搜档网
当前位置:搜档网 › 无机材料物理性能试题及答案

无机材料物理性能试题及答案

无机材料物理性能试题及答案
无机材料物理性能试题及答案

无机材料物理性能试题及答案

无机材料物理性能试题及答案

一、填空题(每题2分,共36分)

1、电子电导时,载流子的主要散射机构有中性杂质的散射、位错散射、电离杂质的散射、晶格振动的散射。

2、无机材料的热容与材料结构的关系不大,CaO和SiO2的混合物与CaSiO3 的

热容-温度曲线基本一致。

3、离子晶体中的电导主要为离子电导。可以分为两类:固有离子电导(本征

电导)和杂质电导。在高温下本征电导特别显著,在低温下杂质电导最为显著。

4、固体材料质点间结合力越强,热膨胀系数越小。

5、电流吸收现象主要发生在离子电导为主的陶瓷材料中。电子电导为主的陶瓷材料,因

电子迁移率很高,所以不存在空间电荷和吸收电流现象。

6、导电材料中载流子是离子、电子和空位。

7. 电子电导具有霍尔效应,离子电导具有电解效应,从而可以通过这两种效应检查材料

中载流子的类型。

8. 非晶体的导热率(不考虑光子导热的贡献)在所有温度下都比晶体的

小。在高温下,二者的导热率比较接近。

9. 固体材料的热膨胀的本质为:点阵结构中的质点间平均距离随着温度升高而增

大。

10. 电导率的一般表达式为

=

=

i

i

i

i

i

q

σ

σ

。其各参数n i、q i和μi的含义分别

是载流子的浓度、载流子的电荷量、载流子的迁移率。

11. 晶体结构愈复杂,晶格振动的非线性程度愈大。格波受到的

散射大,因此声子的平均自由程小,热导率低。

12、波矢和频率之间的关系为色散关系。

13、对于热射线高度透明的材料,它们的光子传导效应较大,但是在有微小气孔存在时,由于气孔与固体间折射率有很大的差异,使这些微气孔形成了散射中心,导致透明度强烈降低。

14、大多数烧结陶瓷材料的光子传导率要比单晶和玻璃小1~3数量级,其原因是前者有微量的气孔存在,从而显著地降低射线的传播,导致光子自由程显著减小。

15、当光照射到光滑材料表面时,发生镜面反射;当光照射到粗糙的材料表面时,发生漫反射。

16、作为乳浊剂必须满足:具有与基体显著不同的折射率,能够形成小颗粒。

用高反射率,厚釉层和高的散射系数,可以得到良好的乳浊效果。

17、材料的折射随着入射光的频率的减少(或波长的增加)而减少的性质,称为折射率的色散。

二、 问答题(每题8分,共48分)

1、简述以下概念:顺磁体、铁磁体、软磁材料。

答:(1)顺磁体:原子内部存在永久磁矩,无外磁场,材料无规则的热运动使得材料没

有磁性。当外磁场作用,每个原子的磁矩比较规则取向,物质显示弱磁场。(2)铁磁体:在较弱的磁场内,材料也能够获得强的磁化强度,而且在外磁场移去,材料保留强的磁性。(3)软磁材料:容易退磁和磁化(磁滞回线瘦长),具有磁导率高,饱和磁感应强度大,矫顽力小,稳定型好等特性。

2、简述以下概念:亚铁磁体、反磁体、磁致伸缩效应

答:(1)亚铁磁体:铁氧体:含铁酸盐的陶瓷磁性材料。它和铁磁体的相同是有自发

磁化强度和磁畴,不同是:铁氧体包含多种金属氧化物,有二种不同的磁矩,自发磁化,也

称亚铁磁体。(2)反磁体:由于“交换能”是负值,电子自旋反向平行。(3)磁致伸缩效应:使消磁状态的铁磁体磁化,一般情况下其尺寸、形状会发生变化,这种现象称为磁致伸缩效

应。

3、简述以下概念:热应力、柯普定律、光的双折射。

答:1)由于材料热膨胀或收缩引起的内应力称为热应力。2)柯普定律:化合物分子热容等

于构成该化合物各元素原子热容之和。理论解释:i i c n C ∑=。3)光进入非均质介质时,一般要分为振动方向相互垂直、传播速度不等的两个波,它们构成两条折射光线,这个现象称为双折射。

4、什么是铁氧体?铁氧体按结构分有哪六种主要结构?

答:以氧化铁(Fe 3+2O 3)为主要成分的强磁性氧化物叫做铁氧体。铁氧体按结构:尖晶石型、石榴石型、磁铅石型、钙钛矿型、钛铁矿型和钨青铜型。

5、影响材料透光性的主要因素是什么?提高无机材料透光性的措施有哪些?

答:影响透光性的因素:1)吸收系数 可见光范围内,吸收系数低(1分)

2)反射系数 材料对周围环境的相对折射率大,反射损失也大。(1分)

3)散射系数 材料宏观及微观缺陷;晶体排列方向;气孔。(1分)

提高无机材料透光性的措施: (1)提高原材料纯度 减少反射和散射损失(2分)。

(2)掺外加剂 降低材料的气孔率(2分)。(3)采用热压法 便于排除气孔(2分)

6、影响离子电导率的因素有哪些?并简述之。

答:1)温度。随着温度的升高,离子电导按指数规律增加。低温下杂质电导占主要地位。这

是由于杂质活化能比基本点阵离子的活化能小许多的缘故。高温下,固有电导起主要作用。(2分)

2)晶体结构。电导率随活化能按指数规律变化,而活化能反映离子的固定程度,它与晶

体结构有关。熔点高的晶体,晶体结合力大,相应活化能也高,电导率就低。(2分)

结构紧密的离子晶体,由于可供移动的间隙小,则间隙离子迁移困难,即活化能高,因

而可获得较低的电导率。(2分)

3)晶格缺陷。离子晶格缺陷浓度大并参与电导。因此离子性晶格缺陷的生成及其浓度大

7、比较爱因斯坦模型和德拜比热模型的热容理论,并说明哪种模型更符合实际。

答:1)爱因斯坦模型(Einstein model )他提出的假设是:每个原子都是一个独立的振子,原子之间彼此无关,并且都是以相同的角频w 振动(2分),即在高温时,爱因斯坦的简化模型与杜隆—珀替公式相一致。但在低温时,说明C V 值按指数规律随温度T 而变化,而不是从实验中得出的按T 3变化的规律。这样在低温区域,爱斯斯坦模型与实验值相差较大,这是因为原子振动间有耦合作用的结果(2分)。

2)德拜比热模型德拜考虑了晶体中原子的相互作用,把晶体近似为连续介质(2分)。当温度较高时,与实验值相符合,当温度很低时,这表明当T →0时,C V 与T 3成正比并趋于0,这就是德拜T 3定律,它与实验结果十分吻合,温度越低,近似越好(2分)。

8、晶态固体热容的量子理论有哪两个模型?它们分别说明了什么问题?

答:爱因斯坦模型

在高温时,爱因斯坦的简化模型与杜隆—珀替公式相一致。(2分)

但在低温时,V C 值按指数规律随温度T 而变化,而不是从实验中得出的按T 3变化的规

律。这样在低温区域,爱斯斯坦模型与实验值相差较大,这是因为原子振动间有耦合作用

的结果。(2分)

德拜比热模型

1) 当温度较高时,即D T θ>>,R Nk C V 33==,即杜隆—珀替定律。(2分)

2) 当温度很低时,表明当T →0时,C V 与T 3成正比并趋于0,这就是德拜T 3定律,它与实验结果十分

吻合,温度越低,近似越好。(2分)

9、如何判断材料的电导是离子电导或是电子电导?试说明其理论依据。

答:1)材料的电子电导和离子电导具有不同的物理效应,由此可以确定材料的电导性质。(2分) 利用霍尔效应可检验材料是否存在电子电导;(1分)

利用电解效应可检验材料是否存在离子电导。(1分)

2)霍尔效应的产生是由于电子在磁场作用下,产生横向移动的结果,离子的质量比电子大得多,磁场作用力不足以使它产生横向位移,因而纯离子电导不呈现霍尔效应。(2分)

3)电解效应(离子电导特征)离子的迁移伴随着一定的物质变化,离子在电极附近发生电子得失,产生新的物质。由此可以检验材料是否存在离子电导。(2分)

三、 计算题(共16分)

1、一陶瓷零件上有一垂直于拉应力的边裂,如边裂长度为:(1)2 mm (2)0.049mm (3)2μm ,分别求上述三种情况下的临界应力。设此材料的断裂韧性为162Mpa·m 1/2, 讨论诸结果。 c K c

c πσ=I (2分) MPa c c K 4.20310262.1=-I ??=ππσ=

(2分)

MPa c c 5.6466102=-I ??=ππσ= (2分)

(3) σc =577.19Gpa (2分)

2c 为4mm 的陶瓷零件容易断裂;说明裂纹尺寸越大,材料的断裂强度越低。(2分)

2、光通过厚度为X 厘米的透明陶瓷片,入射光的强度为I 0,该陶瓷片的反射系数和散射系数分别为m 、α (cm -1)和s(cm -1)。请在如下图示中用以上参数表达各种光能的损失。当X=1,m=0.04,透光率I/I 0=50%,计算吸收系数和散射系数之和。

(图中标识每个1分,计算5分)

1

2

02)()(2020612.08432.1)(8432.15

.0)04.01()1()1()1(-+-+-==+=-=-=-=-=

cm Ln s I m m I m I I e e I

e I x s x s ααα

无机材料物理性能习题解答

这有答案,大家尽量出有答案的题材料物理性能 习题与解答 吴其胜 盐城工学院材料工程学院 2007,3

目录 1 材料的力学性能 (2) 2 材料的热学性能 (12) 3 材料的光学性能 (17) 4 材料的电导性能 (20) 5 材料的磁学性能 (29) 6 材料的功能转换性能 (37)

1材料的力学性能 1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至 2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。 解:根据题意可得下表 由计算结果可知:真应力大于名义应力,真应变小于名义应变。 1-2一试样长40cm,宽10cm,厚1cm ,受到应力为1000N 拉力,其杨氏模量为3.5×109 N/m 2,能伸长多少厘米? 解: 拉伸前后圆杆相关参数表 ) (0114.010 5.310101401000940000cm E A l F l E l l =?????=??= ?=?=?-σ ε0816.04.25 .2ln ln ln 2 2 001====A A l l T ε真应变) (91710 909.44500 60MPa A F =?==-σ名义应力0851 .0100=-=?=A A l l ε名义应变) (99510 524.44500 6 MPa A F T =?= = -σ真应力

1-3一材料在室温时的杨氏模量为3.5×108 N/m 2,泊松比为0.35,计算其剪切模量和体积模量。 解:根据 可知: 1-4试证明应力-应变曲线下的面积正比于拉伸试样所做的功。 证: 1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。 解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。则有 当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2)可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。 1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和t = τ时的纵坐标表达式。 解:Maxwell 模型可以较好地模拟应力松弛过程: V oigt 模型可以较好地模拟应变蠕变过程: )21(3)1(2μμ-=+=B G E ) (130)(103.1)35.01(210 5.3) 1(28 8 MPa Pa E G ≈?=+?= += μ剪切模量) (390)(109.3) 7.01(310 5.3) 21(38 8 MPa Pa E B ≈?=-?= -=μ体积模量. ,. ,112 1 2 1 2 1 2 1 2 1 2 1 S W VS d V ld A Fdl W W S W V Fdl V l dl A F d S l l l l l l ∝=== = ∝= = = =??? ? ? ?亦即做功或者:亦即面积εε εε εε εσεσεσ) (2.36505.08495.03802211GPa V E V E E H =?+?=+=上限弹性模量 ) (1.323)84 05.038095.0()(11 2211GPa E V E V E L =+=+=--下限弹性模量 ). 1()()(0)0() 1)(()1()(1 //0 ----= = ∞=-∞=-= e e e E t t t στεσεεεσετ τ ;;则有:其蠕变曲线方程为:. /)0()(;0)();0()0((0)e (t)-t/e στσσσσσστ ==∞==则有::其应力松弛曲线方程为

无机材料物理性能习题库

2、材料的热学性能 2-1 计算室温(298K )及高温(1273K )时莫来石瓷的摩尔热容值,并请和按杜龙-伯蒂规律计算的结果比较。 (1) 当T=298K ,Cp=a+bT+cT -2=87.55+14.96 10-3298-26.68 105/2982 =87.55+4.46-30.04 =61.97 4.18 J/mol K=259.0346 J/mol K (2) 当T=1273K ,Cp=a+bT+cT -2=87.55+14.96 10-31273-26.68 105/12732 =87.55+19.04-1.65 =104.94 4.18 J/mol K=438.65 J/mol K 据杜隆-珀替定律:(3Al 2O 32SiO 4) Cp=21*24.94=523.74 J/mol K 2-2 康宁玻璃(硅酸铝玻璃)具有下列性能参数:λ=0.021J/(cm s ℃); α=4.610?6/℃;σp =7.0Kg/mm 2,E=6700Kg/mm 2,μ=0.25。求其第一及第二热冲击断裂抵抗因子。 第一冲击断裂抵抗因子:E R f αμσ)1(-==666 79.8100.75 4.61067009.810-???????=170℃ 第二冲击断裂抵抗因子:E R f αμλσ) 1(-= '=1700.021=3.57 J/(cm s) 2-3 一陶瓷件由反应烧结氮化硅制成,其热导率λ=0.184J/(cm s ℃),最大厚度=120mm 。如果表面热传递系数h=0.05 J/(cm 2s ℃),假定形状因子S=1,估算可安全应用的热冲击最大允许温差。 h r S R T m m 31.01? '=?=226*0.18405 .0*6*31.01 =447℃ 2-4、系统自由能的增加量TS E F -?=?,又有! ln ln ()!! N N N n n =-,若在肖特基缺 定律所得的计算值。 趋近按,可见,随着温度的升高Petit Dulong C m P -,

材料物理性能期末复习题

期末复习题 一、填空(20) 1.一长30cm的圆杆,直径4mm,承受5000N的轴向拉力。如直径拉成3.8 mm,且体积保持不变,在此拉力下名义应力值为,名义应变值为。 2.克劳修斯—莫索蒂方程建立了宏观量介电常数与微观量极化率之间的关系。 3.固体材料的热膨胀本质是点阵结构中质点间平均距离随温度升高而增大。 4.格波间相互作用力愈强,也就是声子间碰撞几率愈大,相应的平均自由程愈小,热导率也就愈 介电常数一致,虚部表示了电介质中能量损耗的大小。 .当磁化强度M为负值时,固体表现为抗磁性。8.电子磁矩由电子的轨道磁矩和自旋磁矩组成。 9.无机非金属材料中的载流子主要是电子和离子。 10.广义虎克定律适用于各向异性的非均匀材料。 ?(1-m)2x。11.设某一玻璃的光反射损失为m,如果连续透过x块平板玻璃,则透过部分应为 I 12.对于中心穿透裂纹的大而薄的板,其几何形状因子。 13.设电介质中带电质点的电荷量q,在电场作用下极化后,正电荷与负电荷的位移矢量为l,则此偶极矩为 ql 。 14.裂纹扩展的动力是物体内储存的弹性应变能的降低大于等于由于开裂形成两个新表面所需的表面能。 15.Griffith微裂纹理论认为,断裂并不是两部分晶体同时沿整个界面拉断,而是裂纹扩展的结果。16.考虑散热的影响,材料允许承受的最大温度差可用第二热应力因子表示。 17.当温度不太高时,固体材料中的热导形式主要是声子热导。 18.在应力分量的表示方法中,应力分量σ,τ的下标第一个字母表示方向,第二个字母表示应力作用的方向。 19.电滞回线的存在是判定晶体为铁电体的重要根据。 20.原子磁矩的来源是电子的轨道磁矩、自旋磁矩和原子核的磁矩。而物质的磁性主要由电子的自旋磁矩引起。 21. 按照格里菲斯微裂纹理论,材料的断裂强度不是取决于裂纹的数量,而是决定于裂纹的大小,即是由最危险的裂纹尺寸或临界裂纹尺寸决定材料的断裂强度。 22.复合体中热膨胀滞后现象产生的原因是由于不同相间或晶粒的不同方向上膨胀系数差别很大,产生很大的内应力,使坯体产生微裂纹。 23.晶体发生塑性变形的方式主要有滑移和孪生。 24.铁电体是具有自发极化且在外电场作用下具有电滞回线的晶体。 25.自发磁化的本质是电子间的静电交换相互作用。 二、名词解释(20) 自发极化:极化并非由外电场所引起,而是由极性晶体内部结构特点所引起,使晶体中的每个晶胞内存在固有电偶极矩,这种极化机制为自发极化。 断裂能:是一种织构敏感参数,起着断裂过程的阻力作用,不仅取决于组分、结构,在很大程度上受到微观缺陷、显微结构的影响。包括热力学表面能、塑性形变能、微裂纹形成能、相变弹性 能等。

无机材料物理性能试题

无机材料物理性能试题及答案

无机材料物理性能试题及答案 一、填空题(每题2分,共36分) 1、电子电导时,载流子的主要散射机构有中性杂质的散射、位错散射、电离杂质的散射、晶格振动的散射。 2、无机材料的热容与材料结构的关系不大,CaO和SiO2的混合物与CaSiO3 的 热容-温度曲线基本一致。 3、离子晶体中的电导主要为离子电导。可以分为两类:固有离子电导(本征 电导)和杂质电导。在高温下本征电导特别显著,在低温下杂质电导最为显著。 4、固体材料质点间结合力越强,热膨胀系数越小。 5、电流吸收现象主要发生在离子电导为主的陶瓷材料中。电子电导为主的陶瓷材料,因 电子迁移率很高,所以不存在空间电荷和吸收电流现象。 6、导电材料中载流子是离子、电子和空位。 7. 电子电导具有霍尔效应,离子电导具有电解效应,从而可以通过这两种效应检查材料 中载流子的类型。 8. 非晶体的导热率(不考虑光子导热的贡献)在所有温度下都比晶体的 小。在高温下,二者的导热率比较接近。 9. 固体材料的热膨胀的本质为:点阵结构中的质点间平均距离随着温度升高而增 大。 10. 电导率的一般表达式为 ∑ = ∑ = i i i i i q nμ σ σ 。其各参数n i、q i和μi的含义分别 是载流子的浓度、载流子的电荷量、载流子的迁移率。 11. 晶体结构愈复杂,晶格振动的非线性程度愈大。格波受到的 散射大,因此声子的平均自由程小,热导率低。 12、波矢和频率之间的关系为色散关系。 13、对于热射线高度透明的材料,它们的光子传导效应较大,但是在有微小气孔存在时,由于气孔与固体间折射率有很大的差异,使这些微气孔形成了散射中心,导致透明度强烈降低。 14、大多数烧结陶瓷材料的光子传导率要比单晶和玻璃小1~3数量级,其原因是前者有微量的气孔存在,从而显著地降低射线的传播,导致光子自由程显著减小。 15、当光照射到光滑材料表面时,发生镜面反射;当光照射到粗糙的材料表面时,发生漫反射。 16、作为乳浊剂必须满足:具有与基体显著不同的折射率,能够形成小颗粒。 用高反射率,厚釉层和高的散射系数,可以得到良好的乳浊效果。 17、材料的折射随着入射光的频率的减少(或波长的增加)而减少的性质,称为折射率的色散。

无机材料物理性能题库(2)综述

名词解释 1.应变:用来描述物体内部各质点之间的相对位移。 2.弹性模量:表征材料抵抗变形的能力。 3.剪切应变:物体内部一体积元上的二个面元之间的夹角变化。 4.滑移:晶体受力时,晶体的一部分相对另一部分发生平移滑动,就叫滑移. 5.屈服应力:当外力超过物理弹性极限,达到某一点后,在外力几乎不增加的情况下,变形骤然加快,此点为屈服点,达到屈服点的应力叫屈服应力。 6.塑性:使固体产生变形的力,在超过该固体的屈服应力后,出现能使该固体长期保持其变形后的形状或尺寸,即非可逆性。 7.塑性形变:在超过材料的屈服应力作用下,产生变形,外力移去后不能恢复的形变。 8.粘弹性:一些非晶体和多晶体在比较小的应力时,可以同时变现出弹性和粘性,称为粘弹性. 9.滞弹性:弹性行为与时间有关,表征材料的形变在应力移去后能够恢复但不能立即恢复的能力。 10.弛豫:施加恒定应变,则应力将随时间而减小,弹性模量也随时间而降低。 11.蠕变——当对粘弹性体施加恒定应力,其应变随时间而增加,弹性模量也随时间而减小。 12.应力场强度因子:反映裂纹尖端弹性应力场强弱的物理量称为应力强度因子。它和裂纹尺寸、构件几何特征以及载荷有关。 13.断裂韧性:反映材料抗断性能的参数。 14.冲击韧性:指材料在冲击载荷下吸收塑性变形功和断裂功的能力。 15.亚临界裂纹扩展:在低于材料断裂韧性的外加应力场强度作用下所发生的裂纹缓慢扩展称为亚临界裂纹扩展。 16.裂纹偏转增韧:在扩展裂纹剪短应力场中的增强体会导致裂纹发生偏转,从而干扰应力场,导致机体的应力强度降低,起到阻碍裂纹扩展的作用。 17.弥散增韧:在基体中渗入具有一定颗粒尺寸的微细粉料达到增韧的效果,称为弥散增韧。 18.相变增韧:利用多晶多相陶瓷中某些相成份在不同温度的相变,从而达到增韧的效果,称为相变增韧。 19.热容:分子热运动的能量随着温度而变化的一个物理量,定义为物体温度升高1K所需要的能量。 20.比热容:将1g质量的物体温度升高1K所需要增加的热量,简称比热。 21.热膨胀:物体的体积或长度随温度升高而增大的现象。 热传导:当固体材料一端的温度笔另一端高时,热量会从热端自动地传向冷端。22.热导率:在物体内部垂直于导热方向取两个相距1米,面积为1平方米的平行平面,若两个平面的温度相差1K,则在1秒内从一个平面传导至另一个平面的热量就规定为该物质的热导率。 23.热稳定性:指材料承受温度的急剧变化而不致破坏的能力,又称为抗热震性。 24.抗热冲击断裂性:材料抵抗温度急剧变化时瞬时断裂的性能。 25.抗热冲击损伤性:材料抵抗热冲击循环作用下缓慢破坏的性能。 26.热应力:材料热膨胀或收缩引起的内应力。 27.声频支振动:振动的质点中包含频率甚低的格波时,质点彼此间的位相差不

材料物理性能课后习题答案

材料物理性能习题与解答

目录 1 材料的力学性能 (2) 2 材料的热学性能 (12) 3 材料的光学性能 (17) 4 材料的电导性能 (20) 5 材料的磁学性能 (29) 6 材料的功能转换性能 (37)

1材料的力学性能 1-1一圆杆的直径为2.5 mm、长度为25cm并受到4500N的轴向拉力,若直径拉细至 2.4mm,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。 解:根据题意可得下表 由计算结果可知:真应力大于名义应力,真应变小于名义应变。 1-2一试样长40cm,宽10cm,厚1cm,受到应力为1000N拉力,其氏模量为3.5×109 N/m2,能伸长多少厘米? 解: 拉伸前后圆杆相关参数表 ) ( 0114 .0 10 5.3 10 10 1 40 1000 9 4 0cm E A l F l E l l= ? ? ? ? ? = ? ? = ? = ? = ? - σ ε 10 909 .4 0? 0851 .0 1 = - = ? = A A l l ε 名义应变

1-3一材料在室温时的氏模量为3.5×108 N/m 2,泊松比为0.35,计算其剪切模量和体积模量。 解:根据 可知: 1-4试证明应力-应变曲线下的面积正比于拉伸试样所做的功。 证: 1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。 解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。则有 当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2)可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。 1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和t = τ时的纵坐标表达式。 解:Maxwell 模型可以较好地模拟应力松弛过程: Voigt 模型可以较好地模拟应变蠕变过程: )21(3)1(2μμ-=+=B G E ) (130)(103.1)35.01(2105.3)1(288MPa Pa E G ≈?=+?=+=μ剪切模量) (390)(109.3) 7.01(3105.3)21(388 MPa Pa E B ≈?=-?=-=μ体积模量. ,.,1 1 2 1 212 12 1 2 1 21 S W VS d V ld A Fdl W W S W V Fdl V l dl A F d S l l l l l l ∝====∝= ===???? ? ?亦即做功或者: 亦即面积εεεεεεεσεσεσ)(2.36505.08495.03802211GPa V E V E E H =?+?=+=上限弹性模量) (1.323)84 05.038095.0()(1 12211GPa E V E V E L =+=+=--下限弹性模量). 1()()(0)0() 1)(()1()(10 //0 ----= = ∞=-∞=-=e e e E t t t στεσεεεσεττ;;则有:其蠕变曲线方程为:. /)0()(;0)();0()0((0)e (t)-t/e στσσσσσστ==∞==则有::其应力松弛曲线方程为

材料无机材料物理性能考试及答案

材料无机材料物理性能考试及答案

————————————————————————————————作者:————————————————————————————————日期:

无机材料物理性能试卷 一.填空(1×20=20分) 1.CsCl结构中,Cs+与Cl-分别构成____格子。 2.影响黏度的因素有____、____、____. 3.影响蠕变的因素有温度、____、____、____. 4.在____、____的情况下,室温时绝缘体转化为半导体。 5.一般材料的____远大于____。 6.裂纹尖端出高度的____导致了较大的裂纹扩展力。 7.多组分玻璃中的介质损耗主要包括三个部分:____、________、____。 8.介电常数显著变化是在____处。 9.裂纹有三种扩展方式:____、____、____。 10.电子电导的特征是具有____。 二.名词解释(4×4分=16分) 1.电解效应 2.热膨胀 3.塑性形变 4.磁畴 三.问答题(3×8分=24分) 1.简述晶体的结合类型和主要特征: 2.什么叫晶体的热缺陷?有几种类型?写出其浓度表达式?晶体中离子电导分为哪几类? 3.无机材料的蠕变曲线分为哪几个阶段,分析各阶段的特点。 4.下图为氧化铝单晶的热导率与温度的关系图,试解释图像先增后减的原因。 四,计算题(共20分) 1.求熔融石英的结合强度,设估计的表面能为1.75J/m2;Si-O的平衡原子间距为1.6×10-8cm,弹性模量值从60 到75GPa。(10分) 2.康宁1273玻璃(硅酸铝玻璃)具有下列性能参数: =0.021J/(cm ·s ·℃);a=4.6×10-6℃-1;σp=7.0kg/mm2,

《材料物理性能》课后习题答案

1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。 解: 由计算结果可知:真应力大于名义应力,真应变小于名义应变。 1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。 解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。则有 当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2)可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。 1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和t = τ时的纵坐标表达式。 解:Maxwell 模型可以较好地模拟应力松弛过程: V oigt 模型可以较好地模拟应变蠕变过程: ) (2.36505.08495.03802211GPa V E V E E H =?+?=+=上限弹性模量 ) (1.323)84 05.038095.0()(112211GPa E V E V E L =+=+=--下限弹性模量 ). 1()()(0)0() 1)(()1()(1 //0 ----= = ∞=-∞=-=e E E e e E t t t στεσεεεσετ τ ;;则有:其蠕变曲线方程为:. /)0()(;0)();0()0((0)e (t)-t/e στσσσσσστ ==∞==则有::其应力松弛曲线方程为1.0 1.0 0816.04.25 .2ln ln ln 2 2 001====A A l l T ε真应变)(91710 909.44500 60MPa A F =?==-σ名义应力0851 .0100 =-=?=A A l l ε名义应变)(99510 524.445006MPa A F T =?==-σ真应力

无机材料物理性能课后习题答案

《材料物理性能》 第一章材料的力学性能 1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至 2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。 解: 由计算结果可知:真应力大于名义应力,真应变小于名义应变。 1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。 解:令E 1=380GPa,E 2=84GPa,V 1=,V 2=。则有 当该陶瓷含有5%的气孔时,将P=代入经验计算公式E=E 0+可得,其上、下限弹性模量分别变为 GPa 和 GPa 。 1-11一圆柱形Al 2O 3晶体受轴向拉力F ,若其临界抗剪强度 τf 为135 MPa,求沿图中所示之方向的滑移系统产生滑移时需要的最小拉力值,并求滑移面的法向应力。 0816 .04.25.2ln ln ln 22 001====A A l l T ε真应变) (91710909.44500 60MPa A F =?==-σ名义应力0851 .010 0=-=?=A A l l ε名义应变) (99510524.445006MPa A F T =?== -σ真应力)(2.36505.08495.03802211GPa V E V E E H =?+?=+=上限弹性模量) (1.323)84 05.038095.0()(1 12211GPa E V E V E L =+=+=--下限弹性模量

无机材料物理性能期末复习题

期末复习题参考答案 一、填空 1.一长30cm的圆杆,直径4mm,承受5000N的轴向拉力。如直径拉成3.8 mm,且体积保持不变,在此拉力下名义应力值为,名义应变值为。 2.克劳修斯—莫索蒂方程建立了宏观量介电常数与微观量极化率之间的关系。 3.固体材料的热膨胀本质是点阵结构中质点间平均距离随温度升高而增大。 4.格波间相互作用力愈强,也就是声子间碰撞几率愈大,相应的平均自由程愈小,热导率也就愈低。 5.电介质材料中的压电性、铁电性与热释电性是由于相应压电体、铁电体和热释电体都是不具有对称中心的晶体。 6.复介电常数由实部和虚部这两部分组成,实部与通常应用的介电常数一致,虚部表示了电介质中能量损耗的大小。 7.无机非金属材料中的载流子主要是电子和离子。 8.广义虎克定律适用于各向异性的非均匀材料。 ?(1-m)2x。9.设某一玻璃的光反射损失为m,如果连续透过x块平板玻璃,则透过部分应为 I 10.对于中心穿透裂纹的大而薄的板,其几何形状因子Y= 。 11.设电介质中带电质点的电荷量q,在电场作用下极化后,正电荷与负电荷的位移矢量为l,则此偶极矩为 ql 。 12.裂纹扩展的动力是物体内储存的弹性应变能的降低大于等于由于开裂形成两个新表面所需的表面能。 13.Griffith微裂纹理论认为,断裂并不是两部分晶体同时沿整个界面拉断,而是裂纹扩展的结果。14.考虑散热的影响,材料允许承受的最大温度差可用第二热应力因子表示。 15.当温度不太高时,固体材料中的热导形式主要是声子热导。 16.在应力分量的表示方法中,应力分量σ,τ的下标第一个字母表示方向,第二个字母表示应力作用的方向。 17.电滞回线的存在是判定晶体为铁电体的重要根据。 18.原子磁矩的来源是电子的轨道磁矩、自旋磁矩和原子核的磁矩。而物质的磁性主要由电子的自旋磁矩引起。 19. 按照格里菲斯微裂纹理论,材料的断裂强度不是取决于裂纹的数量,而是决定于裂纹的大小,即是由最危险的裂纹尺寸或临界裂纹尺寸决定材料的断裂强度。 20.复合体中热膨胀滞后现象产生的原因是由于不同相间或晶粒的不同方向上膨胀系数差别很大,产生很大的内应力,使坯体产生微裂纹。 21.晶体发生塑性变形的方式主要有滑移和孪生。 22.铁电体是具有自发极化且在外电场作用下具有电滞回线的晶体。 23.自发磁化的本质是电子间的静电交换相互作用。 二、名词解释 自发极化:极化并非由外电场所引起,而是由极性晶体内部结构特点所引起,使晶体中的每个晶胞内存在固有电偶极矩,这种极化机制为自发极化。 断裂能:是一种织构敏感参数,起着断裂过程的阻力作用,不仅取决于组分、结构,在很大程度上受到微观缺陷、显微结构的影响。包括热力学表面能、塑性形变能、微裂纹形成能、相变弹性 能等。 滞弹性:当应力作用于实际固体时,固体形变的产生与消除需要一定的时间,这种与时间有关的弹性称为滞弹性。 格波:处于格点上的原子的热振动可描述成类似于机械波传播的结果,这种波称为格波,格波的一个

最新无机材料物理性能考试试题及答案

无机材料物理性能考试试题及答案 一、填空(18) 1. 声子的准粒子性表现在声子的动量不确定、系统中声子的数目不守恒。 2. 在外加电场E的作用下,一个具有电偶极矩为p的点电偶极子的位能U=-p·E,该式表明当电偶极矩的取向与外电场同向时,能量为最低而反向时能量为最高。 3. TC为正的温度补偿材料具有敞旷结构,并且内部结构单位能发生较大的转动。 4. 钙钛矿型结构由 5 个简立方格子套购而成,它们分别是1个Ti 、1个Ca 和3个氧简立方格子 5. 弹性系数ks的大小实质上反映了原子间势能曲线极小值尖峭度的大小。 6. 按照格里菲斯微裂纹理论,材料的断裂强度不是取决于裂纹的数量,而是决定于裂纹的大小,即是由最危险的裂纹尺寸或临界裂纹尺寸决定材料的断裂强度。 7. 制备微晶、高密度与高纯度材料的依据是材料脆性断裂的影响因素有晶粒尺寸、气孔率、杂质等。 8. 粒子强化材料的机理在于粒子可以防止基体内的位错运动,或通过粒子的塑性形变而吸收一部分能量,达从而到强化的目的。 9. 复合体中热膨胀滞后现象产生的原因是由于不同相间或晶粒的不同方向上膨胀系数差别很大,产生很大的内应力,使坯体产生微裂纹。 10.裂纹有三种扩展方式:张开型、滑开型、撕开型 11. 格波:晶格中的所有原子以相同频率振动而形成的波,或某一个原子在平衡位置附近的振动是以波的形式在晶体中传播形成的波 二、名词解释(12) 自发极化:极化并非由外电场所引起,而是由极性晶体内部结构特点所引起,使晶体中的每个晶胞内存在固有电偶极矩,这种极化机制为自发极化。 断裂能:是一种织构敏感参数,起着断裂过程的阻力作用,不仅取决于组分、结构,在很大程度上受到微观缺陷、显微结构的影响。包括热力学表面能、塑性形变能、微裂纹形成能、相变弹性能等。 电子的共有化运动:原子组成晶体后,由于电子壳层的交叠,电子不再完全局限在某一个原子上,可以由一个原子的某一电子壳层转移到相邻原子的相似壳层上去,因而电子可以在整个晶体中运动。这种运动称为电子的共有化运动。 平衡载流子和非平衡载流子:在一定温度下,半导体中由于热激发产生的载流子成为平衡载流子。由于施加外界条件(外加电压、光照),人为地增加载流子数目,比热平衡载流子数目多的载流子称为非平衡载流子。 三、简答题(13) 1. 玻璃是无序网络结构,不可能有滑移系统,呈脆性,但在高温时又能变形,为什么? 答:正是因为非长程有序,许多原子并不在势能曲线低谷;在高温下,有一些原子键比较弱,只需较小的应力就能使这些原子间的键断裂;原子跃迁附近的空隙位置,引起原子位移和重排。不需初始的屈服应力就能变形-----粘性流动。因此玻璃在高温时能变形。 2. 有关介质损耗描述的方法有哪些?其本质是否一致? 答:损耗角正切、损耗因子、损耗角正切倒数、损耗功率、等效电导率、复介电常数的复项。多种方法对材料来说都涉及同一现象。即实际电介质的电流位相滞后理想电介质的电流位相。因此它们的本质是一致的。 3. 简述提高陶瓷材料抗热冲击断裂性能的措施。 答:(1) 提高材料的强度 f,减小弹性模量E。(2) 提高材料的热导率c。(3) 减小材料的热膨胀系数a。(4) 减小表面热传递系数h。(5) 减小产品的有效厚度rm。

材料物理性能期末复习重点-田莳

1.微观粒子的波粒二象性 在量子力学里,微观粒子在不同条件下分别表现出波动或粒子的性质。这种量子行为称为波粒二象性。 2.波函数及其物理意义 微观粒子具有波动性,是一种具有统计规律的几率波,它决定电子在空间某处出现的几率,在t 时刻,几率波应是空间位置(x,y,z,t)的函数。此函数 称波函数。其模的平方代表粒子在该处出现的概率。 表示t 时刻、 (x 、y 、z )处、单位体积内发现粒子的几率。 3.自由电子的能级密度 能级密度即状态密度。 dN 为E 到E+dE 范围内总的状态数。代表单位能量范围内所能容纳的电子数。 4.费米能级 在0K 时,能量小于或等于费米能的能级全部被电子占满,能量大于费米能级的全部为空。故费米能是0K 时金属基态系统电子所占有的能级最高的能量。 5.晶体能带理论 假定固体中原子核不动,并设想每个电子是在固定的原子核的势场及其他电子的平均势场中运动,称单电子近似。用单电子近似法处理晶体中电子能谱的理论,称能带理论。 6.导体,绝缘体,半导体的能带结构 根据能带理论,晶体中并非所有电子,也并非所有的价电子都参与导电,只有导带中的电子或价带顶部的空穴才能参与导电。从下图可以看出,导体中导带和价带之间没有禁区,电子进入导带不需要能量,因而导电电子的浓度很 大。在绝缘体中价带和导期隔着一个宽的禁带E g ,电子由价带到导带需要外界供给能量,使电子激发,实现电子由价带到导带的跃迁,因而通常导带中导电电子浓度很小。半导体和绝缘体有相类似的能带结构,只是半导体的禁带较窄(E g 小) ,电子跃迁比较容易 1.电导率 是表示物质传输电流能力强弱的一种测量值。当施加电压于导体的两 端 时,其电荷载子会呈现朝某方向流动的行为,因而产生电流。电导率 是以欧姆定律定义为电流密度 和电场强度 的比率: κ=1/ρ 2.金属—电阻率与温度的关系 金属材料随温度升高,离子热振动的振幅增大,电子就愈易受到散射,当电子波通过一个理想品体点阵时(0K),它将不受散射;只有在晶体点阵完整性遭到破坏的地方,电子被才受到散射(不相干散射),这就是金属产生电阻的根本原因。由于温度引起的离子运动(热振动)振幅的变化(通常用振幅的均方值表示),以及晶体中异类原于、位错、点缺陷等都会使理想晶体点阵的周期性遭到破坏。这样,电子波在这些地方发生散射而产生电阻,降低导电性。 金属电阻率在不同温度范围与温度变化关系不同。一般认为纯金属在整个温度区间产生电阻机制是电子-声子(离子)散射。在极低温度下,电子-电子散射构成了电阻产生的主要机制。金属融化,金属原子规则阵列被破坏,从而增强了对电子的散射,电阻增加。 3.离子电导理论 离子电导是带有电荷的离子载流子在电场作用下的定向移动。一类是晶体点阵的基本离子,因热振动而离开晶格,形成热缺陷,离子或空位在电场作用下成为导电载流子,参加导电,即本征导电。另一类参加导电的载流子主要是杂质。 离子尺寸,质量都远大于电子,其运动方式是从一个平衡位置跳跃到另一个平衡位置。离子导电是离子在电场作用下的扩散。其扩散路径畅通,离子扩散系数就高,故导电率高。 4.快离子导体(最佳离子导体,超离子导体) 具有离子导电的固体物质称固体电解质。有些

材料物理性能测试思考题答案

有效电子数:不是所有的自由电子都能参与导电,在外电场的作用下,只有能量接近费密能的少部分电子,方有可能被激发到空能级上去而参与导电。这种真正参加导电的自由电子数被称为有效电子数。 K状态:一般与纯金属一样,冷加工使固溶体电阻升高,退火则降低。但对某些成分中含有过渡族金属的合金,尽管金相分析和X射线分析的结果认为其组织仍是单相的,但在回火中发现合金电阻有反常升高,而在冷加工时发现合金的电阻明显降低,这种合金组织出现的反常状态称为K状态。X射线分析发现,组元原子在晶体中不均匀分布,使原子间距的大小显著波动,所以也把K状态称为“不均匀固溶体”。 能带:晶体中大量的原子集合在一起,而且原子之间距离很近,致使离原子核较远的壳层发生交叠,壳层交叠使电子不再局限于某个原子上,有可能转移到相邻原子的相似壳层上去,也可能从相邻原子运动到更远的原子壳层上去,从而使本来处于同一能量状态的电子产生微小的能量差异,与此相对应的能级扩展为能带。 禁带:允许被电子占据的能带称为允许带,允许带之间的范围是不允许电子占据的,此范围称为禁带。 价带:原子中最外层的电子称为价电子,与价电子能级相对应的能带称为价带。 导带:价带以上能量最低的允许带称为导带。 金属材料的基本电阻:理想金属的电阻只与电子散射和声子散射两种机制有关,可以看成为基本电阻,基本电阻在绝对零度时为零。 残余电阻(剩余电阻):电子在杂质和缺陷上的散射发生在有缺陷的晶体中,绝对零度下金属呈现剩余电阻。这个电阻反映了金属纯度和不完整性。 相对电阻率:ρ (300K)/ρ (4.2K)是衡量金属纯度的重要指标。 剩余电阻率ρ’:金属在绝对零度时的电阻率。实用中常把液氦温度(4.2K)下的电阻率视为剩余电阻率。 相对电导率:工程中用相对电导率( IACS%) 表征导体材料的导电性能。把国际标准软纯铜(在室温20 ℃下电阻率ρ= 0 .017 24Ω·mm2/ m)的电导率作为100% , 其他导体材料的电导率与之相比的百分数即为该导体材料的相对电导率。 马基申定则(马西森定则):ρ=ρ’+ρ(T)在一级近似下,不同散射机制对电阻率的贡献可以加法求和。ρ’:决定于化学缺陷和物理缺陷而与温度无关的剩余电阻率。ρ(T):取决于晶格热振动的电阻率(声子电阻率),反映了电子对热振动原子的碰撞。 晶格热振动:点阵中的质点(原子、离子)围绕其平衡位置附近的微小振动。 格波:晶格振动以弹性波的形式在晶格中传播,这种波称为格波,它是多频率振动的组合波。 热容:物体温度升高1K时所需要的热量(J/K)表征物体在变温过程中与外界热量交换特性的物理量,直接与物质内部原子和电子无规则热运动相联系。 比定压热容:压力不变时求出的比热容。 比定容热容:体积不变时求出的比热容。 热导率:表征物质热传导能力的物理量为热导率。 热阻率:定义热导率的倒数为热阻率ω,它可以分解为两部分,晶格热振动形成的热阻(ωp)和杂质缺陷形成的热阻(ω0)。导温系数或热扩散率:它表示在单位温度梯度下、单位时间内通过单位横截面积的热量。热导率的单位:W/(m·K) 热分析:通过热效应来研究物质内部物理和化学过程的实验技术。原理是金属材料发生相变时,伴随热函的突变。 反常膨胀:对于铁磁性金属和合金如铁、钴、镍及其某些合金,在正常的膨胀曲线上出现附加的膨胀峰,这些变化称为反常膨胀。其中镍和钴的热膨胀峰向上为正,称为正反常;而铁和铁镍合金具有负反常的膨胀特性。 交换能:交换能E ex=-2Aσ1σ2cosφA—交换积分常数。当A>0,φ=0时,E ex最小,自旋磁矩自发排列同一方向,即产生自发磁化。当A<0,φ=180°时,E ex也最小,自旋磁矩呈反向平行排列,即产生反铁磁性。交换能是近邻原子间静电相互作用能,各向同性,比其它各项磁自由能大102~104数量级。它使强磁性物质相邻原子磁矩有序排列,即自发磁化。 磁滞损耗:铁磁体在交变磁场作用下,磁场交变一周,B-H曲线所描绘的曲线称磁滞回线。磁滞回线所围成的面积为铁 =? 磁体所消耗的能量,称为磁滞损耗,通常以热的形式而释放。磁滞损耗Q HdB 技术磁化:技术磁化的本质是外加磁场对磁畴的作用过程即外加磁场把各个磁畴的磁矩方向转到外磁场方向(和)或近似外磁场方向的过程。技术磁化的两种实现方式是的磁畴壁迁移和磁矩的转动。 请画出纯金属无相变时电阻率—温度关系曲线,它们分为几个阶段,各阶段电阻产生的机制是什么?为什么高温下电阻率与温度成正比? 1—ρ电-声∝T( T > 2/ 3ΘD ) ; 2—ρ电-声∝T5 ( T< <ΘD );

材料物理性能期末复习考点教学内容

材料物理性能期末复 习考点

一名词解释 1.声频支振动:震动着的质点中所包含的频率甚低的格波,质点彼此之间的相位差不大,格波类似于弹性体中的应变波,称声频支振动。 2.光频支振动:格波中频率甚高的振动波,质点间的相位差很大,临近质点的运动几乎相反,频率往往在红外光区,称光频支振动。 3.格波:材料中一个质点的振动会影响到其临近质点的振动,相邻质点间的振,动会形成一定的相位差,使得晶格振动以波的形式在整个材料内传播的波。 4.热容:材料在温度升高和降低时要时吸收或放出热量,在没有相变和化学反应的条件下,材料温度升高1K时所吸收的热量。 5.一级相变:相变在某一温度点上完成,除体积变化外,还同时吸收和放出潜热的相变。 6.二级相变:在一定温度区间内逐步完成的,热焓无突变,仅是在靠近相变点的狭窄区域内变化加剧,其热熔在转变温度附近也发生剧烈变化,但为有限值的相变。 7.热膨胀:物体的体积或长度随温度升高而增大的现象。 8.热膨胀分析:利用试样体积变化研究材料内部组织的变化规律的方法。 9.热传导:当材料相邻部分间存在温度差时,热量将从温度高的区域自动流向温度低的区域的现象。 10.热稳定性(抗热震性):材料称受温度的急剧变化而不致破坏的能力。 11.热应力:由于材料的热胀冷缩而引起的内应力。 12.材料的导电性:在电场作用下,材料中的带电粒子发生定向移动从而产生宏观电流 13.载流子:材料中参与传导电流的带电粒子称为载流子 14.精密电阻合金:需要电阻率温度系数TRC或者α数值很小的合金,工程上称其为精密电阻合金 15.本征半导体:半导体材料中所有价电子都参与成键,并且所有键都处于饱和(原子外电子层填满)状态,这类半导体称为本征半导体。 16. n型半导体:掺杂半导体中或者所有结合键处被价电子填满后仍有部分富余的价电子的这类半导体。 17. p型半导体:在所有价电子都成键后仍有些结合键上缺少价电子,而出现一些空穴的一类半导体。 18.光致电导:半导体材料材料受到适当波长的电磁波辐射时,导电性会大幅升高的现象。

材料物理性能王振廷课后答案106页

1、试说明下列磁学参量的定义和概念:磁化强度、矫顽力、饱和磁化强度、磁导率、磁化率、剩余磁感应强度、磁各向异性常数、饱和磁致伸缩系数。 a、磁化强度:一个物体在外磁场中被磁化的程度,用单位体积内磁矩的多少来衡量,成为磁化强度M b、矫顽力Hc:一个试样磁化至饱和,如果要μ=0或B=0,则必须加上一个反向磁场Hc,成为矫顽力。 c、饱和磁化强度:磁化曲线中随着磁化场的增加,磁化强度M或磁感强度B开始增加较缓慢,然后迅速增加,再转而缓慢地增加,最后磁化至饱和。Ms成为饱和磁化强度,Bs成为饱和磁感应强度。 d、磁导率:μ=B/H,表征磁性介质的物理量,μ称为磁导率。 e、磁化率:从宏观上来看,物体在磁场中被磁化的程度与磁化场的磁场强度有关。 M=χ·H,χ称为单位体积磁化率。 f、剩余磁感应强度:将一个试样磁化至饱和,然后慢慢地减少H,则M也将减少,但M并不按照磁化曲线反方向进行,而是按另一条曲线改变,当H减少到零时,M=Mr或Br=4πMr。(Mr、Br分别为剩余磁化强度和剩余磁感应强度) g、磁滞消耗:磁滞回线所包围的面积表征磁化一周时所消耗的功,称为磁滞损耗Q( J/m3) h、磁晶各向异性常数:磁化强度矢量沿不同晶轴方向的能量差代表磁晶各向异性能,用Ek表示。磁晶各向异性能是磁化矢量方向的函数。 i、饱和磁致伸缩系数:随着外磁场的增强,致磁体的磁化强度增强,这时|λ|也随之增大。当H=Hs时,磁化强度M达到饱和值,此时λ=λs,称为饱和磁致伸缩所致。 2、计算Gd3+和Cr3+的自由离子磁矩Gd3+的离子磁矩比Cr3+离子磁矩高的原因是什么 Gd3+有7个未成对电子,Cr3+ 3个未成对电子. 所以, Gd3+的离子磁矩为7μB, Cr3+的离子磁矩为3μB. 3、过渡族金属晶体中的原子(或离子)磁矩比它们各自的自由离子 磁矩低的原因是什么 4、试绘图说明抗磁性、顺磁性、铁磁性物质在外场B=0的磁行为。

无机材料物理性能_完美版

无机材料物理性能试卷 一.填空(1×20=20分) 1.CsCl结构中,Cs+与Cl-分别构成____格子。 2.影响黏度的因素有___、____、____. 3.影响蠕变的因素有温度、____、____、____. 4.在____、____的情况下,室温时绝缘体转化为半导体。 5.一般材料的____远大于____。 6.裂纹尖端出高度的____导致了较大的裂纹扩展力。 7.多组分玻璃中的介质损耗主要包括三个部分:____、________、____。 8.介电常数显著变化是在____处。 9.裂纹有三种扩展方式:____、____、____。 10.电子电导的特征是具有____。 二.判断正误。(2×10=20分) 1.正应力正负号规定是拉应力为负,压应力正。() 2.Al2O3结构简单,室温下易产生滑动。() 3.断裂表面能比自由表面能大。() 4.一般折射率小,结构紧密的电介质材料以电子松弛极化性为主。()5.金红石瓷是离子位移极化为主的电介质材料。() 6.自发磁化是铁磁物质的基本特征,是铁磁物质和顺磁物质的区别之处。 () 7.随着频率的升高,击穿电压也升高。() 8.磁滞回线可以说明晶体磁学各向异性。() 9.材料弹性模量越大越不易发生应变松弛。() 10.大多数陶瓷材料的强度和弹性模量都随气孔率的减小而增加。() 三.名词解释(4×4分=16分) 1.电解效应 2.热膨胀 3.塑性形变 4.磁畴 四.问答题(3×8分=24分) 1.简述晶体的结合类型和主要特征: 2.什么叫晶体的热缺陷?有几种类型?写出其浓度表达式?晶体中 离子电导分为哪几类? 3.无机材料的蠕变曲线分为哪几个阶段,分析各阶段的特点。

材料物理性能课后习题答案-北航出版社-田莳主编

材料物理习题集 第一章 固体中电子能量结构和状态(量子力学基础) 1. 一电子通过5400V 电位差的电场,(1)计算它的德布罗意波长;(2)计算它的波数;(3) 计算它对Ni 晶体(111)面(面间距d =2.04×10-10m )的布拉格衍射角。(P5) 12 34 131 192 1111 o ' (2) 6.610 = (29.110 5400 1.610 ) =1.67102K 3.7610sin sin 2182h h p mE m d d λπ λ θλ λ θθ----=???????=?==?=解:(1)= (2)波数= (3)2 2. 有两种原子,基态电子壳层是这样填充的 ; ; s s s s s s s 226232 2 6 2 6 10 2 6 10 (1)1、22p 、33p (2)1、22p 、33p 3d 、44p 4d ,请分别写出n=3的所有电子的四个量 子数的可能组态。(非书上内容)

3. 如电子占据某一能级的几率是1/4,另一能级被占据的几率为3/4,分别计算两个能级 的能量比费米能级高出多少k T ?(P15) 1()exp[]1 1 ln[1] ()()1/4ln 3()3/4ln 3F F F F f E E E kT E E kT f E f E E E kT f E E E kT = -+?-=-=-=?=-=-?解:由将代入得将代入得 4. 已知Cu 的密度为8.5×103kg/m 3,计算其E 0F 。 (P16) 2 2 03 23426 23 3 31 18(3/8)2(6.6310)8.510 =(3 6.0210/8)291063.5 =1.0910 6.83F h E n m J eV ππ---=????????=解: 由 5. 计算Na 在0K 时自由电子的平均动能。(Na 的摩尔质量M=22.99, .0ρ?33 =11310kg/m )(P16)

相关主题