搜档网
当前位置:搜档网 › 放大器常用芯片

放大器常用芯片

放大器常用芯片
放大器常用芯片

放大器常用芯片

ISO106高压,隔离缓冲放大器

ISO106同ISO102性能基本相同,主要区别要以下两点:①ISO106的连续隔离电压3500;②ISO106封装为40引脚DIP组件;主要引脚定义可参看ISO102。

LF147/347四JFET输入运算放大器

输入失调电压1mV(LF147)、5mV(LF347);温度漂移10μV/℃;偏置电流50pA增益带宽4MHz;转换速率13V/μs;噪声20nV/(Hz^1/2)(1kHZ);消耗电流7.2mA。±22V电源(LF147)、±18V电源(LF347);差模输入电压±38V(LF147)、±30V(LF347);共模输入电压±19V(LF147)、±15V(LF347);功耗500mW。

LF155/255/355JFET输入运算放大器

输入失调电压1mV(LF155/355)、3mV(LF255);温度漂移3μV/℃(LF155/355)、5μV/℃(LF255);偏置电流30pA增益带宽GB=2.5MHz;转换速率5V/μs;噪声20nV/(Hz^1/2)(1kHZ);消耗电流2mA。±40V电源(LF155/255)、±30V电源(LF355);共模输入电压±20V(LF155/255)、±16V(LF355);输入阻抗10^12Ω共模抑制比100dB;电压增益106dB。

LF353双JFET输入运算放大器

输入失调电压5mV;温度漂移10μV/℃;偏置电流50pA;增益带宽GB=4MHz;转换速率13V/μs;噪声16nV/(Hz^1/2)(1kHZ);消耗电流1.8mA。±18V电源;差模输入电压±30V;共模输入电压±15V;功耗500mW。

LF411/411A低失调、低漂移、JFET输朐怂惴糯笃?br> 输入失调电压800μV (LF411)、300μV(LF411A);温度漂移7μV/℃;偏置电流50pA;增益带宽GB=4MHz;转换速率15V/μs;噪声23nV/(Hz^1/2)(1kHZ);消耗电流1.8mA。±18V 电源(LF411)、±22V(LF411A);差模输入电压±30V(LF411)、±38V(LF411A);

共模输入电压±15V(LF411)、±19V(LF411A)。

LF412/412A双低漂移、JFET输入运算放大器

输入失调电压1mV(LF412)、500mV(LF412A);

LF441/441A低功耗、JFET输入运算放大器

输入失调电压1mV(LF441)、300μV(LF441A);温度漂移10μV/℃(LF441)、7μA(LF441A);偏置电流10pA;增益带宽GB=1MHz;转换速率1V/μs;噪声35nV/(Hz^1/2)(1kHZ);消耗电流250μA(LF441)、200μA(LF441A);±18V 电源(LF441)、±22V(LF441A);差模输入电压±30V(LF441)、±38V(LF441A);

共模输入电压±15V(LF441)、±19V(LF441A)。

LF442/442A低功耗、JFET输入运算放大器

输入失调电压1mV(LF442)、500μV(LF442A);温度漂移7μA(LF441A);

偏置电流10pA;增益带宽GB=1MHz;转换速率1V/μs;噪声

35nV/(Hz^1/2)(1kHZ);消耗电流500μA(LF442)、400μA(LF442A);±18V 电源(LF442)、±22V(LF442A);差模输入电压±30V(LF442)、±38V(LF442A);

共模输入电压±15V(LF441)、±19V(LF442A)。

LF444/444A低耗、四JFET输入运算放大器

输入失调电压3mV(LF444)、2mV(LF444A);温度漂移10μV/℃;偏置电流10pA;增益带宽GB=1MHz;转换速率1V/μs;噪声35nV/(Hz^1/2)(1kHZ);消耗电流800μA(LF444)、600μA(LF444A);±18V电源(LF444)、±22V(LF444A);差模输入电压±30V(LF444)、±38V(LF444A);共模输入电压±15V(LF444)、

±19V(LF444A)。

LM378音频放大器

单片双功率放大器可接8Ω或16Ω负载,每通道输出功率4W。纹波抑制70dB;

通道间隔离75dB,输入阻抗3MΩ,内含限流电路;具有热保护功能。

LM382前置放大器

工作电压范围9V至40V;等效输入噪声0.8μV;开环增益100dB;电源抑制比120dB;单位增益带宽为15MHz;功率带宽为75kHZ,20Vpp;有短路保护功能。

LM386音频功率放大器

工作电压范围4~12V或5~18V;静态电流4mA;电压增益20~200;基准接地

输入;低失真。

LM387/ LM387A前置放大器

工作电压范围9~30V (LM387)或9~40V(LM387A);输入噪声为0.8mV (LM387)、

0.65mV (LM387A);开环增益104dB;电源抑制比110dB;输入电压摆幅

(VCC-2VP-P);单位增益带宽为15MHz;功率带宽为75kHZ,20Vpp。

LM388音频放大器

电压增益20~200;可调工作电压范围,最低为4V;基准接地输入;低失真。

LM392运算、比较放大器

输入失调电压2mV;温度漂移7μV/℃;偏置电流50nA;消耗电流570mA;±1.5~±16V电源;可单电源工作;功耗57mW(LM392N)、830mW(LM392H);A

为比较放大器;B为运算放大器。

LM4250低功耗、可编程运算放大器

输入失调电压3mV;偏置电流7.5nA;增益带宽为GB=200kHz;转换速率200mV/μs;消耗电流11μA;±1~±18V电源;差模输入电压±30V;共模输入电压±15V;程控电流150μA。类型号:NJM4250、CF4250。

LM6161/6261/6361 运算放大器

工作电压范围4.75~32V;转换速率300V/μs;电源电流5mA;差分增益小于0.1%;相差0.1°;输入失调电压5mV;输入偏置电流2μA;输入电阻325kΩ;

RSRR=CMRR=94dB。

LM6162/6262/6362 运算放大器

工作电压范围4.75~32V;电源电流5mA;差分增益小于0.1%;相差0.1°;转换速率300V/μs;输入失调电压3mV;输入偏置电流2.2μA;

RSRR=93dB ,CMRR=100dB。

LM6164/6264/6364 运算放大器

工作电压范围4.75~32V;电源电流5mA;差分增益小于0.1%;相差0.1°;转换速率300V/μs;输入失调电压2mV;输入偏置电流2.5mA;

RSRR=96dB ,CMRR=105dB;增益带宽175MHz。

LM6165/6265/6365 运算放大器

工作电压范围4.75~32V;转换速率300V/μs;增益带宽725MHz。电源电流5mA;差分增益小于0.1%;相差0.1°;输入失调电压1mV;输入偏置电流2.5mA;

PSRR=104dB ,CMRR=102dB。

LM6171 电压反馈放大器

工作电压范围±5.0~±15V;转换速率3600V/μs;电源电流2.5mA;输入失调电压1.5mV;开环增益90dB;输入偏置电流1mA;PSRR=95dB ,CMRR=110dB。

共模输入电阻40MΩ;差动输入电阻4.9MΩ。

LM6172 电压反馈放大器

工作电压范围±5.0~±15V;单位增益带宽110MHz。转换速率3000V/μs;电源电流4.6mA;输出电流50mA/通道;输入失调电压0.4mV;输入偏置电流1.2μA;共模输入电阻40MΩ;差动输入电阻4.9MΩ。PSRR=95dB ,CMRR=110dB。

LM6181 电流反馈放大器

工作电压范围±5.0~±15V或7.0~32V;输出电压±10V;转换速率2000V/μs;输入失调电压2mV;输入反相偏置电流2μA;输入同相偏置电流0.5μA;输出电流130mA;电流电流7.5mA;PSRR=80dB ,CMRR=60dB;可替换EL2020、OP160、

AD844、LT1223、HA5004。

LM6182 电流反馈放大器

工作电压范围±18V或7.0~32V;闭环带100MHz;转换速率2000V/μs;差分增益0.05%;相差0.04°;输入电压±10V;输入失调电压2mV;输入反相偏置电流2μA;输入同相偏置电流0.75μA;输出电阻0.2Ω;PSRR=80dB ,CMRR=60dB;

同相输入电阻10MΩ。

LM709 通用运算放大器

输入失调电压600μV;温度漂移1.8μV/℃;偏置电流100nA;消耗电流2.3mA;±18V电源;差模输出电源±5V,共模输出电源±10V,类似型号:MC1709、μA709、

CF709。

LM7121 电压反馈放大器

或5.0~36V电源;单位增益带宽175MHz;带宽235MHz;电源电流为5.3mA。转换速率1300V/μs;输入失调电压0.9mV;输入偏置电流5.2μA;共模输入电阻10MΩ;差模输入电阻3.4MΩ;-PSRR=81dB ,CMRR=93dB;+PSRR=86dB。

LM7131 单电源运算放大器

工作电压范围±2.7~±12V或±5.0V;电源电流7.0mA(5.0V时)和6.5mA(3.0V 时);4MHz时谐波失真0.1%;增益带宽70MHz;带宽90MHz-3dB,输出电流40mA到50Ω负载;输入偏置电流20μA;电压增益60dB;

PSRR=75dB ,CMRR=70dB.

LM7171 电压反馈放大器

工作电压范围±5.0~±15V;单位增益带宽200MHz;转换速率4100V/μs;电源电流6.5mA;开环增益85dB,输出电流100mA;差分增益0.01%;相差0.02°输入失调电压0.3mV;输入偏置电流3.3μA;共模输入电阻40 MΩ;差模输入电阻

3.4MΩ;PSRR=90dB ,CMRR=104dB。

LM725 高精度运算放大器

输入失调电压0.5mV;温度漂移500nV/℃;偏置电流50pA;噪声2μVRMS;消耗电流40μA;±3.0~±22V电源;差模输入电压±5V;共模输入电压±22V;调零端与+V间电压为±0.5V。类似型号:PM725、RC725、μA725、CF725。

LT1012低噪声运算放大器

输入失调电压8μV;温度漂移200μV/℃;偏置电流25μA;转换速率200V/μs;

噪声14nV/(Hz^1/2)(1kHZ);消耗电流380μA;±20V电源。

LT1055高速JFET输入运算放大器

输入失调电压50μV;温度漂移1.2μV/℃;偏置电流10pA;增益带宽5MHz;转换速率13V/μs;噪声14nV/(Hz^1/2)(1kHZ);消耗电流2.8m A;±20V电源;差

模输入电压±40V;共模输入电压±20V。

MA325高精度运算放大器

低漂移;转换速率75V/μA;±40V电源;功耗500mW。

MA326高精度、宽频带运算放大器

转换速率66V/μs;增益带宽积GB=350MHz;建立时间400μs;低噪声;;36V 电源;差模输入电压±5V;功耗300mW。

MA327高精度运算放大器

增益带宽积GB=30MHz;转换速率15V/μs;噪声2.5nV/(Hz^1/2)(1kHZ);温度漂

移0.5μV/℃;±40V电源。

MA332低噪声运算放大器

噪声5nV/(Hz^1/2)(1kHZ);失真度0.0002%(THD);±45V电源;共模输入电

压±45V;功耗100mW。

MA333JFET输入运算放大器

噪声8nV/(Hz^1/2)(1kHZ);转换速率15V/μs;增益带宽积GB=3MHz;±36V电源。差模输入电压±30V;共模输入电压±36V;功耗500mW。

MA336双JFET输入运算放大器

噪声8nV/(Hz^1/2)(1kHZ);转换速率15V/μs;增益带宽积GB=3MHz;±36V电源。差模输入电压±30V;共模输入电压±36V。

MA337JFET输入运算放大器

输入失调电压100μV;噪声8nV/(Hz^1/2)(1kHZ);转换速率15V/μs;±36V电源。

差模输入电压±36V;功耗500mW。

MA342高性能运算放大器

噪声4nV/(Hz^1/2)(1kHZ);输出电流40mA;输出电压有效值大;输入失调电压小;±44V电源;共模输入电压±44V;功耗800mW。

MA344低噪声运算放大器

低噪声15nV/(Hz^1/2)(1kHZ);输入偏流小;转换速率10V/μs;增益带宽积2MHz;

±36V电源;差模输入电压±30V;共模输入电压±36V功耗500mW。

MA345双低功耗运算放大器

MA345是MA344的双电路型。特点与MA344相同。

MA400JFET输入运算放大器

转换速率60V/μs;建立时间700ns(0.1%);增益带宽积17MHz;低漂移;输入偏流小;±50V电源;差模输入电压±40V;功耗500mW。

MAX2430低压功耗运算放大器

工作电压范围3~5V;输出功率大于100mW;功率增益大于30dB;工作频率800~1000MHz;输入匹配电阻为50Ω;掉电电流小于10μA。

MAX4100/ MAX4101高速运算放大器

增益带宽分别为600MHz(MAX4100)、750MHz(AVCL=2V/V,MAX4101);转换速率分别为250V/μs(MAX4100)、300V/μs(MAX4101)。电源电流5mA,输出电流达70mA。输出电压范围为±3.5V。

MAX4102/ MAX4103高速视频运算放大器

增益带宽分别为300MHz(MAX4102)、450MHz(AVCL=2V/V,MAX4103);转换速率分别为300V/μs(MAX4102)、375V/μs(MAX4103)。开环增益为115dB;

电源电流5mA,输出电流达70mA。输出电压范围为±3.3V。

MAX4104/ MAX4105超高速、低噪声运算放大器

增益带宽分别为750MHz(MAX4104)、750MHz(AVCL=2V/V,MAX4105);转换速率分别为250V/μs(MAX4104)、450V/μs(MAX4105)。输出电流达70mA。

输出电压范围为±3.3V。

MAX4106/ MAX4107高速运算放大器

增益带宽分别为550MHz(AVCL=5V/V,MAX4106)、500MHz(AVCL=10V/V,MAX4107);转换速率分别为325V/μs(MAX4106)、700V/μs(MAX4107)。

输出电流达70mA。输出电压范围为±3.3V。工作电压±15V。

MAX4108/ MAX4109高速运算放大器

增益带宽分别为550MHz(MAX4108)、500MHz(AVCL=2V/V,MAX4109);转换速率分别为1300V/μs(MAX4108)、1500V/μs(MAX4109)。输出电流达70mA。输出电压范围为±3V。工作电压±15V。

MAX473/ MAX474单电源运算放大器

单工作电源2.7V~5.25V。单位增益带宽为10MHz。最小转换速率分别为15V/μs。单个运放的电源电流2mA。具有输出短路短路保护。输出信号范围±50mA。

MAX475运算放大器

工作电源范围2.7V~5.25V。换速率分别为15V/μs;单位增益带宽为10MHz;每个运入的电源电流2mA;输出摆幅±50mV;CMRR=90dB;PSRR=90dB。

MAX492/ MAX495单电源运算放大器

工作电源范围2.7V~6.0V或±1.35~±3V。单个运放的最大静态电流小于150mA。电压增益达108dB。CMRR=90dB;PSRR=110dB。可驱动大的容性负载(大于

1nF),驱动阻性负载(1kΩ)。

MAX494四运算放大器

工作电源范围2.7V~6.0V。增益带宽为0.5MHz。静态电流小于150μA;失调电压200μV;电压增益108dB;CMRR=PSRR=90dB。驱动负载11kΩ。

MAX951-954运算放大器

工作电源范围2.2V~7.0V。MAX952/954的带宽200kHZ;转换速率100V/μs;增益大于或等于10V/V;内含比较器。部分引脚定义AMPout:放大器输出;AMPin:放大器反相输入;AMPIN+:放大器同相输入;COMOUT:比较器输出;

COMIN:比较器输入。

MC13060功率放大器

工作电压范围6.0~35V,输出音频功率2.0W,输出与电源电压无关。

MC1420/1520 宽频带运算放大器

单位增益带宽为10MHz;±8V电源;差模输入电压±8V;负载电源15mA;主要

用于一般脉冲电路。

MC1437/1537 双通用运算放大器

输入失调电压1mV;漂移1.5μV/℃;偏置电流400nA(MC1437)、200nA(MC1537);转换速率12V/μs;消耗电流5.3mA;±18V电源;差模输入电压±5V;共模输入

电压±18V;功耗625mW。

MC1439/1539运算放大器

输入失调电压2mV(MC1439)、1mV(MC1539) ;偏置电流200nA;转换速率34V/μs;噪声30nV/开平方(1kHZ);消耗电流3mA;±18V电源;差模输入电压±(+V+|-V|);共模输入电压±18V;负载电流15mA;功耗(G)680mW、(L)750mW、(P)625mW;甲乙类输出级;内含过输入保护。

MC1445/1545宽带放大器

带宽为50MHz;通道选择时间一般为20n;差动输入和差动输出。

MC14573 四CMOS可编程运算放大器

-0.5~+18V电源;输入电压-0.5~V+0.5V;输入电流(直流)10mA;工作电压可低至±1.5V;输出电平与CMOS和TTL兼容,主要应用于电压基准、函数产

生、电平匹配等场合。

MC1733CB差动视频放大器

具有差动输入和差动输出;无外部器件时增益固定在10V,100V或400V;使用一个外部电阻,增益可从10V~400V进行调节。频带宽度为120MHz;上升时

间为2.5na;延迟时间为3.6ns。

MC1747/ MC1747C 运算放大器

具有短路保护功能;工作电压±15V;不需要频率补偿;可分别替换747和μA747C;电源抑制比(PSRR)为75dB;失调电压范围±15mV;共模输入电压范围为±13V;

共模抑制比(CMRR)90dB;转换速率为0.5V/μs;输出阻抗75Ω。

MC1748C高性能运算放大器

具有短路保护功能;无补偿的MC1741;CMRR=90dB;单位增益时只需一个30PF的补偿电容;工作电源±15V;PSRR大于75dB;输出阻抗75Ω;共模输入

电压±13V。

MC1776 可编程运算放大器

输入失调电压2mV;偏置电流2nA;转换速率100mV/μs;消耗电流2μA;±1.2~18V电源;共模输入电压±30V;差模输入电压±15V;功耗METAL500mW、

DIP310mW。类似型号:μA776。

MC3403 单电源运算放大器

输入失调电压2mV;温度漂移10μV/℃;偏置电流200nA;增益带宽积GB=1MHz;转换速率600mV/μs;消耗电流2.8mA;±1.5~18V电源,可以单电源工作;输

出电压幅值0~VS+1.7V(甲乙类输出级)。类似型号:NJM3403、RC3403、μA3403、

μpc3403。

MC3405 四运算比较放大器

±18V电源;单电源工作电压为+3~+36V;差模输入电压±36V;共模输入电压±18V;其运放相当于MC3403;其比较放大器相当于LM319。

MC3458 双单电源运算放大器

输入失调电压2mV;温度漂移10μV/℃;偏置电流200nA;增益带宽积GB=1MHz;转换速率600mV/μs;消耗电流1.6mA;±1.5~18V电源,可以单电源工作;差模输入电压±36V;共模输入电压±18V;乙类输出级。

MC3476 可编程运算放大器

输入失调电压2mV;输入偏置电流15nA;转换速率800mV/μs;±18V电源;差

模输入电压±30V;

MC3558 双通用运算放大器

输入失调电压2mV;输入偏置电流40nA;增益带宽积GB=3MHz;转换速率800mV/μs;消耗电流3.3mA;±18V电源;差模输入电压±30V;共模输入电压±15V;功耗500mW;类似型号:NJM4558、RC4558、RM4558、μA4558、μPC4558、

CF4558。

MC4741 四通用运算放大器

输入失调电压1mV;偏置电流80nA;转换速率500mV/μs;消耗电流2.4mA;±18V 电源(MC4741C)、±22V电源(MC4741C)、±36V电源(MC4741C);共模输入电压±22V(MC4741M)、±18V(MC4741C);

NE530高速运算放大器

输入失调电压2mV;温度漂移6μV/℃;偏置电流65nA;增益带宽积GB=3MHz;转换速率25V/μs;噪声30nV/(Hz^1/2)(1kHZ);消耗电流2mA;±18V电源;差模输入电压±30V;共模输入电压±15V;功耗(N)500mW、(H)800mW。

NE531高速运算放大器

输入失调电压2mV;温度漂移10μV/℃;偏置电流400nA;转换速率30V/μs;噪声20nV/(Hz^1/2)(1kHZ);消耗电流10mA;±22V电源;差模输入电压±15V;共模输入电压±15V;工作电压±15V;功耗300mW。

NE538高速运算放大器

输入失调电压2mV;温度漂移6μV/℃;偏置电流65nA;增益带宽积GB=6MHz;转换速率60V/μs;噪声30nV/(Hz^1/2)(1kHZ);消耗电流2mA;±18V电源;差模输入电压±30V;共模输入电压±15V;功耗800mW。

NE5512双运算放大器

输入失调电压1mV;偏置电流6nA;增益带宽积GB=3MHz;转换速率1V/μs;噪声30nV/(Hz^1/2)(1kHZ);消耗电流6mA;±15V电源;差模输入电压±32V;

共模输入电压±32V;

NE5532/A双低噪声运算放大器

输入失调电压0.5mV;偏置电流200nA;增益带宽积GB=10MHz;转换速率9V/μs;噪声5nV/(Hz^1/2)(1kHZ);消耗电流8mA;±3~±22V电源;功耗1000mW;

类似型号:NNJM4432。

NE5534/A双低噪声运算放大器

输入失调电压0.5mV;偏置电流400nA;温度漂移4μV/℃;增益带宽积GB=10MHz;转换速率13V/μs;噪声3.5mV/(Hz^1/2)(1kHZ);消耗电流4.5mA;±3~

±22V电源;功耗800mW。

NE5535双运算放大器

输入失调电压2mV;温度漂移6μV/℃;偏置电流65nA;增益带宽积GB=1MHz;转换速率15V/μs;噪声30nV/(Hz^1/2)(1kHZ);消耗电流3.6mA;±18V电源;差

模输入电压±30V;共模输入电压±15V;

NJM2043双低噪声运算放大器

输入失调电压300μV;偏置电流400nA;增益带宽积GB=14MHz;转换速率6V/μs;噪声容限0.4μVRMS;消耗电流6mA;±22V电源;差模输入电压±30V;

共模输入电压±15V;功耗300mW(M封装)、500mW(D、S)。

NJM2058四通用运算放大器

输入失调电压500μV;偏置电流50nA;转换速率1V/μs;噪声25μVRMS;消耗电流7mA;±18V电源;差模输入电压±30V;共模输入电压±15V;功耗700mW.

NJM2060四宽频带运算放大器

输入失调电压500μV;偏置电流40nA;增益带宽积GB=10MHz;转换速率4V/μs;消耗电流9mA;±18V电源;差模输入电压±30V;共模输入电压±15V;功耗

700mW.

NJM2068双低噪声运算放大器

输入失调电压300μV;偏置电流150nA;增益带宽积GB=27MHz;转换速率7V/μs;噪声容限0.44μVRMS;消耗电流5mA;±18V电源;差模输入电压±15V;

共模输入电压±30V;功耗300mW(M封装)、500mW(D、S)。

NJM4560双宽频带运算放大器

输入失调电压500μV;偏置电流40nA;增益带宽积GB=10MHz;转换速率4V/μs;

消耗电流3.5mA;±18V电源;差模输入电压±30V;共模输入电压±15V;功耗

300mW(M封装)、500mW(D、S)。

NJM4562双低噪声运算放大器

输入失调电压500μV;偏置电流200nA;噪声容限0.64μVRMS;消耗电流3.5mA;±18V电源;差模输入电压±30V;共模输入电压±15V;功耗300mW(M封装)、

500mW(D、S、T)。

OP-06高增益运算放大器

输入失调电压60μV;温度漂移300nV/℃;偏置电流15pA;增益带宽积GB=6MHz;转换速率13V/μs;噪声15nV/(Hz^1/2)(1kHZ);消耗电流4mA;±22V电源(15E/F);±16V(15G);功耗500mW。

OP-16JFET输入运算放大器

输入失调电压200μV;温度漂移2μV/℃;偏置电流15pA;增益带宽积GB=8MHz;转换速率25V/μs;噪声15nV/(Hz^1/2)(1kHZ);消耗电流4mA;±22V电源(16E/F);±18V(16G);差模输入电压±40V(16E/F);±30V(16G);功耗500mW。

OP-20高精度运算放大器

输入失调电压55μV;温度漂移750nV/℃;偏置电流12nA;增益带宽积GB=100kHz;转换速率50mV/μs;消耗电流55mA;±19V电源;单电源工作;差模输入电压±30V;开环增益大;功耗500mA。

OP-21高精度运算放大器

输入失调电压40μV;温度漂移500nV/℃;偏置电流50nA;增益带宽积GB=600kHz;转换速率250mV/μs;消耗电流230μA;±18V电源;差模输入电压±30V;

开环增益大;功耗500mA。

OP-22可编程运算放大器

输入失调电压100μV;温度漂移750nV/℃;偏置电流2.6nA;增益带宽积GB=250kHz;转换速率80mV/μs;消耗电流15mA;±18V电源;可单电源工作;差模输入电压±30V;共模输入电压±V;闭环增益大;功耗500mA。

OP-27超低噪声、高精度运算放大器

输入失调电压10μV;温度漂移200nV/℃;偏置电流10nA;增益带宽积GB=

8MHz;转换速率2.8V/μs;噪声3mV/(Hz^1/2)(1kHZ);消耗电流3mA;±22V电源;共模输入电压±22V;共模抑制比大;功耗500mA;类似型号:OPA-27、

MPOP27。

OP-37宽频带、高精度、高速运算放大器

输入失调电压10μV;温度漂移200nV/℃;偏置电流10nA;增益带宽积GB=63MHz;转换速率17V/μs;噪声3nV/(Hz^1/2)(1kHZ);消耗电流3mA;±22V电源;功耗500mA;类似型号:OPA-37、MPOP37。

OPA404介质隔离JFET运算放大器

最大工作电压±18V;输入电压范围±18V;带宽6.4MHz;输入速率35V/μs;输入失调电压小于±750μV;依稀电流小于±4pA;差动输入电压可达±36V。

OPA633缓冲放大器

最大工作电压±20V;带宽75MHz;输出峰值电流±200mA;转换速率2500V/μs;

失调电压1.5mV;可驱动50Ω或75Ω的负载。

TL066/A/B可编程、JFET输入运算放大器

输入失调电压3mV;温度漂移10μV/℃;输入失调电流30pA;增益带宽GB=1MHz;转换速率3.5V/μs;噪声42nV/(Hz^1/2)(1kHZ);消耗电流200μA;±1.2~18V电源;差模输入电压±30V;共模输入电压±15V;功耗680mW;可变电源电

流5~200mA。

TL070/A JFET输入运算放大器

输入失调电压3mV;温度漂移10μV/℃;输入失调电流5pA;增益带宽GB=3MHz;转换速率13V/μs;噪声18nV/(Hz^1/2)(1kHZ);差模输入电压±30V;共模输入电

压±15V;功耗680mW。

TL071/ TL072/ TL 074JFET输入运算放大器

输入失调电压3mV;温度漂移10μV/℃;输入失调电流5pA;增益带宽GB=3MHz;转换速率13V/μs;消耗电流1.4mA(TL071)、2.8mA(TL072)、5.6mA(TL074);±18V电源;噪声18nV/(Hz^1/2)(1kHZ);差模输入电压±30V;共模输入电压±15V;

功耗680mW。

TL080/A通用JFET输入运算放大器

输入失调电压3mV;温度漂移10μV/℃;输入失调电流5pA;增益带宽GB=3MHz;转换速率13V/μs;噪声25nV/(Hz^1/2)(1kHZ);消耗电流1.4mA;±18V电源;差模输入电压±30V;共模输入电压±15V;功耗680mW。

TL080/ TL082/ TL084通用JFET输入运算放大器

输入失调电压3mV;温度漂移10μV/℃;输入失调电流5pA;增益带宽GB=3MHz;转换速率13V/μs;噪声25nV/(Hz^1/2)(1kHZ);消耗电流1.4mA、2.8mA(TL082)、5.6mA(TL084);±18V电源;差模输入电压±15V;功耗680mW。类似型号:

μPC4081、μPC4082、μPC4084。

TL091/ TL092/ TL094单电源JFET输入运算放大器

输入失调电压5mV;输入失调电流200pA;增益带宽GB=1MHz;转换速率600mV/μs;消耗电流1.5mA(TL091)、3mA(TL092)、6mA(TL094);±1.5~±18V电源;可单电源工作;噪声34nV/(Hz^1/2)(1kHZ);差模输入电压±36V;

共模输入电压±18V;功耗(J)1025mW、(N)1150mW。

输入失调电压500μV;偏置电流40nA;增益带宽GB=3MHz;转换速率2V/μs;噪声7.5V/(Hz^1/2)(1kHZ);消耗电流5mA;电源电流5mA;电流电压±15V;功

耗800mW。

TL137单电源运算放大器

输入失调电压2mV;偏置电流40nA;转换速率2V/μs;消耗电流400μA;±1.5~±16V电源;可单电源工作;输入电压-0.3~+32V。

TL322双单电源运算放大器

输入失调电压2mV;温度漂移10μV/℃;偏置电流200nA;增益带宽GB=1MHz;转换速率600V/μs;消耗电流1.4mA;±1.5~±18V电源;可单电源工作;差模输入电压±36V;共模输入电压±18V;甲乙类输出级;功耗(JG0825mW/(P)1000mW。

输入失调800nA;增益带宽GB=3.5MHz;转换速率1.5V/μs;噪声

25nV/(Hz^1/2)(1kHZ);消耗电流1.7mA;±18V电源;差模输入电压±30V;功耗

550mW。

XR4212四电路、低静态功耗运算放大器

输入失调电压1mV;偏置电流80nA;增益带宽GB=3.5MHz;转换速率1.6V/μs;差模输入电压±30V;共模输入电压±30V;功耗550mW。静态功耗50mW。

μA702宽频通用运算器

失调电压低;失调电压漂移低;增益带宽GB=20MHz;转换速率5V/μs;电源±10V;共模输入电压1.5~6V;输出电流(峰值)50nA。

输入失调电压300μV;温度漂移1.2μV/℃;输入偏置电流1.8mA;噪声

9.8nV/(Hz^1/2)(1kHZ);消耗电流3.2mA;±3~±22V电源;差模输入电压±30V;

共模输入电压±18V;功耗500mW。

μA715高速运算放大器

转换速率100V/μs;频带宽65MHz;±18V电源;差模输入电压±15V;μA715适用于A/D和D/A转换器、锁相环、采样保持电路等。

μA739/749双低噪声运算放大器

噪声低、±18V电源,可单电源工作;差模输入电压±5V;共模输入电压±15V;

功耗650mW。

μA771通用JFET输入运算放大器

输入偏流小;转换速率为13μV/μs;频带宽3MHz;±18V电源;差模输入电压±30V;

共模输入电压±16V;功耗670mW。

μA772双通用JFET输入运算放大器

μA774四通用JFET输入运算放大器

μA789双通用运算放大器

±1.5V~±18V电源;差模输入电压±30V;共模输入电压±16V;功耗310mW;增

益高。

低频功率放大器电路设计

参加全国大学生电子设计大赛的同学们加 油了! 低频功率放大器设计与总结报告 作者:王汉光 一、任务 设计并制作一个低频功率放大器,要求末级功放管采用分立的大功率MOS 晶体管。 二、要求 1.基本要求 (1)当输入正弦信号电压有效值为5mV时,在8Ω电阻负载(一端接地)上,输出功率≥5W,输出波形无明显失真。 (2)通频带为20Hz~20kHz。 (3)输入电阻为600Ω。 (4)输出噪声电压有效值V0N≤5mV。 (5)尽可能提高功率放大器的整机效率。 (6)具有测量并显示低频功率放大器输出功率(正弦信号输入时)、直流电源的供给功率和整机效率的功能,测量精度优于5%。

2. 发挥部分 (1)低频功率放大器通频带扩展为10Hz~50kHz。 (2)在通频带内低频功率放大器失真度小于1%。 (3)在满足输出功率≥5W、通频带为20Hz~20kHz的前提下,尽可能降低输入信号幅度。 (4)设计一个带阻滤波器,阻带频率范围为40~60Hz。在50Hz频率点输出功率衰减≥6dB。 (5)其他。 摘要: 本系统采用了NE5534p作为前级的电压放大电路来给低通功率放大电路提供输入电压,通过低通功率放大电路将功率放大,由双踪示波器对整个系统的输入输出端进行监测,调节可变电阻,使输出波形无明显失真,从而使输出功率达到指定的输出功率要求。输入的频率范围为20Hz~20kHz。 一.概述: 本系统通过信号发生器输入电压为5mV,频率在20Hz~20kHz范围内的信号,对信号进行功率放大,低通功率放大器模块由+/-15V的直流电源提供,通过前级放大电路将输入电压放大,再由低通功率放大电路进行功率放大。在此期间,用示波器监测低通功率放大模块的输入输出端,观察波形是否失真,以及测量最大最小不失真频率。 二.系统工作原理及分析: 此系统由三部分组成,分别为电源模块、前级放大模块、低频功率放大模块。 如图所示:

测量放大器的设计

测量放大器能够将微弱的电信号进行放大,在生活中应用也十分广泛,如在自动控制领域,往往需要用电压信号进行控制,也就必然离不开电压测量放大器,由于测量放大器应用十分广泛,因而现在已经有集成的测量放大器供使用了。本次设计就是围绕测量放大器展开的,测量放大器主要是通过运用集成运放将所测量的信号进行不失真 的放大,并且不对所测量的电路产生影响,这就是需要放大器有较高 的输入电阻和较高的共模抑制比。 一、实验目的 学习测量放大器的设计方法,掌握测量放大器的调试方法。 二、实验要求 在许多测试场合,传感器输出的信号往往很微弱,而且伴随有很大的共模电压(包括干扰电压),一般对这种信号需要采用测量放大器。测量放大器是一种高增益、直流耦合放大器,它具有差分输入、单端输出、高输入阻抗和高共模抑制比等特点。请设计一个测量放大器: 指标要求: a.当输入信号峰峰值uip-p=1mV时,输出电压信号峰峰值uop-p=1V。 b.输入阻抗:Ri>1MΩ c. 频带宽度:Δf(-3dB)=1Hz~1kHz d.共模抑制比:CMRR > 70dB 三、实验内容 1、前端后端放大电路设计与论证 测量放大器部分

(1)低噪声前端放大电路的设计最初方案如图1。本电路结构简单,输入阻抗较高,放大倍数可调,但是共模抑制比较小。实测只达到104,所以我们放弃本方案,选择了第二个方案,如图2。此电路的优点在于输入电压接在两个运放的同相端,输入阻抗高,共模抑制比大,可满足要求。其中,直流信号的共模抑制比实测可达×106,交流信号的共模抑制比可达 2×105。由电路的对称性可知共模信号被有效地抑制,而差模信号放大了10 倍,从而提高了共模抑制比。另外,温度在两个输入端引起的漂移是共模信号,对输出电压影响很小,无需另加补偿。 图2低噪声前置放大电路的 (2)程控增益放大部分:为了改变放大器的增益,一般有两条途径:一是改变反相端的输入电阻阻值,二是改变负反馈电阻阻值。最终我们选择在负反馈网络上添加滑动变阻器来改变负反馈电阻阻值,从而改变放大器的增益。 最终我们在考虑方案二的基础上,并结合一些集成运放器的选择,我们前端放大器我们采取如下方案: 该电路实现|50|的放大增益 同理集成运放的放大特性, 可推出后端放大电路,其实现|20|倍的放大增益 这样便可以实现20*50=1000的放大增益 2、总体电路图 3、主要电路的参数计算

大功率功率放大器电路的设计

大功率功率放大器电路设计 大功率功率放大器电路设计 一. 设计理念及实现方式 (1)能推4Ω、2Ω等双低音的“大食”音箱以及专业类大粗音圈的各类专业箱。 (2)要省电、噪声小,发热量小。 (3)音质要好,能适合家居使用和专业使用。 第一点的实现就是要有大的推动功率。由于目前居室客厅面积有不断扩大的趋势,100W ×2以下功放已显得有些“力不从心”,所以本功放设计为4ΩQ 时360W ×2,2Ω时720W ×2。 第二点的实现就是电路工作在静态时的乙类小电流,靠大水塘级电容和电阻进行滤波降噪,使功放级噪声极小。而电路的工作状态又决定了电路元件的发热量很小,与一般乙类电路相当。配备的大型散热系统是为了应付连续大功率、低阻抗输出时的安全、可靠。 第三点的实现是本功放板的主要目标。目前公认的是:甲类、MOS、电子管音质好,所以本功放要达到甲类、MOS、电子管的音质。 二.大功率输出的实现 要实现大功率,首先是电源容量要大。本功放配置的电源是在截面积为35mm ×60mm的环形铁心上绕制的环牛。一次侧为1.0mm线绕484圈,二次侧为1.5mm双线并绕100圈。 整流为两只40A全桥做双桥整流,滤波为4只47000 uF电容 2只2.7kΩ电阻并接在正负电源上,使电压稳定在±62V。如电压过高可减小电阻到2.2kΩ,过低可加大电阻到3kΩ,功率用3W以上的。 除电源外,要实现大功率输出,特别是驱动“大食”音箱,要求功放输出电流能力要强,本功放每声道选用6对2SD1037管做准互补输出,可驱动直流电阻低达0.5Ω的“大食”音箱。所以4Ω时360W×2、2Ω时720W×2是有保障的。 三. 甲类、MOS、电子管音质的实现 目前人们公认的甲类、MOS、电子管的音质最好,所以本功放电路设计动态时工作于甲类的最佳状态,偏流随信号大小而同步增减,所以音质是有技术保障的。而在此工作状态下,即使更换几只一般的MOS管,对音质的提高也不明显。下面给出其原理图,如图1所示。从图1上可见到本原理图相当简洁,比一般乙类或甲乙类准互补电路还节省元件。而通过在电路板上改变一只电阻的接法就可方便地在本电路与准互补乙类或甲乙类之间变换。 四.绿色环保概念的实现 对本功放来说,实现低耗电、低噪声污染、低热辐射污染是通过以下措施实现的: (1)本功放空载时只有小电流级工作,而功率管基极电压只有0.45V,基本上是截止的,所以比一般乙类耗电少,属节电型功放。

运算放大器设计

运算放大器设计 电子竞赛初赛设计方案姓名:刘俊贤学号:班级: 2019301951 08031301 实验一:用集成运放设计一个能实现V0=-(4Vi1+3Vi2+2Vi3) 的加法电路 一.实验要求 用集成运放设计一个能实现V0=-(4Vi1+3Vi2+2Vi3)的加法电路。设计步骤: (1)根据已知条件,确定电路方案,计算并选取各电路元件参数; (2)在输出波形不失真的情况下,测量输入、输出波形的幅度,使之满足设计要求 二.实验原理 集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大器件。当外界接入线性或非线性元器件组成输入和负反馈电路时,可以灵活实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 在大多数情况下,将运放看成是理想的,有以下三条基本结论: (1)开环电压增益Av=∞。 (2)运算放大器的两个输入端电压近似相等,即V+ = V-,成为虚短。(3)运算放大器同相和反相两个输入端电流可视为0,成为虚断。 三.实验分析设计 题目要求设计能实现 V0=-(4Vi1+3Vi2+2Vi3) U0Ui .. 的加法电路,分析得: (1)输出与输入反相,则采用反相加法运算电路。(2)由基本反相比例放大器的增益公式Auf= =- RfR1

可进一步推出反相加法 运算公式u=-(Rfu+Rfu+Rfu),则Rf=4 Rf=3 Rf=2,所以设计 0i1i2i3 R1R2R3R1R2R3 Rf=120kΩ,R1=30kΩ,R2=40kΩ,R3=60kΩ (3)Vi1=100mV,Vi2=200mV,Vi3=300mV,三者频率都为1kHz的正弦信号,使输出波形不失真,观察并记录结果。反相加法运算电路如下图所示: 四、仿真结果 理论计算(峰值): u0=-(4*100+3*200+2*300)=1600mV 实验测得(峰值): ' u0=1.590V ' u0≈u0 所以该设计较合理。 实验二 RC文氏桥振荡器输出正弦波 一、实验要求 根据文氏电桥振荡电路原理,设计一个正弦波发生器电路。设计任务: (1) 输出正弦波的振荡频率为1KHZ; (2) 振荡频率的测量值与理论值的相对误差 二、实验原理 文氏电桥振荡电路又称RC串并联网络正弦波振荡电路,它是一种较好的正弦波产生电路,适用于频率小于1MHz,频率范围宽,波形较好的低频振荡信号。 从结构上看,正弦波振荡器是没有输入信号的,为了产生正弦波,必须在放大电路中加入正反馈,因此放大电路和正反馈网络是振荡电路的最主要部分。但是,这样两部分构

放大器常用芯片

放大器常用芯片 ISO106高压,隔离缓冲放大器 ISO106同ISO102性能基本相同,主要区别要以下两点:①ISO106的连续隔离电压3500;②ISO106封装为40引脚DIP组件;主要引脚定义可参看ISO102。 LF147/347四JFET输入运算放大器 输入失调电压1mV(LF147)、5mV(LF347);温度漂移10μV/℃;偏置电流50pA增益带宽4MHz;转换速率13V/μs;噪声20nV/(Hz^1/2)(1kHZ);消耗电流7.2mA。±22V电源(LF147)、±18V电源(LF347);差模输入电压±38V(LF147)、±30V(LF347);共模输入电压±19V(LF147)、±15V(LF347);功耗500mW。 LF155/255/355JFET输入运算放大器 输入失调电压1mV(LF155/355)、3mV(LF255);温度漂移3μV/℃(LF155/355)、5μV/℃(LF255);偏置电流30pA增益带宽GB=2.5MHz;转换速率5V/μs;噪声20nV/(Hz^1/2)(1kHZ);消耗电流2mA。±40V电源(LF155/255)、±30V电源(LF355);共模输入电压±20V(LF155/255)、±16V(LF355);输入阻抗10^12Ω共模抑制比100dB;电压增益106dB。 LF353双JFET输入运算放大器 输入失调电压5mV;温度漂移10μV/℃;偏置电流50pA;增益带宽GB=4MHz;转换速率13V/μs;噪声16nV/(Hz^1/2)(1kHZ);消耗电流1.8mA。±18V电源;差模输入电压±30V;共模输入电压±15V;功耗500mW。 LF411/411A低失调、低漂移、JFET输朐怂惴糯笃?br> 输入失调电压800μV (LF411)、300μV(LF411A);温度漂移7μV/℃;偏置电流50pA;增益带宽GB=4MHz;转换速率15V/μs;噪声23nV/(Hz^1/2)(1kHZ);消耗电流1.8mA。±18V 电源(LF411)、±22V(LF411A);差模输入电压±30V(LF411)、±38V(LF411A); 共模输入电压±15V(LF411)、±19V(LF411A)。

低噪声前置放大器电路的设计方法

低噪声前置放大器电路的设计方法 收藏此信息打印该信息添加:不详来源:未知 前置放大器在音频系统中的作用至关重要。本文首先讲解了在为家庭音响系统或PD A设计前置放大器时,工程师应如何恰当选取元件。随后,详尽分析了噪声的来源,为设计低噪声前置放大器提供了指导方针。最后,以PDA麦克风的前置放大器为例,列举了设计步骤及相关注意事项。 前置放大器是指置于信源与放大器级之间的电路或电子设备,例如置于光盘播放机与高级音响系统功率放大器之间的音频前置放大器。前置放大器是专为接收来自信源的微弱电压信号而设计的,已接收的信号先以较小的增益放大,有时甚至在传送到功率放大器级之前便先行加以调节或修正,如音频前置放大器可先将信号加以均衡及进行音调控制。无论为家庭音响系统还是PDA设计前置放大器,都要面对一个十分头疼的问题,即究竟应该采用哪些元件才恰当? 元件选择原则 由于运算放大器集成电路体积小巧、性能卓越,因此目前许多前置放大器都采用这类运算放大器芯片。我们为音响系统设计前置放大器电路时,必须清楚知道如何为运算放大器选定适当的技术规格。在设计过程中,系统设计工程师经常会面临以下问题。 是否有必要采用高精度的运算放大器? 输入信号电平振幅可能会超过运算放大器的错误容限,这并非运算放大器所能接受。若输入信号或共模电压太微弱,设计师应该采用补偿电压(Vos)极低而共模抑制比(CMRR)极高的高精度运算放大器。是否采用高精度运算放大器取决于系统设计需要达到多少倍的放大增益,增益越大,便越需要采用较高准确度的运算放大器。 运算放大器需要什么样的供电电压?

这个问题要看输入信号的动态电压范围、系统整体供电电压大小以及输出要求才可决定,但不同电源的不同电源抑制比(PSRR)会影响运算放大器的准确性,其中以采用电池供电的系统所受影响最大。此外,功耗大小也与内部电路的静态电流及供电电压有直接的关系。 输出电压是否需要满摆幅? 低供电电压设计通常都需要满摆幅的输出,以便充分利用整个动态电压范围,以扩大输出信号摆幅。至于满摆幅输入的问题,运算放大器电路的配置会有自己的解决办法。由于前置放大器一般都采用反相或非反相放大器配置,因此输入无需满摆幅,原因是共模电压(Vcm)永远小于输出范围或等于零(只有极少例外,例如设有浮动接地的单供电电压运算放大器)。增益带宽的问题是否更令人忧虑? 是的,尤其是对于音频前置放大器来说,这是一个非常令人忧虑的问题。由于人类听觉只能察觉大约由20Hz至20kHz频率范围的声音,因此部分工程师设计音频系统时会忽略或轻视这个“范围较窄”的带宽。事实上,体现音频器件性能的重要技术参数如低总谐波失真(TH D)、快速转换率(slew rate)以及低噪声等都是高增益带宽放大器所必须具备的条件。 图1,建议选用的放大器 深入了解噪声 在设计低噪声前置放大器之前,工程师必须仔细审视源自放大器的噪声,一般来说,运算放大器的噪声主要来自四个方面: 热噪声(Johnson):由于电导体内电流的电子能量不规则波动产生的具有宽带特性的热噪声,其电压均方根值的正方与带宽、电导体电阻及绝对温度有直接的关系。对于电阻及晶体

功率放大器的设计

课程设计任务书 学生姓名:专业班级:电子1003班 指导教师:葛华工作单位:信息工程学院 题目: 功率放大器的设计 初始条件: 计算机、Proteus软件、Cadence软件 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1、课程设计工作量:2周 2、技术要求: (1)学习Proteus软件和Cadence软件。 (2)设计一个功率放大器电路。 (3)利用Cadence软件对该电路设计原理图并进行PCB制版,用Proteus软件对该电路进行仿真。 3、查阅至少5篇参考文献。按《武汉理工大学课程设计工作规范》要求撰写设计报告书。全文用A4纸打印,图纸应符合绘图规范。 时间安排: 2013.11.11做课设具体实施安排和课设报告格式要求说明。 2013.11.11-11.16学习Proteus软件和Cadence软件,查阅相关资料,复习所设计内容的基本理论知识。 2013.11.17-11.21对功率放大器进行设计仿真工作,完成课设报告的撰写。 2013.11.22 提交课程设计报告,进行答辩。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 摘要........................................................................ I Abstract ................................................................... II 1 功放的工作原理及分类 (1) 1.1功放的工作原理 (1) 1.2功放的分类 (1) 2 软件介绍 (2) 2.1 Proteus (2) 2.1.1 Proteus简介 (2) 2.1.2工作界面 (2) 2.1.3 对象的放置和编辑 (3) 2.1.4 连线 (4) 2.2Cadence软件 (4) 2.2.1 Cadence简介 (4) 2.2.2 Cadence软件的特点 (4) 2.2.3电路PCB的设计步骤 (4) 3 设计方案 (6) 3.1 运算放大电路的设计 (6) 3.2 功率放大电路的设计 (7) 3.3 音频功率放大电路 (9) 3.4方案总结及仿真 (10) 4 Candence软件操作 (11) 4.1 Cadence画电路原理图 (11) 4.2 布线及PCB图 (11) 4.2.1布线注意事项 (11) 4.2.2 PCB制作 (12) 5.心得体会 (14) 6.参考文献 (15)

几款最常用的音频功放芯片以及应用电路介绍

几款最常用的音频功放芯片以及应用电路介绍 来源:华强北IC代购网功放芯片就好像是多媒体播放设备的“心脏”,是为播放设备提供动力的部件,也是关系到音质的重要环节之一,其重要性自然不言而喻。于是有许多音频功放芯片的初学者就会好奇,要怎么才能选到合适的芯片呢?常用的音频功放芯片有哪些?下面华强北IC代购网搜集了几款最常用的音频功放芯片,以及功率放大集成电路介绍希望对大家的音频电路设计有帮助。 常用的音频功放芯片 1、LM1875 LM1875是最常用的功放芯片之一,为单声道设计,不仅具有音质醇厚功率大的优点,还具有完整的保护电路,在同类型芯片中属于高档型号。 2、LM3886 同样是单声道设计,共有11个引脚,相对LM1875来说,LM3885具有更大的功率,更宽的动态,在其他参数上也有优势,所以只有在最高端多媒体音响才会采用LM3886作为音频功放芯片。 3、LM4766

网上通常的说法是,LM4766等于将两个LM3886封装在一起,为什么这样说呢?从性能参数来看,LM4766恰好和LM3886相当,甚至音色表色也是如出一辙。不过,由于LM4766引脚较多,业内人士常把它称之为“蜈蚣芯片”,在焊接的时候具有一定的难度。 功率放大集成电路分类介绍 1、二声道三维环绕声处理集成电路 音响系统中使用的二声道三维环绕声系统有SRS、Spatializer、Q Surround以及虚拟杜比环绕声系统。 2、杜比定向逻辑环绕声集成电路 杜比定向逻辑环绕声解码系统是经过杜比编码处理过的左、右二声迹信号调节还原成四声道音频信号。 3、数码环绕声解码集成电路 音响系统中使用的数码环绕声系统有杜比数码系统和DTS系统等,两种系统音频信号的记录与重放均为独立六声道。 4、电子音量控制集成电路 电子音量控制集成电路是采用直流电压或串行数据控制的可调增益放大器,其内部一般由衰减器、锁存器、移位寄存器和电平传唤电路组成。 5、电子转换开关集成电路 电子转换开关集成电路是采用直流电压或串行数据控制的额多路电子互锁开关集成电路,内部一般由逻辑控制、电平转换、锁存器、模拟开关等组成。 6、扬声器保护集成电路 扬声器保护集成电路可以在音频功放芯片出现故障、过载或过电压时将扬声器系统与功放电路断开,从而达到保护扬声器和功放电路的目的。扬声器保护集成电路内部一般由检测电路、触发器、静噪电路及继电器驱动电路等组成。

仪用放大器的应用电路设计

课程名称:电路与电子技术实验Ⅱ指导老师:成绩:__________________ 实验名称:仪用放大器的应用电路设计类型:___________________同组学生姓名:__________ 一、实验目的和要求(必填)二、实验内容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1.学习并了解仪用放大器与运算放大器的性能区别。 2.掌握仪用放大器的电路结构及设计方法。 3.掌握仪用放大器的测试方法。 4.学习仪用放大器在电子设计中的应用。 二、实验内容和原理 1. 仪用放大器 仪用放大器是一种精密差动电压放大电路。 在实际的生产生活中,实际的信号获取单元经常需要面对强噪声背景下的微弱信号,这些强噪声将以共模的形式进入测量单元。虽然运放具有共模抑制比,但信号电压和共模电压一起被传送到输出端,将降低放大器的有效输出范围。 2.基本差动放大器与带输入缓冲的差动放大器 基本差动放大器:带输入缓冲的差动放大器: 3.标准的三运放构成的仪用放大器 造成差动放大器误差的两个主要因素为:运算放大器的参数和电阻器匹配的精确度。 若在输入运算放大器周围增加匹配电阻,把增益设臵放在前端实现,就构成了仪用放大器。 仪用放大器的传输函数为:

运放A1、A2 为同相差分输入方式。同相输入可以大幅度提高电路的输入阻抗,减小电路对微弱输入信号的衰减;差分输入可以使电路只对差模信号放大,而对共模输入信号只起跟随作用,来提高共模抑制比。 4.单片仪用放大器 5.双孔梁应变式传感器 力传感器单元是这个实验的传感器,为信号输入部分。它内部含有由4个全桥电路。

如何选择放大器芯片

如何正确地选择运算放大器摘要:实现了一种全集成可变带宽中频宽带低通滤波器,讨论分析了跨导放大器-电容(OTA—C)连续时间型滤波器的结构、设计和具体实现,使用外部可编程电路对所设计滤波器带宽进行控制,并利用ADS软件进行电路设计和仿真验证。仿真结果表明,该滤波器带宽的可调范围为1~26 MHz,阻带抑制率大于35 dB,带内波纹小于0.5 dB,采用1.8 V电源,TSMC 0.18μm CMOS工艺库仿真,功耗小于21 mW,频响曲线接近理想状态。 现代电子工业的趋势是集成更多的功能到尽可能小巧的外形中,这已经不是什么秘密。移动电话就是这样的实例。当今许多生产商将MP3播放器、数码相机甚至卫星电视功能集成在移动电话里。过去几年,该市场已经取得了巨大的发展,并且仍在快速扩展。 这些产品的设计周期通常较短,测试比实际设计耗费更长的时间(设计大约需要4个月,测试需要6个月)。为此,设计师必须谨慎选择器件,以避免对最终的产品进行反复修改和导致延误。 下文将重点说明一些有用的设计技术、简短的计算和通用的评估方法,以帮助设计师更好地进行评估。 在便携电子领域,设计师基于多种因素(尺寸、成本和性能),利用他们的专业知识和最佳判断来选择器件。但这些因素通常需要进行权衡,设计师必须依据所需的最终产品谨慎选择元件。几乎与其它行业一样,便携市场,特别是移动电话市场,通常会同时提供高端(多功能)和低端(廉价)产品。

移动电话主板包括不同的元件,如运算放大器、音频放大器及前置放大器、数据转换器和ASIC等。选择运算放大器之前,设计师必须考虑封装选项,以及更小的封装是否会使性能降低。尽管在便携产品领域小型封装很受欢迎,但小型封装可能会给设计师带来麻烦和问题。采用塑料封装形式的运算放大器,譬如SC70,往往不能达到与SOIC或MSOP封装对应产品相同的性能。微型芯片级封装(CSP)(这实质上是裸片),暴露于光线下,输入偏流可能发生数百量级的偏移。该封装形式也容易在组装期间发生破裂。 哪些参数最重要? 在电池供电的应用领域—特别是PDA和移动电话,由于电池电压会随着干扰而下降,因此应选择PSRR性能好(~80dB)的运算放大器。此外,要注意高增益配置,这是因为耦合到运放中的噪声将导致噪声电平升高。电阻器的选择也十分关键,更大的阻值会产生更高的噪声。设计师可以利用估算约翰逊噪声(Johnson noise)或电阻噪声,这里R的单位是K欧姆,因此100K欧姆电阻产生大约40nV噪声! 如果运用多个运算放大器,减少输出噪声,这里n是使用的放大器数量。对于LMV651而言,输出噪声将减少到大约12nV

程控放大器的设计

HEFEI UNIVERSITY 程控放大器的设计 系别电子信息与电气工程系 专业电气信息类 班级09级电气(4)班 姓名李浩刘阳程超 完成时间2011年3月14日

摘要:本设计由三个模块电路构成:前即高共模抑制比仪器,8wei DAC0832衰减器,和单片机键盘显示处理模块。前级模拟放大部分具有高共模抑制比,高输入电阻,可调节放大倍数;DAC衰减器将模拟放大器的输出信号进行相应的衰减;键盘输入信号放大的倍数,并同时选取适当放大倍数,通过单片机整体控制,实现信号方大的功能。 一:方案设计与论证 1.放大电路 可行方案:如图所示,线路前级为同相差动放大结构,要求量运放的性能万群相同,这样,线路除具有差模,,共模输入电阻大的特点外,量运放的共模增益,失调机其漂移长生的误差也相互抵消,因而不需要精密匹配电阻。后即的作用是抑制共模信号,将双端输出转变为单端放大输出,一室印发给接地负载的需要,后即的带你组精密则要求匹配。增益分配一般前级去高值。 可改进为:因为其电路结构简单,易于定位和控制。但要调节增益必须手动调节变阻器,所以考虑将放大倍数设成固定值,以满足题目的需要。 2.控制部分 利用单片机,MCU最小系统可由51单片机或其他派生芯片构成。置数键可由0-9这10个数字级几个功能键组成,在软件的控制下,单片机开机后先将预置数输入,在送去显示的同时,送入DA然后等待键盘终端,并做相应的处理。 二:系统总体设计方案 1.总体设计思路 根据题目的要求,我们认真取舍,充分利用了模拟和数字系统的有点,采用单片机控制放大器增大的方法,大大的提高了系统的精密度;采用仪器放大其输入,大大提高了放大器的质量。有篇运放构成的前几高共模输入的仪表差动放大器,对不同的差模输入信号电压进行不同的方大倍数,再经过后即的数控衰减器得到要求放大的倍数的输出信号。每种信号渡江在单片机的算法控制下得到最合理的前几放大和后即衰减,一是信号放大的质量最佳。

基于AD620芯片的运算放大器

基于AD620芯片的运算放大器 一、设计要求及目的 设计一个简单的运算放大电路,信号输入有效频率2KHz以下,放大倍数250-300之间。为抑制随机噪声,信号放大后再经过一个简单一阶RC低通滤波器,在不损坏有效信号的同时,最大限度滤除噪声。 二、放大电路介绍 放大电路是指增加电信号幅度或功率的电子电路。应用放大电路实现放大的装置称为放大器。它的核心是电子有源器件,如电子管、晶体管等。为了实现放大,必须给放大器提供能量。常用的能源是直流电源,但有的放大器也利用高频电源作为泵浦源。放大作用的实质是把电源的能量转移给输出信号。输入信号的作用是控制这种转移,使放大器输出信号的变化重复或反映输入信号的变化。现代电子系统中,电信号的产生、发送、接收、变换和处理,几乎都以放大电路为基础。20世纪初,真空三极管的发明和电信号放大的实现,标志着电子学发展到一个新的阶段。20世纪40年代末晶体管的问世,特别是60年代集成电路的问世,加速了电子放大器以至电子系统小型化和微型化的进程。 现代使用最广的是以晶体管(双极型晶体管或场效应晶体管)放大电路为基础的集成放大器。大功率放大以及高频、微波的低噪声放大,常用分立晶体管放大器。高频和微波的大功率放大主要靠特殊类型的真空管,如功率三极管或四极管、磁控管、速调管、行波管以及正交场放大管等。 三、AD620芯片介绍 AD620是一款低成本、高精度仪表放大器,仅需要一个外部电阻来设置增益,增益范围为1至10000。此外,AD620引脚图采用8引脚SOIC和DIP封装,

尺寸小于分立式设计,并且功耗较低(最大电源电流仅1.3 mA),因此非常适合电池供电的便携式(或远程)应用。AD620具有高精度(最大非线性度40 ppm)、低失调电压(最大50 μV)和低失调漂移(最大0.6 μV/°C)特性,是电子秤和传感器接口等精密数据采集系统的理想之选。它还具有低噪声、低输入偏置电流和低功耗特性,使之非常适合ECG和无创血压监测仪等医疗应用。 由于其输入级采用Superβeta处理,因此可以实现最大1.0 nA的低输入偏置电流。AD620在1 kHz时具有9 nV/√Hz的低输入电压噪声,在0.1 Hz至10 Hz 频带内的噪声为0.28μV峰峰值,输入电流噪声为0.1 pA/√Hz,因而作为前置放大器使用效果很好。同时,AD620的0.01%建立时间为15μs,非常适合多路复用应用;而且成本很低,足以实现每通道一个仪表放大器的设计。 AD620 由传统的三运算放大器发展而成, 但一些主要性能却优于三运算放大器构成的仪表放大器的设计, 如电源范围宽(±2. 3~±18 V ) , 设计体积小, 功耗非常低(最大供电电流仅1. 3 mA ) , 因而适用于低电压、低功耗的应用场合。AD620 的单片结构和激光晶体调整, 允许电路元件紧密匹配和跟踪, 从而保证电路固有的高性能。AD620 为三运放集成的仪表放大器结构, 为保护增益控制的高精度, 其输入端的三极管提供简单的差分双极输入, 并采用β工艺获得更低的输入偏置电流, 通过输入级内部运放的反馈, 保持输入三极管的集电极电流恒定, 并使输入电压加到外部增益控制电阻RG上。AD620 的两个内部增益电阻为 24.7KΩ, 因而增益方程式为 G =49.4 KΩ/RG + 1 对于所需的增益, 则外部控制电阻值为 RG =49.4/(G - 1)kΩ AD620的引脚图如图一所示:

实用功放电路设计

题目五:实用低频功率放大器 一、设计任务与要求: (一)、任务: 设计并制作具有弱信号放大能力的低频功率放大器。 其原理示意图如下: (二)、要求: 1.在放大通道在正弦信号输入电压幅度为(5-700)mV,等效负值载电阻R1。:812下,放大通道应满足: a、额定输出功率P oK≥10W; b、带宽BW≥(50-1000)HZ; c、在P oK下和BW内的非线性失真系数≤3%; d、在P oK下的效率≥55%; e、在前置放大级输人端交流短路接地时,R L=8Ω上的交流声功率≤10mV。 2。自行设计并制作满足设计要求的稳压电源。 (三)、发挥部分(选作部分): 1. 测放大器的时间响应: a、方波发生器:由外供正弦信号源经变换电路产生正、负极性的对称方波。频率为1000HZ;上升和下降时间1≤uS;峰一峰值电压为200mV b、用上述方波激励放大通道时,在R8下,放大通道应满足 (1)、额定验出功率P ok≥10W; (2)、P oK下,输出波形上升或下降时间12≤uS; (3)、在P oK下,输出波形顶部斜降≤2% (4)、在P oK下,输出波形过冲电压≤5% (四)、设计电路、画布线图、编写调试步骤以及调试方法:根据任务要求,设计该低频功率 放大电路及电源电路,要求有电路、有参数及设计过程,画出布线图,并在面包板上插接、调试。 (五) 答辨: 答辨前必须完成下列资料 1.设计说明书:方案选择、设计过程、原理图、布线图及说明; 2.总结调试方法、测试技术指标: 整理原始记录数据 故障处理、(出现何现象、原因及解决办法)。 (六)、参考元器件型号: STK465 集成功率放大电路 uA741 0P-27/0P-37 电阻、电容、电位器、稳压块等。

测量放大电路的设计

测量放大电路的设计 作者: 【摘要】:测量放大器能够将微弱的电信号进行放大,在生活中应用也十分广泛,如在自动控制领域,往往需要用电压信号进行控制,也就必然离不开电压测量放大器,由于测量放大器应用十分广泛,因而现在已经有集成的测量放大器供使用了。本次设计就是围绕测量放大器展开的,测量放大器主要是通过运用集成运放将所测量的信号进行不失真的放大,并且不对所测量的电路产生影响,这就是需要放大器有高的输入电阻和较高的共模抑制比。 【关键字】:放大电路二阶高通有源滤波器二级低通有源滤波器 一、设计技术与要求: 如图所示,测量放大器由基本测量放大器、二阶高通有源滤波器、二阶 低通有源滤波器三部分组成。 1、性能技术指标: (1)输入阻抗Ri>1m? (2)电压放大倍数Au≥1000(即输入信号Ui-p=1mv时,输出信号Uop-p>1v (3)频带宽度B=10?10KHZ (4)共模抑制比Kcmr>80dB 二:基本测量放大电路 如下图:放大器电路有两个同相放大器和一个基本差动放大电路组合而成;该电路具有输入阻抗高、电压增益容易调节,输出不包含共模信号等优点。若不接R时,该电路由于引入了串联负反馈,所以其差模输入电阻Rid和共模输入电阻Ric都很大;当接入电阻R后,由于R很小,则R与Rid(或Ric)并联后,该电路的差模输入电阻Rid≈2R,共模输入电阻Ric≈R/2。其中RL是负载电阻。 基本放大电路有(前置放大电路组成)下:

图(1) 1其中放大倍数: Aud1==1+2R2/R1=81 Aud1’==1+2R2/R1=31

2其中放大倍为: Aud2==Rf/R3=20 由上可知在前置放大电路中,总的放大倍数为: Aud==Aud1·Aud2=81·20=1620 Aud==Aud1’·Aud2=31·20=620 由以上电路图(2)可观察到,Ri1是一个高输入阻抗的模块的组合放大电路,即输入电阻 Ri1=∞Ω>1MΩ 但由于引入了电阻R,因此,其引入的R达到要求的指标,两个R串联电阻之和2R满足: R>0.5MΩ 为了有更好显示效果,取标称值R=1.2MΩ。 同时,共模抑制比K CMR ,由于放大电路由两级放大电路组成,K CM R1 表示第 一级放大电路的共模抑制比, K CMR2 表示第二级放大电路的共模抑制比,即该型运放的共模抑制比,则 K CMR = K CM R1 ·K CMR2 其中,K CM R1=Aud1/Auc1,K CMR2 = Aud2/Auc2。 又Aud1≥1,K CM R1 ≥1,因此有; Aud1≈1+2R2/R1=81,Aud1==1+2R2/R1=31, Auc1≈1 则有K CM R1=Aud1/Auc1≈Aud1≈81,K CM R1 =Aud1/Auc1≈Aud1≈31,

放大器设计步骤解析

放大器设计步骤解析 来源:原创作者:chactor时间:2009-08-08 15:29浏览:380【大中小】 1、首先估计所设计放大器需要达到的增益,输入输出VSWR,一般业界都将VSWR做到2.0以下,除非是功率放大器的输出VSWR,可以不考虑这个限制。 2、选择适当的晶体管,确定晶体管的工作状态,在当前设计的偏压条件下,计算晶体管的S参数,MSG等,确定在设计的频段内,MSG略大于所要设计的放大器增益的值,一般设计的增益值会比MSG小2dB左右,以避免引起振荡,并方便做匹配。 3、将晶体管的稳定系数K值全部提升至1以上,而并不是只要保证工作频段K值大于1,带外的频段受到干扰也可能引起振荡,但在工作频段K值最好只能略大于1,一般去1.05,1.1左右,K值越大,设计的放大器最大增益将变小,而在带外频段,K值尽量大,K值随频率曲线最好呈现一个U字型。 4、如果是设计驱动放大器,一般设计成输入输出都共轭匹配,这里很多人在设计中常采用下面不太高效的做法:输出先接上50欧姆,再设计输入匹配网络,然后设计输出匹配网络,由于输出电路已不是50欧姆,需要再调整输入匹配网络,同样的,输入匹配网络变了以后,需要再一次调整输出匹配网络,来回需要调谐很多次,才有可能达到指标。其实输入输出匹配网络设计成共轭匹配时有一个唯一解,用公式或ADS等软件一算并可以计算出gama_S和gama_L。公式可以参考《微波工程》第472页。ADS中有直接计算的控件,位于S参数控制面板下的SmGamma1和SmGamma2。得到这两个值后,只要将50欧姆阻抗匹配到这两个值。 5、如果是设计LNA,一般是设计输出共轭匹配,而输入需要考虑降低噪声系数,需要引入一些失配。到底引入多大的失配,即gama_S如何选取,需要画出晶体管的等噪声系数圆和Ga的等增益圆。该两个圆均可以通过ADS中S参数控制面板下面的NsCircle和GaCircle控件来完成。通过折中考虑噪声系数和增益,决定gama_S的值。另外gama_S的选择也要考虑是否方便做匹配,Q值是否过高(影响匹配带宽),元件值的敏感度(gama_S附近等高线的疏密),是否远离稳定圆等因素。

主流功放芯片介绍

主流功放芯片介绍 运放之皇5532。如果有谁还没有听讲过它名字的话,那就还未称得上是音响爱好者。那个当年有运放皇之称的NE5532,与LM833、LF353、C A3240一起是老牌四大名运放,只是现在只有5532应用得最多。5532现在要紧分开台湾、美国和PHILIPS生产的,日本也有。5532原先是美国SIG NE公司的产品,因此质量最好的是带大S标志的美国产品,市面上要正宗的要卖8元以上,自从SIGNE被PHILIPS收购后,生产的5532商标使用的差不多上PHILIPS商标,质量和原品相当,只须4-5元。而台湾生产的质量就略微差一些,价格也最便,两三块便能够买到了。NE5532的封装和4558一样,差不多上DIP8脚双运放(功能引脚见图),声音特点总体来讲属于温顺细腻型,驱动力强,但高音略显毛糙,低音偏肥。往常许多人认为它有少许的“胆味”,只是现在比它更有胆味的已有许多,相对来讲就显得不是那么突出了。5532的电压适应范畴专门宽,从正负3V至正负20V 都能正常工作。它尽管是一个比较旧的运放型号,但现在仍被认为是性价比最高的音响用运放。是属于平民化的一种运放,被许多中底档的功放采纳。只是现在有太多的假冒NE5532,或非音频用的工业用品,由于5532的引脚功能和4558的相同,因此有些不良商家还把4558擦掉字母后印上5 532字样充当5532,一样外观粗糙,印字易擦掉,有少许体会的人也能够辨不。据讲有8mA的电流温热才是正宗的音频用5532。 NE5532还有两位兄弟NE5534和NE5535。5534是单运放,由于它分开了单运放,没有了双运放之间的相互阻碍,因此音色不但柔和、温顺和细腻,而且有较好的音乐味。它的电压适应范畴也专门宽,低到正负5V的电压也能保持良好的工作状态。由于往常闻名的美国BGW-150功放采纳5534作电压鼓舞时,专门让正电源电压高出0.7V,迫使其输出管工作于更完美的甲类状态,使得音质进一步改善,因此现在一样都认为如果让正电源高出0. 7V音质会更好。5534的引脚功能见(图),价格和5532相当。而NE5535

o放大器电路图设计

op07的功能介绍:Op07芯片是一种低噪声,非斩波稳零的双极性运算放大器集成电路。由于OP07具有非常低的输入失调电压(对于OP07A最大为25μV),所以OP07在很多应用场合不需要额外的调零措施。OP07同时具有输入偏置电流低(OP07A 为±2nA)和开环增益高(对于OP07A为300V/mV)的特点,这种低失调、高开环增益的特性使得OP07特别适用于高增益的测量设备和放大传感器的微弱信号等方面。 特点: 超低偏移:150μV最大。 低输入偏置电流:。 低失调电压漂移:μV/℃ 。 超稳定,时间:2μV/month最大 高电源电压范围:±3V至±22V 图1 OP07外型图片

图2 OP07 管脚图 OP07芯片功能说明: 1和8为偏置平衡(调零端),2为反向输入端,3为正向输入端,4接地,5空脚 6为输出,7接电源+ 图3 OP07内部电路图

ABSOLUTE MAXIMUM RATINGS 最大额定值Symb ol符号Parameter参数 Value数 值 Unit 单 位 VCC Supply Voltage 电源电压±22V Vid Differential Input Voltage差分输入电压±30V Vi Input Voltage 输入电压±22V Tope r Operating Temperature 工作温度 -40 to +105 ℃ Tstg Storage Temperature 贮藏温度-65 to +150 ℃ 电气特性 虚拟通道连接= ± 15V ,Tamb = 25 ℃(除非另有说明)Symb ol 符号Parameter 参数及测试条件最小 典 型 最 大 Unit 单位 Vio Input Offset Voltage 输入失调电压0℃ ≤ Tamb -6015 μV

音频功率放大器的设计与实现

模拟电子电路实验课程设计 ——音频功率放大器的设计与实现 一、设计任务 设计并制作一个音频功率放大电路(电路形式不限),负载为扬声器,阻抗8 。要求直流稳压电源供电,多级电压、功率放大,所设计的电路满足以下基本指标: (1)频带宽度50Hz~20kHz,输出波形基本不失真; (2)电路输出功率大于8W; (3)输入阻抗:≥10kΩ; (4)放大倍数:≥40dB; (5)具有音调控制功能:低音100Hz处有±12dB的调节范围,高音10kHz 处有±12dB的调节范围; (6)所设计的电路具有一定的抗干扰能力; (7)具有合适频响宽度、保真度要好、动态特性好。 发挥部分: (1)增加电路输出短路保护功能; (2)尽量提高放大器效率; (3)尽量降低放大器电源电压; (4)采用交流220V,50Hz电源供电。 二、设计要求 正确理解有关要求,完成系统设计,具体要求如下: (1)画出电路原理图; (2)确定元器件及元件参数; (3)进行电路模拟仿真; (4)SCH文件生成与打印输出; (5)PCB文件生成与打印输出; (6)PCB版图制作与焊接; (7)电路调试及参数测量。 根据以上设计要求编写设计报告,写出设计的全过程,附上有关资料和图纸。设计报告格式请参见附录一。 三、实验原理 音频功率放大器是一种应用广泛、实用性强的电子音响设备,它主要应用于

对弱音频信号的放大以及音频信号的传输增强和处理。按其构成可分为前置放大级、音调控制级和功率放大级三部分,如图1所示。 v 图1 音频功率放大器的组成框图 1.前置放大级 音频功率放大器的作用是将声音源输入的信号进行放大,然后输出驱动扬声器。声音源的种类有多种,如传声器(话筒)、电唱机、录音机(放音磁头)、CD 唱机及线路传输等,这些声音源的输出信号的电压差别很大,从零点几毫伏到几百毫伏。一般功率放大器的输入灵敏度是一定的,这些不同的声音源信号如果直接输入到功率放大器中的话,对于输入过低的信号,功率放大器输出功率不足,不能充分发挥功放的作用;假如输入信号的幅值过大,功率放大器的输出信号将严重过载失真,这样将失去了音频放大的意义。所以一个实用的音频功率放大系统必须设置前置放大器,以便使放大器适应不同的输入信号,或放大,或衰减,或进行阻抗变换,使其与功率放大器的输入灵敏度相匹配。另外在各种声音源中,除了信号的幅度差别外,它们的频率特性有的也不同,如电唱机输出信号和磁带放音的输出信号频率特性曲线呈上翘形,即低音被衰减,高音被提升。对于这样的输入信号,在进行功率放大器之前,需要进行频率补偿,使其频率特性曲线恢复到接近平坦的状态,即加入频率均衡网络放大器。 对于话筒和线路输入信号,一般只需将输入信号进行放大和衰减,不需要进行频率均衡。前置放大器的主要功能一是使话筒的输出阻抗与前置放大器的输入阻抗相匹配;二是使前置放大器的输出电压幅度与功率放大器的输入灵敏度相匹配。由于话筒输出信号非常微弱,一般只有100μV~几毫伏,所以前置放大器输入级的噪声对整个放大器的信噪比影响很大。前置放大器的输入级首先采用低噪声电路,对于由晶体管组成的分立元件组成的前置放大器,首先要选择低噪声的晶体管,另外还要设置合适的静态工作点。由于场效应管的噪声系数一般比晶体管小,而且它几乎与静态工作点无关,在要求高输入阻抗的前置放大器的情况下,采用低噪声场效应管组成放大器是合理的选择。如果采用集成运算放大器构成前置放大器,一定要选择低噪声、低漂移的集成运算放大器。对于前置放大器的另外一要求是要有足够宽的频带,以保证音频信号进行不失真的放大。 常用的前置放大器按结构划分有五种类型: (1)单管前置放大器 (2)双管阻容耦合前置放大器

相关主题