搜档网
当前位置:搜档网 › 高中数学典型例题解析(第一章集合与常用逻辑用语)

高中数学典型例题解析(第一章集合与常用逻辑用语)

高中数学典型例题解析(第一章集合与常用逻辑用语)
高中数学典型例题解析(第一章集合与常用逻辑用语)

第一章 集合与常用逻辑用语

§1.1 集合的概念与运算

一、知识导学

1.集合:一般地,一定范围内某些确定的、不同的对象的全体构成一个集合.

2.元素:集合中的每一个对象称为该集合的元素,简称元.

3.子集:如果集合A 的任意一个元素都是集合B 的元素(若A a ?则B a ∈),则称 集合A 为集合B 的子集,记为A ?B 或B ?A ;如果A ?B ,并且A ≠B ,这时集合A 称为集合B 的真子集,记为A B 或B A.

4.集合的相等:如果集合A 、B 同时满足A ?B 、B ?A ,则A=B.

5.补集:设A ?S ,由S 中不属于A 的所有元素组成的集合称为S 的子集A 的补集,记 为 A C s .

6.全集:如果集合S 包含所要研究的各个集合,这时S 可以看做一个全集,全集通常 记作U.

7.交集:一般地,由所有属于集合A 且属于B 的元素构成的集合,称为A 与B 的交集, 记作A ?B.

8.并集:一般地,由所有属于集合A 或者属于B 的元素构成的集合,称为A 与B 的并 集,记作A ?B.

9.空集:不含任何元素的集合称为空集,记作Φ.

10.有限集:含有有限个元素的集合称为有限集.

11.无限集:含有无限个元素的集合称为无限集.

12.集合的常用表示方法:列举法、描述法、图示法(Venn 图).

13.常用数集的记法:自然数集记作N ,正整数集记作N +或N *,整数集记作Z ,有理数集记作Q ,实数集记作R .

二、疑难知识导析

1.符号?,,?,,=,表示集合与集合之间的关系,其中“?”包括“”和“=”两种情况,同样“?”包括“”和“=”两种情况.符号∈,?表示元素与集合之间的关系.要注意两类不同符号的区别.

2.在判断给定对象能否构成集合时,特别要注意它的“确定性”,在表示一个集合时,要特别注意它的“互异性”、“无序性”.

3.在集合运算中必须注意组成集合的元素应具备的性质.

4.对由条件给出的集合要明白它所表示的意义,即元素指什么,是什么范围.用集合表示不等式(组)的解集时,要注意分辨是交集还是并集,结合数轴或文氏图的直观性帮助思维判断.空集是任何集合的子集,但因为不好用文氏图形表示,容易被忽视,如在关系式

中,B =Φ易漏掉的情况.

5.若集合中的元素是用坐标形式表示的,要注意满足条件的点构成的图形是什么,用数形结合法解之.

6.若集合中含有参数,须对参数进行分类讨论,讨论时既不重复又不遗漏.

7.在集合运算过程中要借助数轴、直角坐标平面、Venn 图等将有关集合直观地表示出来.

8.要注意集合与方程、函数、不等式、三角、几何等知识的密切联系与综合使用.

9.含有n 个元素的集合的所有子集个数为:n 2,所有真子集个数为:n

2-1

三、经典例题导讲

[例1] 已知集合M={y |y =x 2+1,x∈R },N={y|y =x +1,x∈R },则M∩N=( )

A .(0,1),(1,2)

B .{(0,1),(1,2)}

C .{y|y=1,或y=2}

D .{y|y≥1} 错解:求M∩N 及解方程组???+=+=112x y x y 得???==10y x 或 ???==2

1y x ∴选B

错因:在集合概念的理解上,仅注意了构成集合元素的共同属性,而忽视了集合的元素是什么.事实上M 、N 的元素是数而不是实数对(x,y ),因此M 、N 是数集而不是点集,

M 、N 分别表示函数y =x 2+1(x∈R ),y =x +1(x∈R )的值域,求M∩N 即求两函数值域的交集.

正解:M={y |y =x 2+1,x∈R }={y |y ≥1}, N={y|y=x +1,x∈R }={y|y∈R }.

∴M∩N={y |y ≥1}∩{y|(y∈R)}={y |y ≥1}, ∴应选D .

注:集合是由元素构成的,认识集合要从认识元素开始,要注意区分{x |y =x 2+1}、{y |y =x

2+1,x ∈R }、{(x ,y )|y =x 2+1,x ∈R },这三个集合是不同的.

[例2] 已知A={x |x 2

-3x +2=0},B={x |ax -2=0}且A∪B=A,求实数a 组成的集合C . 错解:由x 2

-3x +2=0得x =1或2.

当x =1时,a =2, 当x =2时,a=1.

错因:上述解答只注意了B 为非空集合,实际上,B=时,仍满足A∪B=A .

当a =0时,B=,符合题设,应补上,故正确答案为C={0,1,2}.

正解:∵A∪B=A ∴B A 又A={x |x 2-3x +2=0}={1,2} ∴B=或{}

{}21或 ∴C={0,1,2}[例3]已知m ∈A,n ∈B, 且集合A={}Z a a x x ∈=,2|,B={}Z a a x x ∈+=,12|,又C={}Z a a x x ∈+=,14|,则有: ( )

A .m +n ∈A B. m +n ∈

B C.m +n ∈

C D. m +n 不属于A ,B ,C 中任意一个

错解:∵m ∈A ,∴m =2a ,a Z ∈,同理n =2a +1,a ∈Z, ∴m +n =4a +1,故选C

错因是上述解法缩小了m +n 的取值范围.

正解:∵m ∈A, ∴设m =2a 1,a 1∈Z , 又∵n B ∈,∴n =2a 2+1,a 2∈ Z ,

∴m +n =2(a 1+a 2)+1,而a 1+a 2∈ Z , ∴m +n ∈B, 故选B.

[例4] 已知集合A={x|x 2-3x -10≤0},集合B={x|p +1≤x≤2p-1}.若B

A ,求实

数p 的取值范围.

错解:由x 2-3x -10≤0得-2≤x≤5.

欲使B A ,只须335

1212≤≤-????≤-+≤-p p p

∴ p 的取值范围是-3≤p≤3.

错因:上述解答忽略了"空集是任何集合的子集"这一结论,即B=时,符合题设. 正解:①当B≠时,即p +1≤2p-1p≥2.

由B A 得:-2≤p+1且2p -1≤5.

由-3≤p≤3.

∴ 2≤p≤3

②当B=时,即p +1>2p -1p <2.

由①、②得:p≤3.

点评:从以上解答应看到:解决有关A∩B=、A∪B=,A B 等集合问题易忽视空集的情况而出现漏解,这需要在解题过程中要全方位、多角度审视问题.

[例5] 已知集合A={a,a +b,a +2b},B={a,ac,ac 2}.若A=B ,求c 的值.

分析:要解决c 的求值问题,关键是要有方程的数学思想,此题应根据相等的两个集合元素完全相同及集合中元素的确定性、互异性,无序性建立关系式.

解:分两种情况进行讨论.

(1)若a +b=ac 且a +2b=ac 2,消去b 得:a +ac 2-2ac=0,

a=0时,集合B 中的三元素均为零,和元素的互异性相矛盾,故a≠0.

∴c 2-2c +1=0,即c=1,但c=1时,B 中的三元素又相同,此时无解.

(2)若a +b=ac 2且a +2b=ac ,消去b 得:2ac 2-ac -a=0,

∵a≠0,∴2c 2-c -1=0,

即(c -1)(2c +1)=0,又c≠1,故c=-2

1. 点评:解决集合相等的问题易产生与互异性相矛盾的增解,这需要解题后进行检验. [例6] 设A 是实数集,满足若a∈A ,则

a -11∈A ,1≠a 且1?A. ⑴若2∈A,则A 中至少还有几个元素?求出这几个元素.

⑵A 能否为单元素集合?请说明理由.

⑶若a∈A,证明:1-a

1∈A. ⑷求证:集合A 中至少含有三个不同的元素.

解:⑴2∈A ? -1∈A ?

2

1∈A ? 2∈A ∴ A 中至少还有两个元素:-1和2

1 ⑵如果A 为单元素集合,则a =a -11 即12+-a a =0

该方程无实数解,故在实数范围内,A 不可能是单元素集

⑶a∈A ? a -11∈A ? a --11

11∈A ?1

11---a a ∈A ,即1-a 1∈A

⑷由⑶知a∈A 时,

a

-11∈A, 1-a 1∈A .现在证明a,1-a 1, a -11三数互不相等.①若a=a -11,即a2-a+1=0 ,方程无解,∴a ≠a

-11 ②若a=1-a 1,即a 2-a+1=0,方程无解∴a ≠1-a

1 ③若1-a 1 =a -11,即a2-a+1=0,方程无解∴1-a 1≠a

-11. 综上所述,集合A 中至少有三个不同的元素. 点评:⑷的证明中要说明三个数互不相等,否则证明欠严谨.

[例7] 设集合A={a |a =12+n ,n ∈N +},集合B={b |b =542+-k k ,k ∈N +

},试证:A B .

证明:任设a ∈A,

则a =12+n =(n +2)2-4(n +2)+5 (n ∈N +

), ∵ n∈N*,∴ n +2∈N*

∴ a∈B 故 ①

显然,1{}

*2,1|N n n a a A ∈+==∈,而由

B={b |b =542+-k k ,k ∈N +}={b |b =1)2(2+-k ,k ∈N +}知1∈B,于是A≠B ②

由①、② 得A B .

点评:(1)判定集合间的关系,其基本方法是归结为判定元素与集合之间关系.

(2)判定两集合相等,主要是根据集合相等的定义.

四、典型习题导练

1.集合A={x|x 2-3x -10≤0,x ∈Z},B={x|2x 2-x -6>0, x ∈ Z},则A ∩B 的非空真

子集的个数为( )

A .16

B .14

C .15

D .32

2.数集{1,2,x 2-3}中的x 不能取的数值的集合是( )

A .{2,-2 }

B .{-2,-5 }

C .{±2,±5 }

D .{5,-5}

3. 若P={y|y=x 2,x∈R},Q={y|y=x 2+1,x∈R},则P∩Q 等于( )

A .P

B .Q

C .

D .不知道

4. 若P={y|y=x 2,x∈R},Q={(x ,y)|y=x 2,x∈R},则必有( )

A .P∩Q=

B .P Q

C .P=Q

D .P

Q 5.若集合M ={11|

x },N ={x |2x ≤x },则M N = ( ) A .}11|{<<-x x B .}10|{<

C .}01|{<<-x x

D .?

6.已知集合A={x|x 2+(m +2)x +1=0,x∈R },若A∩R +=,则实数m 的取值范围是_________.

7.设a R ∈,函数2()22.f x ax x a =--若()0f x >的解集为A ,{}|13,B x x A B φ=<<≠,求实数a 的取值范围。

8.已知集合A={}012|2=++b ax x x 和B={}

0|2=+-b ax x x 满足 I C A ∩B={}2,A ∩I C B={}4,I=R ,求实数a,b 的值.

§1.2.常用逻辑用语

一、知识导学

1.逻辑联结词:“且”、“或”、 “非”分别用符号“∧”“∨”“?”表示.

2.命题:能够判断真假的陈述句.

3.简单命题:不含逻辑联结词的命题

4.复合命题:由简单命题和逻辑联结词构成的命题,复合命题的基本形式:p 或q ;p 且q ;非p

5.四种命题的构成:原命题:若p 则q ; 逆命题:若q 则p ;否命题:若p 则q ;逆否命题:若q 则p.

6.原命题与逆否命题同真同假,是等价命题,即“若p 则q”“若q 则p ” .

7.反证法:欲证“若p 则q”,从“非q”出发,导出矛盾,从而知“若p 则非q”为假,即“若p 则q”为真 .

8.充分条件与必要条件 :

①p q :p 是q 的充分条件;q 是p 的必要条件;

②p q :p 是q 的充要条件 .

9.常用的全称量词:“对所有的”、“ 对任意一个”“ 对一切”“ 对每一个”“任给”等;并用符号“?” 表示.含有全称量词的命题叫做全称命题.

10.常用的存在量词:“存在一个”、“至少有一个”、“有些”、“有一个”、 “有的”、“对某个”; 并用符号“?”表示.含有存在量词的命题叫做特称命题.

二、疑难知识导析

1.基本题型及其方法

(1)由给定的复合命题指出它的形式及其构成;

(2)给定两个简单命题能写出它们构成的复合命题,并能利用真值表判断复合命题的真假;

(3)给定命题,能写出它的逆命题、否命题、逆否命题,并能运用四种命题的相互关系,特别

是互为逆否命题的等价性判断命题的真假.注意:否命题与命题的否定是不同的.

(4)判断两个命题之间的充分、必要、充要关系;

方法:利用定义

(5)证明p 的充要条件是q ;

方法:分别证明充分性和必要性

(6)反证法证题的方法及步骤:反设、归谬、结论.反证法是通过证明命题的结论的反面不成立

而肯定命题的一种数学证明方法,是间接证法之一.

2.全称命题与特称命题的关系:

全称命题p:)(,x p M x ∈?,它的否定p ?:)(,x p M x ?∈?;特称命题p:)(,x p M x ∈?,它的否定p ?:)(,x p M x ?∈?;即全称命题的否定是特称命题,特称命题的否定是全称命题.否定一个全称命题可以通过“举反例”来说明.

三、经典例题导讲

[例1] 把命题“全等三角形一定相似”写成“若p 则q ”的形式,并写出它的逆命题、否命题与逆否命题.

错解:原命题可改写成:若两个三角形全等,则它们一定相似.

逆命题:若两个三角形相似,则它们全等.

否命题:若两个三角形不一定全等,则它们不一定相似.

逆否命题:若两个三角形不一定相似,则它们不一定全等.

错因:对“一定”的否定把握不准,“一定”的否定 “一定不”,在逻辑知识中求否定相当于求补集,而“不一定”含有“一定”的意思.对这些内容的学习要多与日常生活中的例子作比较,注意结合集合知识.因而否命题与逆否命题错了. 正解:否命题:若两个三角形不全等,则它们不相似.

逆否命题:若两个三角形不相似,则它们不全等.

[例2] 将下列命题改写成“若p 则q ”的形式,并写出否命题.a>o 时,函数y=ax+b 的值随x 值的增加而增加. 错解:原命题改为:若a>o 时,x 的值增加,则函数y=ax+b 的值也随着增加.

错因:如果从字面上分析最简单的方法是将a>o 看作条件,将“随着”看作结论,而x 的值增加,y 的值也增加看作研究的对象,那么原命题改为若a>o 时,则函数y=ax+b 的值随着x 的值增加而增加,其否命题为若a ≤o 时,则函数y=ax+b 的值不随x 值的增加而增加.此题错解在注意力集中在“增加”两个字上,将x 值的增加当做条件,又不把a>o 看作前提,就变成两个条件的命题,但写否命题时又没按两个条件的规则写,所以就错了.

正解:原命题改为: a>o 时,若x 的值增加,则函数y=ax+b 的值也随着增加.

否命题为: a>o 时,若x 的值不增加,则函数y=ax+b 的值也不增加.

原命题也可改为:当x 的值增加时,若a>o ,,则函数y=ax+b 的值也随着增加. 否命题为: 当x 增加时,若a ≤o ,则函数y=ax+b 的值不增加.

[例3] 已知h>0,设命题甲为:两个实数a 、b 满足h b a 2<-,命题乙为:两个实数a 、b 满足h a <-|1且h b <-|1,那么

A .甲是乙的充分但不必要条件

B .甲是乙的必要但不充分条件

C .甲是乙的充要条件

D .甲是乙的既不充分也不必要条件

错解:h b a 2<-?h h h b a +=<---2)1()1(?h a <-|1|,h b <-|1|

故本题应选C.

错因:(1)对充分、必要、充要条件的概念分不清,无从判断,凭猜测产生错误;

(2)不能运用绝对值不等式性质作正确推理而产生错误.

正解:因为,11?????<-<-h

b h a 所以,11???<-<-<-<-h b h h a h 两式相减得h b a h 22<-<- 故h b a 2<-

即由命题甲成立推出命题乙成立,所以甲是乙的必要条件. 由于?????<-<-h

b h a 22 同理也可得h b a 2<-

因此,命题甲成立不能确定命题乙一定成立,所以甲不是乙的充分条件,故应选B.

[例4] 已知命题甲:a+b ≠4, 命题乙:a 1≠且b 3≠,则命题甲是命题乙的 .

错解:由逆否命题与原命题同真同假知,若a=1且b=3则a+b=4成立,所以命题甲是命题乙的充分不必要条件.

错因 :对命题的否定不正确.a 1≠且b 3≠的否定是a=1或b=3.

正解:当a+b ≠4时,可选取a=1,b=5,故此时a 1≠且b 3≠不成立( a=1).

同样,a 1≠,且b 3≠时,可选取a=2,b=2,a+b=4,故此时a+b=4.

因此,甲是乙的既不充分也不必要条件.

注:a 1≠且b 3≠为真时,必须a 1≠,b 3≠同时成立.

[例5] 已知p 是r 的充分不必要条件,s 是r 的必要条件,q 是s 的必要条件,那么p 是q 成立的 ( )

A .充分不必要条件

B .必要不充分条件

C .充要条件

D .既不充分也不必要条件 分析:本题考查简易逻辑知识.

因为p ?r ?s ?q 但r 成立不能推出p 成立,所以q p ?,但q 成立不能推出p 成立,所以选A

解:选A

[例6] 已知关于x 的一元二次方程 (m∈Z)

① mx 2-4x +4=0 ② x 2-4mx +4m 2-4m -5=0

求方程①和②都有整数解的充要条件.

解:方程①有实根的充要条件是,04416≥??-=?m 解得m ≤1.

方程②有实根的充要条件是0)544(41622≥---=?m m m ,解得.4

5-≥m ,.14

5Z m m ∈≤≤-∴而故m =-1或m =0或m =1. 当m =-1时,①方程无整数解.当m=0时,②无整数解;

当m=1时,①②都有整数.从而①②都有整数解m =1.反之,m =1①②都有整数解. ∴①②都有整数解的充要条件是m =1.

[例7] 用反证法证明:若a 、b 、c R ∈,且122+-=b a x ,122+-=c b y ,

122+-=a c z ,则x 、y 、z 中至少有一个不小于0.

证明: 假设x 、y 、z 均小于0,即:

0122<+-=b a x ----① ;

0122<+-=c b y ----② ;

0122<+-=a c z ----③;

①+②+③得0)1()1()1(222<-+-+-=++c b a z y x ,

这与0)1()1()1(222≥-+-+-c b a 矛盾,

则假设不成立,

∴x 、y 、z 中至少有一个不小于0.

[例8] 已知命题p :方程x 2+mx +1=0有两个不等的负根;命题q :方程4x 2

+4(m -2)x +1

=0无实根.若“p 或q ”为真,“p 且q ”为假,求m 的取值范围.

分析:“p 或q ”为真,则命题p 、q 至少有一个为真,“p 且q ”为假,则命题p 、q 至少有一为假,因此,两命题p 、q 应一真一假,即命题p 为真,命题q 为假或命题p 为假,命题q 为真. 解: 若方程x 2

+mx +1=0有两不等的负根,则???>>-=?0042m m 解得m >2,

即命题p :m >2

若方程4x 2+4(m -2)x +1=0无实根,

则Δ=16(m -2)2-16=16(m 2-4m +3)<0

解得:1<m <3.即q :1<m <3.

因“p 或q ”为真,所以p 、q 至少有一为真,

又“p 且q ”为假,所以命题p 、q 至少有一为假,

因此,命题p 、q 应一真一假,即命题p 为真,命题q 为假或命题p 为假,命题q 为真. ∴???<<≤?

??≥≤>312312m m m m m 或或 解得:m ≥3或1<m ≤2.

四、典型习题导练

1.方程0122=++x mx 至少有一个负根,则( )

A.10<

B.10<

C.1

D.1≤m

2.“0232>+-x x ”是“1x ”的( )

A.充分不必要条件

B.必要不充分条件

C.充要条件

D.既不充分也不必要条件

3.三个数,,a b c 不全为0的充要条件是 ( )

A.,,a b c 都不是0.

B.,,a b c 中至多一个是0.

C.,,a b c 中只有一个是0.

D.,,a b c 中至少一个不是0. 4.由命题p :6是12的约数,q :6是24的约数,构成的“p 或q ”形式的命题是:_ ___,“p 且q ”形式的命题是__ _,“非p ”形式的命题是__ _.

5.若,a b R ∈,试从

A.0ab =

B.0a b +=

C.220a b +=

D.0ab >

E.0a b +>

F.220a b +> 中,选出适合下列条件者,用代号填空:

(1)使,a b 都为0的充分条件是 ;

(2)使,a b 都不为0的充分条件是 ;

(3)使,a b 中至少有一个为0的充要条件是 ;

(4)使,a b 中至少有一个不为0的充要条件是 .

6.分别指出由下列各组命题构成的逻辑关联词“或”、“且”、“非”的真假.

(1)p : 梯形有一组对边平行;q :梯形有一组对边相等.

(2)p : 1是方程0342=+-x x 的解;q :3是方程0342=+-x x 的解.

(3)p : 不等式0122>+-x x 解集为R ;q : 不等式1222≤+-x x 解集为

. 7.命题:已知a 、b 为实数,若x 2+ax +b ≤0 有非空解集,则a 2- 4b ≥0.写出该命题的逆

命题、否命题、逆否命题,并判断这些命题的真假.

8.用反证法证明:若a 、b 、c 、d 均为小于1的正数,且x=4a(1-b),y=4b(1-c),z=4c(1-d),t=4d(1-a),则x 、y 、z 、t 四个数中,至少有一个不大于1

2016届高考数学经典例题集锦:数列(含答案)

数列题目精选精编 【典型例题】 (一)研究等差等比数列的有关性质 1. 研究通项的性质 例题1. 已知数列}{n a 满足1 111,3(2)n n n a a a n --==+≥. (1)求32,a a ; (2)证明: 312n n a -= . 解:(1)2 1231,314,3413a a a =∴=+==+= . (2)证明:由已知1 13 --=-n n n a a ,故)()()(12211a a a a a a a n n n n n -++-+-=--- 1 2 1313 3 312n n n a ---+=++++= , 所以证得31 2n n a -= . 例题2. 数列{}n a 的前n 项和记为11,1,21(1)n n n S a a S n +==+≥ (Ⅰ)求{}n a 的通项公式; (Ⅱ)等差数列{}n b 的各项为正,其前n 项和为n T ,且315T =,又112233,,a b a b a b +++成等比数列,求n T . 解:(Ⅰ)由121n n a S +=+可得121(2)n n a S n -=+≥, 两式相减得:112,3(2)n n n n n a a a a a n ++-==≥, 又21213a S =+=∴213a a = 故{}n a 是首项为1,公比为3的等比数列 ∴1 3 n n a -= (Ⅱ)设{}n b 的公差为d ,由315T =得,可得12315b b b ++=,可得25b = 故可设135,5b d b d =-=+,又1231,3,9a a a ===, 由题意可得2 (51)(59)(53)d d -+++=+,解得122,10d d == ∵等差数列{}n b 的各项为正,∴0d > ∴2d = ∴2(1) 3222n n n T n n n -=+ ?=+ 例题3. 已知数列{}n a 的前三项与数列{}n b 的前三项对应相同,且2 12322...a a a +++ 128n n a n -+=对任意的*N n ∈都成立,数列{} n n b b -+1是等差数列. ⑴求数列{}n a 与{}n b 的通项公式; ⑵是否存在N k * ∈,使得(0,1)k k b a -∈,请说明理由. 点拨:(1)2112322...28n n a a a a n -++++=左边相当于是数列{}12n n a -前n 项和的形式,可以联想到已知n S 求n a 的方法,当2n ≥时,1n n n S S a --=. (2)把k k a b -看作一个函数,利用函数的思想方法来研究k k a b -的取值情况. 解:(1)已知212322a a a +++ (1) 2n n a -+8n =(n ∈*N )① 2n ≥时,212322a a a +++ (2) 128(1)n n a n --+=-(n ∈*N )②

高中数学集合典型例题

-- -- 集 合 1.集合概念 元素:互异性、无序性、确定性 2.集合运算 全集U:如U =R 交集:}{B x A x x B A ∈∈=且 并集:}{B x A x x B A ∈∈=?或 补集:}{A x U x x A C U ?∈=且 3.集合关系 空集A ?φ 子集B A ?:任意B x A x ∈?∈ B A B B A B A A B A ??=??= 注:数形结合---文氏图(即韦恩图、Ve nn 图)、数轴 典型例题 1. 集合(){}0,=+=y x y x A ,(){}2,=-=y x y x B ,则=B A 2. 已知集合{}R x x y y P ∈+-==,22,{}R x x y x Q ∈+-==,2,那么Q P 等于 3. 设(){}R b b x b x x A ∈=++++=,0122,求A 中所有元素之和. 4. 已知集合{}24,3,22++=a a A ,{}a a a B --+=2,24,7,02,且{}7,3=B A ,求a 的值. 5. 已知(){}011=+-=x m x A ,{}0322=--=x x x B ,若B A ?,则m 的值为 6. 已知{}121-≤≤+=m x m x A ,{}52≤≤-=x x B ,若B A ?,求实数m 的取值范围. 7. 设全集{}32,3,22-+=a a S ,{}2,12-=a A ,{}5=A C S ,求a 的值. 8. 若{}Z n n x x A ∈==,2,{}Z n n x x B ∈-==,22,试问B A ,是否相等. 9. 已知(){}a x y y x M +==,,(){}2,22=+=y x y x N ,求使得φ=N M 成立的实数a 的取值范围. 10. 设集合{}R x x x x A ∈=+=,042,(){}R x R a a x a x x B ∈∈=-+++=,,011222,若A B ?,求实数a 的取值范围. 11. 设R U =,集合{}R x a ax x x A ∈=+-+=,03442,(){}R x a x a x x B ∈=+--=,0122,{}R x a ax x x C ∈=-+=,0222,若C B A ,,中至少一个不是空集,求实数a 的取值范围. 12. 设集合(){}01,2=--=x y y x A ,(){} 05224,2=+-+=y x x y x B ,(){==y y x C ,}b kx +,是否存在N b k ∈,,使得()φ=C B A ?若存在,请求出b k ,的值;若不存在,请说明理由.

高中数学典型例题详解和练习- 求分段函数的导数

求分段函数的导数 例 求函数?????=≠=0 ,00 ,1sin )(2 x x x x x f 的导数 分析:当0=x 时因为)0(f '存在,所以应当用导数定义求)0(f ',当 0≠x 时,)(x f 的关系式是初等函数x x 1 sin 2,可以按各种求导法同求它的导数. 解:当0=x 时,01sin lim 1 sin lim ) 0()(lim )0(0200 ===-='→?→?→?x x x x x x f x f f x x x 当 ≠x 时, x x x x x x x x x x x x x x x f 1 cos 1sin 2)1cos 1(1sin 2)1(sin 1sin )()1sin ()(22222-=-+='+'='=' 说明:如果一个函数)(x g 在点0x 连续,则有)(lim )(0 0x g x g x x →=,但如 果我们不能断定)(x f 的导数)(x f '是否在点00=x 连续,不能认为 )(lim )0(0 x f f x →='. 指出函数的复合关系 例 指出下列函数的复合关系. 1.m n bx a y )(+=;2.32ln +=x e y ; 3.)32(log 322+-=x x y ;4.)1sin(x x y +=。 分析:由复合函数的定义可知,中间变量的选择应是基本函数的结构,解决这类问题的关键是正确分析函数的复合层次,一般是从最外层开始,由外及里,一层一层地分析,把复合函数分解成若干个常

见的基本函数,逐步确定复合过程. 解:函数的复合关系分别是 1.n m bx a u u y +==,; 2.2,3,ln +===x e v v u u y ; 3.32,log ,322+-===x x v v u y u ; 4..1,sin ,3x x v v u u y +=== 说明:分不清复合函数的复合关系,忽视最外层和中间变量都是基本函数的结构形式,而最内层可以是关于自变量x 的基本函数,也可以是关于自变量的基本函数经过有限次的四则运算而得到的函数,导致陷入解题误区,达不到预期的效果. 求函数的导数 例 求下列函数的导数. 1.43)12(x x x y +-=;2.2 211x y -= ; 3.)3 2(sin 2π +=x y ;4.21x x y +=。 分析:选择中间变量是复合函数求导的关键.必须正确分析复合函数是由哪些基本函数经过怎样的顺序复合而成的,分清其间的复合关系.要善于把一部分量、式子暂时当作一个整体,这个暂时的整体,就是中间变量.求导时需要记住中间变量,注意逐层求导,不遗漏,而其中特别要注意中间变量的系数.求导数后,要把中间变量转换成自变量的函数.

高一数学平面向量知识点及典型例题解析

高一数学 第八章 平面向量 第一讲 向量的概念与线性运算 一.【要点精讲】 1.向量的概念 ①向量:既有大小又有方向的量。几何表示法AB u u u r ,a ;坐标表示法),(y x j y i x a 。 向量的模(长度),记作|AB u u u r |.即向量的大小,记作|a |。向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为0 ,其方向是任意的,规定0r 平行于任何向量。(与0的区别) ③单位向量| a |=1。④平行向量(共线向量)方向相同或相反的非零向量,记作a ∥b ⑤相等向量记为b a 。大小相等,方向相同 ),(),(2211y x y x 2121y y x x 2.向量的运算(1)向量加法:求两个向量和的运算叫做向量的加法.如图,已知向量a ,b ,在平面内任 取一点A ,作AB u u u r a ,BC u u u r b ,则向量AC 叫做a 与b 的和,记作a+b ,即 a+b AB BC AC u u u r u u u r u u u r 特殊情况: a b a b a+b b a a+b (1) 平行四边形法则三角形法则C B D C B A A 向量加法的三角形法则可推广至多个向量相加: AB BC CD PQ QR AR u u u r u u u r u u u r u u u r u u u r u u u r L ,但这时必须“首尾相连”。②向量减法: 同一个图中画出 a b a b r r r r 、 要点:向量加法的“三角形法则”与“平行四边形法则”(1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量。(2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点.(3)实数与向量的积 3.两个向量共线定理:向量b 与非零向量a 共线 有且只有一个实数 ,使得b =a 。 二.【典例解 析】 题型一: 向量及与向量相关的基本概念概念 例1判断下列各命题是否正确 (1)零向量没有方向 (2)b a 则, (3)单位向量都相等 (4) 向量就是有向线段

高一数学集合练习题及答案-经典

升腾教育高一数学 满分150分 姓名 一、选择题(每题4分,共40分) 1、下列四组对象,能构成集合的是 ( ) A 某班所有高个子的学生 B 著名的艺术家 C 一切很大的书 D 倒数等于它自身的实数 2、集合{a ,b ,c }的真子集共有 个 ( ) A 7 B 8 C 9 D 10 3、若{1,2}?A ?{1,2,3,4,5}则满足条件的集合A 的个数是 ( ) A. 6 B. 7 C. 8 D. 9 4、若U={1,2,3,4},M={1,2},N={2,3},则C U (M ∪N )= ( ) A . {1,2,3} B. {2} C. {1,3,4} D. {4} 5、方程组 1 1x y x y +=-=- 的解集是 ( ) A .{x=0,y=1} B. {0,1} C. {(0,1)} D. {(x,y)|x=0或y=1} 6、以下六个关系式:{}00∈,{}0??,Q ?3.0, N ∈0, {}{},,a b b a ? , {}2 |20,x x x Z -=∈是空集中,错误的个数是 ( ) A 4 B 3 C 2 D 1 8、设集合A=} { 12x x <<,B=} { x x a <,若A ?B ,则a 的取值范围是 ( ) A } { 2a a ≥ B } { 1a a ≤ C } { 1a a ≥ D } { 2a a ≤ 9、 满足条件M U }{1=}{ 1,2,3的集合M 的个数是 ( ) A 1 B 2 C 3 D 4

二、填空题 11、若}4,3,2,2{-=A ,},|{2 A t t x x B ∈==,用列举法表示B 12、集合A={x| x 2 +x-6=0}, B={x| ax+1=0}, 若B ?A ,则a=__________ 13、设全集U={ } 2 2,3,23a a +-,A={}2,b ,C U A={} 5,则a = ,b = 。 14、集合{}33|>-<=x x x A 或,{}41|><=x x x B 或,A B ?=____________. 三、解答题 17、已知集合A={x| x 2 +2x-8=0}, B={x| x 2 -5x+6=0}, C={x| x 2 -mx+m 2 -19=0}, 若B ∩C ≠Φ,A∩C=Φ,求m 的值 18、已知二次函数f (x )=2 x ax b ++,A=}{ }{ ()222x f x x ==,试求 f ()x 的解析式 19、已知集合{}1,1A =-,B=} { 2 20x x ax b -+=,若B ≠?,且A B A ?= 求实数 a , b 的值。

高中数学经典例题错题详解

高中数学经典例题、错 题详解

【例1】设M={1、2、3},N={e、g、h},从M至N的四种对应方式,其中是从M到N的映射是() M N A M N B M N C M N D 映射的概念:设A、B是两个集合,如果按照某一个确定的对应关系f,是对于集合A中的每一个元素x,在集合B中都有一个确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。 函数的概念:一般的设A、B是两个非空数集,如果按照某种对应法则f,对于集合A中的每一个元素x,在集合B中都有唯一的元素y和它对应,这样的对应叫集合A到集合B的一个函数。(函数的本质是建立在两个非空数集上的特殊对应) 映射与函数的区别与联系: 函数是建立在两个非空数集上的特殊对应;而映射是建立在两个任意集合上的特殊对应;函数是特殊的映射,是数集到数集的映射,映射是函数概念的扩展,映射不一定是函数,映射与函数都是特殊的对应。 映射与函数(特殊对应)的共同特点:○1可以是“一对一”;○2可以是“多对一”;○3不能“一对多”;○4A中不能有剩余元素;○5B中可以有剩余元素。 映射的特点:(1)多元性:映射中的两个非空集合A、B,可以是点集、数集或由图形组成的集合等;(2)方向性:映射是有方向的,A到B的映射与B到A的映射往往不是同一个映射;(3)映射中集合A的每一个元素在集合B中都有它的象,不要求B中的每一个元素都有原象;(4)唯一性:映射中集合A中的任一元素在集合B中的象都是唯一的;(5)一一映射是一种特殊的映射方向性 上题答案应选 C 【分析】根据映射的特点○3不能“一对多”,所以A、B、D都错误;只有C完全满足映射与函数(特殊对应)的全部5个特点。 本题是考查映射的概念和特点,应在完全掌握概念的基础上,灵活掌握变型题。 【例2】已知集合A=R,B={(x、y)︱x、y∈R},f是从A到B的映射fx:→(x+1、x2),(1)求2在B 中的对应元素;(2)(2、1)在A中的对应元素 【分析】(1)将x=2代入对应关系,可得其在B中的对应元素为(2+1、1);(2)由题意得:x+1=2,x2=1 得出x=1,即(2、1)在A中的对应元素为1 【例3】设集合A={a、b},B={c、d、e},求:(1)可建立从A到B的映射个数();(2)可建立从B到A的映射个数() 【分析】如果集合A中有m个元素,集合B中有n个元素,则集合A到集合B的映射共有n m 个;集合B到集合A的映射共有m n个,所以答案为23=9;32=8 【例4】若函数f(x)为奇函数,且当x﹥0时,f(x)=x-1,则当x﹤0时,有() A、f(x) ﹥0 B、f(x) ﹤0 C、f(x)·f(-x)≤0 D、f(x)-f(-x) ﹥0 奇函数性质: 1、图象关于原点对称;? 2、满足f(-x) = - f(x)?; 3、关于原点对称的区间上单调性一致;? 4、如果奇函数在x=0上有定义,那么有f(0)=0;? 5、定义域关于原点对称(奇偶函数共有的)

高中数学圆的方程典型例题及详细解答

新课标高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2 2 2 )(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2 2= ++==AC r . 故所求圆的方程为20)1(2 2 =++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22. ∴点P 在圆外. 说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢?

高中数学经典题型50道(另附详细答案)

高中数学习题库(50道题另附答案) 1.求下列函数的值域: 解法2 令t=sin x,则f(t)=-t2+t+1,∵|sin x|≤1, ∴|t|≤1.问题转化为求关于t的二次函数f(t)在闭区间[-1,1]上的最值. 本例题(2)解法2通过换元,将求三角函数的最值问题转化为求二次函数在闭区间上的最值问题,从而达到解决问题的目的,这就是转换的思想.善于从不同角度去观察问题,沟通数学各学科之间的内在联系,是实现转换的关键,转换的目的是将数学问题由陌生化熟悉,由复杂化简单,一句话:由难化易.可见化归是转换的目的,而转换是实现化归段手段。

2. 设有一颗慧星沿一椭圆轨道绕地球运行,地球恰好位于椭圆轨道 的焦点处,当此慧星离地球相距m 万千米和m 3 4 万千米时,经过地球和慧星的直线与椭圆的长轴夹角分别为32 π π和,求该慧星与地球 的最近距离。 解:建立如下图所示直角坐标系,设地球位于焦点)0,(c F -处,椭圆的 方程为122 22=+b y a x (图见教材P132页例1)。 当过地球和彗星的直线与椭圆的长轴夹角为3π 时,由椭圆的几何 意义可知,彗星A 只能满足)3 (3/π π=∠=∠xFA xFA 或。作 m FA FB Ox AB 3 2 21B ==⊥,则于 故由椭圆第二定义可知得????? ??+-=-=)32(34)(2 2 m c c a a c m c c a a c m 两式相减得,2 3)4(21.2,3 2 31 c c c m c a m a c m =-==∴?=代入第一式得 .3 2.32m c c a m c ==-∴=∴ 答:彗星与地球的最近距离为m 3 2 万千米。 说明:(1)在天体运行中,彗星绕恒星运行的轨道一般都是椭圆,而恒星正是它的一个焦点,该椭圆的两个焦点,一个是近地点,另一个则是远地点,这两点到恒星的距离一个是c a -,另一个是.c a + (2)以上给出的解答是建立在椭圆的概念和几何意义之上的,以数学概念为根基充分体现了数形结合的思想。另外,数学应用问题的解决在数学化的过程中也要时刻不忘审题,善于挖掘隐含条件,有意识

高中数学必修一集合经典习题

集合练习题 一、选择题(每小题5分,计5×12=60分) 1.下列集合中,结果是空集的为() (A)(B) (C)(D) 2.设集合,,则() (A)(B) (C)(D) 3.下列表示①②③④中,正确的个数为( ) (A)1 (B)2 (C)3 (D)4 4.满足的集合的个数为() (A)6 (B) 7 (C) 8 (D)9 5.若集合、、,满足,,则与之间的关系为() (A)(B)(C)(D) 6.下列集合中,表示方程组的解集的是() (A)(B)(C)(D) 7.设,,若,则实数的取值范围是() (A)(B)(C)(D) 8.已知全集合,,,那么 是() (A)(B)(C)(D) 9.已知集合,则等于() (A)(B) (C)(D) 10.已知集合,,那么() (A)(B)(C)(D) 11.如图所示,,,是的三个子集,则阴影部分所表示的集合是()

(A)(B) (C)(D) 12.设全集,若,, ,则下列结论正确的是() (A)且(B)且 (C)且(D)且 二、填空题(每小题4分,计4×4=16分) 13.已知集合,,则集合 14.用描述法表示平面内不在第一与第三象限的点的集合为 15.设全集,,,则的值为 16.若集合只有一个元素,则实数的值为三、解答题(共计74分) 17.(本小题满分12分)若,求实数的值。 18.(本小题满分12分)设全集合,, ,求,,, 19.(本小题满分12分)设全集,集合与集合,且,求,

20.(本小题满分12分)已知集合 , ,且 ,求实数 的取值范围。 21.(本小题满分12分)已知集合 , , ,求实数的取值范围 22.(本小题满分14分)已知集合 , ,若 ,求实数的取值范围。 已知集合}31{≤≤-=x x A ,},{2A x y x y B ∈==,},2{A x a x y y C ∈+==,若满足B C ?, 求实数a 的取值范围. 已知集合}71{<<=x x A ,集合}521{+<<+=a x a x B ,若满足 }73{<<=x x B A ,求 实数a 的值.

高中数学典型例题分析

高中数学典型例题分析 第八章 平面向量与空间向量 §8.1平面向量及其运算 一、知识导学1.模(长度):向量的大小,记作||。长度为0的向量称为零向量,长度等于1个单位长度的向量,叫做单位向量。 2.平行向量:方向相同或相反的非零向量叫做平行向量,又叫做共线向量。 3.相等向量:长度相等且方向相同的向量。 4.相反向量:我们把与向量a 长度相等,方向相反的向量叫做a 的相反向量。记作-a 。 5.向量的加法:求两个向量和的运算。 已知a ,b 。在平面内任取一点,作AB =a ,BC =b ,则向量AC 叫做a 与b 的和。 记作a +b 。 6. 向量的减法:求两个向量差的运算。 已知a ,b 。在平面内任取一点O ,作OA =a ,OB =b ,则向量BA 叫做a 与b 的差。 记作a -b 。 7.实数与向量的积: (1)定义: 实数λ与向量a 的积是一个向量,记作λa ,并规定: ①λa 的长度|λa |=|λ|·|a |; ②当λ>0时,λa 的方向与a 的方向相同; 当λ<0时,λa 的方向与a 的方向相反; 当λ=0时,λa =0 (2)实数与向量的积的运算律:设λ、μ为实数,则 ①λ(μa )=(λμ) a ②(λ+μ) a =λa +μa ③λ(a +)=λa +λ 8.向量共线的充分条件:向量b 与非零向量a 共线的充要条件是有且只有一个实数λ,使得b =λa 。 另外,设a =(x 1 ,y 1), b = (x 2,y 2),则a //b x 1y 2-x 2y 1=0 9.平面向量基本定理: 如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1、λ 2 使 a =λ11e +λ22e ,其中不共线向量1e 、2e 叫做表示这一

(完整)高中数学导数典型例题

高中数学导数典型例题 题型一:利用导数研究函数的单调性、极值、最值 1. 已知函数32()f x x ax bx c =+++ 过曲线()y f x =上的点(1,(1))P f 的切线方程为y=3x +1 。 (1)若函数2)(-=x x f 在处有极值,求)(x f 的表达式; (2)在(1)的条件下,求函数)(x f y =在[-3,1]上的最大值; (3)若函数)(x f y =在区间[-2,1]上单调递增,求实数b 的取值范围 解:(1)极值的求法与极值的性质 (2)由导数求最值 (3)单调区间 零点 驻点 拐点————草图 2. 已知).(3232)(23R a x ax x x f ∈--= (1)当4 1||≤ a 时, 求证:)x (f 在)1,1( -内是减函数; (2)若)x (f y =在)1,1( -内有且只有一个极值点, 求a 的取值范围. 解:(1)单调区间 零点 驻点 拐点————草图 (2)草图——讨论 题型二:利用导数解决恒成立的问题 例1:已知322()69f x x ax a x =-+(a ∈R ). (Ⅰ)求函数()f x 的单调递减区间; (Ⅱ)当0a >时,若对[]0,3x ?∈有()4f x ≤恒成立,求实数a 的取值范围.

例2:已知函数222()2()21x x f x e t e x x t =-++++,1()()2 g x f x '=. (1)证明:当22t <时,()g x 在R 上是增函数; (2)对于给定的闭区间[]a b ,,试说明存在实数 k ,当t k >时,()g x 在闭区间[]a b , 上是减函数; (3)证明:3()2 f x ≥. 解:g(x)=2e^(2x)-te^x+1 令a=e^x 则g(x)=2a^2-ta+1 (a>0) (3)f(x)=(e^x-t)^2+(x-t)^2+1 讨论太难 分界线即1-t^2/8=0 做不出来问问别人,我也没做出来 例3:已知3)(,ln )(2-+-==ax x x g x x x f (1)求函数)(x f 在)0](2,[>+t t t 上的最小值 (2)对(0,),2()()x f x g x ?∈+∞≥恒成立,求实数a 的取值范围 解:讨论点x=1/e 1/e

高一数学集合典型例题、经典例题

《集合》常考题型 题型一、集合元素的意义+互异性 例.设集合 {0} 例.已知A ={2,4,a 3-2a 2-a +7},B ={1,a +3,a 2-2a +2,a 3+a 2+3a +7},且A ∩B ={2,5},则A ∪B =____________________________ 解:∵A∩B={2,5},∴5∈A. ∴a 3-2a 2-a +7=5解得a =±1或a =2. ①若a =-1,则B ={1,2,5,4},则A∩B={2,4,5},与已知矛盾,舍去. ②若a =1,则B ={1,4,1,12}不成立,舍去. ③若a =2,则B ={1,5,2,25}符合题意.则A ∪B ={1,2,4,5,25}. 题型二、空集的特殊性 例.已知集合{}{}25,121A x x B x m x m =-<≤=-+≤≤-,且BA , 则实数m 的取值范围为_____________ 例.已知集合{}R x x ax x A ∈=++=,012,{} 0≥=x x B ,且φ=B A I , 求实数a 的取值范围。 解:①当0a =时,{|10,}{1}A x x x R =+=∈=-,此时{|0}A x x ≥=ΦI ; ②当0a ≠时,{|0}A x x ≥=ΦQ I ,A ∴=Φ或关于x 的方程2 10ax x ++=的根均为负数. (1)当A =Φ时,关于x 的方程210ax x ++=无实数根, 140a ?=-<,所以14a > . (2)当关于x 的方程210ax x ++=的根均为负数时, 12121401010a x x a x x a ???=-≥??+=-?? 140a a ?≤?????>?104a <≤. 综上所述,实数a 的取值范围为{0}a a ≥. 题型三、集和的运算 例.设集合S ={x |x >5或x <-1},T ={x |a

高一数学必修三知识点总结及典型例题解析

新课标必修3概率部分知识点总结及典型例题解析 ◆ 事件:随机事件( random event ),确定性事件: 必然事件( certain event )和不 可能事件( impossible event ) ? 随机事件的概率(统计定义):一般的,如果随机事件 A 在n 次实验中发生了m 次,当实验的次数n 很大时,我们称事件A 发生的概率为()n m A P ≈ 说明:① 一个随机事件发生于具有随机性,但又存在统计的规律性,在进行大量的重复事件时某个事件是否发生,具有频率的稳定性 ,而频率的稳定性又是必然的,因此偶然性和必然性对立统一 ② 不可能事件和确定事件可以看成随机事件的极端情况 ③ 随机事件的频率是指事件发生的次数和总的试验次数的比值,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这个摆动的幅度越来越小,而这个接近的某个常数,我们称之为概事件发生的概率 ④ 概率是有巨大的数据统计后得出的结果,讲的是一种大的整体的趋势,而频率是具体的统计的结果 ⑤ 概率是频率的稳定值,频率是概率的近似值 ? 概率必须满足三个基本要求:① 对任意的一个随机事件A ,有()10≤≤A P ② ()()0,1,=Φ=ΩΦΩP P 则有可能事件分别表示必然事件和不和用③如果事件 ()()()B P A P B A P B A +=+:,则有互斥和 ? 古典概率(Classical probability model ):① 所有基本事件有限个 ② 每个基本事件发生的可能性都相等 满足这两个条件的概率模型成为古典概型 如果一次试验的等可能的基本事件的个数为个n ,则每一个基本事件发生的概率都是n 1,如果某个事件A 包含了其中的m 个等可能的基本事件,则事件A 发生的概率为 ()n m A P = ? 几何概型(geomegtric probability model ):一般地,一个几何区域D 中随机地取一点, 记事件“改点落在其内部的一个区域d 内”为事件A ,则事件A 发生的概率为 ()的侧度 的侧度D d A P = ( 这里要求D 的侧度不为0,其中侧度的意义由D 确定,一般地,线段的侧度为该线段的长度;平面多变形的侧度为该图形的面积;立体图像的侧度为其体积 ) 几何概型的基本特点:① 基本事件等可性 ② 基本事件无限多 颜老师说明:为了便于研究互斥事件,我们所研究的区域都是指的开区域,即不含边界,在区域D 内随机地取点,指的是该点落在区域D 内任何一处都是等可能的,落在任何部分的可能性大小只与该部分的侧度成正比,而与其形状无关。 互斥事件(exclusive events):不能同时发生的两个事件称为互斥事件

高中数学函数与方程知识点总结、经典例题及解析、高考真题及答案

高中数学函数与方程知识点总结、经典例题及解析、高考真题及答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

函数与方程 【知识梳理】 1、函数零点的定义 (1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫做函数)(x f y =的零点。 (2)方程0)(=x f 有实根?函数()y f x =的图像与x 轴有交点?函数()y f x =有零点。因此判断一个函数是否有零点,有几个零点,就是判断方程0)(=x f 是否有实数根,有几个实数根。函数零点的求法:解方程0)(=x f ,所得实数根就是()f x 的零点 (3)变号零点与不变号零点 ①若函数()f x 在零点0x 左右两侧的函数值异号,则称该零点为函数()f x 的变号零点。 ②若函数()f x 在零点0x 左右两侧的函数值同号,则称该零点为函数()f x 的不变号零点。 ③若函数()f x 在区间[],a b 上的图像是一条连续的曲线,则0)()(?)(x f y =有2个零点?0)(=x f 有两个不等实根; 0?=?)(x f y =有1个零点?0)(=x f 有两个相等实根; 0?

集合经典例题总结

集合经典例题讲解 集合元素的“三性”及其应用 集合的特征是学好集合的基础,是解集合题的关键,它主要指集合元素的确定性、互异性和无序性,这些性质为我们提供了解题的依据,特别是元素的互异性,稍有不慎,就易出错. 例1 已知集合A={a ,a +b ,a +2b },B={a ,a q ,a 2q }, 其中a 0≠,A=B,求q 的值. 例2 设A={x∣2 x +(b+2)x+b+1=0,b∈R },求A中所有元素之和. 例3 已知集合 =A {2,3,2a +4a +2}, B ={0,7, 2 a +4a -2,2-a },且A B={3,7},求a 值. 分析: 集合易错题分析 1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解. 2.你会用补集的思想解决有关问题吗? 3.求不等式(方程)的解集,或求定义域(值域)时,你按要求写成集合的形式了吗? 1、忽略φ的存在: 例题1、已知A={x|121m x m +≤≤-},B={x|25x -≤≤},若A ?B ,求实数m 的取值范围. 2、分不清四种集合:{}()x y f x =、{}()y y f x =、{},)()x y y f x =(、{}()()x g x f x ≥的区别. 例题2、已知函数()x f y =,[]b a x ,∈,那么集合()()[]{}(){}2,,,,=∈=x y x b a x x f y y x 中元素的个数

为…………………………………………………………………………( ) (A ) 1 (B )0 (C )1或0 (D ) 1或2 3、搞不清楚是否能取得边界值: 例题3、A={x|x<-2或x>10},B={x|x<1-m 或x>1+m}且B ?A ,求m 的范围. 例4、已知集合 {}R x x y y P ∈+-==,22,{}R x x y x Q ∈+-==,2,那么Q P 等于 ( ) A.(0,2),(1,1) B.{(0,2),(1,1)} C. {1,2} D.{}2≤y y 集合与方程 例1、已知 {}φ=∈=+++=+R A R x x p x x A ,,01)2(2,求实数p 的取值范 围。 例2、已知集合 (){}(){}20,01,02,2≤≤=+-==+-+=x y x y x B y mx x y x A 和, 如果φ≠B A ,求实数a 的取值范围。 例3、已知集合()(){} 30)1()1(,,123,2=-+-=??????+=--=y a x a y x B a x y y x A ,若 φ=B A ,求实数a 的值。

高中数学典型题型与解析

高中数学典型题型与解析 一、选择题 1.设,21,a b R a b +∈+=、则2224ab a b --有( ) A .最大值 1 4 B .最小值14 C .最大值 212 - D .最小值54- 2. 某校有6间不同的电脑室,每天晚上至少开放2间,欲求不同安排方案的种数,现有四 位同学分别给出下列四个结果:①2 6C ;②6 65 64 63 62C C C C +++;③726 -;④2 6A .其中 正确的结论是( ) A .仅有① B .仅有② C .②和③ D .仅有③ 3. 将函数y =2x 的图像按向量a →平移后得到函数y =2x +6的图像,给出以下四个命题:① a →的坐标可以是(-3.0);②a →的坐标可以是(0,6);③a →的坐标可以是(-3,0)或(0, 6);④a →的坐标可以有无数种情况,其中真命题的个数是( ) A .1 B .2 C .3 D .4 4. 不等式组? ??>->-a x a x 2412,有解,则实数a 的取值范围是( ) A .(-1,3) B .(-3,1) C .(-∞,1) (3,+∞) D .(-∞,-3) (1,+∞) 5. 设a >0,c bx ax x f ++=2 )(,曲线y =f (x )在点P (0x ,f (0x ))处切线的倾斜角 的取值范围为[0,4π ],则P 到曲线y =f (x )对称轴距离的取值范围为( ) A .[0,]1a B .0[,]21a C .0[,|]2|a b D .0[,|]21 |a b - 6. 已知)(x f 奇函数且对任意正实数1x ,2x (1x ≠2x )恒有 0) ()(2 121>--x x x f x f 则一定正确的是( ) A .)5()3(->f f B .)5()3(-<-f f C .)3()5(f f >- D .)5()3(->-f f 7. 将半径为R 的球加热,若球的半径增加R ?,则球的体积增加≈?V ( ) A . R R ?3 π3 4 B .R R ?2π4 C .2π4R D .R R ?π4 8. 等边△ABC 的边长为a ,将它沿平行于BC 的线段PQ 折起,使平面APQ ⊥平面BPQC ,若折叠后AB 的长为d ,则d 的最小值为( ) A . a 43 B .a 45 C .4 3a D . a 410 9. 锐角α、β满足β α βα2424sin cos cos sin +=1,则下列结论中正确的是( ) A .2π≠ +βα B .2π<+βα C .2π>+βα D .2 π=+βα

(完整版)高中数学必修一典型例题

1 数学必修一典型例题 一、集合常见考题: 1.设A={(x ,y)|y=-4x+6},B={(x ,y)| y=5x -3},则A ∩B= ( ) A.{1,2} B.{(1,2)} C.{x=1,y=2} D.(1,2) 2.设全集U={1,2,3,4,5},集合M={1,2,3},N={2,3,5},则()()N C M C U U I =( ) A.Φ B. {2,3} C. {4} D. {1,5} 3.如图,I 是全集,M ,S ,P 是I 的三个子集, 则阴影部分所表示的集合是 A .()M P S I I B .()M P S I U C .S I C P)(M ?? D .S I C P)(M ?? 4.{}{}|||1,||2|3,A x x a B x x A B ?=-<=->=I 且,则a 的取值范围 5.设集合{} 2|2530,M x x x =--=集合{}|1N x mx ==,若M N M =U ,则非零..实数m 的取值集合..为 . 6、(本小题满分10分)已知集合A={x| 5 32+-x x ≤0}, B={x|x 2 -3x+2<0}, U=R , 求(Ⅰ)A ∩B ;(Ⅱ)A ∪B ;(Ⅲ)(uA )∩B. 7、(本题满分12分) 已知集合() 3,12y A x y x ?-? ==??-?? ,()(){},115B x y a x y =++=,试问当a 取何实数时,A B =?I .

2 8.(本小题满分12分)已知集合2{|121},{|310}P x a x a Q x x x =+≤≤+=-≤. (1)若3a =,求()R C P Q I ;(2)若P Q ?,求实数a 的取值范围. 二、函数基本概念及性质常见考题 选择填空: 1、 已知1 |1|3)(2 ---=x x x x f ,则函数)(x f 的定义域为( ) . [0, 3] B. [0, 2)(2, 3] A ? C. (0, 2)(2, 3] D. (0, 2)(2, 3)?? 2、函数y=342-+-x x 的单调增区间是( ) A.[1,3] B.[2,3] C.[1,2] D.(,2]-∞ 3、下列函数中,是奇函数,又在定义域内为减函数的是( ) A. x y ?? ? ??=21 B. x y 1= C. y=-x 3 D. )(log 3x y -= 4. ()x f y =是R 上的偶函数,且()x f 在),0[+∞上是减函数,若()()2-≥f a f ,则a 的取值范围是( ) A .2-≤a B .2≥a C .22≥-≤a a 或 D .22≤≤-a 5、R 上的函数()f x 对任意实数,x y 满足()()()f x f y f x y +=+,且(2)4f =,则(0)(2)f f +-的值为( ) A 、-2 B 、4- C 、0 D 、4 6、3 1 1)(x a a x f x x ?-+=为 函数。(奇偶性) 7、设函数()2 1 2 f x x x =++ 的定义域是[],1n n +(n N ∈),那么()f x 的值域中共含有 个整数. 8、若函数2 34y x x =--的定义域为[]0,m ,值域为25,44?? - -???? ,则m 的取值集合为 . 9、若函数()2 121y x ax =-++在区间(),4-∞上递减,则a 的取值范围为 .

高中数学排列组合经典题型全面总结版

高中数学排列与组合 (一)典型分类讲解 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有1 3C 然后排首位共有1 4C 最后排其它位置共有 34A 由分步计数原理得1 1 3 434 288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元 素内部进行自排。由分步计数原理可得共有 522522480A A A =种不同的排法 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种, 第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种 46 A 不同的方法,由分步计数原理,节目的不同顺序共有54 56A A 种 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略 例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法 解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素 之间的全排列数,则共有不同排法种数是: 73 73/A A (空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有 47 A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有4 7A 种方法。 思考:可以先让甲乙丙就坐吗? (插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 方法 练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法? 5 10C 五.重排问题求幂策略 例5.把6名实习生分配到7个车间实习,共有多少种不同的分法 解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名实习生分配到车间也有7种分依此类推,由分步计数原 理共有6 7种不同的排法 练习题: 1. 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插 法的种数为 42 4 4 3 允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n 不同的元素没有限制地安排在m 个位置上的排列数为n m 种

相关主题