记录了沿坡滑下过程中的有关数据,请根据图表中的数据解决下列问题:(取g=10m/s2) (1)人与雪橇从A到B的过程中,损失的机械能为多少? (2)设人与雪橇在BC段所受阻力恒定,求阻力的大小. (3)人与雪橇从B到C的过程中,运动的距离。 位置 A B C 速度(m/s) 2.0 12.0 0 时刻(s)0 4 10

4.(14分)大气中存在可自由运动的带电粒子,其密度随离地面的距离的增大而增大,可以把离地面50㎞以下的大气看作是具有一定程度漏电的均匀绝缘体(即电阻率较大的物质);离地面50㎞以上的大气可看作是带电粒子密度非常高的良导体.地球本身带负电,其周围空间存在电场,离地面50㎞处与地面之间的电势差为4×105V.由于电场的作用,地球处于放电状态,但大气中频繁发生闪电又对地球充电,从而保证了地球周围电场恒定不变.统计表明,大气中每秒钟平均发生60次闪电,每次闪电带给地球的电量平均为30C.试估算大气的电阻率和地球漏电的功率.已知地球的半径r=6400㎞. 5.(18分)如图所示,ABC为光滑轨道,其中AB段水平放置,BC段为半径R的圆弧,AB与BC相切于B 点。A处有一竖直墙面,一轻弹簧的一端固定于墙上,另一端与一质量为M的物块相连接,当弹簧处于原长状态时,物块恰能与固定在墙上的L形挡板相接触与B处但无挤压。现使一质量为m的小球从圆弧轨道上距水平轨道高h处的D点由静止开始下滑。 小球与物块相碰后立即共速但不粘连,物块与L形挡板 相碰后速度立即减为零也不粘连。(整个过程中,弹簧 没有超过弹性限度。不计空气阻力,重力加速度为g) (1) 试求弹簧获得的最大弹性势能; (2) 求小球与物块第一次碰后沿BC上升的最大高度h’ (3) 若R>>h。每次从小球接触物块至物块撞击L形挡板历时均为△t,则小球由D点出发经多长时间第 三次通过B点? 6.(18分)如下左图所示,真空中有两水平放置的平行金属板C、D,上面分别开有正对的小孔O1和O2,金属板C、D接在正弦交流电源上,两板间的电压u CD随时间t变化的图线如下右图所示。t=0时刻开始,从D板小

高考物理选修3-4专项训练

高考物理选修专项训练3-4 1.(1)(6分)下列说确的是(选对一个给3分,选对两个给4分,选对3个给6分,每选错一个扣3分,最低得分为0分) A.拍摄玻璃橱窗的物品时,往往在镜头前加一个偏振片以增加透射光的强度 B.在海面上,向远方望去,有时能看到远方的景物悬在空中。在沙漠中,向远方望去,有时能看到远方景物的倒影 C.如果地球表面没有大气层覆盖,太阳照亮地球的围要比有大气层时略大些 D.已知某玻璃对蓝光的折射率比对红光的折射率大,红光从该玻璃中射入空气发生全反射时,红光临界角较大 E.全息照片往往用激光来拍摄,主要是利用了激光的相干性 (2).(9分)一列简谐横波在x轴上传播,如图所示,实线为t = 0时刻的波形图,虚线为△t = 0.2s后的波形图,求: ①此波的波速为多少? ②若△t >T且波速为165m/s,试通过计算确定此波沿何方向传 播? 2.(1)(6分)下列说法中正确的是.。(填正确答案标号。选对1个得3分,选对2个得4分,选对3个得6分。每错选1个扣3分,最低得分为0分) A.做简谐运动的物体,其振动能量与振幅无关 B.全息照相的拍摄利用了光的干涉原理 C.真空中的光速在不同的惯性参考系中都是相同的,与光源和观察者的运动无关 D.医学上用激光做“光刀”来进行手术,主要是利用了激光的亮度高、能量大的特点E.机械波和电磁波都可以在真空中传播 (2)(9分)如图3所示,一棱镜的截面为直角三角形ABC,∠A=30°,斜边AB=a.棱镜材料的折射率为n=2.在此截面所在的平面,一条光线以45°的入射角从AC边的中点M 射入棱镜.画出光路图,并求光线从棱镜射出的点的位置(不考虑光线沿原路返回的情况).

高中物理现行高考所有公式大全(最全整理)

高中物理现行高考常用公式 一. 力学 1.1 静力学 物理概念规律名称 公式 重力 G mg = (g 随高度、纬度而变化) 摩擦力 (1) 滑动摩擦力: f= μN (2) 静摩擦力:大小范围O ≤ f 静≤ f m (f m 为最大静摩擦力与正压力有关) 浮力、密度 浮力F 浮= ρ液gV 排 ;密度ρ=m V 压强、液体压强 压强p F S = ;液体压强 p gh =ρ 胡克定律 F kx =(在弹性限度内) 万有引力定律 a 万有引力=向心力:F G m m r =?12 2 G Mm R h m () +=2 V R h m R h m T R h 2 22 2 24()()()+=+=+ωπ b 、近地卫星mg = G Mm R 2(黄金代换);地球赤道上G 2 R Mm -N=mR ω2 不从心 同步卫星G 2 r Mm =mr ω2 c. 第一宇宙速度mg = m V R 2 V= gR GM R =/ d. 行星密度 ρ= 2 3GT π(T 为近地卫星的周期) V 球= 3 3 4R π S 球=4πR 2 e. 双星系统 G m m r 122 =m 1R 1ω2=m 2R 2ω2 (R 1+R 2=r) 互成角度的二力的合成 F F F F F F F F 合= ++= ?+1222122122cos tan sin cos α θα α 正交分解法: F F F F F x y y x 合= += 22tan α 力矩 M FL =(不要求) 共点力的平衡条件 F 合=0或F F x y ==?? ?00 ∑F=o 或∑F x =o ∑F y =o 有固定转轴物体的平衡 条件 M 合=0或M M 逆顺= 共面力的平衡 F M 合合,==00

高三物理选择题专项训练

高三物理选择题专项训练 1.有一摆长为L的单摆,悬点正下方某处有一小钉,当摆球经过平衡位置向左摆动时,摆线的上部将被小钉挡住,使摆长发生变化。 现使摆球做小幅度摆动,摆球从右边最高点M至左边最 高点N运动过程的闪光照片,如图所示(悬点和小钉未 被摄入)。P为摆动中的最低点,已知每相邻两次闪光的 时间间隔相等,由此可知,小钉与悬点的距离为() A.L/4 B.L/2 C.3L/4 D.无法确定 2.如图所示,a、b、c三个相同的小球,a从光滑斜面顶端由静止开始自由下滑,同时b、c从同一高度分别开始自由下落和平抛.下列说法正确的有() A.它们同时到达同一水平面 B.重力对它们的冲量相同 C.它们的末动能相同 D.它们动量变化的大小相同 3.以力F拉一物体,使其以加速度a在水平面上做匀加速 直线运动,力F的水平分量为F 1,如图所示,若以和F 1 大 小.方向都相同的力F '代替F拉物体,使物体产生加速度a ',那么() A.当水平面光滑时,a'< a B.当水平面光滑时,a' = a C.当水平面粗糙时,a'< a D.当水平面粗糙时,a' = a 4.如图,在光滑的水平面上,有一绝缘的弹簧振子,小球带负电,在振动过程中 当弹簧压缩到最短时,突然加上一个沿水平向左的恒定的匀强电场,此后 ( A ) A.振子的振幅将增大 B.振子的振幅将减小 C.振子的振幅将不变 D.因不知道电场强度的大小,所以不能确定振幅的变化 5..一定量的理想气体可经过不同的过程从状态(p1、V1、T1)变化到状态 (p2、V2、T2),已知T2>T1,则在这些过程中() A.气体一定都从外界吸收热量 B.气体和外界交换的热量是相等的 C.外界对气体所做的功都是相等的 D.气体内能的变化量都是相等的 6.如图所示为电冰箱的工作原理,压缩机工作时,强迫制冷剂在冰箱内外管道 中不断循环,那么,下列说法中正确的是() A.在冰箱外的管道中,制冷剂迅速膨胀并放出热量 B.在冰箱内的管道中,制冷剂迅速膨胀并吸收热量 C.在冰箱外的管道中,制冷剂被剧烈压缩并放出热量 D.在冰箱内的管道中,制冷剂被剧烈压缩并吸收热量 7.如图所示,一根竖直的弹簧支持着一倒立气缸的活塞,使气缸悬空而静止。 设活塞与缸壁间无摩擦,可以在缸内自由移动,缸壁导热性良好使缸内气体的 温度保持与外界大气温度相同,则下列结论中正确的是( ) A.若外界大气压增大,则弹簧将压缩一些 B.若外界大气压增大,则气缸的上底面距地面的高度将增大 a b c

2018-2018高考物理动量定理专题练习题(附解析)

2018-2018高考物理动量定理专题练习题(附解 析) 如果一个系统不受外力或所受外力的矢量和为零,那么这个系统的总动量保持不变。小编准备了动量定理专题练习题,具体请看以下内容。 一、选择题 1、下列说法中正确的是( ) A.物体的动量改变,一定是速度大小改变? B.物体的动量改变,一定是速度方向改变? C.物体的运动状态改变,其动量一定改变? D.物体的速度方向改变,其动量一定改变 2、在下列各种运动中,任何相等的时间内物体动量的增量总是相同的有( )

A.匀加速直线运动 B.平抛运动 C.匀减速直线运动 D.匀速圆周运动 3、在物体运动过程中,下列说法不正确的有( ) A.动量不变的运动,一定是匀速运动? B.动量大小不变的运动,可能是变速运动? C.如果在任何相等时间内物体所受的冲量相等(不为零),那么该物体一定做匀变速运动 D.若某一个力对物体做功为零,则这个力对该物体的冲量也一定为零? 4、在距地面高为h,同时以相等初速V0分别平抛,竖直上抛,竖直下抛一质量相等的物体m,当它们从抛出到落地时,比较它们的动量的增量△ P,有 ( ) A.平抛过程较大 B.竖直上抛过程较大 C.竖直下抛过程较大 D.三者一样大

5、对物体所受的合外力与其动量之间的关系,叙述正确的是( ) A.物体所受的合外力与物体的初动量成正比; B.物体所受的合外力与物体的末动量成正比; C.物体所受的合外力与物体动量变化量成正比; D.物体所受的合外力与物体动量对时间的变化率成正比 6、质量为m的物体以v的初速度竖直向上抛出,经时间t,达到最高点,速度变为0,以竖直向上为正方向,在这个过程中,物体的动量变化量和重力的冲量分别是( ) A. -mv和-mgt B. mv和mgt C. mv和-mgt D.-mv和mgt 7、质量为1kg的小球从高20m处自由下落到软垫上,反弹后上升的最大高度为5m,小球接触软垫的时间为1s,在接触时间内,小球受到的合力大小(空气阻力不计 )为( )

相关主题