搜档网
当前位置:搜档网 › 高考数学试题分类大全理科圆锥曲线

高考数学试题分类大全理科圆锥曲线

高考数学试题分类大全理科圆锥曲线
高考数学试题分类大全理科圆锥曲线

2008年高考数学试题分类汇编

圆锥曲线

一. 选择题:

1.(福建卷11)又曲线22

221x y a b

==(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,

且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为B

A.(1,3)

B.(]1,3

C.(3,+∞)

D.[)3,+∞

2.(海南卷11)已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2,-1)的距离与点P 到

抛物线焦点距离之和取得最小值时,点P 的坐标为( A )

A. (4

1

,-1)

B. (

4

1

,1) C. (1,2) D. (1,-2)

3.(湖北卷10)如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点

1

2c 第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用

和22c 分别表示椭轨道Ⅰ和Ⅱ的焦距,用12a 和22a 分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子:

①1122a c a c +=+; ②1122a c a c -=-; ③1212c a a c >; ④11c a <22

c

a . 其中正确式子的序号是B

A. ①③

B. ②③

C. ①④

D. ②④

4.(湖南卷8)若双曲线22221x y a b -=(a >0,b >0)上横坐标为32

a

的点到右焦点的距离大于

它到左准线的距离,则双曲线离心率的取值范围是( B )

A.(1,2)

B.(2,+∞)

C.(1,5)

D. (5,+∞)

5.(江西卷7)已知1F 、2F 是椭圆的两个焦点,满足120MF MF ?=u u u u r u u u u r

的点M 总在椭圆内部,则

椭圆离心率的取值范围是C

A .(0,1)

B .1

(0,]2

C

.(0,

2 D

.,1)2 6.(辽宁卷10)已知点P 是抛物线22y x =上的一个动点,则点P 到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值为( A ) A

B .3 C

D .

92

7.(全国二9)设1a >,则双曲线22

22

1(1)x y a a -=+的离心率e 的取值范围是( B ) A

.2) B

. C .(25), D

.(2

8.(山东卷(10)设椭圆C 1的离心率为

13

5

,焦点在X 轴上且长轴长为26.若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为A

(A )13422

22=-y x (B)15132222=-y x

(C)14

322

22=-y x (D)112132222=-y x

9.(陕西卷8)双曲线22

221x y a b

-=(0a >,0b >)的左、右焦点分别是12F F ,,过1F 作倾斜

角为30o 的直线交双曲线右支于M 点,若2MF 垂直于x 轴,则双曲线的离心率为( B ) A

B

C

D

3

10.(四川卷12)已知抛物线2:8C y x =的焦点为F ,准线与x 轴的交点为K ,点A 在C 上

且AK AF =,则AFK ?的面积为( B )

A

B

C

D -

(A)4 (B)8 (C)16 (D)32

11.(天津卷(7)设椭圆22

221x y m n

+=(0m >,0n >)的右焦点与抛物线28y x =的焦点相同,

离心率为

1

2

,则此椭圆的方程为B (A )2211216x y +

= (B )2211612x y += (C )2214864x y += (D )22

16448

x y += 12.(浙江卷7)若双曲线122

22=-b

y a x 的两个焦点到一条准线的距离之比为3:2,则双曲线的

离心率是D

(A )3 (B )5 (C )3 (D )5

13.(浙江卷10)如图,AB 是平面a 的斜线段,A 为斜足,若点P 在平面a 内运动,使得△ABP 的面积为定值,则动点P 的轨迹是B

(A )圆 (B )椭圆 (C )一条直线 (D )两条平行直线

14.(重庆卷(8)已知双曲线22

221x y a b

-=(a >0,b >0)的一条渐近线为y =kx (k >0),离心率

e =5k ,则双曲线方程为C

(A )22x a -2

24y a =1

(B)22

2215x y a a

-=

(C)22

2214x y b b

-=

(D)22

2215x y b b

-=

二. 填空题:

1.(海南卷14)过双曲线22

1916

x y -

=的右顶点为A ,右焦点为F 。过点F 平行双曲线的一条渐近线的直线与双曲线交于点B ,则△AFB 的面积为_______

3215

2.(湖南卷12)已知椭圆22

221x y a b

+=(a >b >0)的右焦点为F,右准线为l ,离心率e =55过顶点A (0,b )作AM ⊥l ,垂足为M ,则直线FM 的斜率等于 .

1

2

3.(江苏卷12)在平面直角坐标系中,椭圆22

22x y a b

+=1( a b >>0)的焦距为2,以O 为圆心,

a 为半径的圆,过点2,0a c ?? ???作圆的两切线互相垂直,则离心率e =

.2

4.(江西卷15)过抛物线22(0)x py p =>的焦点F 作倾角为30o 的直线,与抛物线分别交于A 、B 两点(A 在y 轴左侧)

,则AF FB

= .1

3

5.(全国一14)已知抛物线21y ax =-的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 .2

6.(全国一15)在ABC △中,AB BC =,7

cos 18

B =-

.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .3

8

7.(全国二15)已知F 是抛物线24C y x =:的焦点,过F 且斜率为1的直线交C 于A B ,两点.设FA FB >,则FA 与FB 的比值等于

.3+

8.(浙江卷12)已知21F F 、为椭圆

19

252

2=+y x 的两个焦点,过1F 的直线交椭圆于A 、B 两点若1222=+B F A F ,则AB =______________。8

三. 解答题:

1.(安徽卷22).(本小题满分13分)

设椭圆22

22:1(0)x y C a b a b

+=>>

过点M

,且着焦点为1(F

(Ⅰ)求椭圆C 的方程;

(Ⅱ)当过点(4,1)P 的动直线l 与椭圆C 相交与两不同点,A B 时,在线段AB 上取点Q ,满足

AP QB AQ PB =u u u r u u u r u u u r u u u r

g g ,证明:点Q 总在某定直线上

解 (1)由题意:

2222222211c a b c a b ?=?

?+=??

?=-? ,解得22

4,2a b ==,所求椭圆方程为 22142x y +

= (2)方法一

设点Q 、A 、B 的坐标分别为1122(,),(,),(,)x y x y x y 。

由题设知,,,AP PB AQ QB u u u r u u u r u u u r u u u r

均不为零,记AP AQ PB QB

λ==u u u r u u u r u u u r u u u r ,则0λ>且1λ≠

又A ,P ,B ,Q 四点共线,从而,AP PB AQ QB λλ=-=u u u r u u u r u u u r u u u r

于是 1241x x λλ-=

-, 1211y y λλ-=- 121x x x λλ+=+, 12

1y y y λλ

+=+

从而

22212241x x x λλ-=-,L L (1) 222

12

2

1y y y λλ

-=-,L L (2) 又点A 、B 在椭圆C 上,即

(1)+(2)×2并结合(3),(4)得424s y += 即点(,)Q x y 总在定直线220x y +-=上

方法二

设点1122(,),(,),(,)Q x y A x y B x y ,由题设,,,,PA PB AQ QB u u u r u u u r u u u r u u u r

均不为零。

且 PA PB AQ QB =u u u r u u u r u u u r u u u r

又 ,,,P A Q B 四点共线,可设,(0,1)PA AQ PB BQ λλλ=-=≠±u u u r u u u r u u u r u u u r

,于是

1141,11x y

x y λλλλ--=

=

-- (1) 2241,11x y

x y λλλλ

++==

++ (2) 由于1122(,),(,)A x y B x y 在椭圆C 上,将(1),(2)分别代入C 的方程2224,x y += 整理得

222(24)4(22)140x y x y λλ+--+-+= (3) 222(24)4(22)140x y x y λλ+-++-+= (4)

(4)-(3) 得 8(22)0x y λ+-= 即点(,)Q x y 总在定直线220x y +-=上

2.(北京卷19).(本小题共14分)

已知菱形ABCD 的顶点A C ,在椭圆2234x y +=上,对角线BD 所在直线的斜率为1.

(Ⅰ)当直线BD 过点(01),时,求直线AC 的方程; (Ⅱ)当60ABC ∠=o 时,求菱形ABCD 面积的最大值. 解:(Ⅰ)由题意得直线BD 的方程为1y x =+. 因为四边形ABCD 为菱形,所以AC BD ⊥. 于是可设直线AC 的方程为y x n =-+.

由2234x y y x n ?+=?=-+?,得2246340x nx n -+-=. 因为A C ,在椭圆上, 所以212640n ?=-+>

,解得33

n -

<<. 设A C ,两点坐标分别为1122()()x y x y ,,

,, 则1232

n

x x +=,212344n x x -=,11y x n =-+,22y x n =-+.

所以122

n

y y +=

. 所以AC 的中点坐标为344n n ??

???

,.

由四边形ABCD 为菱形可知,点344n n ??

???

,在直线1y x =+上,

所以

3144

n n =+,解得2n =-. 所以直线AC 的方程为2y x =--,即20x y ++=. (Ⅱ)因为四边形ABCD 为菱形,且60ABC ∠=o , 所以AB BC CA ==. 所以菱形ABCD

的面积2

S =

. 由(Ⅰ)可得22

2

2

1212316

()()2

n AC x x y y -+=-+-=,

所以2316)433S n n ?=

-+-<< ?

?.

所以当0n =时,菱形ABCD 的面积取得最大值43. 3.(福建卷21)(本小题满分12分)

如图、椭圆22

221(0)x y a b a b

+=f f 的一个焦点

是F (1,

0),O 为坐标原点.

(Ⅰ)已知椭圆短轴的两个三等分点与一个焦

点构成正三角形,求椭圆的方程;

(Ⅱ)设过点F 的直线l 交椭圆于A 、B 两点.

若直线l 绕点F 任意转动,值有2

2

2

OA OB AB +p ,

求a 的取

值范围.

本小题主要考查直线与椭圆的位置关系、不等式的解法等基本知识,考查分类与整合思想,考查运算能力和综合解题能力.满分12分. 解法一:(Ⅰ)设M ,N 为短轴的两个三等分点,

因为△MNF 为正三角形, 所以3

2

OF MN =

, 即1=

32, 3.3

b

b g 解得= 2

2

14,a b =+=因此,椭圆方程为22

1.43

x y +

= (Ⅱ)设1122(,),(,).A x y B x y

(ⅰ)当直线 AB 与x 轴重合时,

(ⅱ)当直线AB 不与x 轴重合时,

设直线AB 的方程为:22

221,1,x y x my a b

=++=代入

整理得22222222()20,a b m y b my b a b +++-=

所以2222

1212222222

2,b m b a b y y y y a b m a b m -+==++

因为恒有222

OA OB AB +<,所以∠AOB 恒为钝角.

即11221212(,)(,)0OA OB x y x y x x y y ==+

g g 恒成立. 又a 2+b 2m 2>0,所以-m 2a 2b 2+b 2-a 2b 2+a 2<0对m ∈R 恒成立, 即a 2b 2m 2> a 2 -a 2b 2+b 2对m ∈R 恒成立.

当m ∈R 时,a 2b 2m 2最小值为0,所以a 2- a 2b 2+b 2<0. a 2

因为a >0,b >0,所以a 0,

解得a >

12+或a <12-(舍去),即a >12

+,

综合(i )(ii),a ,+∞). 解法二:

(Ⅰ)同解法一, (Ⅱ)解:(i )当直线l 垂直于x 轴时,

x =1代入2222222

1(1)1,A y b a y a b a -+===1.

因为恒有|OA |2

+|OB |2

<|AB |2

,2(1+y A 2

)<4 y A 2,

y A 2

>1,即21

a a

->1,

解得a >

12+或a <12-(舍去),即a >12

+. (ii )当直线l 不垂直于x 轴时,设A (x 1,y 1), B (x 2,y 2).

设直线AB 的方程为y =k (x -1)代入22

221,x y a b

+=

得(b 2+a 2k 2)x 2-2a 2k 2x + a 2 k 2- a 2 b 2=0,

故x 1+x 2=222222

22222222

2,.a k a k a b x x b a k b a k -=++

因为恒有|OA |2+|OB |2<|AB |2,

所以x 21+y 21+ x 22+ y 22<( x 2-x 1)2+(y 2-y 1)2, 得x 1x 2+ y 1y 2<0恒成立.

x 1x 2+ y 1y 2= x 1x 2+k 2(x 1-1) (x 2-1)=(1+k 2) x 1x 2-k 2(x 1+x 2)+ k 2

=(1+k 2

)222222222222222

222222222

2()a k a b a k a a b b k a b k k b a k b a k b a k --+--+=+++.

由题意得(a 2- a 2 b 2+b 2)k 2- a 2 b 2<0对k ∈R 恒成立.

①当a 2- a 2 b 2+b 2>0时,不合题意;

②当a 2- a 2 b 2+b 2=0时,a =

12

+; ③当a 2- a 2 b 2+b 2<0时,a 2- a 2(a 2-1)+ (a 2-1)<0,a 4- 3a 2 +1>0,

解得a 2>

a 2>,a >12+,因此a ≥12

+.

综合(i )(ii ),a 的取值范围为(

12

+,+∞).

A y

x O B

G

F

F 1

图4

4.(广东卷18).(本小题满分14分)

设0b >,椭圆方程为22

2212x y b b

+=,抛物线方程为28()x y b =-.如图4所示,过点

(02)F b +,作x 轴的平行线,与抛物线在第一象限的交点为G ,已知抛物线在点G 的切线经过椭圆的右焦点1F .

(1)求满足条件的椭圆方程和抛物线方程;

(2)设A B ,分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点P ,使得ABP △为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标).

【解析】(1)由28()x y b =-得21

8

y x b =+,

当2y b =+得4x =±,∴G 点的坐标为(4,2)b +,1

'4y x =,2y x b =+-,

4'|1x y ==,过点G 的切线方程为(2)4y b x -+=-即

令0y =得2x b =-,1F ∴点的坐标为(2,0)b -,由椭圆方程得1F 点

的坐标为(,0)b ,

2b b ∴-=即1b =,即椭圆和抛物线的方程分别为2

212

x y +=和28(1)x y =-;

(2)Q 过A 作x 轴的垂线与抛物线只有一个交点P ,∴以PAB ∠为直角的Rt ABP ?只有一个,

同理∴ 以PBA ∠为直角的Rt ABP ?只有一个。

若以APB ∠为直角,设P 点坐标为21

(,1)8

x x +,A 、B 两点的坐标分别为(2,0)-和

(2,0),

222421152(1)108644

PA PB x x x x =-++=+-=u u u r u u u r g 。

关于2x 的二次方程有一大于零的解,x ∴有两解, 即以APB ∠为直角的Rt ABP ?有两个,

因此抛物线上存在四个点使得ABP ?为直角三角形。 5.(湖北卷19).(本小题满分13分)

如图,在以点O 为圆心,||4AB =为直径的半圆ADB

中,

OD AB ⊥,P 是半圆弧上一点,30POB ∠=?,曲线C 是

满足||||||MA MB -为定值的动点M 的轨迹,且曲线

C 过

点P .

(Ⅰ)建立适当的平面直角坐标系,求曲线C 的方程; (Ⅱ)设过点D 的直线l 与曲线C 相交于不同的两点E 、F . 若△OEF 的面积不小于

...l 斜率的取值范围.

本小题主要考查直线、圆和双曲线等平面解析几何的基础知识,考查轨迹方程的求法、

不等式的解法以及综合解题能力.(满分13分)

(Ⅰ)解法1:以O 为原点,AB 、OD 所在直线分别为x 轴、y 轴,建立平面直角坐标系,则

A (-2,0),

B (2,0),D (0,2),P (1,3),依题意得

|MA |-|MB |=|PA |-|PB |=221321)32(2222=)(+--++<|AB |=4.

∴曲线C 是以原点为中心,A 、B 为焦点的双曲线. 设实平轴长为a ,虚半轴长为b ,半焦距为c , 则c =2,2a =22,∴a 2=2,b 2=c 2-a 2=2.

∴曲线C 的方程为12

22

2=-y x . 解法2:同解法1建立平面直角坐标系,则依题意可得|MA |-|MB |=|PA |-|PB |< |AB |=4.

∴曲线C 是以原点为中心,A 、B 为焦点的双曲线.

设双曲线的方程为a b

y a x (122

22=->0,b >0).

则由 ??

???=+=-41

1322222

b a b

a )(解得a 2=

b 2=2, ∴曲线C 的方程为.12

22

2=-y x (Ⅱ)解法1:依题意,可设直线l 的方程为y =kx +2,代入双曲线C 的方程并整理得(1-K 2)

x 2-4kx-6=0.

∵直线l 与双曲线C 相交于不同的两点E 、F ,

∴ ?????-?+-=?≠0

)1(64)4(012

22

φk k k -? ???-±≠331ππk k

∴k ∈(-3,-1)∪(-1,1)∪(1,3). 设E (x ,y ),F (x 2,y 2),则由①式得x 1+x 2=

k x x k k --=-16

,142

12

,于是 |EF |=2212221221))(1()()(x x k x y x x -+=++-

=.132214)(12

2

2

212212k

k k x x x x k --?

+=-+?+

而原点O 到直线l 的距离d =2

12k

+,

∴S △DEF =.1322132211221212222

22k

k k k k k EF d --=--?+?+?=? 若△OEF 面积不小于22,即S △OEF 22≥,则有

 解得.22,022********

2

≤≤-≤--?≥--k k k k k ③

综合②、③知,直线l 的斜率的取值范围为[-2,-1]∪(1-,1) ∪(1, 2). 解法2:依题意,可设直线l 的方程为y =kx +2,代入双曲线C 的方程并整理, 得(1-K 2)x 2-4kx -6=0.

∵直线l 与双曲线C 相交于不同的两点E 、F ,

∴ ?????-?+-=?≠0

)1(64)4(012

22φk k k -? ???-±≠331ππk k .∴k ∈(-3,-1)∪(-1,1)∪(1,3). 设E (x 1,y 1),F (x 2,y 2),则由①式得 |x 1-x 2|=.132214)(2

2

2

212

21k

k k

x x x x --=

-?=

-+ ③

当E 、F 在同一去上时(如图1所示),

S △OEF =;2

1

212121x x OD x x OD S S ODE ODF -?=-?=

-?? 当E 、F 在不同支上时(如图2所示).

+=??ODF OEF S S S △ODE =.2

1

)(212121x x OD x x OD -?=+? 综上得S △OEF =

,2

1

21x x OD -?于是

由|OD |=2及③式,得S △OEF =

.13222

2

k

k --

若△OEF 面积不小于2则有即,22,2≥?OEF S

.22,022*******

2

≤≤-≤-?≥--k k k k k 解得 ④

综合②、④知,直线l 的斜率的取值范围为[-2,-1]∪(-1,1)∪(1,2).

6.(湖南卷20).(本小题满分13分)

若A 、B 是抛物线y 2=4x 上的不同两点,弦AB (不平行于y 轴)的垂直平分线与 x 轴相交于点P ,则称弦AB 是点P 的一条“相关弦”.已知当x >2时,点P (x ,0) 存在无穷多条“相关弦”.给定x 0>2.

(I )证明:点P (x 0,0)的所有“相关弦”的中点的横坐标相同; (II) 试问:点P (x 0,0)的“相关弦”的弦长中是否存在最大值?

若存在,求其最大值(用x 0表示):若不存在,请说明理由. 解: (I )设AB 为点P (x 0,0)的任意一条“相关弦”,且点A 、B 的坐标分别是

(x 1,y 1)、(x 2,y 2)(x 1≠x 2),则y 21=4x 1, y 2

2=4x 2, 两式相减得(y 1+y 2)(y 1-y 2)=4(x 1-x 2).因为x 1≠x 2,所以y 1+y 2≠0. 设直线AB 的斜率是k ,弦AB 的中点是M (x m , y m ),则 k=

12121242m y y x x y y y -==-+.从而AB 的垂直平分线l 的方程为 ().2

m m m y

y y x x -=-- 又点P (x 0,0)在直线l 上,所以 0().2

m

m m y y x x -=-

- 而0,m y ≠于是0 2.m x x =-故点P (x 0,0)的所有“相关弦”的中点的横坐标都是x 0-2. (Ⅱ)由(Ⅰ)知,弦AB 所在直线的方程是()m m y y k x x -=-,代入24y x =中,

整理得2222[()2]()0.m m m m k x k y kx x y kx +--+-= (·)

则12x x 、是方程(·)的两个实根,且2

122

().m m y kx x x k

-?= 设点P 的“相关弦”AB 的弦长为l ,则

因为0<2m y <4x m =4(x m -2) =4x 0-8,于是设t=2

m y ,则t ∈(0,4x 0-8).

记l 2=g (t )=-[t-2(x 0-3)]2+4(x 0-1)2.

若x 0>3,则2(x 0-3) ∈(0, 4x 0-8),所以当t=2(x 0-3),即2m y =2(x 0-3)时,

l 有最大值2(x 0-1).

若2

综上所述,

当x 0>3时,点P (x 0,0)的“相关弦”的弦长中存在最大值,且最大值

为2(x 0-1);当2< x 0≤3时,点P (x 0,0)的“相关弦”的弦长中不存在最大值. 7.(江西卷21).(本小题满分12分)

设点00(,)P x y 在直线(,01)x m y m m =≠±<<上,过点P 作双曲线221x y -=的两条切线

PA PB 、,切点为A 、B ,定点1

(

,0)M m

. (1)求证:三点A M B 、、共线。

(2)过点A 作直线0x y -=的垂线,垂足为N ,试求AMN ?的重心G 所在曲线方程.

证明:(1)设1122(,),(,)A x y B x y ,由已知得到120y y ≠,且22111x y -=,222

21x y -=, 设切线PA 的方程为:11()y y k x x -=-由1122

()

1y y k x x x y -=-??-=?得

从而2222211114()4(1)()4(1)0k y kx k y kx k ?=-+--+-=,

11

x k y =

因此PA 的方程为:111y y x x =- 同理PB 的方程为:221y y x x =-

又0(,)P m y 在PA PB 、上,所以1011y y mx =-,2021y y mx =- 即点1122(,),(,)A x y B x y 都在直线01y y mx =-上 又1

(

,0)M m

也在直线01y y mx =-上,所以三点A M B 、、共线 (2)垂线AN 的方程为:11y y x x -=-+,

由110y y x x x y -=-+??-=?得垂足1111(,)22x y x y N ++,

设重心(,)G x y

所以111111

11()321(0)32x y x x m x y y y +?=++???+?=++??

解得1139341934

x y m x y x m y ?

--?=????-+?=??

由22111x y -= 可得11(33)(33)2x y x y m m --+-=即2212

()39

x y m --=为重心G 所在曲线方程

8.(辽宁卷20).(本小题满分12分)

在直角坐标系xOy 中,点P

到两点(0,

,(0的距离之和等于4,设点P 的轨迹为C ,直线1y kx =+与C 交于A ,B 两点. (Ⅰ)写出C 的方程;

(Ⅱ)若OA u u u r ⊥OB uuu r

,求k 的值;

(Ⅲ)若点A 在第一象限,证明:当k >0时,恒有|OA u u u r |>|OB uuu r

|.

20.本小题主要考查平面向量,椭圆的定义、标准方程及直线与椭圆位置关系等基础知识,考查综合运用解析几何知识解决问题的能力.满分12分. 解:

(Ⅰ)设P (x ,y ),由椭圆定义可知,点P 的轨迹C

是以(0(0,

为焦点,长半轴为2

的椭圆.它的短半轴1b ==,

故曲线C 的方程为2

2

14

y x +=. ·················· 3分 (Ⅱ)设1122()()A x y B x y ,,,,其坐标满足 消去y 并整理得22(4)230k x kx ++-=, 故121222

23

44

k x x x x k k +=-

=-++,. ················ 5分 若OA OB ⊥u u u r u u u r

,即12120x x y y +=.

而2121212()1y y k x x k x x =+++,

于是22

12122

2233210444

k k x x y y k k k +=---+=+++, 化简得2410k -+=,所以1

2

k =±. ················· 8分

(Ⅲ)22

2222112

2()OA OB x y x y -=+-+u u u u r u u u u r

1226()

4

k x x k -=

+.

因为A 在第一象限,故10x >.由1223

4

x x k =-

+知20x <,从而120x x ->.又0k >, 故22

0OA OB ->u u u u r u u u u r ,

即在题设条件下,恒有OA OB >u u u u r u u u u r

. ················ 12分 9.(全国一21).(本小题满分12分) (注意:在试题卷上作答无效.........

) 双曲线的中心为原点O ,焦点在x 轴上,两条渐近线分别为12l l ,,经过右焦点F 垂直于1l 的

直线分别交12l l ,于A B ,两点.已知OA AB OB u u u r u u u r u u u r 、

、成等差数列,且BF u u u r 与FA u u u r

同向. (Ⅰ)求双曲线的离心率;

(Ⅱ)设AB 被双曲线所截得的线段的长为4,求双曲线的方程. 解:(Ⅰ)设OA m d =-,AB m =,OB m d =+ 由勾股定理可得:222()()m d m m d -+=+

得:14d m =,tan b AOF a ∠=,4tan tan 23

AB AOB AOF OA ∠=∠==

由倍角公式∴2

2

431b

a b a =??

- ???

,解得12b a =,

则离心率e = (Ⅱ)过F 直线方程为()a

y x c b

=--,与双曲线方程22221x y a b -=联立

将2a b =

,c =

代入,化简有

22152104x x b -+=

将数值代入,有4=解得3b = 故所求的双曲线方程为22

1369

x y -

=。 10.(全国二21).(本小题满分12分)

设椭圆中心在坐标原点,(20)(01)A B ,,,是它的两个顶点,直线)0(>=k kx y 与AB 相交于点D ,

与椭圆相交于E 、F 两点.

(Ⅰ)若6ED DF =u u u r u u u r

,求k 的值; (Ⅱ)求四边形AEBF 面积的最大值.

(Ⅰ)解:依题设得椭圆的方程为2

214

x y +=,

直线AB EF ,的方程分别为22x y +=,(0)y kx k =>. ········ 2分 如图,设001122()()()D x kx E x kx F x kx ,,,,,,其中12x x <, 且12x x ,满足方程22(14)4k x +=,

故21x x =-=

.①

由6ED DF =u u u r u u u r 知01206()x x x x -=-

,得021215(6)77x x x x =+==;

由D 在AB 上知0022x kx +=,得02

12x k

=+.

所以

212k =+, 化简得2242560k k -+=,

解得23k =

或3

8

k =. ······················· 6分 (Ⅱ)解法一:根据点到直线的距离公式和①式知,点E F ,到AB 的距离分别

1h =

=

2h =

=

. ·············· 9分

又AB ==,所以四边形AEBF 的面积为

当21k =,即当1

2

k =

时,上式取等号.所以S

的最大值为 ···· 12分 解法二:由题设,1BO =,2AO =.

设11y kx =,22y kx =,由①得20x >,210y y =->, 故四边形AEBF 的面积为

222x y =+ ···························· 9分

=

当222x y =时,上式取等号.所以S 的最大值为22. ········ 12分

11.(山东卷22) (本小题满分14分)

如图,设抛物线方程为x 2=2py (p >0),M 为 直线y =-2p 上任意一点,过M 引抛物线的切线,切点分别为A ,B .

(Ⅰ)求证:A ,M ,B 三点的横坐标成等差数列; (Ⅱ)已知当M 点的坐标为(2,-2p )时,410AB =,求此时抛物线的方程;

(Ⅲ)是否存在点M ,使得点C 关于直线AB 的对称点D 在

抛物线2

2(0)x py p =>上,其中,点C 满足OC OA OB =+u u u r u u u r u u u r (O 为坐标原点).若存在,求出所有适合题意的点M 的坐标;若不存在,请说

明理由.

(Ⅰ)证明:由题意设22

12

12120(,),(,),,(,2).22x x A x B x x x M x p p p

-<

由2

2x py =得22x y p =,则,x

y p

'=

所以12,.MA MB x x k k p p

=

= 因此直线MA 的方程为1

02(),x y p x x p

+=

- 直线MB 的方程为2

02().x y p x x p

+=

- 所以211102(),2x x

p x x p p

+=- ①

222202().2x x

p x x p p

+=- ②

由①、②得

2

12

120,2x x x x x +=+- 因此 2

12

02

x x x +=,即0122.x x x =+

所以A 、M 、B 三点的横坐标成等差数列.

(Ⅱ)解:由(Ⅰ)知,当x 0=2时, 将其代入①、②并整理得:

所以 x 1、x 2是方程22440x x p --=的两根,

因此212124,4,x x x x p +==-

又22

210122122,2AB

x x x x x p p k x x p p

-

+===- 所以2.AB k p

=

由弦长公式得

又AB = 所以p =1或p =2,

因此所求抛物线方程为22x y =或24.x y =

(Ⅲ)解:设D (x 3,y 3),由题意得C (x 1+ x 2, y 1+ y 2),

则CD 的中点坐标为123123

(,),22x x x y y y Q ++++

设直线AB 的方程为0

11(),x y y x x p

-=

- 由点Q 在直线AB 上,并注意到点1212

(,)22

x x y y ++也在直线AB 上, 代入得0

33.x y x p

=

若D (x 3,y 3)在抛物线上,则2

3

30322,x py x x == 因此 x 3=0或x 3=2x 0.

即D (0,0)或2

02(2,).x D x p

(1)当x 0=0时,则12020x x x +==,此时,点M (0,-2p )适合题意.

(2)当00x ≠,对于D (0,0),此时22

12

22

22

12

12000

2(2,),,224CD

x x x x x x p

C x k p

x px +++==

又0

,AB x k p

=

AB ⊥CD , 所以2222

012122

01,44AB CD

x x x x x k k p px p ++===-g g 即22

212

4,x x p +=-矛盾.

对于2002(2,),x D x p 因为2212

0(2,),2x x C x p

+此时直线CD 平行于y 轴, 又0

0,AB x k p

=

≠ 所以 直线AB 与直线CD 不垂直,与题设矛盾, 所以00x ≠时,不存在符合题意的M 点.

综上所述,仅存在一点M (0,-2p )适合题意.

12.(陕西卷20).(本小题满分12分)

已知抛物线C :22y x =,直线2y kx =+交C 于A B ,两点,M 是线段AB 的中点,过M 作x 轴的垂线交C 于点N .

(Ⅰ)证明:抛物线C 在点N 处的切线与AB 平行;

(Ⅱ)是否存在实数k 使0NA NB =u u u r u u u r

g ,若存在,求k 的值;若不存在,说明理由.

20.解法一:(Ⅰ)如图,设211(2)A x x ,,222(2)B x x ,,把2

y kx =+代入

22y x =得2220x kx --=,

由韦达定理得122

k

x x +=

,121x x =-, ∴1224N M x x k

x x +===,∴N 点的坐标为248k k ?? ???

,.

设抛物线在点N 处的切线l 的方程为284k k y m x ?

?-=- ??

?, 将2

2y x =代入上式得2

2

2048

mk k x mx -+-=, Q 直线l 与抛物线C 相切,

22

22282()04

8mk k m m mk k m k ??

∴?=--=-+=-= ???,m k ∴=.

即l AB ∥.

(Ⅱ)假设存在实数k ,使0NA NB =u u u r u u u r

g ,则NA NB ⊥,又M Q 是AB 的中点,

1

||||2

MN AB ∴=

. 由(Ⅰ)知121212111

()(22)[()4]222

M y y y kx kx k x x =+=+++=++

2

2142224

k k ??=+=+ ???.

MN ⊥Q x 轴,22216

||||2488

M N k k k MN y y +∴=-=+-=

. 又222121212||1||1()4AB k x x k x x x x =+-=++-g 2

222114(1)11622k k k k ??

=+-?-=++ ???g g . 22

216111684k k k +∴=++g ,解得2k =±.

即存在2k =±,使0NA NB =u u u r u u u r

g .

解法二:(Ⅰ)如图,设22

1122(2)(2)A x x B x x ,

,,,把2y kx =+代入22y x =得 2220x kx --=.由韦达定理得121212

k

x x x x +==-,.

∴1224N M x x k

x x +===,∴N 点的坐标为248k k ?? ???

,.22y x =Q ,4y x '∴=,

∴抛物线在点N 处的切线l 的斜率为44

k

k ?

=,l AB ∴∥. (Ⅱ)假设存在实数k ,使0NA NB =u u u r u u u r

g .

由(Ⅰ)知2222

1122224848k k k k NA x x NB x x ????=--=-- ? ????

?u u u r u u u r ,,,,则 0=,

21016k --

304k ∴-+=,解得2k =±.

即存在2k =±,使0NA NB =u u u r u u u r

g .

13.(四川卷21).(本小题满分12分)

设椭圆()22221,0x y a b a b

+=>>的左右焦点分别为12,F F ,离心率22e =,右准线为l ,,M N

是l 上的两个动点,1

20FM F N ?=u u u u r u u u u r

(Ⅰ)若1225F M F N ==u u u u r u u u u r

,a b 的值;

(Ⅱ)证明:当MN 取最小值时,12FM F N +u u u u r u u u u r 与12F F u u u u r

共线。 【解】:由222a b c -=与2

2

a e c =

=,得222a b =

2020高考数学圆锥曲线试题(含答案)

2020高考虽然延期,但是每天练习一定要跟上,加油! 圆锥曲线 一. 选择题: 1.(福建卷11)又曲线22 221x y a b ==(a >0,b >0)的两个焦点为F 1、 F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为B A.(1,3) B.(]1,3 C.(3,+∞) D.[)3,+∞ 2.(海南卷11)已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2, -1)的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( A ) A. (4 1 ,-1) B. (4 1,1) C. (1,2) D. (1,-2) 3.(湖北卷10)如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点 的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用12c 和22c 分别表示椭轨道Ⅰ和Ⅱ的焦距,用12a 和22a 分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子: ①1122a c a c +=+; ②1122a c a c -=-; ③1212c a a c >; ④ 1 1 c a <2 2 c a . 其中正确式子的序号是B

A. ①③ B. ②③ C. ①④ D. ②④ 4.(湖南卷8)若双曲线22221x y a b -=(a >0,b >0)上横坐标为32 a 的点 到右焦点的距离大于它到左准线的距离,则双曲线离心率的取值范围是( B ) A.(1,2) B.(2,+∞) C.(1,5) D. (5,+∞) 5.(江西卷7)已知1F 、2F 是椭圆的两个焦点,满足120MF MF ?=u u u u r u u u u r 的点M 总在椭圆内部,则椭圆离心率的取值范围是C A .(0,1) B .1 (0,]2 C .(0, 2 D .,1)2 6.(辽宁卷10)已知点P 是抛物线22y x =上的一个动点,则点P 到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值为( A ) A B .3 C D .92 7.(全国二9)设1a >,则双曲线22 22 1(1)x y a a - =+的离心率e 的取值范围是( B ) A . B . C .(25), D .(2 8.(山东卷(10)设椭圆C 1的离心率为 13 5 ,焦点在X 轴上且长轴长为 A B C D -

历年圆锥曲线高考题附答案

数学圆锥曲线高考题选讲 一、选择题: 1. (2006全国II )已知双曲线x 2a 2-y 2b 2 =1的一条渐近线方程为y =4 3x ,则双曲线的离心率为( ) (A )53 (B )43 (C )54 (D )32 2. (2006全国II )已知△ABC 的顶点B 、C 在椭圆x 2 3+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点 在BC 边上,则△ABC 的周长是( ) (A )2 3 (B )6 (C )4 3 (D )12 3.(2006全国卷I )抛物线2 y x =-上的点到直线4380x y +-=距离的最小值是( ) A . 43 B .7 5 C .85 D .3 4.(2006广东高考卷)已知双曲线2239x y -=,则双曲线右支上的点P 到右焦点的距离与点P 到右准线的距离之比等于( ) A.2 B. 22 3 C. 2 D. 4 5.(2006辽宁卷)方程22520x x -+=的两个根可分别作为( ) A.一椭圆和一双曲线的离心率 B.两抛物线的离心率 C.一椭圆和一抛物线的离心率 D.两椭圆的离心率 6.(2006辽宁卷)曲线 22 1(6)106x y m m m +=<--与曲线221(59)59x y m m m +=<<--的( ) (A)焦距相等 (B) 离心率相等 (C)焦点相同 (D)准线相同 7.(2006安徽高考卷)若抛物线2 2y px =的焦点与椭圆22 162 x y +=的右焦点重合,则p 的值为( ) A .2- B .2 C .4- D .4 8.(2006辽宁卷)直线2y k =与曲线2222 918k x y k x += (,)k R ∈≠且k 0的公共点的个数为( ) (A)1 (B)2 (C)3 (D)4 二、填空题: 9. (2006全国卷I )双曲线2 2 1mx y +=的虚轴长是实轴长的2倍,则m = 。 10. (2006上海卷)已知在平面直角坐标系xOy 中的一个椭圆,它的中心在原点,左焦点为(3,0)F -,右顶点为(2,0)D ,设点11, 2A ?? ??? ,则求该椭圆的标准方程为 。 11. (20XX 年高考全国新课标卷理科14) 在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在 x 轴上, 离心率为 2 2 。过l 的直线 交于,A B 两点,且2ABF 的周长为16,那么C 的方程为 。

高考数学一轮复习专题突破训练圆锥曲线

圆锥曲线 一、填空题 1、(2015年江苏高考)在平面直角坐标系xoy 中,P 为双曲线221x y -=右支上的一个动点,若P 到直线10x y -+=的距离大于c 恒成立,则c 的最大值 为___ 2 __________。 2、(2013年江苏高考)双曲线19 162 2=-y x 的两条渐近线的方程为 。 3、(2013年江苏高考)在平面直角坐标系xOy 中,椭圆C 的标准方程为 )0,0(122 22>>=+b a b y a x ,右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为1d ,F 到l 的距离为2d ,若126d d =,则椭圆 C 的离心率为 。 4、( 南京、盐城市高三二模)在平面直角坐标系xoy 中,已知抛物线C : y x 42=的焦点为F ,定点)0, 22(A ,若射线FA 及抛物线C 相交于点M ,及抛物线C 的准线相交于点N ,则FM :MN= 5、(苏锡常镇四市 高三教学情况调研(二))已知双曲线22 221(,0) x y a b a b -=>的离心率等于2,它的焦点到渐近线的距离等于1,则该双曲线的方程为 ▲ 6、(泰州市 高三第二次模拟考试)已知双曲线22 14x y m -=的渐近线方程为 2 y x =± ,则m = ▲

7、(盐城市 高三第三次模拟考试)若抛物线28y x =的焦点F 及双曲线 22 13x y n -=的一个焦点重合,则n 的值为 ▲ 8、( 江苏南京高三9月调研)已知双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的渐近 线方程 为y =±3x ,则该双曲线的离心率为 ▲ 9、( 江苏苏州高三9月调研)已知双曲线22 15 x y m -=的右焦点及抛物线 212y x =的焦点相同,则此双曲线的渐近线方程为 ▲ 10、(南京市、盐城市 高三)若双曲线222(0)x y a a -=>的右焦点及抛物线 24y x =的焦点重合,则a = ▲ . 11、(南通市 高三)在平面直角坐标系xOy 中,以直线2y x =±为渐近线,且经过抛物 线24y x =焦点的双曲线的方程是 12、(苏州市 高三上期末)以抛物线24y x =的焦点为顶点,顶点为中心,离心率为2的双曲线标准方程为 13、(泰州市 高三上期末)双曲线12222=-b y a x 的右焦点到渐近线的距离是其 到左顶点距离的一半,则双曲线的离心率e = ▲ 14、(苏锡常镇四市2014届高三5月调研(二))在平面直角坐标系xOy 中,已知双曲线22 19x y m -=的一个焦点为(5,0),则实数 m = ▲ 15、(南京、盐城市2014届高三第二次模拟(淮安三模))在平面直角坐 标系xOy 中,双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的两条渐近线及抛物线y 2=4x Y

2019年高考试题汇编理科数学--圆锥曲线

(2019全国1)10.已知椭圆C 的焦点为)0,1(1-F ,)0,1(2F ,过2F 的直线与C 交于A ,B 两点.若||2||22B F AF =, ||||1BF AB =,则C 的方程为( ) A.1222=+y x B. 12322=+y x C.13422=+y x D.14 522=+y x 答案: B 解答: 由椭圆C 的焦点为)0,1(1-F ,)0,1(2F 可知1=c ,又Θ||2||22B F AF =,||||1BF AB =,可设m BF =||2,则 m AF 2||2=,m AB BF 3||||1==,根据椭圆的定义可知a m m BF BF 23||||21=+=+,得a m 2 1 = ,所以a BF 21||2=,a AF =||2,可知),0(b A -,根据相似可得)21,23(b B 代入椭圆的标准方程122 22=+b y a x ,得32=a , 22 22=-=c a b ,∴椭圆C 的方程为12 32 2=+ y x . (2019全国1)16.已知双曲线C:22 221(0,0)x y a b a b -=>>的左、右焦点分别为12,F F ,过1F 的直线与C 的 两条渐近线分别交于,A B 两点.若112,0F A AB F B F B =?=u u u r u u u r u u u r u u u r ,则C 的离心率为 . 答案: 2 解答: 由112,0F A AB F B F B =?=u u u r u u u r u u u r u u u r 知A 是1BF 的中点,12F B F B ⊥uuu r uuu r ,又O 是12,F F 的中点,所以OA 为中位线且1OA BF ⊥,所以1OB OF =,因此1FOA BOA ∠=∠,又根据两渐近线对称,12FOA F OB ∠=∠,所以260F OB ∠=?,221()1tan 602b e a =+=+?=.

圆锥曲线历年高考题附答案解析

数学圆锥曲线测试高考题 一、选择题: 1. (2006全国II )已知双曲线x 2a 2-y 2 b 2 =1的一条渐近线方程为y =43x ,则双曲线的离心率为( ) (A )53 (B )43 (C )54 (D )32 2. (2006全国II )已知△ABC 的顶点B 、C 在椭圆 x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( ) (A )2 3 (B )6 (C )4 3 (D )12 3.(2006全国卷I )抛物线2y x =-上的点到直线4380x y +-=距离的最小值是( ) A .43 B .75 C .85 D .3 4.(2006高考卷)已知双曲线2239x y -=,则双曲线右支上的点P 到右焦点的距离与点P 到右准线的距离之比等于( ) B. C. 2 D. 4 5.(2006卷)方程22520x x -+=的两个根可分别作为( ) A.一椭圆和一双曲线的离心率 B.两抛物线的离心率 C.一椭圆和一抛物线的离心率 D.两椭圆的离心率 6.(2006卷)曲线221(6)106x y m m m +=<--与曲线22 1(59)59x y m m m +=<<--的( ) (A)焦距相等 (B) 离心率相等 (C)焦点相同 (D)准线相同 7.(2006高考卷)若抛物线2 2y px =的焦点与椭圆22 162x y +=的右焦点重合,则p 的值为( ) A .2- B .2 C .4- D .4 8.(2006卷)直线2y k =与曲线2222 918k x y k x += (,)k R ∈≠且k 0的公共点的个数为( ) (A)1 (B)2 (C)3 (D)4 二、填空题: 9. (2006全国卷I )双曲线221mx y +=的虚轴长是实轴长的2倍,则m = 。 10. (2006卷)已知在平面直角坐标系xOy 中的一个椭圆,它的中心在原点,左焦点为(F ,右顶点为(2,0)D ,设

最新全国高考(理科)数学试题分类汇编:圆锥曲线

全国高考理科数学试题分类汇编9:圆锥曲线 一、选择题 1 (高考江西卷(理)) 过点引直线l 与曲线y A,B 两点,O 为坐标原 点,当?AOB 的面积取最大值时,直线l 的斜率等于 ( ) A .y E B B C CD =+ +3 B .3 C .3 ± D . B 2 (福建数学(理)试题)双曲线2 214 x y -=的顶点到其渐近线的距离等于 ( ) A . 25 B . 45 C D C 3 (广东省数学(理)卷)已知中心在原点的双曲线C 的右焦点为()3,0F ,离心率等于3 2, 在双曲线C 的方程是 ( ) A .2214x = B .221 45x y -= C .22 125x y -= D .22 12x =*B 4 (高考新课标1(理))已知双曲线C :22221x y a b -=(0,0a b >>) 则C 的 渐近线方程为 ( ) A .1 4y x =± B .13 y x =± C .12 y x =± D .y x =±*C 5 (高考湖北卷(理))已知04 π θ<<,则双曲线22 122: 1cos sin x y C θθ-=与22 2222 :1sin sin tan y x C θθθ -=的 ( ) A .实轴长相等 B .虚轴长相等 C .焦距相等 D .离心率相等*D 6 (高考四川卷(理))抛物线2 4y x =的焦点到双曲线2 2 13 y x -=的渐近线的距离是 ( )

A . 12 B C .1 D B 7 (浙江数学(理)试题)如图,21,F F 是椭圆14 :22 1=+y x C 与双曲线2C 的公共焦点,B A ,分别是1C ,2C 在第二、四象限的公共点.若四边形21BF AF 为矩形,则2C 的离心率是 ( ) A .2 B .3 C . 2 3 D . 2 6 *D 8 (天津数学(理)试题)已知双曲线22 221(0,0)x y a b a b -=>>的两条渐近线与抛物线 22(0)px p y =>的准线分别交于A , B 两点, O 为坐标原点. 若双曲线的离心率为2, △ AOB 则p = ( ) A .1 B . 3 2 C .2 D .3*C 9 (大纲版数学(理))椭圆22 :143 x y C +=的左、右顶点分别为12,A A ,点P 在C 上且直线2PA 的斜率的取值范围是[]2,1--,那么直线1PA 斜率的取值范围是 ( ) A .1324 ?????? , B .3384 ?????? , C .112?? ???? , D .314?? ???? ,*B 10(大纲版数学(理))已知抛物线2 :8C y x =与点()2,2M -,过C 的焦点且斜率为k 的直 线与C 交于,A B 两点,若0MA MB =,则k = ( ) A . 1 2 B . 2 C D .2*D 11(高考北京卷(理))若双曲线22 221x y a b -=,则其渐近线方程为 ( )

圆锥曲线高考题汇编[带详细解析]

第八章 圆锥曲线方程 ●考点阐释 圆锥曲线是解析几何的重点容,这部分容的特点是: (1)曲线与方程的基础知识要求很高,要求熟练掌握并能灵活应用. (2)综合性强.在解题中几乎处处涉及函数与方程、不等式、三角及直线等容,体现了对各种能力的综合要求. (3)计算量大.要求学生有较高的计算水平和较强的计算能力. ●试题类编 一、选择题 1.(2003京春文9,理5)在同一坐标系中,方程a 2x 2+b 2y 2=1与ax +b y 2=0(a >b >0)的曲线大致是( ) 2.(2003京春理,7)椭圆?? ?=+=? ? sin 3cos 54y x (?为参数)的焦点坐标为( ) A.(0,0),(0,-8) B.(0,0),(-8,0) C.(0,0),(0,8) D.(0,0),(8,0) 3.(2002京皖春,3)已知椭圆的焦点是F 1、F 2,P 是椭圆上的一个动点.如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是( ) A.圆 B.椭圆 C.双曲线的一支 D.抛物线 4.(2002全国文,7)椭圆5x 2+ky 2=5的一个焦点是(0,2),那么k 等于( ) A.-1 B.1 C.5 D. - 5 5.(2002全国文,11)设θ∈(0, 4 π ),则二次曲线x 2cot θ-y 2tan θ=1的离心率的取值围为( ) A.(0, 2 1 ) B.( 22 ,21) C.( 2,2 2 ) D.( 2,+∞) 6.(2002文,10)已知椭圆222253n y m x +和双曲线22 2 232n y m x -=1有公共的焦点,那么双曲线的渐近线方程是( ) A.x =± y 2 15 B.y =± x 2 15

历年高考数学圆锥曲线试题汇总

高考数学试题分类详解——圆锥曲线 一、选择题 1.设双曲线22221x y a b -=(a>0,b>0)的渐近线与抛物线y=x 2 +1相切,则该双曲线的离心率等于 ( C ) (A)3 (B)2 (C)5 (D )6 2.已知椭圆2 2:12 x C y +=的右焦点为F ,右准线为l ,点A l ∈,线段AF 交C 于点B ,若3FA FB =,则||AF = (A). 2 (B). 2 (C).3 (D ). 3 3.过双曲线22 221(0,0)x y a b a b -=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线 的交点分别为,B C .若1 2 AB BC =,则双曲线的离心率是 ( ) A.2 B.3 C.5 D .10 4.已知椭圆22 221(0)x y a b a b +=>>的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF x ⊥轴, 直线 AB 交y 轴于点P .若2AP PB =,则椭圆的离心率是( ) A . 3 B .22 C.13 D .12 5.点P 在直线:1l y x =-上,若存在过P 的直线交抛物线2 y x =于,A B 两点,且 |||PA AB =,则称点P 为“ 点”,那么下列结论中正确的是 ( ) A .直线l 上的所有点都是“点” B .直线l 上仅有有限个点是“点” C .直线l 上的所有点都不是“ 点” D.直线l 上有无穷多个点(点不是所有的点)是“ 点” 6.设双曲线12222=-b y a x 的一条渐近线与抛物线y=x 2 +1 只有一个公共点,则双曲线的离心率为 ( ). A. 4 5 B. 5 C. 2 5 D.5 2

2020年高考圆锥曲线部分大题解析

1.【2018浙江21】如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线 2:4C y x =上存在不同的两点,A B 满足,PA PB 的中点均在C 上。 (1) 设AB 中点为M ,证明:PM 垂直于y 轴; (2) 若P 是半椭圆2 2 1(0)4 y x x +=<上的动点,求PAB ?面积的取值范围。 解析:(1)设2200112211(,),(,),(,)44 P x y A y y B y y AP 中点满足:2 2 102014( )4()22 y x y y ++= BP 中点满足:2 2 202024:( )4()22 y x y y BP ++= 所以12,y y 是方程2 2 0204()4()22 y x y y ++=即22000 280y y y x y -+-=的两个根,所以 12 02 y y y +=,故PM 垂直于y 轴。 (2)由(1)可知212012002,8y y y y y x y +=?=- 所以222 1200013||()384 PM y y x y x =+-= - ,12||y y -= 因此,3 2212001||||4)24 PAB S PM y y y x ?=?-=- 因为2 2 0001(0)4 y x x +=<,所以2200004444[4,5]y x x x -=--+∈ 因此,PAB ? 面积的取值范围是

1. 距离型问题 2.【2018全国3 理20】已知斜率为k 的直线l 与椭圆22 :143 x y C +=交于,A B 两点,线段AB 的中点为(1,)(0)M m m > (1)证明:1 2 k <- ; (2)设F 为C 的右焦点,P 为C 上一点且0FP FA FB ++=,证明:,,FP FA FB 为等差数列,并求出该数列的公差。 解析:(1)由中点弦公式22OM b k k a ?=-,解得34k m =- 又因为点M 在椭圆内,故302m << ,故1 2 k <- (2)由题意知2,2FA FB FM FP FM +==-,故(1,2)P m - 因为点P 在椭圆上,代入可得3,14m k = =-,即3||2 FP = 根据第二定义可知,1211||2,||222 FA x FB x =- =- 联立22 212121114371402,4287 4 x y x x x x x x y x ?+=???-+=?+==? ?=-+?? 即121 ||||4()32 FA FB x x +=- += 故满足2||||||FP FA FB =+,所以,,FP FA FB 为等差数列 设其公差为d ,因为,A B 的位置不确定,则有

高考数学圆锥曲线历年高考真题

浙江省高考数学圆锥曲线真题 22 04. 若椭圆 x 2 y 2 ab 1(a > b > 0)的左、右焦点分别为 F 1、F 2, 线段 F 1F 2被抛物线 y 2=2 bx 的焦点 分成 5∶ 3的两 段 , 则此椭圆的离心率为 16 (A) 1167 05.过双曲线 2 x 2 a 4 17 (B) 17 2 b y 2 1(a b 4 (C)45 (D) 255 5 0,b 0) 的左焦点且垂直于 x 轴的直线与双曲线相交于 M 、 N 两点 , 以 MN 为直径的圆恰好过双曲线的右顶点 则双曲线的离心率等于 07. 已知双曲线 2 x 2 a 2 y 2 1(a 0,b b 2 0) 的左、右焦点分别为 F 1,F 2, P 是准线上一点 , PF 1 PF 2,|PF 1| |PF 2| 4ab , 则双曲线的离心率是 B ) 3 (C ) 2 (D ) 3 △ ABP 的面积为定 则动点 P 的轨迹是A . 圆 B . 椭圆 C . 一条直线 D . 两条平行直线 09. 2 x 过双曲线 2 a 2 y b 2 1(a 0,b 0) 的右顶 点 条渐近线的交点分别为 B,C uuur .若 AB 1 uuur BC , 2 A . 2 B .3 C 08.如图 , AB 是平面 的斜.线.段. ) B A P 第 10 题) A 作斜率为 1的直线 , 该直线与双曲线的两 则双曲线的离心率 是 ( ) .5 D . 10 A 为斜足 , 若点 P 在平面 内运动 , 使得 点 A (0,2) 。若线段 FA 的中点 B 在抛物线上 2 10. (13)设抛物线 y 2 2px (p 0) 的焦点为 F, 则 B 到该抛物线准线的距离为 近线与以 C 1 的长轴为直径的圆相交于 A, B 两点 ( ) 13 2 B . a 2= 13 1 D . A .a 2= C .b 2= b 2=2 2 2 2 11. 设 F 1, F 2分别为椭圆 x 2 3 y 2 1的 左、 右焦点 22 x y 2 11. 已知椭圆 C 1: 2 2 =1 (a > b > 0)与双曲线 C 2: x 2 ab 则点 A 的坐标是 _______ 2 y 1有公共的焦点 , C 2 的一条渐 4 若 C 1 恰好将线段 AB 三等分 , 则 uuur uuuur 点 A, B 在椭圆上. 若 F 1A 5F 2B ,

高中数学圆锥曲线专题-理科

圆锥曲线专题 【考纲要求】 一、直线 1.掌握直线的点方向式方程、点法向式方程、点斜式方程,认识坐标法在建立形与数的关 系中的作用; 2.会求直线的一般式方程,理解方程中字母系数表示斜率和截距的几何意义:懂得一元二 次方程的图像是直线; 3.会用直线方程判定两条直线间的平行或垂直关系(方向向量、法向量); 4.会求两条相交直线的交点坐标和夹角,掌握点到直线的距离公式。 二、圆锥曲线 1.理解曲线的方程与方程的曲线的意义,并能由此利用代数方法判定点是否在曲线上,以 及求曲线交点; 2.掌握圆、椭圆、双曲线、抛物线的定义,并理解上述曲线在直角坐标系中的标准方程的 推导过程; 3.理解椭圆、双曲线、抛物线的有关概念及简单的几何特性,掌握求这些曲线方程的基本 方法,并能根据曲线方程的关系解决简单的直线与上述曲线有两个交点情况下的有关问题; 4.能利用直线和圆、圆和圆的位置关系的几何判定,确定它们之间的位置关系,并能利用 解析法解决相应的几何问题。 【知识导图】【精解名题】 一、弦长问题 例1 如图,已知椭圆 2 21 2 x y +=及点B(0, -2),过点B引椭圆的割线(与椭圆相交的直线)BD与椭圆交于C、D两点 (1)确定直线BD斜率的取值范围 (2)若割线BD过椭圆的左焦点 12 ,F F是椭圆的右焦点,求 2 CDF ?的面积 y x B C D F1F2 O

二、轨迹问题 例2 如图,已知平行四边形ABCO ,O 是坐标原点,点A 在线段MN 上移动,x=4,y=t (33)t -≤≤上移动,点C 在双曲线 22 1169 x y -=上移动,求点B 的轨迹方程 三、对称问题 例3 已知直线l :22 2,: 1169 x y y kx C =++=,问椭圆上是否存在相异两点A 、B ,关于直线l 对称,请说明理由 四、最值问题 例4 已知抛物线2 :2()C x y m =--,点A 、B 及P(2, 4)均在抛物线上,且直线PA 与PB 的倾斜角互补 (1)求证:直线AB 的斜率为定值 (2)当直线AB 在y 轴上的截距为正值时,求ABP ?面积的最大值 五、参数的取值范围 例5 已知(,0),(1,),a x b y → → == ()a → +⊥()a → - (1)求点P (x, y )的轨迹C 的方程 (2)直线:(0,0)l y kx m k m =+≠≠与曲线C 交于A 、B 两点,且在以点D (0,-1)为圆 心的同一圆上,求m 的取值范围 六、探索性问题 例6 设x, y ∈R ,,i j →→ 为直角坐标平面内x, y 轴正方向上的单位向量,若向量 (2)a x i y j → →→=++,且(2)b x i y j →→→=+-且8a b →→ += (1)求点M (x, y )的轨迹方程 (2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设OP OA OB → → → =+,是否存在这样的直线l ,使得四边形OAPB 是矩形?若存在,求出直线l 的方程;若不存在,请说明理由

2020年高考理科数学原创专题卷:《圆锥曲线与方程》

原创理科数学专题卷 专题 圆锥曲线与方程 考点40:椭圆及其性质(1-5题,13,14题) 考点41:双曲线及其性质(6-10题,15题) 考点42:抛物线及其性质(11,12题) 考点43:直线与圆锥曲线的位置关系(17-22题) 考点44:圆锥曲线的综合问题(16题,17-22题) 考试时间:120分钟 满分:150分 说明:请将选择题正确答案填写在答题卡上,主观题写在答题纸上 第I 卷(选择题) 一、选择题(本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。) 1.【来源】2017届湖南省长沙市高三上学期统一模拟考试 考点40 易 椭圆E 的焦点在x 轴上,中心在原点,其短轴上的两个顶点和两个焦点恰为边长是2的正方形的顶点,则椭圆E 的标准方程为( ) A. 2212x += B. 22 12x y += C. 22142x y += D. 22142y x += 2.【2017课标3,理10】 考点40 易 已知椭圆C :22 2 21x y a b +=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的 圆与直线20bx ay ab -+=相切,则C 的离心率为( ) A . B . C . D .13 3.【来源】重庆市第一中学2016-2017学年高二月考 考点40 中难 已知椭圆 2 21(0)1 x y m m +=>+的两个焦点是12,F F , E 是直线2y x =+与椭圆的一个公共点,当12EF EF +取得最小值时椭圆的离心率为( ) A. 2 3 4.【来源】湖南省湘潭市2017第三次高考模拟 考点40 难 如图, 12,A A 为椭圆22 195 x y +=长轴的左、右端点, O 为坐标原点, ,,S Q T 为椭圆上不同于12,A A 的三点,直线12,,,QA QA OS OT 围成一个平行四边形OPQR ,则

(完整版)圆锥曲线高考真题

(1)求M 的方程 (2)C ,D 为M 上的两点,若四边形ACBD 的对角线CD ⊥AB ,求四边形ACBD 的面积最大值. 2.设1F ,2F 分别是椭圆()222210y x a b a b +=>>的左右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N. (1)若直线MN 的斜率为34 ,求C 的离心率; (2)若直线MN 在y 轴上的截距为2,且15MN F N =,求a,b . 3.已知椭圆C :,直线不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M . (1) 证明:直线OM 的斜率与的斜率的乘积为定值; (2)若过点(),延长线段OM 与C 交于点P ,四边形OAPB 能否平行四边行?若能,求此时的斜率,若不能,说明理由. 4.已知抛物线C :22y x = 的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于A ,B 两点,交C 的准线于P ,Q 两点. (1)若F 在线段AB 上,R 是PQ 的中点,证明AR ∥FQ ; (2)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程. 5.已知抛物线C :y 2 =2x ,过点(2,0)的直线l 交C 与A ,B 两点,圆M 是以线段AB 为直径的圆. (1)证明:坐标原点O 在圆M 上; (2)设圆M 过点P (4,-2),求直线l 与圆M 的方程. 6.已知斜率为k 的直线l 与椭圆22 143 x y C +=:交于A ,B 两点,线段AB 的中点为 ()()10M m m >,. (1)证明:1 2 k <-; (2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0u u u r u u u r u u u r .证明:FA u u u r ,FP u u u r ,FB u u u r 成 等差数列,并求该数列的公差.

历年高考数学圆锥曲线第二轮专题复习

高考数学试题圆锥曲线 一. 选择题: 1.又曲线22 221x y a b ==(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点, 且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为B A.(1,3) B.(]1,3 C.(3,+∞) D.[)3,+∞ 2.(已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2,-1)的距离与点P 到 抛物线焦点距离之和取得最小值时,点P 的坐标为( A ) A. ( 41 ,-1) B. (4 1 ,1) C. (1,2) D. (1,-2) 3.如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用12c 和22c 分别表示椭轨道Ⅰ和Ⅱ的焦距,用12a 和22a 分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子: ①1122a c a c +=+; ②1122a c a c -=-; ③1212c a a c >; ④ 11c a <22 c a . 其中正确式子的序号是B A. ①③ B. ②③ C. ①④ D. ②④ 4.若双曲线22221x y a b -=(a >0,b >0)上横坐标为32 a 的点到右焦点的距离大于它 到左准线的距离,则双曲线离心率的取值范围是( B ) A.(1,2) B.(2,+∞) C.(1,5) D. (5,+∞) 5.已知1F 、2F 是椭圆的两个焦点,满足120MF MF ?=的点M 总在椭圆内部,则椭圆离心率的取值范围是C A .(0,1) B .1 (0,]2 C . D . 6.已知点P 是抛物线22y x =上的一个动点,则点P 到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值为( A )

高考数学圆锥曲线及解题技巧

椭圆与双曲线的性质 椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长 轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线 方程是00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆 的焦点角形的面积为122 tan 2 F PF S b γ ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应 于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则2 2OM AB b k k a ?=-, 即020 2y a x b K AB -=。 12. 若000(,)P x y 在椭圆22 221x y a b +=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+. 13. 若000(,)P x y 在椭圆22221x y a b +=内,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b +=+. 双曲线 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角. 2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除 去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相交. 4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支)

高考数学试题分类大全理科圆锥曲线

2008年高考数学试题分类汇编 圆锥曲线 一. 选择题: 1.(福建卷11)又曲线22 221x y a b ==(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点, 且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为B A.(1,3) B.(]1,3 C.(3,+∞) D.[)3,+∞ 2.(海南卷11)已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2,-1)的距离与点P 到 抛物线焦点距离之和取得最小值时,点P 的坐标为( A ) A. (4 1 ,-1) B. ( 4 1 ,1) C. (1,2) D. (1,-2) 3.(湖北卷10)如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点 1 2c 第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用 和22c 分别表示椭轨道Ⅰ和Ⅱ的焦距,用12a 和22a 分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子: ①1122a c a c +=+; ②1122a c a c -=-; ③1212c a a c >; ④11c a <22 c a . 其中正确式子的序号是B A. ①③ B. ②③ C. ①④ D. ②④ 4.(湖南卷8)若双曲线22221x y a b -=(a >0,b >0)上横坐标为32 a 的点到右焦点的距离大于 它到左准线的距离,则双曲线离心率的取值范围是( B ) A.(1,2) B.(2,+∞) C.(1,5) D. (5,+∞)

江苏历年高考数学试题及答案汇编十圆锥曲线

江苏历年高考理科数学试题及答案汇编十圆锥曲线 (2008-2018)试题 1、9.(5分)(2008江苏)如图,在平面直角坐标系xoy中,设三角形ABC的顶点分别为A (0,a),B(b,0),C(c,0),点P(0,p)在线段AO上的一点(异于端点),这里a,b,c,p均为非零实数,设直线BP,CP分别与边AC,AB交于点E,F,某同学已正确求得直线 OE的方程为,请你完成直线OF的方程:. 2、12.(5分)(2008江苏)在平面直角坐标系xOy中,椭圆的焦距为2c,以O为圆心,a为半径作圆M,若过作圆M的两条切线相互垂直,则椭圆的离心率为. 3、13.(5分)(2009江苏)如图,在平面直角坐标系xoy中,A1,A2,B1,B2为椭圆 的四个顶点,F为其右焦点,直线A1B2与直线B1F相交于点T,线段OT与椭圆的交点M恰为线段OT的中点,则该椭圆的离心率为.

4、6.(5分)(2010江苏)在平面直角坐标系xOy 中,双曲线上一点M ,点M 的横坐标是3,则M 到双曲线右焦点的距离是 . 5、8.(5分)(2010江苏)函数y=x 2(x >0)的图象在点(a k ,a k 2 )处的切线与x 轴交点的横坐标为a k+1,k 为正整数,a 1=16,则a 1+a 3+a 5= . 6、9.(5分)(2010江苏)在平面直角坐标系xOy 中,已知圆x 2+y 2 =4上有且仅有四个点到直线12x ﹣5y+c=0的距离为1,则实数c 的取值范围是 . 7、14.(5分)(2011江苏)设集合 222{(,)| (2),,},{(,)|221,,} 2 m A x y x y m x y B x y m x y m x y =-+∈=++∈R R 若,A B ≠? 则实数m 的取值范围是______________. 8、8.(5分)(2012江苏)在平面直角坐标系xOy 中,若双曲线 的离心率为 ,则m 的值为 . 9、12.(5分)(2012江苏)在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2 ﹣8x+15=0,若直线y=kx ﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是 . 10、3.(5分)(2013江苏)双曲线 的两条渐近线方程为 . 11、12.(5分)(2013江苏)在平面直角坐标系xOy 中,椭圆C 的标准方程为(a >b >0),右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为d 1,F 到l 的距离为d 2,若d 2= ,则椭圆C 的离心率为 . 12、9.(5分)(2014江苏)在平面直角坐标系xOy 中,直线x+2y ﹣3=0被圆(x ﹣2)2 +(y+1)2 =4截得的弦长为 . 13、10.(5分)(2015江苏)在平面直角坐标系xOy 中,以点(1,0)为圆心且与直线mx ﹣y ﹣2m ﹣1=0(m ∈R )相切的所有圆中,半径最大的圆的标准方程为 . 14、12.(5分)(2015江苏)在平面直角坐标系xOy 中,P 为双曲线x 2﹣y 2 =1右支上的一个动点,若点P 到直线x ﹣y+1=0的距离大于c 恒成立,则实数c 的最大值为 . 15、3.(5分)(2016江苏)在平面直角坐标系xOy 中,双曲线 ﹣ =1的焦距是 . 16、10.(5分)(2016江苏)如图,在平面直角坐标系xOy 中,F 是椭圆+=1(a >b >0)的右焦点,直线y=与椭圆交于B ,C 两点,且∠BFC=90°,则该椭圆的离心率是 .

高考理科数学-圆锥曲线专题训练

高三圆锥曲线选填训练 一、选择题(本大题共10小题,每小题4分,共40分) 1.椭圆12222=+b y a x (a >b>0)离心率为23,则双曲线12222=-b y a x 的离心率为 ( ) A .45 B .25 C .32 D .45 2.椭圆13 122 2=+y x 的焦点为F 1和F 2,点P 在椭圆上,如果线段PF 1中点在y 轴上,那么|PF 1|是|PF 2| 的 ( ) A .7倍 B .5倍 C .4倍 D .3倍 3.过双曲线x 2 -22 y =1的右焦点F 作直线l 交双曲线于A , B 两点,若|AB |=4,则这样的直线l 有 ( ) A .1条 B .2条 C .3条 D .4条 4.如果双曲线 136 642 2=-y x 上的一点P 到双曲线的右焦点的距离是8,那么点P 到右准线的距离是 ( ) A .10 B .7 7 32 C .27 D .5 32 5.若抛物线y 2=2p x 上的一点A (6,y )到焦点F 的距离为10,则p 等于 ( ) A .4 B .8 C .16 D .32 6.如图,过抛物线)(022>=p px y 的焦点F 的直线l 交抛物线于点A .B ,交其准线于点C ,若 BF BC 2=,且3=AF ,则此抛物线的方程为 A .x y 23 2= B .x y 32= C .x y 2 9 2= D .x y 92= 7.曲线 19252 2 =+y x 与曲线)925(19252 2 ≠<=-+-k k k y k x 且 有相同的( A .长、短轴 B .焦距 C .离心率 D .准线 8.过椭圆22 2214x y a a += (a>0)的焦点F 作一直线交椭圆于P, Q 两点,若线段PF 与QF 的长分别为 p, q ,则11p q +等于( ) A .4a B .1 2a C .4a D .2a 9.椭圆13 22 =+y x 上的点到直线x -y+6=0的距离的最小值是 . 10.已知双曲线C 的渐近线方程是x y 32±=,且经过点M ()1,2 9 -,则双曲线C 的方程是 . 11.AB 是抛物线y =x 2的一条弦,若AB 的中点到x 轴的距离为1,则弦AB 的长度的最大值 为 .