搜档网
当前位置:搜档网 › 紫外-可见光谱分析方法

紫外-可见光谱分析方法

紫外-可见光谱分析方法
紫外-可见光谱分析方法

紫外—可见光谱分析方法在环境监测中的应用

紫外—可见光谱分析水质监测技术是现代环境监测的一个重要发展方向, 与传统的化学分析、电化学分析和色谱分析等分析方法相比, 光谱分析技术更具有操作简便、消耗试剂量小、重复性好、测量精度高和检测快速的优点, 非常适合对环境水样的快速在线监测。目前该技术主要有原子吸收光谱法、分子吸收光谱法以及高光谱遥感法, 其中高光谱遥感法由于测量精度不高多数用于定性分析, 而原子吸收光谱法精度虽高, 但由于首先要把样品汽化, 因而耗能较高, 系统体积大, 不适合广泛使用, 比较而言, 分子吸收光谱法是目前应用较为广泛的水质分析技术, 其中紫外—可见光谱分析法可直接或间接地测定水中大多数金属离子、非金属离子和有机污染物的含量, 具有灵敏、快速、准确、简单等优点, 并可实现对多种水质参数的检测, 在对饮用水、地表水、工业废水等水体的在线监测中具有显著的技术优势, 是国内外科研机构与主要分析仪表厂商竞相研发的现代水质监测技术。

1、UV-VIS分光光度计的发展情况

紫外可见分光光度计的发展从历史上看,分光光度计按其光路可分为两类。第一类是单光束仪器,这类仪器的优点是光效率高,结构简单和价格便宜,缺点是稳定性差,漂移较大。第二类是双光束仪器,这类仪器具有稳定性高、漂移小的优点,但结构复杂、价格较贵、效率较低。后来开发的一种分光束系统吸取了单光束仪器光效率高的优点,它使初始光束的小部分直接导向光强检测器,大部分经过样品,从而可使仪器信噪比高、反应快。

随着计算机技术在分析仪器领域的广泛应用,单光束、双光束UV-VIS分光光度计均得到了极大的发展。如利用计算机技术在单光束型分光光度计上可实现波长自动扫描的功能。在微机控制下,这种仪器(如国内的721型)还可实现光门开闭、调零、透过率与吸光度测定的自动化及部分校正仪器漂移的功能。在实验室常规分析、在线分析及流动注射分析中均有应用。双光束型仪器在计算机控制下,可以任意选择单光束、双光束或双、单光束模式进行扫描。如有些仪器可进行固定波长分析、全波长扫描和时间动力学测定等,在固定波长方式下,最多可同时测定12个波长,同时读取相应波长下的吸光度或透过率,并可同时乘以相应的计算因子在波长扫描方式下,可以在全波长范围内任意选择所需要的扫描波段,并可计算拾取的峰、谷、点、一至多阶导数、对数光密度、散射光校正、光谱的相加、减、相乘和净吸收值,可完成多次重复的扫描并将光谱图显示在同一屏幕上,根据需要对图形进行电子图形放大、自动标尺处理、峰形平滑处理,时间动力学测定方式适用于测定不同反应时间样品光密度或透过率的动态变化。双光束型仪器可

以在每次开机时自动校正。有些仪器还允许同时测量两个样品,并且波长范围扩展到190—1100nm,可用来进行定性、定量分析。由于这种仪器在测定时所有信息均显示在计算机屏幕上,利用窗口技术和鼠标或键盘可直接在屏幕上操作,测定结果可贮存在硬盘或软盘中,也可利用打印机将数据或图形直接打印出来,给分析工作带来极大的便利。

2、国内外UV-VIS分光光度计现状

UV-VIS分光光度计发展到90年代,其性能大大增强,制作愈来愈精巧、美观。目前国内生产的此种仪器,单光束型如UV-7595型,双光束型如TU1221型、760CRT型,760MC型。这些仪器采用高分辨、低杂散光的单色器,可进行全波段扫描、分波段扫描和动力学时间扫描,具有浓度直读、线性回归、光谱贮存、微分光谱、差分光谱、积分光谱、二波长、三波长法测定等功能,可实现人机对话、吸光度刁透过率T谱图直接转换等操作,能很好地满足环境监测工作的需要。

目前国外生产的UV-VIS分光光度计,波长范围有些达190-1100 nm,如H A C H公司生产的DR /4000型仪器,可进行多波长测定以实现多组分分析,准确度较高,波长扫描速度可设置到0.1n m,可进行样品空白自动校正和仪器系统、电压自动测试,比色皿分别有1英寸、1cm、5cm、10cm等不同规格,显示数据或谱图的屏幕可随测试者的需要自行调节,由于系统内装有先进的数据处理软件,利用这种仪器可进行复杂组分的分析。岛津公司生产的U V-2501 PC型仪器,采用双闪耀衍射光栅、双单色器(DDM),既达到了超低杂散光(杂散光为0.0003%,220nm,Nal)又可获得高的光通量,高浓度的样品可不需稀释直接进行测试,波长扩展到近红外(1100nm),吸光度最高可达9Abs。新近岛津公司生产的紫外可见二极管阵列分光光度计( Multi Spec-1500),采用二级管列阵(以二极管作为测光元件,若干个并列放置制作而成)接受从光栅来的不同波长的光,这种新型仪器的特点是:(l)光学系统简单,机械转动部分少,从而故障率大大降低; (2)操作简便,其放式的样品室可直接进行样品更换和加试剂等: (3)测定速度快,Multi Spec-1500使用512个二极管,远比传统的分光光度计测光元件多,因此测定速度非常快,并可满足多波长同时监控的要求;如利用这种仪器测定2,6-二氯靛酚和抗坏血酸在水溶液中的还原反应过程,仪器在400一800 n m内,以0.1秒为间隔,可测定反应在0.4 -1.2秒间的变化情况,谱图上抗坏血酸还原反应的峰从显现后逐渐由长波长向短波长方向转变直至最后消失,这种测定是传统分光光度计无法进行的;(4) 信号和数据传输速度快,由于Multi Spec-1500采用了专用的DSp(数字信号处理机)和SCSI接口,可在40us左右完成采集数据、数据信号校正、测量数据平均以及元件的波长变换,并可进行快速的数据传送;(5) Multi Spec-1500采用高性能的软件,具有丰富的

光谱处理功能,不仅能进行吸光度和透过率的转换、归一化、基线校正、微分平滑化、面积计算、K-M转换等,还具有三维数据处理功能如进行时间扫描时仪器可记录吸光度-波长-时间三维数据。这些都是传统分光光度计不能进行的。

3、工作原理

紫外-可见分子吸收光谱分析是根据物质的吸收光谱来分析物质的成分、结构和浓度的方法, 其基本原理是是朗伯-比尔吸收定律( 图1) , 即在一定的吸收光程下, 物质的浓度与吸光度成正比, 见式( 1)。

式中: A 为吸光度; I 0为入射光强度; I 为透射光强度; k 为摩尔吸光系数, 单位为L/mol / cm; b为液层厚度(吸收光程) , 单位为cm; c为吸光物质的浓度, 单位为mol/ L。

在多组分共存的情况下, 如各吸光组分的浓度均比较稀, 可忽略相互之间的作用, 这时体系的总吸光度等于各组分的吸光度之和如式( 2) 所示

式中 A 为溶液总的吸光度, Ai 式第i 个组分的吸光度, 依据吸光度的加和性, 可以进行多组分分析和多参数测量。不同化学物质各自不同的特征吸收光谱是对水质进行定性、定量分析的基础。通过紫外/ 可见光谱仪, 采集环境水样在紫外区或可见光区的全波段连续光谱, 可以获得待测物质的特征吸收光谱, 然后利用智能算法分析光谱和各待测水质参数的关系, 建立相关预测模型, 可以实现对多种水质参数的测量并预测其变化趋势。

4、UV-VIS在环境方面的主要研究现状与进展

目前, 光谱水质监测技术主要有在线( on - line) 水质监测和原位( in - situ)水

质监测两类。在线( o n - line) 光谱水质监测具有采样环节, 主要是在监测区域通过泵、阀、导管等流路控制器件把经过沉淀和过滤的水样送入流通池( 样品光学检测室) , 然后通过吸收光谱对水样中的某种物质的成分及其含量进行定量分析, 其中对待检水样一般要经过在线前处理, 如显色、富集和消解等。而原位( in - situ)光谱水质监测( 即投入式) 则无需样品采样, 直接把光学水质探头固定在监测水域, 这样水样可以自动流经光学检测室, 然后通过光谱分析实现对水样的原位监测。就目前国内外技术发展来看, 顺序注射光谱分析法是比较典型和普遍应用的在线光谱水质监测技术。顺序注射光谱分析法原理如图 2 所示, 主要是以光谱仪为核心, 借助顺序注射平台, 实现对水样品的在线前处理、顺序进样和顺序检测。顺序注射光谱分析技术具有试剂消耗量少( u L 级消耗) 、进样精确( u L 级)、测量准确(检出限能够达到u g/L, 甚至更高的量级)和分析高效快速的优点。

Abdalla等报道了在线监测饮用水中氰化物含量的相关技术, 采用光纤光谱分析仪与美国FIAlab 仪器公司的FI -lab - 3500 顺序注射分析仪, 在600 nm 波长处可测得饮用水中氰化物浓度与吸光度的线性范围为 2 .00~ 7 .0 mg /L之间, 检出限达到0.6 mg / L,每小时可以监测45个样品, 具有很高的样品采样率, 足以反映饮用水中氰化物含量变化的高频信息。Vanloot 等报道了饮用水中Fe3+ 和Al3+的在线监测技术, 应用顺序注射光谱分析技术在水厂在线监测饮用水中的Fe3+和Al3+的含量, Fe3+和Al3+的检出限分别达到 5 .6 和 4. 9ug/ L。2008

年Poachanee Norfun 等报道了基于顺序注射光谱分析的工业污染水样中Al3+ 的监测技术, 在428 nm 处的检测线性范围为0 . 02~ 0 .6 mg/ L,检出限达到13 ug/ L。2009 年葡萄牙波尔图大学的Silva等报道了废水中钒的含量监测, 采用顺序注射光谱分析技术, 在565 nm 波长处, 检出限达到0 .39 mg/ L。Zhang

等报道了顺序注射光谱分析监测海水中的亚硝酸盐含量,采用在线预富集技术, 在543nm 波长处, 采用20 mm 光程的流通池, 能够检测到nmol/ L的亚硝酸盐的含量, 监测精度远远高于传统的分析技术。

近年来, 顺序注射光谱分析技术正朝着高度集成化的方向发展, 主要是以微型光谱仪为核心, 依托阀上实验室( LOV , labonvalve) , 即把试样的注入口、反应通道及样品光学检测室以精密加工技术集成在多通道选择阀上, 实现了水质监测系统的集成化与微型化。如美国FIAlab 仪器公司的集成化顺序注射光谱水质分析系统( 图3) , 采用海洋公司的微型光谱仪, 不但体积小( 24 cm* 24 cm * 16.5 cm) 、重量轻( 6. 75 kg ) , 而且对硝酸盐、亚硝酸盐、氨氮、磷酸盐和氯化物等多种水质参数具有比较高的检测精度和ug/L级的检出限。

与(on-line)在线水质监测比较而言,目前原位(in-situ)水质监测技术应用更为广泛,更易实现多参数水质监测,比较典型是奥地利Scan公司的G系列在线水质分析仪,专门为地表水,地下水和市政污水的监测而设计。采用紫外-可见光电阵列感光器和差分光谱分析软件,与传统的滤光片单波长紫外分析仪相比有了革命性的进步,可以测量硝氮,COD,BOD,TOC,DOC,浊度或悬浮浓度;可以实现更多参数的在线测量;仪器出厂按全球参数标准预标定,通常无须现场标定。对于复杂

的工业废水,该公司研发的spectro: : lyserTM系列水质分析监测仪更为先进, 采取浸没式微小型 UV - VIS 分光光度计和双光束检测技术,通过直接扫描水样连续光谱区, 获得水质参数的特征光谱;然后利用算法分析光谱和各水质参数的关系,建立相关预测模型,再根据模型演算未知水样的COD和BOD等参数信息。该仪器可实现从污水到超纯水的COD、BOD、TOC、硝氮、苯、甲苯、二甲苯、苯酚等多参数的测量, 测量过程中不需要样品采样与相关前处理技术, 也不需要泵、阀等样品流路控制器件,仅用12V低电压电源供电即可驱动, 其测量时间短,根

据其所测参数的多少一个测量周期在 20~ 60s之间,也足以反映水质变化的高频信息。但也正是由于缺乏有效的前处理技术,干扰较大,使得测量准确度及系统稳定性与在线(o n-line)测量相比相对较低, 一般在检出限在mg /L的量级。德国

E+H公司的stip-scan 产品以及德国WTW公司的IQSensorNet 等具有类似特点。

5、光谱分析的水质监测技术发展趋势

现代光谱分析技术为水质监测开辟了一个崭新的领域,尽管已有部分产品进入市场, 但是仍然存在一些亟待突破的关键技术需要解决, 主要有如下几个方面。研究低功耗、低成本的微型化水质监测仪器是技术发展的必然, 而光谱仪的微型化与低功耗化是需要解决的核心关键技术, 因此MEMS微型光谱仪(based microspectrometer ,MEMS)、芯片级光谱仪( Chip - sizedopticalspectrometers) 和片上光谱仪( Microspect rometer o n a Chip) 的研究成为当前国际仪器科学、生化分析和环境科学等诸多相关领域的研究热点。如美国监测微系统公司(measurementmicrosysems, MM)开发的片上光谱仪, 其波长分辨率达到0. 5 nm, 较传统的紫外 -可见微型光谱仪提高了近 10 倍, 更适合对水质的光谱分析;美国加州大学应用物理系的 Adams 等采用微细加工技术和新材料技术, 把片上光谱仪和微流控芯片集成于一体, 实现了对水体样本的片上分析。

由于水体中各种待检物质的特征吸收光谱不同, 因此在紫外 -可见波长范

围内可以实现对待检水样的多参数测量,这正是基于光谱分析的水质监测技术优势所在, 但随着人们生活水平的提高, 对水资源环境的监测参数越来越多, 其

中有很多参数的吸收光谱特征不在紫外 -可见光谱范围内, 因此, 在追求光谱

仪的微型化和高性能的同时, 更应该着手开发其他波长范围的系列微型光谱仪

的研究, 如德国弗朗夫费可靠性与微集成技术研究所已于近年展开了面向环境

监测的近红外和中红外系列集成微型光谱仪的研究, 以满足在线生化分析对分

析仪器微小型、高效益、检测快速以及在更宽光谱范围内对多种有机物污染的监测要求。

各种仪器分析的基本原理及谱图表示方法!!!紫外吸收光谱UV分析

各种仪器分析的基本原理及谱图表示方法!!! 紫外吸收光谱UV 分析原理:吸收紫外光能量,引起分子中电子能级的跃迁谱图的表示方法:相对吸收光能量随吸收光波长的变化提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息荧光光谱法FS 分析原理:被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光谱图的表示方法:发射的荧光能量随光波长的变化提供的信息:荧光效率和寿命,提供分子中不同电子结构的信息红外吸收光谱法IR 分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁谱图的表示方法:相对透射光能量随透射光频率变化提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率拉曼光谱法Ram 分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射谱图的表示方法:散射光能量随拉曼位移的变化提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率核磁共振波谱法NMR 分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁谱图的表示方法:吸收光能量随化学位移的变化提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息电子顺磁共振波谱法ESR 分析原理:在外磁场中,分子中未成对电子吸收射频能量,产生电子自旋能级跃迁谱图的表示方法:吸收光能量或微分能量随磁场强度变化提供的信息:谱线位置、强度、裂分数目和超精细分裂常数,提供未成对电子密度、分子键特性及几何构型信息 质谱分析法MS 分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e 分离 谱图的表示方法:以棒图形式表示离子的相对峰度随m/e 的变化提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息气相色谱法GC 分析原理:样品中各组分在流动相和固定相之间,由于分配系数不同而分离谱图的表示方法:柱后流出物浓度随保留值的变化提供的信息:峰的保留值与组分热力学参数有关,是定性依据;峰面积与组分含量有关反气相色谱法IGC 分析原理:探针分子保留值的变化取决于它和作为固定相的聚合物样品之间的相互作用力谱图的表示方法:探针分子比保留体积的对数值随柱温倒数的变化曲线提供的信息:探针分子保留值与温度的关系提供聚合物的热力学参数裂解气相色谱法PGC 分析原理:高分子材料在一定条件下瞬间裂解,可获得具有一定特征的碎片谱图的表示方法:柱后流出物浓度随保留值的变化提供的信息:谱图的指纹性或特征碎片峰,表征聚合物的化学结构和几何构型凝胶色谱法GPC 分析原理:样品通过凝胶柱时,按分子的流体力学体积不同进行分离,大分子先流出谱图的表示方法:柱后流出物浓度随保留值的变化提供的信息:高聚物的平均分子量及其分布热重法TG 分析原理:在控温环境中,样品重量随温度或时间变化谱图的表示方法:样品的重量分数随温度或时间的变化曲线提供的信息:曲线陡降处为样品失重区,平台区为样品的热稳定区热差分析DTA 分析原理:样品与参比物处于同一控温环境中,由于二者导热系数不同产生温差,记录温度随环境温度或时间的变化 谱图的表示方法:温差随环境温度或时间的变化曲线提供的信息:提供聚合物热转变温度及各种热效应的信息示差扫描量热分析DSC 分析原理:样品与参比物处于同一控温环境中,记录维持温差为零时,所需能量随环境温度或时间的变化 谱图的表示方法:热量或其变化率随环境温度或时间的变化曲线提供的信息:提供聚合物热转变温度及各种热效应的信息静态热―力分析TMA 分析原理:样品在恒力作用下产生的形变随温度或时间变化谱图的表示方法:样品形变值随温度或时间变化曲线提供的信息:热转变温度和力学状态

紫外可见吸收光谱习题集及答案(20200925103547)

专业资料 值得拥有 一、选择题(共85题) 1. 2 分(1010) 在紫外-可见光度分析中极性溶剂会使被测物吸收峰 () (1) 消失 (2) 精细结构更明显 (3) 位移 (4) 分裂 2. 2 分(1019) 用比色法测定邻菲罗啉-亚铁配合物时 ,配合物的吸收曲线如图 1所示,今有a 、b 、 c 、 d 、 e 滤光片可供选用,它们的透光曲线如图 2所示,你认为应选的滤光片为 () 3. 2 分(1020) 欲测某有色物的吸收光谱,下列方法中可以采用的是 () (1) 比色法 (2) 示差分光光度法 (3)光度滴定法 (4) 分光光度法 4. 2 分(1021) 按一般光度法用空白溶液作参比溶液,测得某试液的透射比为 10% ,如果更改参 比溶液,用一般分光光度法测得透射比为 20%的标准溶液作参比溶液,则试液的透 光率应等于 () (1) 8% (2) 40% (3) 50% ⑷ 80% 5. 1 分(1027) 邻二氮菲亚铁配合物,其最大吸收为 510 nm ,如用光电比色计测定应选用哪一种 滤光片? () (1)红色 (2) 黄色 (3) 绿色 (4) 蓝色 6. 2 分(1074) 下列化合物中,同时有 n →d , τ→d , C →

紫外可见吸收光谱习题集及答案42554

五、紫外可见分子吸收光谱法(277题) 一、选择题 ( 共85题) 1.2分(1010) 在紫外-可见光度分析中极性溶剂会使被测物吸收峰( ) (1)消失(2) 精细结构更明显 (3)位移 (4)分裂 2。 2 分(1019) 用比色法测定邻菲罗啉-亚铁配合物时,配合物的吸收曲线如图1所示,今有a、b、 c、d、e滤光片可供选用,它们的透光曲线如图2所示,你认为应选的滤光片为 ( ) 3。 2 分 (1020) 欲测某有色物的吸收光谱,下列方法中可以采用的是( ) (1) 比色法 (2) 示差分光光度法 (3) 光度滴定法 (4)分光光度法 4。2分 (1021) 按一般光度法用空白溶液作参比溶液,测得某试液的透射比为10%,如果更改参 比溶液,用一般分光光度法测得透射比为 20%的标准溶液作参比溶液,则试液的透 光率应等于( ) (1)8% (2) 40% (3) 50% (4)80% 5. 1 分(1027) 邻二氮菲亚铁配合物,其最大吸收为 510 nm,如用光电比色计测定应选用哪一种 滤光片?( ) (1)红色(2) 黄色 (3)绿色 (4) 蓝色 6. 2 分(1074) 下列化合物中,同时有n→π*,π→π*,σ→σ*跃迁的化合物是( ) (1) 一氯甲烷 (2) 丙酮(3) 1,3-丁二烯(4) 甲醇 7. 2 分(1081) 双波长分光光度计的输出信号是 ( ) (1) 试样吸收与参比吸收之差 (2) 试样在λ1和λ2处吸收之差 (3) 试样在λ1和λ2处吸收之和 (4)试样在λ1的吸收与参比在λ2的吸收之差 8. 2分 (1082) 在吸收光谱曲线中,吸光度的最大值是偶数阶导数光谱曲线的( ) (1) 极大值 (2) 极小值 (3) 零(4) 极大或极小值 9。 2 分 (1101) 双光束分光光度计与单光束分光光度计相比,其突出优点是 ( ) (1) 可以扩大波长的应用范围 (2) 可以采用快速响应的检测系统

紫外-可见光谱分析-----化合物结构鉴定剖析

化合物结构鉴定紫外-可见光谱分析作业

1.说明纳米Ru、Rh、Ir 等十种纳米材料的紫外可见光谱(附图) 2.说明马尾紫、孔雀绿、多氯代酚、苏丹、peo-ppo-peo、pvp等十种有机物或聚合物的紫外可见光谱(附图) 解答如下: 1(1)、纳米ZnS的紫外-可见光谱分析 紫外吸收光谱表征: 紫外-可见吸收光谱可观察能级结构的变化,通过吸收峰位置变化可以考察能级的变化。由图5可知,硫化锌在200~340 nm波长范围内对紫外光有较强的吸收。 1(2)、NiFeAu纳米材料的紫外-可见光谱分析 紫外吸收光谱表征:

上图比较了相关纳米粒子的紫外-可见吸收光谱.图b是NiFeAu纳米粒子分散在正己烷中的紫外-可见吸收光谱可以看出NiFeAu纳米粒子在约557nm有一个较宽的吸收峰.对比用同样方法合成的NiFe图a在所测试的范围内无特征的吸收峰可以判断多功能性NiFeAu纳米粒子具有源于Au表面等离子共振吸收的光学性质.与用同样方法合成的纳米Au粒径8nm在可见光区526nm有强的吸收峰相比图c NiFeAu纳米粒子的吸收峰形明显变宽并出现红移该观察说明除了粒径大小变化的因素Fe和Ni的存在影响了Au的表面等离子共振吸收也间接证明了NiFeAu纳米复合粒子的生成.Au的特征吸收峰的峰形和强度不同原因在于纳米粒子的组成发生了变化.根据纳米颗粒光学响应模型Mie理论表面等离子共振吸收是由入射光频率和金属纳米颗粒中的自由电子的集体发生共振时产生的而表面等离子共振吸收的共振条件对纳米颗粒周围的环境十分敏感纳米粒子的组成结构尺寸形状电解质或者粒子间的相互作用力不同特征吸收峰的强度和形状都会受到影响而不一样. 1(3)、TiO 纳米材料的紫外-可见光谱分析 2 紫外吸收光谱表征:

紫外光谱分析法习题答案

紫外光谱分析法习题 班级姓名分数 一、选择题 1. 在紫外-可见光度分析中极性溶剂会使被测物吸收峰 ( 3 ) (1) 消失 (2) 精细结构更明显 (3) 位移 (4) 分裂 2. 双光束分光光度计与单光束分光光度计相比,其突出优点是 ( 4 ) (1) 可以扩大波长的应用范围; (2) 可以采用快速响应的检测系统 (3) 可以抵消吸收池所带来的误差; (4) 可以抵消因光源的变化而产生的误差 3. 许多化合物的吸收曲线表明,它们的最大吸收常常位于 200─400nm 之间,对这一光谱区应选用的光源为 ( 1 ) (1) 氘灯或氢灯 (2) 能斯特灯 (3) 钨灯 (4) 空心阴极灯灯 4. 助色团对谱带的影响是使谱带 ( 1 ) (1)波长变长 (2)波长变短 (3)波长不变 (4)谱带蓝移 5. 指出下列哪种是紫外-可见分光光度计常用的光源? ( 4 ) (1) 硅碳棒 (2) 激光器 (3) 空心阴极灯 (4) 卤钨灯 6. 指出下列哪种不是紫外-可见分光光度计使用的检测器? ( 1 ) (1) 热电偶 (2) 光电倍增管 (3) 光电池 (4) 光电管 7. 紫外-可见吸收光谱主要决定于 ( 2 ) (1) 分子的振动、转动能级的跃迁; (2) 分子的电子结构 (3) 原子的电子结构; (4) 原子的外层电子能级间跃迁 8. 基于发射原理的分析方法是 ( 2 ) (1) 光电比色法 (2) 荧光光度法 (3) 紫外及可见分光光度法 (4) 红外光谱法 9. 基于吸收原理的分析方法是 ( 4 ) (1) 原子荧光光谱法;(2) 分子荧光光度法; (3) 光电直读光谱法; (4) 紫外及可见分光光度法 10.在紫外-可见分光光度计中, 强度大且光谱区域广的光源是

实验1紫外-可见吸收光谱实验报告

实验一:紫外-可见吸收光谱 一、实验目的 1.熟悉和掌握紫外-可见吸收光谱的使用方法 2.用紫外-可见吸收光谱测定某一位置样品浓度 3.定性判断和分析溶液中所含物质种类 二、实验原理 紫外吸收光谱的波长范围在200~400,可见光吸收光谱的波长在400~800,两者都属于电子能谱,两者都可以用朗伯比尔(Lamber-Beer’s Law)定律来描述 A=ε bc 其中A为吸光度;ε为光被吸收的比例系数;c为吸光物质的浓度,单位mol/L; b为吸收层厚度,单位cm 有机化合物的紫外-可 见吸收光谱,是其分子中外 层价电子跃迁的结果,其中 包括有形成单键的σ电子、 有形成双键的π电子、有未 成键的孤对n电子。外层 电子吸收紫外或者可见辐 射后,就从基态向激发态(反键轨道)跃迁。主要有四种跃迁,所需能量ΔE 大小顺序为σ→σ*>n→σ*>π→π>n→π*

三、实验步骤 1、开机 打开紫外-可见分光光度计开关→开电脑→软件→联接→M(光谱方法)进行调节实验需要的参数:波长范围700-365nm 扫描速度高速;采样间隔:0.5nm 2、甲基紫的测定 (1)校准基线 将空白样品(水)放到比色槽中,点击“基线”键,进行基线校准 (2)标准曲线的测定 分别将5ug/ml、10ug/ml 、15ug/ml 、20ug/ml甲基紫溶液移入比色皿(大约2/3处),放到比色槽中,点击“开始”键,进行扫描,保存 (3)测定试样 将试样甲基紫溶液移入比色皿(大约2/3处),放到比色槽中,点击“开始” 键,进行扫描,保存 3、甲基红的测定 (1)校准基线

将空白样品(乙醇)放到比色槽中,点击“基线”键,进行基线校准 (2)测定试样 将试样甲基紫溶液移入比色皿(大约2/3处),放到比色槽中,点击“开始” 键,进行扫描,保存 四、实验结果 1.未知浓度的测定 分别测定了5μg/ml,10μg/ml,15μg/ml,20μg/ml和未知浓度的甲基紫溶液的紫外吸收光谱,紫外吸收谱图如下: 甲基紫在580nm是达到最大吸收见下表: 浓度/μg*ml-1吸光度 50.665 10 1.274 15 2.048 20 2.659

紫外可见吸收光谱习题集和答案

五、紫外可见分子吸收光谱法(277题) 一、选择题 ( 共85题 ) 1. 2 分 (1010) 在紫外-可见光度分析中极性溶剂会使被测物吸收峰 ( ) (1) 消失 (2) 精细结构更明显 (3) 位移 (4) 分裂 2. 2 分 (1019) 用比色法测定邻菲罗啉-亚铁配合物时,配合物的吸收曲线如图1所示,今有a、b、 c、d、e滤光片可供选用,它们的透光曲线如图2所示,你认为应选的滤光片为 ( ) 3. 2 分 (1020) 欲测某有色物的吸收光谱.下列方法中可以采用的是 ( ) (1) 比色法 (2) 示差分光光度法 (3) 光度滴定法 (4) 分光光度法 4. 2 分 (1021) 按一般光度法用空白溶液作参比溶液.测得某试液的透射比为 10%.如果更改参 比溶液.用一般分光光度法测得透射比为 20% 的标准溶液作参比溶液.则试液的透 光率应等于 ( ) (1) 8% (2) 40% (3) 50% (4) 80% 5. 1 分 (1027) 邻二氮菲亚铁配合物.其最大吸收为 510 nm.如用光电比色计测定应选用哪一种 滤光片? ( ) (1) 红色 (2) 黄色 (3) 绿色 (4) 蓝色 6. 2 分 (1074) 下列化合物中.同时有 n→*.→*.→*跃迁的化合物是( ) (1) 一氯甲烷 (2) 丙酮 (3) 1,3-丁二烯 (4) 甲醇 7. 2 分 (1081) 双波长分光光度计的输出信号是 ( ) (1) 试样吸收与参比吸收之差 (2) 试样在1和2处吸收之差 (3) 试样在1和2处吸收之和 (4) 试样在1的吸收与参比在2的吸收之差8. 2 分 (1082) 在吸收光谱曲线中.吸光度的最大值是偶数阶导数光谱曲线的 ( ) (1) 极大值 (2) 极小值 (3) 零 (4) 极大或极小值 9. 2 分 (1101) 双光束分光光度计与单光束分光光度计相比.其突出优点是 ( ) (1) 可以扩大波长的应用范围 (2) 可以采用快速响应的检测系统 (3) 可以抵消吸收池所带来的误差 (4) 可以抵消因光源的变化而产生的误差

紫外可见吸收光谱及荧光光谱分析

1. 简述荧光光谱法与紫外-可见光吸收光谱法的原理及两种方法的异同点。 ①荧光光谱法原理: 原子荧光光谱法(AFS)是原子光谱法中的一个重要分支,是介于原子发射(AES)和原子吸收(AAS)之间的光谱分析技术,它的基本原理就是:固态、液态样品在消化液中经过高温加热,发生氧化还原、分解等反应后样品转化为清亮液态,将含分析元素的酸性溶液在预还原剂的作用下,转化成特定价态,还原剂KBH4反应产生氢化物和氢气,在载气(氩气)的推动下氢化物和氢气被引入原子化器(石英炉)中并原子化。特定的基态原子(一般为蒸气状态)吸收合适的特定频率的辐射,其中部分受激发态原子在去激发过程中以光辐射的形式发射出特征波长的荧光,检测器测定原子发出的荧光而实现对元素测定的痕量分析方法。 ②紫外-可见光吸收光谱法的原理: 紫外-可见吸收光谱法是利用某些物质的分子吸收190-750nm的辐射来进行分析测定的方法,是基于分子内电子跃迁产生的吸收光谱。在有机化合物分子中有形成单键的σ电子、有形成双键的π电子、有未成键的孤对n电子。当分子吸收一定能量的辐射能时,这些电子就会跃迁到较高的能级,此时电子所占的轨道称为反键轨道而这种电子跃迁同内部的结构有密切的关系。在紫外吸收光谱中,电子的跃迁有σ→σ*、n→σ*、π→π*和n→π*四种类型,各种跃迁类型所需要的能量依下列次序减小:σ→σ*>n→σ*>π→π*>n→π*。 当某种物质受到光的照射时,物质分子就会与光发生碰撞,其结果是光子的能量传递到了分子上。这样,处于稳定状态的基态分子就会跃迁到不稳定的高能态,即激发态: M(基态)+hv------M*(激发态) 由于物质的能量是不连续的,即能量上一量子化的。只有当入射光的能量(hv)与物质分子的激发态和基态的能量差相等时才能发生吸收:△E=E2-E1= hv=hc/λ 而不同的物质分子因其结构的不同而具有不同的量子化能级,即△E不同,故对光的吸收也不同。这就是对光的吸收作用。 紫外-可见吸收光谱定性分析的依据:光吸收程度最大处的波长叫做最大吸

紫外-可见光谱分析方法

紫外—可见光谱分析方法在环境监测中的应用 紫外—可见光谱分析水质监测技术是现代环境监测的一个重要发展方向, 与传统的化学分析、电化学分析和色谱分析等分析方法相比, 光谱分析技术更具有操作简便、消耗试剂量小、重复性好、测量精度高和检测快速的优点, 非常适合对环境水样的快速在线监测。目前该技术主要有原子吸收光谱法、分子吸收光谱法以及高光谱遥感法, 其中高光谱遥感法由于测量精度不高多数用于定性分析, 而原子吸收光谱法精度虽高, 但由于首先要把样品汽化, 因而耗能较高, 系统体积大, 不适合广泛使用, 比较而言, 分子吸收光谱法是目前应用较为广泛的水质分析技术, 其中紫外—可见光谱分析法可直接或间接地测定水中大多数金属离子、非金属离子和有机污染物的含量, 具有灵敏、快速、准确、简单等优点, 并可实现对多种水质参数的检测, 在对饮用水、地表水、工业废水等水体的在线监测中具有显著的技术优势, 是国内外科研机构与主要分析仪表厂商竞相研发的现代水质监测技术。 1、UV-VIS分光光度计的发展情况 紫外可见分光光度计的发展从历史上看,分光光度计按其光路可分为两类。第一类是单光束仪器,这类仪器的优点是光效率高,结构简单和价格便宜,缺点是稳定性差,漂移较大。第二类是双光束仪器,这类仪器具有稳定性高、漂移小的优点,但结构复杂、价格较贵、效率较低。后来开发的一种分光束系统吸取了单光束仪器光效率高的优点,它使初始光束的小部分直接导向光强检测器,大部分经过样品,从而可使仪器信噪比高、反应快。 随着计算机技术在分析仪器领域的广泛应用,单光束、双光束UV-VIS分光光度计均得到了极大的发展。如利用计算机技术在单光束型分光光度计上可实现波长自动扫描的功能。在微机控制下,这种仪器(如国内的721型)还可实现光门开闭、调零、透过率与吸光度测定的自动化及部分校正仪器漂移的功能。在实验室常规分析、在线分析及流动注射分析中均有应用。双光束型仪器在计算机控制下,可以任意选择单光束、双光束或双、单光束模式进行扫描。如有些仪器可进行固定波长分析、全波长扫描和时间动力学测定等,在固定波长方式下,最多可同时测定12个波长,同时读取相应波长下的吸光度或透过率,并可同时乘以相应的计算因子在波长扫描方式下,可以在全波长范围内任意选择所需要的扫描波段,并可计算拾取的峰、谷、点、一至多阶导数、对数光密度、散射光校正、光谱的相加、减、相乘和净吸收值,可完成多次重复的扫描并将光谱图显示在同一屏幕上,根据需要对图形进行电子图形放大、自动标尺处理、峰形平滑处理,时间动力学测定方式适用于测定不同反应时间样品光密度或透过率的动态变化。双光束型仪器可

第三张紫外吸收光谱分析习题及答案教学文案

第三张紫外吸收光谱分析习题及答案

一填空 1.紫外吸收光谱研究的是分子的(电子)能级跃迁,它还包括了(振动)和 (转动)能级跃迁。 2朗伯-比尔定律适用于(平行单色光)对(均匀非散射性)溶液的测定 3 .在朗伯—比尔定律I/I o = 10-abc中, I o是入射光的强度, I是透射光的强度, a是吸光系数, b是光通过透明物的距离, 即吸收池的厚度, c是被测物的浓度, 则透射比T =_I/I o________, 百分透过率T% =_I/I o ×100%_____, 吸光度A与透射比T的关系为____-logT___。 4 .振动能级间跃迁产生的光谱叫振动光谱,又叫红外光谱。 5紫外-可见光光谱中(最大吸收峰)所对应的波长称最大吸收波长。 二选择 1不需要选择的吸光度测量条件为(D) A入射光波长 B参比溶液 C吸收光读数范围 D测定温度 2某溶液的渗透率为30%,其吸光度为(A) A-lg0.3 B-lg7.0 C3-lg30 D-lg0.7 3指出下列化合物中,哪个化合物的紫外吸收波长最大( A )。 A. CH 3CH 2 CH 3 B. CH 3 CH 2 OH C. CH 2=CHCH 2 CH=CH 2 D. CH 3 CH=CHCH=CHCH 3 4电磁辐射的微粒性表现在哪种性质上(B)。 A. 能量 B. 频率 C. 波长 D. 波数 5测量某样品,如何测量时吸收池透光面有污渍没有擦干净,对测量结果有何 影响(D)

A影响不确定 B无影响 C偏高 D偏低 三判断 1溶液的透射比越大,表示物质对光的吸收越小(正确) 2在符合朗波比尔定律的范围内,有色物质的浓度增加,最大吸收波长不变,则透光度减小(正确) 3分光光度法既可以用于单组份测定,也可以用于多组分测定。(正确) 4不同物质吸收光谱的形状以及波长都不同。(正确) 5分子内部三种运动形式能量大小比较为电子能级>振动能级>转动能级。(正确) 四名词解释 1吸光度A:物质对光的吸收程度。 2透光率T:透射光的强度与入射光强度之比称为透射比与透光率。 3生色团:凡能使化合物在紫外可见光区产生吸收的基团不论是否显现出颜色都称为发色团,主要是带双键的基团。 4长移--吸收峰向长波方向移动的现象;深色效应-吸收峰强度增强的现象。 5跃迁:当分子吸收一定能量的辐射时,就发生相应能级间的电子跃迁。 五简答 1什么是紫外可见光谱法? 答利用被测物质的分子对紫外可见光选择性吸收的特性而建立起来的方法,叫紫外可见光谱法。 2如何采用紫外分光光度发对有机物质进行定性分析。

第9章-紫外可见吸收光谱法

第九章紫外可见吸收光谱法 §9-1 概述 利用紫外可见分光光度计测量物质对紫外可见光的吸收程度(吸光度)和紫外可见吸收光谱来确定物质的组成、含量,推测物质结构的分析方法,称为紫外可见吸收光谱法或紫外可见分光光度法(ultraviolet and visible spectrophotometry,UV-VIS)。它具有如下特点: (1)灵敏度高适于微量组分的测定,一般可测定10-6g级的物质,其摩尔吸收系数可以达到104~105数量级。 (2) 准确度较高其相对误差一般在1% ~ 5%之内。 (3) 方法简便操作容易、分析速度快。 (4) 应用广泛不仅用于无机化合物的分析,更重要的是用于有机化合物的鉴定及结构分析(鉴定有机化合物中的官能团)。可对同分异构体进行鉴别。此外,还可用于配合物的组成和稳定常数的测定。 紫外可见吸收光谱法也有一定的局限性,有些有机化合物在紫外可见光区没有吸收谱带,有的仅有较简单而宽阔的吸收光谱,更有个别的紫外可见吸收光谱大体相似。例如,甲苯和乙苯的紫外吸收光谱基本相同。因此,单根据紫外可见吸收光谱不能完全决定这些物质的分子结构,只有与红外吸收光谱、核磁共振波谱和质谱等方法配合起来,得出的结论才会更可靠。 §9-2 紫外可见吸收光谱法的基本原理 当一束紫外可见光(波长范围200~760nm)通过一透明的物质时,具有某种能量的光子被吸收,而另一些能量的光子则不被吸收,光子是否被物质所吸收既决定于物质的内部结构,也决定于光子的能量。当光子的能量等于电子能级的能= h f),则此能量的光子被吸收,并使电子由基态跃迁到激发量差时(即ΔE 电 态。物质对光的吸收特征,可用吸收曲线来描述。以波长λ为横坐标,吸光度A 为纵坐标作图,得到的A-λ曲线即为紫外可见吸收光谱(或紫外可见吸收曲线)。它能更清楚地描述物质对光的吸收情况(图9-1)。 从图9-1中可以看出:物质在某一波长处对光的吸收最强,称为最大吸收峰,对应的波长称为最大吸收波长(λmax);低于高吸收峰的峰称为次峰;吸收峰旁

紫外光谱法与红外光谱法..

部分一紫外光谱法与红外光谱法 摘要:光谱法是基于物质与辐射能作用时,测量由物质内部发生量子化的能级之间的跃迁而产生的发射、吸收或散射辐射的波长和强度进行分析的方法,紫外光谱法(UV),红外光谱法(IR)都是属于光谱法。 一、原理不同 1、紫外光谱(UV) 分子中价电子经紫外光照射时,电子从低能级跃迁到高能级,此时电子就吸收了相应波长的光,这样产生的吸收光谱叫紫外光谱。紫外光谱是由于分子中价电子的跃迁而产生的。 紫外吸收光谱的波长范围是100-400nm(纳米), 其中100-200nm 为远紫外区,200-400nm为近紫外区, 一般的紫外光谱是指近紫外区。 2、红外光谱法(IR) 分子与红外辐射的作用,使分子产生振动和转动能级的跃迁所得到得吸收光谱,属于分子光谱与振转光谱范畴。利用样品的红外吸收光谱进行定性、定量分析及测定分子结构的方法称之红外光谱法。 红外光区的波长范围是0.76—500 μm,近红外0.76—2.5μm中红外 2.5—25μm远红外波长25—500μm 。 二、仪器对比

三、分析目的 1、紫外吸收光谱由电子能级跃迁引起紫外线波长短、频率高、光子能量大,能引起分子外层电子的能级跃迁。电子跃迁虽然伴随着振动及转动能级跃迁,但因后者能级差小,常被紫外曲线所淹没。除某些化合物蒸气(如苯等)的紫外吸收光谱会显现振动能级跃起迁外,一般不显现。因此,紫外吸收光谱属电子光谱。光谱简单。 2、中红外吸收光谱由振—转能级跃迁引起,红外线的波长比紫外线长,光子能量比紫外线小得多,只能收起分子的振动能级并伴随转动能级的跃迁,因而中红外光谱是振动—转动光谱,光谱复杂。 3、紫外吸收光谱法只适用于芳香族或具有共轭结构的不饱和脂肪族化合物及某些无物的定性分析,不适用于饱和有机化合物。红外吸收光谱法不受此限,在中红外区,能测得所有有机化合物的特征红外光谱,用于定性分析及结构研究,而且其特征性远远高于紫外吸收光谱,除此之外,红外光谱还可以用于某些无机物的研究 4、红外光谱的特征性比紫外光谱强。因为紫外光谱主要是分子的∏电子或n电子跃迁所产生的吸收光谱。因此,多数紫外光谱比较简单,特征性差。 UV-Vis主要用于分子的定量分析,但紫外光谱(UV)为四大波谱之一,是鉴定许多化合物,尤其是有机化合物的重要定性工具之一。红外光谱主要用于化合物鉴定及分子结构表征,亦可用于定量分析。

紫外可见吸收光谱法

紫外可见吸收光谱法 开放分类:化学科学 收藏分享到顶[1]编辑词条 目录 ? 1 概述 ? 2 基本原理 ? 3 特点 ? 4 仪器组成 ? 5 应用 ? 6 影响因素 ?展开全部 摘要 紫外可见吸收光谱法是利用某些物质的分子吸收10~800nm光谱区的辐射来进行分析测定的方法,这种分子吸收光谱产生于价电子和分子轨道上的电子在电子能级间的跃迁,广泛用于有机和无机物质的定性和定量测定。该方法具有灵敏度高、准确度好、选择性优操作简便、分析速度好等特点。 紫外可见吸收光谱法-概述 图4.3

分子的紫外可见吸收光谱法是基于分子内电子跃迁产生的吸收光谱进行分析的一种常用的光谱分析法。分子在紫外-可见区的吸收与其电子结构紧密相关。紫外光谱的研究对象大多是具有共轭双键结构的分子。如(图4.3),胆甾酮(a)与异亚丙基丙酮(b)分子结构差异很大,但两者具有相似的紫外吸收峰。两分子中相同的O=C-C=C共轭结构是产生紫外吸收的关键基团。 紫外-可见以及近红外光谱区域的详细划分如图4.4所示。紫外-可见光区一般用波长(nm)表示。其研究对象大多在200-380 nm的近紫外光区和/或380-780 nm的可见光区有吸收。紫外-可见吸收测定的灵敏度取决于产生光吸收分子的摩尔吸光系数。该法仪器设备简单,应用十分广泛。如医院的常规化验中,95%的定量分析都用紫外-可见分光光度法。在化学研究中,如平衡常数的测定、求算主-客体结合常数等都离不开紫外-可见吸收光谱。[1] (图)图4.4 紫外可见吸收光谱法-基本原理 紫外可见吸收光谱的基本原理是利用在光的照射下待测样品内部的电子跃迁,电子跃迁类型有: (1)σ→σ* 跃迁指处于成键轨道上的σ电子吸收光子后被激发跃迁到σ*反键轨道 (2)n→σ* 跃迁指分子中处于非键轨道上的n电子吸收能量后向σ*反键轨道的跃迁 (3)π→π* 跃迁指不饱和键中的π电子吸收光波能量后跃迁到π*反键轨道。 (4)n→π* 跃迁指分子中处于非键轨道上的n电子吸收能量后向π*反键轨道的跃迁。

紫外可见光谱分析技术

紫外可见光谱分析技术及其发展和应用 医学院宋宗辉2016201632 紫外-可见吸收光谱法概述 分子的紫外-可见吸收光谱法是基于分子内电子跃迁产生的吸收光谱进行分析的一种常用的光谱分析法。分子在紫外-可见区的吸收与其电子结构紧密相关。紫外光谱的研究对象大多是具有共轭双键结构的分子。紫外-可见以及近红外光谱区域的详细划分如下图所示。紫外-可见光区一般用波长(nm)表示。其研究对象大多在200-380 nm的近紫外光区和/或380-780 nm的可见光区有吸收。紫外-可见吸收测定的灵敏度取决于产生光吸收分子的摩尔吸光系数。该法仪器设备简单,应用十分广泛。如医院的常规化验中,95%的定量分析都用紫外-可见分光光度法。在化学研究中,如平衡常数的测定、求算主-客体结合常数等都离不开紫外-可见吸收光谱。 紫外可见区域 1.1分子结构与吸收光谱 1.1电子能级和跃迁 从化学键性质考虑,与有机物分子紫外-可见吸收光谱有关的电子是:形成单键的σ电子,形成双键的π电子以及未共享的或称为非键的n电子。有机物分子内各种电子的能级高低次序下图所示,σ*>π*>n>π>σ。标有*者为反键电子。

电子能级及电子跃迁示意图 可见,σ→σ*跃迁所需能量最大,λmax<170 nm,位于远紫外区或真空紫外区。一般紫外-可见分光光度计不能用来研究远紫外吸收光谱。如甲烷,λmax =125 nm。饱和有机化合物的电子跃迁在远紫外区。 1.2生色团 π→π*所需能量较少,并且随双键共轭程度增加,所需能量降低。若两个以上的双键被单键隔开,则所呈现的吸收是所有双键吸收的叠加;若双键共轭,则吸收大大增强,波长红移,λmax和εmax均增加。如单个双键,一般λmax为150-200nm,乙烯的λmax = 185nm;而共轭双键如丁二烯λmax = 217nm,己三烯λmax = 258nm。 n→π*所需能量最低,在近紫外区,有时在可见区。但π→π*跃迁几率大,是强吸收带;而n→π*跃迁几率小,是弱吸收带,一般εmax<500。许多化合物既有π电子又有n 电子,在外来辐射作用下,既有π→π*又有n→π*跃迁。如-COOR基团,π→π*跃迁λmax=165 nm,εmax=4000;而n→π*跃迁λmax=205nm,εmax=50。π→π*和n→π*跃迁都要求有机化合物分子中含有不饱和基团,以提供π轨道。含有π键的不饱和基团引入饱和化合物中,使饱和化合物的最大吸收波长移入紫外-可见区。这类能产生紫外-可见吸收的官能团,如一个或几个不饱和键,C=C,C=O,N=N,N=O等称为生色团(chromophore)。某些生色团的吸收特性见下表。 某些生色团及相应化合物的吸收特性

紫外吸收光谱分析基本原理

第九章紫外吸收光谱分析ultraviolet spectrometry,UV 第一节紫外吸收光谱分析基本原理principles of UV 一、紫外吸收光谱的产生formation of UV 1.概述 紫外吸收光谱:分子价电子能级跃迁。 波长范围:100-800 nm (1) 远紫外光区:100-200nm (2) 近紫外光区:200-400nm (3)可见光区:400-800nm 可用于结构鉴定和定量分析。 电子跃迁的同时,伴随着振动转动能级的跃迁;带状光谱。 2.物质对光的选择性吸收及吸收曲线 ?E = E2 - E1 = hν 量子化;选择性吸收 吸收曲线与最大吸收波长λ max 用不同波长的单色光照射,测吸光度 吸收曲线的讨论: ①同一种物质对不同波长光的吸光度不同。吸光度最大处对应的波长称为最大吸收波长λmax ②不同浓度的同一种物质,其吸收曲线形状相似λmax不变。而对于不同物质,它们的吸收曲线形状和λmax则不同。 ③吸收曲线可以提供物质的结构信息,并作为物质定性分析的依据之一。 ④不同浓度的同一种物质,在某一定波长下吸光度A 有差异,在λmax处吸光度A 的差异最大。此特性可作作为物质定量分析的依据。 ⑤在λmax处吸光度随浓度变化的幅度最大,所以测定最灵敏。吸收曲线是定量分析中选择入射光波长的重要依据。 3.电子跃迁与分子吸收光谱 物质分子内部三种运动形式: (1)电子相对于原子核的运动; (2)原子核在其平衡位置附近的相对振动; (3)分子本身绕其重心的转动。 分子具有三种不同能级:电子能级、振动能级和转动能级 三种能级都是量子化的,且各自具有相应的能量。 分子的内能:电子能量E e 、振动能量E v 、转动能量E r 即:E=E e+E v+E r ΔΕe>ΔΕv>ΔΕr 能级跃迁 电子能级间跃迁的同时,总伴随有振动和转动能级间的跃迁。即电子光谱中总包含有振动能级和转动能级间跃迁产生的若干谱线而呈现宽谱带。 讨论: (1)转动能级间的能量差ΔΕr:0.005~0.050eV,跃迁产生吸收光谱位于远红外区。远红外光谱或分子转动光谱; (2)振动能级的能量差ΔΕv约为:0.05~1eV,跃迁产生的吸收光谱位于红外区,红外光谱或分子振动光谱;

紫外光谱分析法习题答案资料讲解

紫外光谱分析法习题 答案

紫外光谱分析法习题 班级姓名分数 一、选择题 1. 在紫外-可见光度分析中极性溶剂会使被测物吸收峰 ( 3 ) (1) 消失 (2) 精细结构更明显 (3) 位移 (4) 分裂 2. 双光束分光光度计与单光束分光光度计相比,其突出优点是 ( 4 ) (1) 可以扩大波长的应用范围; (2) 可以采用快速响应的检测系统 (3) 可以抵消吸收池所带来的误差; (4) 可以抵消因光源的变化而产生的误差3. 许多化合物的吸收曲线表明,它们的最大吸收常常位于 200─400nm 之间,对这一光谱区应选用的光源为 ( 1 ) (1) 氘灯或氢灯 (2) 能斯特灯 (3) 钨灯 (4) 空心阴极灯灯 4. 助色团对谱带的影响是使谱带 ( 1 ) (1)波长变长 (2)波长变短 (3)波长不变 (4)谱带蓝移 5. 指出下列哪种是紫外-可见分光光度计常用的光源? ( 4 ) (1) 硅碳棒 (2) 激光器 (3) 空心阴极灯 (4) 卤钨灯 6. 指出下列哪种不是紫外-可见分光光度计使用的检测器? ( 1 ) (1) 热电偶 (2) 光电倍增管 (3) 光电池 (4) 光电管 7. 紫外-可见吸收光谱主要决定于 ( 2 ) (1) 分子的振动、转动能级的跃迁; (2) 分子的电子结构 (3) 原子的电子结构; (4) 原子的外层电子能级间跃迁 8. 基于发射原理的分析方法是 ( 2 )

(1) 光电比色法 (2) 荧光光度法 (3) 紫外及可见分光光度法 (4) 红外光谱法9. 基于吸收原理的分析方法是 ( 4 ) (1) 原子荧光光谱法;(2) 分子荧光光度法; (3) 光电直读光谱法; (4) 紫外及可见分光光度法 10.在紫外-可见分光光度计中, 强度大且光谱区域广的光源是 ( 3 ) (1) 钨灯 (2) 氢灯 (3) 氙灯 (4) 汞灯 11. 物质的紫外-可见吸收光谱的产生是由于 ( 3 ) (1) 分子的振动 (2) 分子的转动 (3) 原子核外层电子的跃迁 (4) 原子核内层电子的跃迁 12. 阶跃线荧光的波长 ( 1 ) (1)大于所吸收的辐射的波长; (2)小于所吸收的辐射的波长 (3)等于所吸收的辐射的波长; (4)正比于所吸收的辐射的波长 13. 比较下列化合物的UV-VIS吸收波长的位置(λmax ) ( 4 ) (1) a>b>c (2) c>b>a (3)b>a>c (4)c>a>b 14. 在紫外-可见光谱区有吸收的化合物是 ( 4 ) (1) CH3-CH=CH-CH3 (2) CH3-CH2OH (3) CH2=CH-CH2-CH=CH2 (4) CH2=CH-CH=CH-CH3 15. 双波长分光光度计和单波长分光光度计的主要区别是 ( 2 ) (1)光源的个数; (2)单色器的个数; (3)吸收池的个数; (4)单色器和吸收池的个数 16. 下列哪种方法可用于测定合金中皮克数量级(10-12)的铋? ( 2 )

紫外吸收光谱分析

第五章紫外吸收光谱分析 概述 电子跃迁与分子吸收光谱 物质分子内部三种运动形式:(1)电子相对于原子核的运动(2)原子核在其平衡位置附近的相对振动(3)分子本身绕其重心的转动。 分子具有三种不同能级:电子能级、振动能级和转动能级 三种能级都是量子化的,且各自具有相应的能量。 分子的内能:电子能量Ee 、振动能量Ev 、转动能量Er 即: E=Ee+Ev+Er ΔΕe>ΔΕv>ΔΕr 能级跃迁 电子能级间跃迁的同时,总伴随有振动和转动能级间的跃迁。即电子光谱中总包含有振动能级和转动能级间跃迁产生的若干谱线而呈现宽谱带。 电磁辐射的基本性质 电磁辐射(电磁波):以接近光速(真空中为光速)传播的能量;c =λν =ν/σ E = hν = h c /λ c :光速=2.998×1010cm·s; λ:波长;ν:频率;σ:波数;E :能量; h :普朗克常数=6.624×10-34J·s 电磁辐射具有波动性和微粒性; E = E2 - E1 = h = h c /λ 电磁γ射线:5~140 pm X射线:10-3~10 nm 光学区:10~1000 μm 远紫外区:10~200 nm 近紫外区:200~380 nm 可见区:380~780 nm 近红外区:0.78~2.5μm 中红外区:2.5~50μm 远红外区:50~1000μm 微波:0.1 mm~1 m 无线电波:>1 m 幅射的波长分布无机络合物吸收带主要是由电荷转移跃迁和配位场跃迁而产生的。电荷转移跃迁的摩尔吸收系数很大,根据朗伯-比尔定律,可以建立这些络合物的定量分析方法。 应用: 1.定量分析: 有色物质→可见光区:340~800nm 对紫外线有吸收的无色物质→紫外光区:200~340nm 灵敏度ppm, 精密度RSD:0.5% 2.定性分析:提供某些分子的部分结构信息 例:苯的B带吸收(230~270nm间出现7个精细结构的峰) 不同物质具有不同的分子结构,对不同波长的光会产生选择性吸收性吸收,因而具有不同的吸收光谱。而各种化合物,无机化合物或有机化合物吸收光谱的产生在本质上是相同的,都是外层电子跃迁的结果,但二者在电子跃迁类型上有一定区别。

紫外光谱分析方法

第四章紫外光谱、紫外-可见光分光光度法 §4-1紫外-可见吸收光谱的产生 一.原因:分子中价电子跃迁产生的光谱吸收 二.电子跃迁类型 与有机化合物有关的价电子有σ、π和n电子,主要跃迁有:1.N-V跃迁:由基态跃迁至反键轨道:σ-σ*、π-π* 2.N-Q跃迁:非键电子跃迁到反键轨道:n-σ*、n-π* 3.N-R跃迁:σ电子激发到更高能级或电离 吸收波谱: 此外,与分光光度法有关的跃迁还有: 4.电荷转移跃迁,常见过渡金属与有机配位体(显色剂)之间电子转移跃迁,大多在可见光区,吸收强度大,往往用于定量分析。5.配位场跃迁,d-d或f-f轨道在配位场作用下简并,轨道分裂,产生d-d(Ⅳ、V周期)、f-f(La系、Ar系)跃迁。此吸收能量少,吸收强度较小,多在可见光区。 三.辐射吸收的基本定律—朗伯-比尔定律 当一束平行光通过均匀的液体介质时,光的一部分被吸收,一部分透过溶液,还有一部分被容器表面散射。 即I0=It(吸收光)+Ia(透射光)+Ir 若散射光Ir→0 则I0=It+Ia

1.透光率T=Ia/I0 T↑,吸收↓ 2.吸光度A=lg1/T=lgI0/Ia A↑,吸收↑ 3.朗伯-比尔定律 当入射光波长一定时(单色光),溶液吸光度A只与溶液中有色物质浓度和比色皿厚度有关,成正比,即 A∝LC => A=kLC 式中:k-比例常数-系吸系数 L-比色皿厚度 C-溶液浓度 当C为摩尔浓度,令k=ε,称为摩尔吸光系数。 4.吸光度的加和性,若溶液中有m种成分,其在某一波长下吸光系数分别为ε1、ε2…εm,浓度分别为C1、C2…Cm 则 对于同一种物质,波长不同时ε(或K)不相同。 四、无机化合物的紫外-可见光谱 §4-2有机化合物的紫外-可见光谱 一.吸收光谱表示方法(光谱图) 用A~λ或T%~λ作图称光谱图。 二.常用术谱 1.生色基团:含有π键的不饱和基团(为C=C、C=O、N=N、

紫外吸收光谱分析

紫外吸收光谱分析 一、电磁波与分子吸收光谱 1.1 电磁波的特性 电磁波是一种横波,在真空中以光速传播。电磁波具有波粒二象性 波动性:电磁波是以波动的形式传播,具有衍射、干涉及偏振等现象,因此它具有波动性。 粒子性:电磁波由极小、密集的光量子(光子微粒)组成。电磁辐射的实质是光子的运动。电磁波在与物质相互作用时,主要表现为粒子性。 电磁波波粒二象性的明显程度与其波长有关:波长愈短,粒子性愈明显;波长愈长,波动特性愈明显。 1.2 电磁波谱 γ射线:具有最高能量的微粒。仅在核反应、高速粒子加速器、宇宙星体剧烈变化时产生 X-射线:具有软、硬之分。医学上所用的CT、X 透视仪均使用的软X 射线紫外光:包括远紫外(10~200nm)和近紫外(200~400nm)。远紫外能被空气中的氧吸收(臭氧层) 可见光(380 ~780 nm):复合光与单色光(激光) 红外光:分为近红外、红外和远红外三个区域。 微波:能使物质分子“翻转”-微波加热的原理;微波通信等 无线电波:射频、视频、短波、中波、长波 电磁波波长、频率的关系:λ=c / υ λ-波长(m);c-光速(3×10 8m·s-1);υ-频率(Hz) 1.3 电磁波的能量

光子作为一种物质微粒具有固有的能量: E=hυ=h· c /λ E-能量;h-普朗克常数;υ-频率(Hz) ;c-光速;λ-波长(m) 电磁波的能量: ◆显粒子性时,能量由光子能量的公式而定 ◆显波动性时,能量主要决定于电磁波振幅 1.4 分子的能级与能量 有机化合物分子的内部微观运动大致可分为三种,每一种微观运动都有许多种可能的状态,不同的状态具有不同的能量,对应不同的能级。分子内部的运动与对应的能量如下表所示。 分子内部的运动可分为价电子运动,分子内原子在平衡位置附近的振动和分子绕其重心的转动,这些运动具有相应的能级。因此分子具有电子能级、振动能级和转动能级。分子的能量E等于这三种能级的能量之和: E=Ee+Ev+Er 分子的各能级之间示意图下图。

相关主题