搜档网
当前位置:搜档网 › 微积分——多元函数及二重积分知识点

微积分——多元函数及二重积分知识点

微积分——多元函数及二重积分知识点
微积分——多元函数及二重积分知识点

多元函数微分学知识点梳理

第九章 多元函数微分学 内容复习 一、基本概念 1、知道:多元函数的一些基本概念(n 维空间,n 元函数,二重极限,连续等);理解:偏导数;全微分. 2、重要定理 (1)二元函数中,可导、连续、可微三者的关系 偏导数连续?可微???函数偏导数存在 ?连续 (2)(二元函数)极值的必要、充分条件 二、基本计算 (一) 偏导数的计算 1、 偏导数值的计算(计算),(00y x f x ') (1)先代后求法 ),(00y x f x '=0),(0x x y x f dx d = (2)先求后代法(),(00y x f x '=00),(y y x x x y x f ==') (3)定义法(),(00y x f x '=x y x f y x x f x ?-?+→?),(),(lim 00000)(分段函数在分段点处的偏导数) 2、偏导函数的计算(计算(,)x f x y ') (1) 简单的多元初等函数——将其他自变量固定,转化为一元函数求导 (2) 复杂的多元初等函数——多元复合函数求导的链式法则(画树形图,写求导公式) (3) 隐函数求导 求方程0),,(=z y x F 确定的隐函数),(y x f z =的一阶导数,z z x y ???? ,,,(),,y x z z F F z z x y z x F y F x y x y z ''???=-=-?''????? 公式法:(地位平等)直接法:方程两边同时对或求导(地位不平等) 注:若求隐函数的二阶导数,在一阶导数的基础上,用直接法求。 3、高阶导数的计算 注意记号表示,以及求导顺序 (二) 全微分的计算 1、 叠加原理

大学微积分知识点总结

【第五部分】不定积分 1.书本知识(包含一些补充知识) (1)原函数:F ’(x )=f (x ),x ∈I ,则称F (x )是f (x )的一个“原函数”。 (2)若F (x )是f (x )在区间上的一个原函数,则f (x )在区间上的全体函数为F (x )+c (其中c 为常数) (3)基本积分表 c x dx x +?+?=?+???11 1 (α≠1,α为常数) (4)零函数的所有原函数都是c (5)C 代表所有的常数函数 (6)运算法则 []??????±?=?±??=??dx x g dx x f dx x g x f dx x f a dx x f a )()()()()()(②① (7 )[][]c x F dx x x f +=??)()(')(???复合函数的积分: c b x F dx b x f c b ax F a b ax d b ax f a dx b ax f ++=?+++?=+?+?=?+???)()()(1)()(1)(一般地, (9)连续函数一定有原函数,但是有原函数的函数不一定连续,没有原函数的函数一定不连续。 (10)不定积分的计算方法 数乘运算 加减运算 线性运算 (8)

①凑微分法(第一换元法),利用复合函数的求导法则 ②变量代换法(第二换元法),利用一阶微分形式不变性 ③分部积分法: 【解释:一阶微分形式不变性】 释义:函数 对应:y=f(u) 说明: (11)分段函数的积分 例题说明:{}dx x? ?2,1 max (12)在做不定积分问题时,若遇到求三角函数奇次方的积分,最好的方法是将其中的一 (16)隐函数求不定积分 例题说明: (17)三角有理函数积分的万能变换公式 (18)某些无理函数的不定积分 ②欧拉变换 (19)其他形式的不定积分

微积分知识点小结

第一章 函数 一、本章提要 基本概念 函数,定义域,单调性,奇偶性,有界性,周期性,分段函数,反函数,复合函数,基本初等函数,初等函数 第二章 极限与连续 一、本章提要 1.基本概念 函数的极限,左极限,右极限,数列的极限,无穷小量,无穷大量,等价无穷小,在一点连续,连续函数,间断点,第一类间断点(可去间断点,跳跃间断点),第二类间断点. 2.基本公式 (1) 1sin lim 0=→口 口口, (2) e )11(lim 0=+→口口口 (口代表同一变量). 3.基本方法 ⑴ 利用函数的连续性求极限; ⑵ 利用四则运算法则求极限; ⑶ 利用两个重要极限求极限; ⑷ 利用无穷小替换定理求极限; ⑸ 利用分子、分母消去共同的非零公因子求0 0形式的极限; ⑹ 利用分子,分母同除以自变量的最高次幂求∞ ∞形式的极限; ⑺ 利用连续函数的函数符号与极限符号可交换次序的特性求极限;

⑻利用“无穷小与有界函数之积仍为无穷小量”求极限. 4.定理 左右极限与极限的关系,单调有界原理,夹逼准则,极限的惟一性,极限的保号性,极限的四则运算法则,极限与无穷小的关系,无穷小的运算性质,无穷小的替换定理,无穷小与无穷大的关系,初等函数的连续性,闭区间上连续函数的性质. 第三章导数与微分 一、本章提要 1.基本概念 瞬时速度,切线,导数,变化率,加速度,高阶导数,线性主部,微分. 2.基本公式 基本导数表,求导法则,微分公式,微分法则,微分近似公式. 3.基本方法 ⑴利用导数定义求导数; ⑵利用导数公式与求导法则求导数; ⑶利用复合函数求导法则求导数; ⑷隐含数微分法; ⑸参数方程微分法; ⑹对数求导法; ⑺利用微分运算法则求微分或导数. 第四章微分学的应用 一、本章提要 1. 基本概念 未定型,极值点,驻点,尖点,可能极值点,极值,最值,曲率,上凹,下凹,拐点,渐近线,水平渐近线,铅直渐近线.

大一上微积分知识点重点(供参考)

大一(上) 微积分 知识点 第一章 函数 一、A ?B=?,则A 、B 是分离的。 二、设有集合A 、B ,属于A 而不属于B 的所有元素构成的集合,称为A 与B 的差。 A-B={x|x ∈A 且x ?B}(属于前者,不属于后者) 三、集合运算律:①交换律、结合律、分配律与数的这三定律一致; ②摩根律:交的补等于补的并。 四、笛卡尔乘积:设有集合A 和B ,对?x ∈A,?y ∈B ,所有二元有序数组(x,,y )构成的集合。 五、相同函数的要求:①定义域相同②对应法则相同 六、求反函数:反解互换 七、关于函数的奇偶性,要注意: 1、函数的奇偶性是就函数的定义域关于原点对称时而言的,若函数的定义域关于原点不对称,则函数无奇偶性可言,那么函数既不是奇函数也不是偶函数; 2、判断函数的奇偶性一般是用函数奇偶性的定义:若对所有的)(f D x ∈,)()(x f x f =-成立,则)(x f 为偶函数;若对所有的)(f D x ∈,)()(x f x f -=-成立,则)(x f 为奇函数;若)()(x f x f =-或)()(x f x f -=-不能对所有的)(f D x ∈成立,则)(x f 既不是奇函数也不是偶函数; 3、奇偶函数的运算性质:两偶函数之和是偶函数;两奇函数之和是奇函数;一奇一偶函数之和是非奇非偶函数(两函数均不恒等于零);两奇(或两偶)函数之积是偶函数;一奇一偶函数之积是奇函数。 第二章 极限与连续 一、一个数列有极限,就称这个数列是收敛的,否则就称它是发散的。 二、极限存在定理:左、右极限都存在,且相等。 三、无穷小量的几个性质: 1、limf(x)=0,则 2、若limf(x)=)(lim x g =0,则0)()(lim =+x g x f 3、若limf(x)=)(lim x g =0,则lim )(x f ·)(x g 0= 4、若g(x)有界(|g(x)|<M ),且limf(x)=0,则limf(x)·g(x )=0 四、无穷小量与无穷大量的关系: ①若 y 是无穷大量,则y 1是无穷小量; ②若y (y ≠0)是无穷小量,则y 1是无穷大量。

一元微积分多元微积分高等数学复习提纲(同济大学版)

(1) 1,补集的记号 2,什么是笛卡尔乘积 3,什么是邻域,记号,中心,半径 4,去心邻域,记号,左邻域,右邻域 5,两个闭区间的直积 6,映射的概念,原像,满射,单射,一一映射7,泛函,变换,函数 8,逆映射,复合映射 9,多值函数,单值分支 10,绝对值,符号函数,取整函数,最值函数11,上界、下界,有界,无界的定义 12,奇偶性、周期性 13,初等函数,基本初等函数 (2) 1,数列极限的定义,用符号语言 2,收敛数列的四个性质 3 (3) 1,函数在某点的极限定义,符号语言 2,函数在无穷大处的极限,符号语言 3,函数极限的性质 (4) 1,无穷小的定义 2,函数极限的充分必要条件,用无穷小表示3,无穷大 4,无穷大和无穷小的定义 (5) 1,有限个无穷小的和 2,有界函数与无穷小的乘积 3,极限的四则运算 4,函数y1始终大于y2,那么极限的关系是 (6) 1,极限存在的夹逼准则 2,单调有界的数列是否存在极限 3,(1+1/x)^x的极限 4,柯西审敛准则

1,什么是高阶无穷小,低阶无穷小,同阶无穷小,k阶无穷小,等价无穷小 2,等价无穷小的充要条件 3,两组等价无穷小之间的比例关系 (8) 1,函数连续性的定义,左连续,右连续 2,什么是连续函数 3,间断点的三种情况 4,第一类间断点,第二类间断点,可去间断点,条约间断点,无穷间断点,振荡间断点 (9) 1,连续函数的四则运算后的连续性 2,反函数和复合函数的连续性 3,初等函数的连续性 (10) 1,有界性与最大最小值定理 2,零点定理 3,介值定理和推论 第二章 (1) 1,导数的定义 2,函数在一点可导的充要条件,用等式表示 3,可导和连续的关系 (2) 1,函数的和差积商如何求导 2,tanx、secx的导数,cscx和cotx 3,反函数的求导法则是什么 4,arcsinx的导数,arccos的导数,arctanx, areccotx的导数 5,复合函数求导法则 (3) 1,二阶导数的微分表示法 2,莱布尼兹公式 3,a^x\sinkx\coskx\x^a\lnx\1/x\的n阶导 4,隐函数的求导 5,对数求导法的应用 6,参数所表示的函数怎样求导 7,什么是相关变化率

多元函数微分学及应用(隐函数反函数)

习题课:多元函数求偏导,多元函数微分的应用 多元复合函数、隐函数的求导法 (1) 多元复合函数 设二元函数),(v u f z =在点),(00v u 处偏导数连续,二元函数),(),,(y x v v y x u u ==在点 ),(00y x 处偏导数连续, 并且),(),,(000000y x v v y x u u ==, 则复合函数 )),(),,((y x v y x u f z = 在点),(00y x 处可微,且 ()()()() x y x v v v u f x y x u u v u f x z y x ?????+?????= 00000000) ,(,,,,00??()()()() y y x v v v u f y y x u u v u f y z y x ?????+?????= 00000000) ,(,,,,00?? 多元函数微分形式的不变性:设),(),,(),,(y x v v y x u u v u f z ===,均为连续可微, 则将z 看成y x ,的函数,有 dy y z dx x z dz ??+??= 计算 y v v f y u u f y z x v v f x u u f x z ????+????=??????+????=??,,代人, dv v f du u f dy y v dx x v v f dy y u dx x u u f dy y v v f y u u f dx x v v f x u u f dy y z dx x z dz ??+??= ???? ????+????+???? ????+????=???? ??????+????+??? ??????+????=??+??= 我们将dv v f du u f dy y z dx x z dz ??+??=??+??= 叫做微分形式不变性。 例1 设??? ??=x y xy f x z , 3 ,求y z x z ????,。

大学全册高等数学知识点(全)

大学高等数学知识点整理 公式,用法合集 极限与连续 一. 数列函数: 1. 类型: (1)数列: *()n a f n =; *1()n n a f a += (2)初等函数: (3)分段函数: *0102()(),()x x f x F x x x f x ≤?=?>?; *0 ()(), x x f x F x x x a ≠?=?=?;* (4)复合(含f )函数: (),()y f u u x ?== (5)隐式(方程): (,)0F x y = (6)参式(数一,二): () ()x x t y y t =??=? (7)变限积分函数: ()(,)x a F x f x t dt = ? (8)级数和函数(数一,三): 0 (),n n n S x a x x ∞ ==∈Ω∑ 2. 特征(几何): (1)单调性与有界性(判别); (()f x 单调000,()(()())x x x f x f x ??--定号) (2)奇偶性与周期性(应用). 3. 反函数与直接函数: 1 1()()()y f x x f y y f x --=?=?= 二. 极限性质: 1. 类型: *lim n n a →∞; *lim ()x f x →∞ (含x →±∞); *0 lim ()x x f x →(含0x x ± →) 2. 无穷小与无穷大(注: 无穷量): 3. 未定型: 000,,1,,0,0,0∞ ∞∞-∞?∞∞∞ 4. 性质: *有界性, *保号性, *归并性 三. 常用结论: 11n n →, 1(0)1n a a >→, 1()max(,,)n n n n a b c a b c ++→, ()00! n a a n >→

微积分——多元函数及二重积分知识点(教学内容)

教育类别+ 241 第四章 矢量代数与空间解析几何 微积分二大纲要求 了解 两个向量垂直、平行的条件,曲面方程和空间曲线方程的概念,常用二次曲面的方程及其图 形,空间曲线的参数方程和一般方程.空间曲线在坐标平面上的投影. 会 求平面与平面、平面与直线、 直线与直线之间的夹角,利用平面、直线的相互絭(平行、 垂直、相交等)解决有关问题,点到直线以及点到平面的距离,求简单的柱面和旋转曲面的方程,求空间曲线在坐标平面上的投影方程. 理解 空间直角坐标系,向量的概念及其表示,单位向量、方向数与方向余弦、向量的坐标表达式 掌握 向量的运算(线性运算、数量积、向量积、混合积),用坐标表达式进行向量运算的方法, 平面方程和直线方程及其求法. 第一节 矢量代数 一、内容精要 (一) 基本概念 1.矢量的概念 定义4.1 一个既有大小又有方向的量称为矢量,长度为0的矢量称为零矢量,用0表示,方向可任意确定。长度为1的矢量称为单位矢量。 定义4.2两个矢量a 与b ,若它们的方向一致,大小相等,则称这两个矢量相等,记作b a . 换句话说一个矢量可按照我们的意愿把它平移到任何一个地方(因为既没有改变大小,也没改 变方向),这种矢称为自由矢量,这样在解问题时将更加灵活与方便。 k a j a i a a 3211( 称为按照k j i ,,的坐标分解式,},,{321a a a a 称为坐标式。 .||2 32221a a a a 若,0 a 记| |0a a a 。知0a 是单位矢量且与a 的方向一致,且0||a a a 。 因此,告诉我们求矢量a 的一种方法,即只要求出a 的大小||a 和与a 方向一致的单位矢量0 a ,则 .||0a a a 若},{321a a a a ,知 },cos ,cos ,{cos }, , { 2 3 2 22 13 2 3 2 22 12 2 3 2 22 11 0 a a a a a a a a a a a a a 其中 ..是a 分别与Ox 轴,Oy 轴,Oz 轴正向的夹角,而 ,cos ,cos ,cos 2 3 2 22 13 2 3 2 22 12 3 3 22211 a a a a a a a a a a a a 且.1cos cos cos 2 2 2 2.矢量间的运算 设}.,,{},,,{},,,{321321321c c c c b b b b a a a a

多元函数微分学及其应用

第8章 多元函数微分学及其应用 参考解答 1、设22 , y f x y x y x ??+=- ??? ,求(),f x y ,(),f x y xy -。 解:()()()()2 21, 1y y x y x f x y x y x y x y x y y x x y x - -??+=+-=+=+ ?+? ? + ,故得 ()2 1,1y f x y x y -=+,()()21,1xy f x y xy x y xy --=-+ 2、求下列各极限: 2242222 2220000 cos sin 1(1) lim lim lim sin 204x r r y x y r r x y r θθθ→→→→===+ 注意:在利用极坐标变换cos , sin x r y r θθ==来求极限时,θ也是变量。本题中,0r →时,2r 为无穷小量,而2 sin 2θ为有界变量,故所求极限为零。 ()00sin sin (2) lim lim 1x t y a xy t xy t →→→== 3、证明极限2 2400 lim x y xy x y →→+不存在。 证明:当2 y kx =时,()2242,1xy k f x y x y k ==++,故2 22420 lim 1y kx x xy k x y k =→=++与k 有关。可见,(),x y 沿不同的路径趋于()0,0时,函数极限不同,故极限不存在。(两路径判别法) 4、讨论下列函数在()0,0点处的连续性: (1)()()()222222 22 ln , 0 ,0, 0 x y x y x y f x y x y ?+++≠?=?+=?? 解: ()() ()()() ()()()2 222,0,0,0,0 lim ,lim ln lim ln 00,0x y x y t f x y x y x y t t f →→→= ++=== 故原函数在()0,0点处连续。

专升本高等数学知识点汇总情况

专升本高等数学知识点汇总 常用知识点: 一、常见函数的定义域总结如下: (1) c bx ax y b kx y ++=+=2 一般形式的定义域:x ∈R (2)x k y = 分式形式的定义域:x ≠0 (3)x y = 根式的形式定义域:x ≥0 (4)x y a log = 对数形式的定义域:x >0 二、函数的性质 1、函数的单调性 当21x x <时,恒有)()(21x f x f <,)(x f 在21x x ,所在的区间上是增加的。 当21x x <时,恒有)()(21x f x f >,)(x f 在21x x ,所在的区间上是减少的。 2、 函数的奇偶性 定义:设函数)(x f y =的定义区间D 关于坐标原点对称(即若D x ∈,则有D x ∈-) (1) 偶函数)(x f ——D x ∈?,恒有)()(x f x f =-。 (2) 奇函数)(x f ——D x ∈?,恒有)()(x f x f -=-。 三、基本初等函数 1、常数函数:c y =,定义域是),(+∞-∞,图形是一条平行于x 轴的直线。 2、幂函数:u x y =, (u 是常数)。它的定义域随着u 的不同而不同。图形过原点。 3、指数函数

定义: x a x f y ==)(, (a 是常数且0>a ,1≠a ).图形过(0,1)点。 4、对数函数 定义: x x f y a log )(==, (a 是常数且0>a ,1≠a )。图形过(1,0)点。 5、三角函数 (1) 正弦函数: x y sin = π2=T , ),()(+∞-∞=f D , ]1,1[)(-=D f 。 (2) 余弦函数: x y cos =. π2=T , ),()(+∞-∞=f D , ]1,1[)(-=D f 。 (3) 正切函数: x y tan =. π=T , },2 )12(,|{)(Z R ∈+≠∈=k k x x x f D π , ),()(+∞-∞=D f . (4) 余切函数: x y cot =. π=T , },,|{)(Z R ∈≠∈=k k x x x f D π, ),()(+∞-∞=D f . 5、反三角函数 (1) 反正弦函数: x y sin arc =,]1,1[)(-=f D ,]2 ,2[)(π π- =D f 。 (2) 反余弦函数: x y arccos =,]1,1[)(-=f D ,],0[)(π=D f 。 (3) 反正切函数: x y arctan =,),()(+∞-∞=f D ,)2 ,2()(π π- =D f 。 (4) 反余切函数: x y arccot =,),()(+∞-∞=f D ,),0()(π=D f 。 极限 一、求极限的方法 1、代入法 代入法主要是利用了“初等函数在某点的极限,等于该点的函数值。”因此遇到大部分简单题目的时候,可以直接代入进行极限的求解。 2、传统求极限的方法 (1)利用极限的四则运算法则求极限。 (2)利用等价无穷小量代换求极限。 (3)利用两个重要极限求极限。 (4)利用罗比达法则就极限。

高等数学(下)知识点总结

主要公式总结 第八章空间解析几何与向量代数 1、 二次曲面 1) 椭圆锥面:2 2222z b y a x =+ 2) 椭球面:122 222 2=++c z b y a x 旋转椭球面:1222222=++c z a y a x 3) 单叶双曲面:122 222 2=-+c z b y a x 双叶双曲面:1222222=--c z b y a x 4) 椭圆抛物面:z b y a x =+2222双曲抛物面(马鞍面):z b y a x =-22 22 5) 椭圆柱面:1222 2=+b y a x 双曲柱面:122 22=-b y a x 6) 抛物柱面: ay x =2 (二) 平面及其方程 1、 点法式方程: 0)()()(000=-+-+-z z C y y B x x A 法向量:),,(C B A n =ρ ,过点),,(000z y x 2、 一般式方程: 0=+++D Cz By Ax 截距式方程: 1=++c z b y a x 3、 两平面的夹角:),,(1111 C B A n =ρ ,),,(2222C B A n =ρ , 22 22 22 21 21 21 2 12121cos C B A C B A C C B B A A ++?++++= θ ?∏⊥∏210212121=++C C B B A A ;? ∏∏21//2 1 2121C C B B A A == 4、 点 ),,(0000z y x P 到平面0=+++D Cz By Ax 的距离: 2 2 2 000C B A D Cz By Ax d +++++= (三) 空间直线及其方程

多元函数微分学习题

第五部分 多元函数微分学(1) [选择题] 容易题1—36,中等题37—87,难题88—99。 1.设有直线? ??=+--=+++031020 123:z y x z y x L 及平面0224:=-+-z y x π,则直线L ( ) (A) 平行于π。 (B) 在上π。(C) 垂直于π。 (D) 与π斜交。 答:C 2.二元函数??? ??=≠+=)0,0(),(, 0)0,0(),(,),(22y x y x y x xy y x f 在点)0,0(处 ( ) (A) 连续,偏导数存在 (B) 连续,偏导数不存在 (C) 不连续,偏导数存在 (D) 不连续,偏导数不存在 答:C 3.设函数),(),,(y x v v y x u u ==由方程组? ??+=+=2 2v u y v u x 确定,则当v u ≠时,=??x u ( ) (A) v u x - (B) v u v -- (C) v u u -- (D) v u y - 答:B 4.设),(y x f 是一二元函数,),(00y x 是其定义域内的一点,则下列命题中一定正确的是( ) (A) 若),(y x f 在点),(00y x 连续,则),(y x f 在点),(00y x 可导。 (B) 若),(y x f 在点),(00y x 的两个偏导数都存在,则),(y x f 在点),(00y x 连续。 (C) 若),(y x f 在点),(00y x 的两个偏导数都存在,则),(y x f 在点),(00y x 可微。 (D) 若),(y x f 在点),(00y x 可微,则),(y x f 在点),(00y x 连续。 答:D 5.函数2223),,(z y x z y x f +++=在点)2,1,1(-处的梯度是( ) (A) )32,31, 31(- (B) )32,31,31(2- (C) )92,91,91(- (D) )9 2 ,91,91(2- 答:A

高等数学(同济第五版)第八章-多元函数微分学-练习题册

. 第八章 多元函数微分法及其应用 第 一 节 作 业 一、填空题: . sin lim .4. )](),([,sin )(,cos )(,),(.3arccos ),,(.21)1ln(.102 2 2 2 322= ===-=+=+++-+-=→→x xy x x f x x x x y x y x f y x z z y x f y x x y x z a y x ψ?ψ?则设的定义域为 函数的定义域为函数 二、选择题(单选): 1. 函数 y x sin sin 1 的所有间断点是: (A) x=y=2n π(n=1,2,3,…); (B) x=y=n π(n=1,2,3,…); (C) x=y=m π(m=0,±1,±2,…); (D) x=n π,y=m π(n=0,±1,±2,…,m=0,±1,±2,…)。 答:( ) 2. 函数?? ???=+≠+++=0,20,(2sin ),(22222 22 2y x y x y x y x y x f 在点(0,0)处: (A )无定义; (B )无极限; (C )有极限但不连续; (D )连续。 答:( )

. 三、求.4 2lim 0xy xy a y x +-→→ 四、证明极限2222 20 0)(lim y x y x y x y x -+→→不存在。

第 二 节 作 业 一、填空题: . )1,(,arcsin )1(),(.2. )1,0(,0,0 ),sin(1),(.122 =-+== ?????=≠=x f y x y x y x f f xy x xy y x xy y x f x x 则设则设 二、选择题(单选): . 4 2)(;)(2)(;4ln 2)()(;4ln 2 )(:,22 2 2 2 2 2y x y x y x y y x y D e y x y C y y x B y A z z ++++?+?+??=等于则设 答:( ) 三、试解下列各题: .,arctan .2. ,,tan ln .12y x z x y z y z x z y x z ???=????=求设求设 四、验证.2 2222222 2 2 r z r y r x r z y x r =??+??+??++=满足 第 三 节 作 业 一、填空题:

最新高等数学知识点(重点)

高等数学知识点总结 空间解析几何与向量代数 一、重点与难点 1、重点 ①向量的基本概念、向量的线性运算、向量的模、方向角; ②数量积(是个数)、向量积(是个向量);(填空选择题中考察) ③几种常见的旋转曲面、柱面、二次曲面;(重积分求体积时画图需要) ④平面的几种方程的表示方法(点法式、一般式方程、三点式方程、截距式方程),两平面的夹角;(一般必考) ⑤空间直线的几种表示方法(参数方程、对称式方程、一般方程、两点式方程), 两直线的夹角、直线与平面的夹角;(一般必考) 空间解析几何和向量代数: 。 代表平行六面体的体积为锐角时, 向量的混合积:例:线速度:两向量之间的夹角:是一个数量轴的夹角。 与是向量在轴上的投影:点的距离:空间ααθθθ??,cos )(][..sin ,cos ,,cos Pr Pr )(Pr ,cos Pr )()()(22 2 2 2 2 2 212121*********c b a c c c b b b a a a c b a c b a r w v b a c b b b a a a k j i b a c b b b a a a b a b a b a b a b a b a b a b a a j a j a a j u AB j z z y y x x M M d z y x z y x z y x z y x z y x z y x z y x z z y y x x z z y y x x u u ??==??=?=?==?=++?++++=++=?=?+=+=-+-+-==

(马鞍面)双叶双曲面:单叶双曲面:、双曲面: 同号) (、抛物面:、椭球面:二次曲面: 参数方程:其中空间直线的方程:面的距离:平面外任意一点到该平、截距世方程:、一般方程:,其中、点法式:平面的方程: 1 1 3,,2221 1};,,{,1 302),,(},,,{0)()()(122 222222 22222 222 22220000002 220000000000=+-=-+=+=++??? ??+=+=+===-=-=-+++++= =++=+++==-+-+-c z b y a x c z b y a x q p z q y p x c z b y a x pt z z nt y y mt x x p n m s t p z z n y y m x x C B A D Cz By Ax d c z b y a x D Cz By Ax z y x M C B A n z z C y y B x x A 多元函数微分法及应用 z y z x y x y x y x y x F F y z F F x z z y x F dx dy F F y F F x dx y d F F dx dy y x F dy y v dx x v dv dy y u dx x u du y x v v y x u u x v v z x u u z x z y x v y x u f z t v v z t u u z dt dz t v t u f z y y x f x y x f dz z dz z u dy y u dx x u du dy y z dx x z dz - =??-=??=? -?? -??=-==??+??=??+??===??? ??+?????=??=?????+?????==?+?=≈???+??+??=??+??= , , 隐函数+, , 隐函数隐函数的求导公式:   时, ,当 : 多元复合函数的求导法全微分的近似计算: 全微分:0),,()()(0),(),(),()],(),,([)](),([),(),(22

《数学分析》多元函数微分学

第四章多元函数微分学一、本章知识脉络框图

二、本章重点及难点 本章需要重点掌握以下几个方面容: ● 偏导数、全微分及其几何意义,可微与偏导存在、连续之间的关系,复合函数的偏导数 与全微分,一阶微分形式不变性,方向导数与梯度,高阶偏导数,混合偏导数与顺序无关性,二元函数中值定理与Taylor 公式. ● 隐函数存在定理、隐函数组存在定理、隐函数(组)求导方法、反函数组与坐标变换. ● 几何应用(平面曲线的切线与法线、空间曲线的切线与法平面、曲面的切平面与法线. ● 极值问题(必要条件与充分条件),条件极值与Lagrange 乘数法. 三、本章的基本知识要点 (一)平面点集与多元函数 1.任意一点A 与任意点集E 的关系. 1) 点. 若存在点A 的某邻域()U A ,使得()U A E ?,则称点A 是点集E 的点。 2) 外点. 若存在点A 的某邻域()U A ,使得()U A E ?=?,则称点A 是点集E 的外点。 3) 界点(边界点). 若在点A 的任何邻域既含有属于E 得的点,又含有不属于E 的点,则称点A 是点集E 的界点。 4) 聚点. 若在点A 的任何空心邻域()o U A 部都含有E 中的点,则称点A 是点集E 的 聚点。 5) 孤立点. 若点A E ∈,但不是E 的聚点,则称点A 是点集E 的孤立点。 2. 几种特殊的平面点集. 1) 开集. 若平面点集E 所属的每一点都是E 的点,则称E 为开集。 2)闭集. 若平面点集E 的所有聚点都属于E ,则称E 为闭集。 3) 开域. 若非空开集E 具有连通性,即E 中任意两点之间都可用一条完全含于E 得有限折线相连接,则称E 为开域。 4)闭域. 开域连同其边界所成的点集称为闭域。 5)区域. 开域、闭域或者开域连同某一部分界点所成的点集,统称为区域。 3.2 R 上的完备性定理. 1) 点列收敛定义:设{}2 n P R ?为平面点列,2 0P R ∈为一固定点。若对任给的正数ε,存在正整数N ,使得当n N >时,有()0,n P U P ε∈,则称点列{}n P 收敛于点0P ,记作 0lim n n P P →∞ = 或 ()0,n P P n →→∞.

多元函数微分学2(含答案)

1、单项选择题(每小题3分) 1)二重极限22 4 00 lim x x xy x y →→+的值为( D ) A 、0 B 、1 C 、12 D 、不存在 提示:沿路径2x ky =接近点()0,0 2)二元函数(),f x y 在点()00,x y 的两个偏导数()()0000,,,x y f x y f x y 都存在,则 (),f x y ( D ) A 、在该点可微 B 、在该点连续可微 C 、在该点任意方向的方向导数都存在 D 、以上都不对 3)函数()()2 2 ,0f x y x ay a =->在()0,0处( A ) A 、不取极值 B 、取极小值 C 、取极大值 D 、是否取极值依赖于a 4)在曲线23,,x t y t z t ==-=的所有切线中,与平面24x y z ++=平行的切线( B ) A 、只有1条 B 、恰有2条 C 、至少有3条 D 、不存在 5)设(),z f u v =,其中,x u e v x y -==+,下面运算中( B ) 2 2 2 :,: x z f f z f I e II x u v x y v -?????=-+ = ?????? A 、,I II 都不正确 B 、I 正确,II 不正确 C 、I 不正确,II 正确 D 、,I II 都正确 2、填空题(每小题3分) 1) 已知理想气体状态方程P V R T =,则P V T V T P ???? ? =???1-。 2) 设ln arctan x y z x y +=-,则dz = ()()2 2 1x y dx x y dy x y -++???? +。 3) 函数u = 在点()1,1的梯度为{}1,1-。 4) 已知 x y z z ??? = ??? ,其中?为可微函数,则z z x y x y ??+=??z 。 5) 已知曲面z xy =上的点P 处的法线l 平行于直线16321: 2 1 2 x y z l ---==-,则该法线

微积分B知识点

微积分B2复习要点 一 题型 1.填空题( 3×7=21分); 2.单项选择题(3×6=18分); 3.计算题(51分); 4.解答题(10分) 二 知识点 第七章 向量代数与空间解析几何 空间曲面的方程(平面、球面、柱面、旋转曲面) 例 求球心为点),,(0000z y x M ,半径为R 的球面方程 例 平面直角坐标系中 224x z +=的图形是 圆 , 空间直角坐标系中 224x z +=的图形是 圆柱面 。 例 XOZ 面上224x z +=绕x 轴旋转一周后的旋转体方程为 。 第八章 多元函数微分学 1.二元函数的定义域; 例1 求函数z =的定义域D . 解 要使z = 有意义, 应有22440x y --?, 即2 2 14y x + ?.故 22(,)14y D x y x 禳镲镲=+?睚镲镲铪 例2 求ln()z x y =-的定义域D .

解 要使ln()z x y =-有意义, 应有0x y ->, 故 {}(,)0D x y x y =->. 例3 求函数z = 的定义域D 。 解 要使z =, 应有 22224010 x y x y ì?--??í?+->??, 即 2214x y <+?, 故 {} 22(,)14D x y x y =<+? 2.二元函数的极限的计算; 定义 如果对于任意给定的正数ε,总存在一个正数δ,使得当 δρ<-+-=<20200)()(y y x x 时,ε<-A y x f ),(恒成立,则称当),(y x 趋于),(00y x 时,函数),(y x f 以A 为极限。 记作 A y x f y x y x =→),(lim ) ,(),(00 或 A y x f =→),(lim 0 ρ 例 求 2 222001 y x y x y x ++→sin )(lim ) ,(),( 解 当00→→y x ,时022→+y x ,11 2 2≤+y x sin 由于无穷小量与有界量的乘积仍为无穷小量,所以 2 222001 y x y x y x ++→sin )(lim ) ,(),(0= 3.多元函数偏导数计算; (1)一阶偏导数的计算; (2)全微分的计算;

多元函数微分学复习(精简版)

高等数学下册复习提纲 第八章 多元函数微分学 本章知识点(按历年考试出现次数从高到低排列): 复合函数求导(☆☆☆☆☆) 条件极值---拉格朗日乘数法(☆☆☆☆) 无条件极值(☆☆☆☆) 曲面切平面、曲线切线(☆☆☆☆) 隐函数(组)求导(☆☆☆) 一阶偏导数、全微分计算(☆☆☆) 方向导数、梯度计算(☆☆) 重极限、累次极限计算(☆☆) 函数定义域求法(☆) 1. 多元复合函数高阶导数 例 设),,cos ,(sin y x e y x f z +=其中f 具有二阶连续偏导数,求x y z x z ?????2及. 解 y x e f x f x z +?'+?'=??31cos , y x y x y x y x e e f y f f e x e f y f y x z x y z ++++?''+-?''+'+?''+-?''=???=???])sin ([cos ])sin ([333231312 22析 1)明确函数的结构(树形图) 这里y x e w y v x u +===,cos ,sin ,那么复合之后z 是关于y x ,的二元函数.根据结构 图,可以知道:对x 的导数,有几条线通到“树梢”上的x ,结果中就应该有几项,而每一 项都是一条线上的函数对变量的导数或偏导数的乘积.简单的说就是,“按线相乘,分线相加”. 2)31,f f ''是),cos ,(sin ),,cos ,(sin 31y x y x e y x f e y x f ++''的简写形式,它们与z 的结构 相同,仍然是y x e y x +,cos ,sin 的函数.所以1f '对y 求导数为 z u v w x x y y

《多元函数微积分》习题解答第二章-15页word资料

习题2-1 1、解:在任意一个面积微元 SKIPIF 1 < 0 上的压力微元 SKIPIF 1 < 0 ,所以,该平面薄片一侧所受的水压力 SKIPIF 1 < 0 2、解:在任意一个面积微元σd 上的电荷微元σμd y x dF ),(=,所以,该平面薄片的电荷总量??=D d y x Q σμ),( 3、解:因为10,10≤≤≤≤y x ,所以1122++≤++y x y x ,又u ln 为单调递增函数,所以()()1ln 1ln 22++≤++y x y x ,由二重积分的保序性得 ( ) ()????≤≤≤≤≤≤≤≤++≤ ++1 01 01 010221ln 1ln y x y x d y x d y x σσ 4、解:积分区域D 如图2-1-1所示,所以该物体的质量 3 4 )384438()()(1 0321 22 2 2 2 =-+-=+=+=??? ??-dy y y y dx y x dy d y x M y y D σ 5、解:(1)积分区域如图2-1-2所示,所以????=1 10010),(),(x y dy y x f dx dx y x f dy (2)积分区域如图2-1-3所示,所以? ???=x x y y dy y x f dx dx y x f dy 2 /4 22 ),(),(2 ( 3 ) 积分 区 域 如图2-1-4所示,所以 ? ???+----=1 1210 2221 22 ),(),(y y x x x dx y x f dy dy y x f dx (4)积分区域如图2-1-5所示,所以????=e e x e y dx y x f dy dy y x f dx ),(),(1 0ln 00 6、解:(1)积分区域如图2-1-6所示,所以 () ? ????=??? ??-=-==1 01 054/1134/310 55 6 5111432322x x dx x x x dy y x dx d y x x x D σ ( 2) 积 分区 域如图2-1-7所示,所以 15 64)4(2122 2240 22 2 2 2 =-==? ? ???--dy y y dx xy dy d xy y D σ

高等数学知识点归纳知识讲解

第一讲: 极限与连续 一. 数列函数: 1. 类型: (1)数列: *()n a f n =; *1()n n a f a += (2)初等函数: (3)分段函数: *0102()(),()x x f x F x x x f x ≤?=? >?; *0 ()(), x x f x F x x x a ≠?=?=?;* (4)复合(含f )函数: (),()y f u u x ?== (5)隐式(方程): (,)0F x y = (6)参式(数一,二): () () x x t y y t =?? =? (7)变限积分函数: ()(,)x a F x f x t dt = ? (8)级数和函数(数一,三): 0 (),n n n S x a x x ∞ ==∈Ω∑ 2. 特征(几何): (1)单调性与有界性(判别); (()f x 单调000,()(()())x x x f x f x ??--定号) (2)奇偶性与周期性(应用). 3. 反函数与直接函数: 1 1()()()y f x x f y y f x --=?=?= 二. 极限性质: 1. 类型: *lim n n a →∞; *lim ()x f x →∞ (含x →±∞); *0 lim ()x x f x →(含0x x ± →) 2. 无穷小与无穷大(注: 无穷量): 3. 未定型: 000,,1,,0,0,0∞ ∞∞-∞?∞∞∞ 4. 性质: *有界性, *保号性, *归并性 三. 常用结论: 11n n →, 1(0)1n a a >→, 1()max(,,)n n n n a b c a b c ++→, ()00! n a a n >→ 1(0)x x →→∞, 0lim 1x x x +→=, lim 0n x x x e →+∞=, ln lim 0n x x x →+∞=, 0 lim ln 0n x x x + →=, 0, x x e x →-∞ ?→?+∞→+∞ ?

相关主题