搜档网
当前位置:搜档网 › 聚合物溶液粘度的测定

聚合物溶液粘度的测定

聚合物溶液粘度的测定
聚合物溶液粘度的测定

实验7

聚合物溶液粘度的测定

一. 实验目的

1. 了解旋转粘度计的构造和测定流体粘度的原理。

2. 掌握流体粘度的测定方法。

二. 实验原理

同轴圆筒粘度计又称Epprecht 粘度计,是测量低粘度流体粘度的一种基本仪器。其原理示意图如图1-1所示。

仪器的主要部分由一个圆筒形的容器和一个圆筒形的转子组成,待测液体被装入两圆筒间的环形空间内,半径为R 1的内筒由弹簧钢丝悬挂,并以角速度ω匀速旋转,如果内筒浸入待测液体部分的深度为L ,则待测液体的粘度可用下式计算:

)11(422

21R R L M ?=ωπη (1-1) 其中,R 1和R 2分别为内筒的外经及外筒的内径。M 为内筒受到液体的粘滞阻力而产生的扭矩。这样,通过内筒角速度和扭矩的测定,就可以通过粘度计的几何尺寸计算出液体的粘度。

三. 仪器及试剂

1. NDJ-79旋转式粘度计(上海安得仪器设备有限公司)

本仪器的主要构造和配件如图1-2所示。

本仪器共有两组测量器,每组包括一个测定容器和几个测定转子配合使用,其有关数据

见表(1)。用户可根据被测液体的大致粘度范围选择适当的测定组及转子;为取得较高的测试精度,读数最好大于30分度而不得小于20分度,否则,应变换转子或测试组。

指针指示之读数乘以转子系数即为测得的粘度mPa?s,即:

η(1-2)

=

a

K?

式中:η为待测液体的粘度;K为系数;a为指针指示的读数(偏转角度)。

第二测定组用以测定较高粘度的液体,配有三个标准转子(呈圆筒状,各自的因子为1、10和100),当粘度大于10000 mPa?s时,可配用减速器,以测得更高的粘度。1:10的减速器,转子转速为75转/分,1:100的减速器为7.5转/分,最大量程分别为100000 mPa?s和1000000 mPa?s。

第三测定组用来测量低粘度液体,量程为1~50 mPa?s,共有四个转子(呈圆筒形),供测定各种粘度时选用,四个转子各自的因子为0.1、0.2、0.4、0.5。

2.蒸馏水,浓度分别为5%、10%(重量百分比)的聚乙烯醇水溶液。

四. 准备工作

1.松开滚花螺栓,将黄色避震器脱架取下。

2.松开测定器螺母,将测定器II从脱架取下。

3.接通电源:工作电压为~220±10%,50Hz。

4.连轴器安装:连轴器是一左旋滚花带勾的螺母,固定于电机同轴的端部。拆装时用专用插杆插入胶木园盘上的小孔卡住电机轴。(使用减速器时测定组则配有短小勾,用于转子悬挂)。

5.零点调整:开启电机,使其空转,反复调节调零螺钉,使指针指到零点。

(为了节约时间,以上准备工作可由指导教师事先做好)

五. 实验步骤

1.蒸馏水粘度的测定

将蒸馏水缓缓地注入第III测试容器中,使液面与测试容器锥形面下部边缘齐平,将转子全部浸入液体,测试容器放在仪器的脱架上,同时把转子悬挂在仪器的连轴器上,此时转子应全部浸没于液体中,开启电机,转子旋转可能伴有晃动,此时可前后左右移动脱架上的测试容器,使与转子同心从而使指针稳定即可读数。

2.1%聚乙烯醇溶液粘度的测定

将1 %的聚乙烯醇溶液缓缓注入第II测试容器中,按上述步骤读出指针读数。

3.5 %聚乙烯醇溶液粘度的测定

将1:10的减速器安装在电机轴上,按上述步骤读出指针读数。

六. 数据处理

根据记录的指针读数,乘以相应的转子系数,计算出蒸馏水和聚乙烯醇溶液的粘度,当使用减速器时,还应该乘以减速器的减速倍率。

思考题

1.为什么聚合物溶液的粘度要远远大于相应溶剂的粘度?

2.旋转粘度计适合测定什么流体的粘度,为什么?

液体黏度的测定-实验报告

物理实验报告 液体黏度的测定 各种实际液体都具有不同程度的黏滞性。当液体流动时,平行于流动方向的各层流体之间,其速度都不相同,即各层间存在着滑动,于是在层与层之间就有摩擦力产生。这一摩擦力称为“黏滞力”。它的方向在接触面内,与流动方向相反,其大小与接触面面积的大小及速度梯度成正比,比例系数称为“黏度”(又称黏滞系数,viscosity )。它表征液体黏滞性的强弱,液体黏度与温度有很大关系,测量时必须给出其对应的温度。在生产上和科学技术上,凡是涉及流体的场合,譬如飞行器的飞行、液体的管道输送、机械的润滑以及金属的熔铸、焊接等,无不需要考虑黏度问题。 测量液体黏度的方法很多,通常有:①管流法。让待测液体以一定的流量流过已知管径的管道,再测出在一定长度的管道上的压降,算出黏度。②落球法。用已知直径的小球从液体中落下,通过下落速度的测量,算出黏度。③旋转法。将待测液体放入两个不同直径的同心圆筒中间,一圆筒固定,另一圆筒以已知角速度转动,通过所需力矩的测量,算出黏度。④奥氏黏度计法。已知容积的液体,由已知管径的短管中自由流出,通过测量全部液体流出的时间,算出黏度。本实验基于教学的考虑,所采用的是奥氏黏度计法。 实验一 落球法测量液体黏度 一、【实验目的】 1、了解有关液体黏滞性的知识,学习用落球法测定液体的黏度; 2、掌握读数显微镜的使用方法。 二、【实验原理】 将液体放在两玻璃板之间,下板固定,而对上板施以一水平方向的恒力,使之以速度v 匀速移动。黏着在上板的一层液体以速度v 移动;黏着于下板的一层液体则静止不动。液体自上而下,由于层与层之间存在摩擦力的作用,速度快的带动速度慢的,因此各层分别以由大到小的不同速度流动。它们的速度与它们与下板的距离成正比,越接近上板速度越大。这种液体流层间的摩擦力称为“黏滞力”(viscosity force )。设两板间的距离为x ,板的面积为S 。因为没有加速度,板间液体的黏滞力等于外作用力,设为f 。由实验可知,黏滞力f 与面积S 及速度v 成正比,而与距离x 成反比,即 x v S f η= (2-5-1) 式中,比例系数η即为“黏度”。η的单位是“帕斯卡·秒”(Pa ·s )或k g ·m -1·s -1。

流体粘度测定

流体粘度的测定 一、实验目的 液体的粘度表示它的流动性的大小,粘度大则流动性小,反之亦然。液体的粘度随着温度的升高而降低,通过实验,要求了解液体恩格拉(Engler)粘度的工业测定方法和温度对粘度的影响。 二、实验原理 粘度是表示流体质点之间摩擦力大小的一个物理指标,粘度大即摩擦力大,流动性小。 根据牛顿粘度定律: dn du A F μ= 式中:F ——内摩擦力,N ; μ——粘性系数(粘度),Pa.s ; A ——面积,m ; du/dn —速度梯度,s -1。 当各值均采用C 、G 、S 制时,μ的单位为泊(poise )。 测定粘度的方法很多。在工业上,多采用泄流法来测定流体的粘度。泄流法的内容是:在一定条件下,一定容量的液体经由锐孔流出所需要的时间,就表示该液体的粘度。 工业上用的粘度计也很多,如恩格拉(Engler)粘度计,赛波尔(Saybolt)粘度计,雷德乌德(Redwood)粘度计等。 恩氏粘度计测粘度的方法是:在实验的温度下测定200ml 试样油从小孔流出所需要的时间,该时间与20℃时200ml 蒸馏水流出所需要的时间相除,所得的商就是该试样油在实验温度下的粘度,即: E t =) 蒸馏水流出的时间(秒时)试样油流出的时间(秒时ml C ml C t 20020200 其单位为条件度,用oE 来表示。 一般地20℃的蒸馏水流出的时间为51±1秒,本实验不进行这项测定,对每台仪器,都已测量好(标准水值)并标明在粘度计外表面上。

三、实验设备 实验装置如下图所示 1.棒式温度计 2.温控仪探头 3.手动搅拌器 4.恩氏温度计 5.加热器 6.内锅盖 7.内锅 8.外锅 9.油面高度标志10.木栓11.流出管(锐孔) 12.支架13.粘度计接收瓶14.调整螺丝15温度控制仪 图1、恩氏粘度计 四、实验步骤 1、用木栓堵住内锅底部之小孔,注意必须严堵,但不能用力过度。 2、将试样油沿着玻璃棒缓慢注入到内锅中,注意不能产生气泡。 3、调节调整螺丝,使得油面高度标志(三个尖顶)的刚好露出试样油液面。 4、往外筒中加水。注意:水面应比油面高10毫米以上,把温控仪探头及棒式温度计固定在支架上,探头和温度计头部要插入水中。 5、盖上内锅盖,并插上恩氏温度计。 6、在流出口下面放置洁净、干燥的接收瓶。 7、用搅拌器搅拌外筒中的水,用温度计搅拌试样油。 8、当试样油的温度计基本稳定时,停止搅拌,并保持五分钟。 9、五分钟后,若试样油的温度没有变化,则迅速提起木栓,同时按动秒表。 10、当接收瓶中试样油正好达到刻度时,立即停止秒表,并将读数记入下表。 11、打开温控仪开关,分别先后把温控选择旋钮旋至40℃、50℃的位置上,重复实验步骤1、2、3、4、5、6、7、8、9、10。 本实验所需的试样油为20#机油,由于粘度较大,流动性小。为节约时间起见,我们只测定100ml试样油流出所需的时间。将该时间乘以一个系数即得200ml试样油在同一温度下流出的所需要的时间,该系数随着温度的变化而变化,20℃左右为2.3556,40℃左右为2.3348,50℃左右为2.3283。 五、实验报告

水粘度系数测定

液体粘度的测定 一、实验目的 1.掌握正确使用水浴恒温槽的操作,了解其控温原理。 2.掌握用奥氏(Ostwald )粘度计测定水溶液粘度的方法。 二、实验原理 当液体以层流形式在管道中流动时,可以看作是一系列不同半径的同心圆筒以不同速度向前移动。愈靠中心的流层速度愈快,愈靠管壁的流层速度愈慢,取面积为A ,相距为d ,相对速度为d v 的相邻液层进行分析, 由于两液层速度不同,液层之间表现出内摩擦现象,慢层以一定的阻力拖着快层。显然内摩擦力与两液层接触面积A 成正比,也与两液层间的速度梯度成正比,即 式中比例系列η称为粘度系数(或粘度)。可见,液体的粘度是液体内摩擦力的量度。在国际单位制中,粘度的单位为N ·m -2·s ,即Pa ·s (帕·秒),但习惯上常用P (泊)或cP (厘泊)来表示,两者的关系;1P=10-1Pa ·s 。 粘度的测定可在毛细管粘度计中进行。设有液体在一定的压力差p 推动下以层流的形式流过半径R ,长度为L 毛细管(见图3-45)。对于其中半径为r 的圆柱形液体,促使流动的推动力p r F 2π=,它与相邻的外层液体之间的内摩擦力 r v r v d d rL d d A f ηπη2=?=,所以当液体稳定流动时,即

在管壁处即r=R时,v=0,对上式积分 对于厚度为d r 的圆筒形流层,t时间内流过液体的体积为2πrvtd r,所以t时间内流过这一段毛细管的液体总体积为 上式称为波华须尔(Poiseuille)公式,由于式中R,p等数值不易测准,所以η值一般用相对法求得,其方法如下: 取相同体积的两种液体(被测液体“i”,参考液体“o”,如水、甘油等),在本身重力作用下,分别流过同一支毛细管粘度计,如图3-47 所示的奥氏粘度 计。若测得流过相同体积V a-b 所需的时间为t i 与t ,则 由于g h pρ =(h为液柱高度,ρ为液体密度,g为重力加速度),若用同一支粘度计,根据式(5)可得: 若已知某温度下参比液体的粘度为 η,并测得

粘度测定法

运动粘度测定法1)清洗玻璃毛细管粘度计; 2)将油品吸入玻璃毛细管粘度计; 3)将毛细管粘度计放入粘度测定器中; 4)开始计时; 5)十分钟后开始做实验; 6)从第一个刻度线开始计时,下面刻度线计时结束;7)记录时间(以秒为单位); 8)重复三次实验,记录时间并计算平均值; 9)计算100℃或40℃的运动粘度:时间*粘度管系数。注意: 1)选择合适的粘度管; 2)吸入油品时不要有气泡进入; 3)观察是否堵管; 4)计算粘度时看清是哪个粘度管; 5)全浸式温度计的温度是否为100℃或40℃; 6)眼睛一定要平视刻度线时计时。

闪点的测定GB/T3536 闪点:在规定实验条件下,试验火焰引起试样蒸汽着火,并使火焰蔓延至液体表面的最低温度。 1)将试样装入试验杯至规定的刻度线; 2)开始加热,此时迅速升高试样的温度; 3)点燃实验火焰,并调节火焰直径为3.2mm~4.8mm; 4)当试样温度达到预期闪点前约56℃时减慢加热速度,使试样在达到闪点前的最后23℃左右时升温速度为5~6(℃/min); 5)在预期闪点前至少23℃左右,开始用试验火焰扫划,温度每升高2℃扫划一次; 6)当在试样液面上的任何一点出现闪火时,立即记录温度计的温度读书,作为观察闪点; 注意: 1)试样装入试验杯时,是试样的弯月面顶部恰好位于试验杯的装样刻线; 2)温度计垂直放置,使其感温泡底部距试验杯底部6mm; 3)试验过如果试样表面形成一层膜,应把油膜拨到一边再继续试验;4)程中,避免他人在试验杯附近随意走动,以防扰乱试样蒸气;5)不要把有时在试验火焰周围产生的淡蓝色光环与真正的闪火相混淆。

粘度的测量

如何计算黏度? 黏度系指流体对流动的阻抗能力,采用动力黏度、运动黏度或特性黏数以表示之。测定液体药品或药品溶液的黏度可以区别或检查其纯杂程度。 流体分牛顿流体和非牛顿流体两类。牛顿流体流动时所需剪应力不随流速的改变而改变,纯液体和低分子物质的溶液属于此类;非牛顿流体流动时所需剪应力随流速的改变而改变,高聚物的溶液、混悬液、乳剂分散液体和表面活性剂的溶液属于此类。 黏度的测定可用黏度计。黏度计有多种类型,本药典采用毛细管式和旋转式两类黏度计。毛细管黏度计因不能调节线速度,不便测定非牛顿流体的黏度,但对高聚物的稀薄溶液或低黏度液体的黏度测定影响不大;旋转式黏度计适用于非牛顿流体的黏度测定。液体以1cm/s的速度流动时,在每1cm<2>平面上所需剪应力的大小, 称为动力黏度,以Pa·s为单位。在相同温度下,液体的动力黏度与其密度的比值,再乘10<6>,即得该液体的运动黏度,以mm<2>/s为单位。本药典采用在规定条件下测定供试品在平氏黏度计中的流出时间(s),与该黏度计用已知黏度的标准液测得的黏度计常数(mm<2>/s<2>)相乘,即得供试品的运动黏度。 溶剂的黏度η<[o]>常因高聚物的溶入而增大,溶液的黏度η与溶剂的黏度η<[o]> 的比值(η/η<[o]>)称为相对黏度(η<[r]>), 常用在乌氏黏度计中的流出时间的比值(T/T<[o]>)来表示;当高聚物溶液的浓度较稀时,其相对黏度的对数值与高聚物溶液浓度的比值,即为该高聚物的特性黏数[η]。根据高聚物的特性黏数可以计算其平均分子量。 仪器用具 (1)恒温水浴可选用直径30cm以上、高40cm以上的玻璃缸或有机玻璃缸,附有电动搅 拌器与电热装置,供测定运动黏度时应能恒温±0.1℃,供测定特性黏数时应能恒温 ±0.05℃。 (2) 5mm;测定球A的容量为3.5ml±0.5ml(选用流出时间在120~180秒之间为宜)。 第一法(用平氏黏度计测定运动黏度或动力黏度) 照各药品项下的规定,取毛细管内径符合要求的平氏黏度计1支,在支管F上连接一橡皮管,用手指堵住管口2,倒置黏度计,将管口1插入供试品(或供试溶液,下同)中,自橡皮管的另一端抽气,使供试品充满球C 与A并达到测定线m<[2]>处,提出黏度计并迅速倒转,抹去黏附于管外的供试品,取下橡皮管使连接于管口1上,将黏度计垂直固定于恒温水浴中,并使水浴的液面高于球C的中部,放置15分钟后,自橡皮管的另一端抽气,使供试品充满球A并超过测定线m<[1]>,开放橡皮管口,使供试品在管内自然下落,用秒表准确记录液面自测定线m<[1]>下降至测定线m<[2]>处的流出时间。依法重复测定3次以上,每次测定值与平均值的差值不得超过平均值的±5%。另取一份供试品同样操作,并重复测定3次以上。以先后两次取样测得的总平均值按下式计算,即为供试品的运动黏度或供试溶液的动力黏度。运动黏度(mm<2>/s)=Kt 动力黏度(Pa·s)=10<6>·Kt·ρ 式中 K为用已知黏度的标准液测得的黏度计常数,mm<2>/s<2>; t 为测得的平均流出时间, s;ρ为供试溶液在相同温度下的密度,Kg/m<3>。 第二法(用旋转式黏度计测定动力黏度)照各药品项下的规定,按照仪器说明书操作,并按下式计算供试品的动力黏度。 动力黏度(Pa·s)=K'α式中 K'为用已知黏度的标准液测得的旋转式黏度计常数;α为偏转角。 第三法(用乌氏黏度计测定特性黏数)取供试品,照各品种项下的规定制成一定浓度的溶液,用3号垂熔玻璃漏斗滤过,弃去初滤液(约1ml),取续滤液(不得少于7ml)沿洁净、干燥乌氏黏度计的管2内壁注入B中,将黏度计垂直固定于恒温水浴(水浴温度除另有规

丙三醇-水溶液-浓度-温度-粘度表

Viscosity of Aqueous Glycerine Solutions in Centipoises/mPa s Temperatur e (°C) Glycerine percent weight0102030405060708090100 0(1) 1.792 1.308 1.0050.80070.65600.54940.46880.40610.35650.31650.2838 10 2.44 1.74 1.31 1.030.8260.6800.5750.500––– 20 3.44 2.41 1.76 1.35 1.070.8790.7310.635––– 30 5.14 3.49 2.50 1.87 1.46 1.160.9560.8160.690–– 408.25 5.37 3.72 2.72 2.07 1.62 1.30 1.090.9180.7630.668 5014.69.01 6.00 4.21 3.10 2.37 1.86 1.53 1.25 1.050.910 6029.917.410.87.19 5.08 3.76 2.85 2.29 1.84 1.52 1.28 6545.725.315.29.85 6.80 4.89 3.66 2.91 2.28 1.86 1.55 6755.529.917.711.37.73 5.50 4.09 3.23 2.50 2.03 1.68 707638.822.514.19.40 6.61 4.86 3.78 2.90 2.34 1.93 7513265.235.521.213.69.25 6.61 5.01 3.80 3.00 2.43 8025511660.133.920.813.69.42 6.94 5.13 4.03 3.18 855402231095833.521.214.210.07.28 5.52 4.24 90131049821910960.035.522.515.511.07.93 6.00 91159059225912768.139.825.117.111.98.62 6.40 92195072931014778.344.828.019.013.19.46 6.82 9324008603671728951.531.621.214.410.37.54 942930104043720210558.435.423.615.811.28.19 953690127052323712167.039.926.417.512.49.08 964600158062428114277.845.429.719.613.610.1 975770195076534016688.951.933.621.915.110.9 987370246093940919610459.838.524.817.012.2 9994203090115050023512269.143.627.819.013.3 100120703900141061228414281.350.631.921.314.8 (1)Viscosity of water taken from “Properties of Ordinary Water-Substance.” N.E. Dorsey, p. 184. New York (1940)

粘度测量

粘度测定 1.粘度 1.1 粘度——液体的粘稠程度,它是液体在外力作用下发生流动时,分子间所产生的内摩擦力。 粘度的大小是判断液态食品品质的一项重要物理常数。 粘度有绝对粘度、运动粘度、条件粘度和相对粘度之分。 1.2粘度分类 1.2.1 绝对粘度——也叫动力粘度。 它是液体以1cm/s 的流速流动时,在每l cm2 液面上所需切向力的大小,单位为“Pa·s”。 1.2.2. 运动粘度——也叫动态粘度。 它是在相同温度下液体的绝对粘度与其密度的比值,单位为“m2/s ”。 1.2.3 条件粘度——是在规定温度下,在指定的粘度计中,一定量液体流出的时间(s)或将此时间与规定温度下同体积水流出时间之比。 1.2.4相对粘度——是在一定温度时液体的绝对粘度与另一液体的绝对粘度之比,用以比较的液体通常是水或适当的液体。 2. 影响粘度的因素 粘度的大小随温度的变化而变化。 温度愈↑,粘度愈↓。 纯水在20℃时的绝对粘度为10—3 pa·s。 测定液体粘度可以了解样品的稳定性,亦可揭示干物质的量与其相应的浓度。粘度的数值有助于解释生产、科研的结果。 3. 粘度测试方法 粘度的测定方法按测试手段分为: 毛细管粘度计法、 旋转粘度计法、 滑球粘度计法等。 毛细管粘度计法设备简单、操作方便、精度高。后两种需要贵重的特殊仪器,适用于研究部门 3.1 毛细管粘度计法 3.1.1 原理 毛细管粘度计测定的是运动粘度。由样液通过一定规格的毛细管所需的时间求得样液的粘度。 3.1.2 仪器 取一定体积的液体在严格的温度与固定的液面高度的控制下,使其流经毛细管粘度计而计算其流经时间。根据流经时间与粘度计的校正常数的乘积即可得动力粘度。

实验三 液体粘度的测定

实验三 液体粘度的测定 一.实验目的 1. 掌握用Ostwald 粘度计测定液体粘度的原理和方法。 2. 进一步掌握调节恒温槽的技术。 3. 了解温度对液体粘度的影响。 二.实验原理 液体的粘度η,亦称粘度系数,是指单位面积的液层以单位速度流过相隔单位距离的固定液层时所受的力。粘度的大小与分子间力有关,即与液体的性质有关。温度对液体的粘度的影响较大,一般温度升高,液体粘度变小。 若液体在毛细管中流动,则根据波华须尔公式可得: 48r Pt VL πη= 式中,r :毛细管半径;L :毛细管长度;V :液体的体积;t :液体流经长为L 的毛细管所经历的时间;P :管两端的压力。 按上式由实验来测定液体的绝对粘度是困难的,但测定液体对标准液体的比粘度是适用的,若已知标准液体的绝对粘度,则可求出另一种液体的粘度。 奥氏粘度计是毛细管粘度计的一种,适宜于测定低粘度液体,方法是用同一粘度计,分别测定两种液体在重力作用下流经同一毛细管,且流出体积相等时各所需时间,这样有: 411 18r Pt VL πη= , 422 28r P t VL πη= 从而, 111222 Pt P t ηη=。 式中,P = hgd 。h ,推动液体流动的液位差;d ,液体密度;g ,重力加速度。 如每次取样的体积一定,则可保持h 始终一致,则有: 111 222 d t d t ηη= 假如液体2的粘度η2为已知,则液体1的粘度η1可由下式求得: 11 12 22 d t d t ηη= 由于温度对液体粘度的影响很大,故测定液体在某一温度时的粘度,必须注意控制温度恒定。 本实验以25℃时的水为标准,测定20℃、25℃温度下无水乙醇及丙酮的粘度。 已知25℃下水的粘度为0.8904×10-3 Pa·s ,水的密度为0.99707 g·cm -3 ,乙醇的密度为 图3-1奥氏粘度计

粘度法测定聚合物的分子量

实验十 粘度法测定聚合物的分子量 一、 实验目的 掌握用乌氏粘度计测定高分子溶液粘度的方法并计算粘均分子量M η。 二、 实验原理 高分子溶液具有比纯溶剂高得多的粘度,其粘度大小与高聚物分子的大小、形状、溶剂性质以及溶液运动时大分子的取向等因素有关。因此,利用高分子粘度法测定高聚物的分子量基于以下经验式: Mark 经验式: 式中:[η]-特性粘数 M -粘均分子量 K -比例常数 α-与分子形状有关的经验参数 K 和α值与温度、聚合物、溶剂性质有关,也和分子量大小有关。K 值受温度的影响较明显,而α值主要取决于高分子线团在某温度下,某溶剂中舒展的程度,其数值介于0.5~1之间。K 与α的数值可通过其它绝对方法确定,例如渗透压法、光散射法等,从粘度法只能测定得[η]。 粘度除与分子量有密切关系外,对溶液浓度也有很大的依赖性,故实验中首先要消除浓度对粘度的影响,常以如下两个经验公式表达粘度对浓度的依赖关系: []α ηKM =(10-2) (10-3) (10-1)

式中:r η-相对粘度 sp η-增比粘度 sp η/c -比浓粘度 c -溶液浓度 βκ,-均为常数 1-=r sp ηη (10-5) 式中:t -溶液流出时间,0t -纯溶剂流出时间 显然 ][η即是聚合物溶液的特性粘数,和浓度无关,由此可知,若以c sp /η和 c sp /ln η分别对c 作图,则它们外推到 0→c 的截距应重合于一点,其值等于][η。 ln r ηsp C η或 C 图1 外推法求[η]值 图10-1 外推法求][η值 三、仪器和试剂 试剂:聚乙烯醇,蒸馏水 []c c r c sp c ηηηln lim lim 0 →→==(10-4) (10-6)

粘度法测定高聚物摩尔质量

一、实验目的 1、掌握用乌氏粘度计测定高聚物溶液粘度的原理和方法。 2、测定线形高聚物聚乙二醇的粘均摩尔质量。 二、实验原理 单体分子经加聚或缩聚过程便可合成高聚物。并非高聚物每个分子的大小都相同,即聚合度不一定相同,所以高聚物摩尔质量是一个统计平均值。对于聚合和解聚过程机理和动力学的研究,以及为了改良和控制高聚物产品的性能,高聚物摩尔质量是必须掌握的重要数据之一。 高聚物溶液的特点是粘度特别大,原因在于其分子链长度远大于溶剂分子,加上溶剂化作用,使其在流动时受到较大的内摩擦阻力。 粘性液体在流动过程中,必须克服内摩擦阻力而做功。粘性液体在流动过程中所受阻力的大小可用粘度系数η(简称粘度)来表示(kg·m-1·s-1)。 高聚物稀溶液的粘度是液体流动时内摩擦力大小的反映。纯溶剂粘度反映了溶剂分子间的内摩擦力,记作η0,高聚物溶液的粘度则是高聚物分子间的内摩擦、高聚物分子与溶剂分子间的内摩擦以及η0三者之和。在相同温度下,通常η>η0,相对于溶剂,溶液粘度增加的分数称为增比粘度,记作ηsp,即 而溶液粘度与纯溶剂粘度的比值称作相对粘度,记作ηr,即 ηr反映的也是溶液的粘度行为,而ηsp则意味着已扣除了溶剂分子间的内摩擦效应,仅反映了高聚物分子与溶剂分子间和高聚物分子间的内摩擦效应。 高聚物溶液的增比粘度ηsp往往随质量浓度c的增加而增加。为了便于比较,将单位浓度下所显示的增比粘度ηsp/c称为比浓粘度,而lnηr/C则称为比浓对数粘度。当溶液无限稀释时,高聚物分子彼此相隔甚远,它们的相互作用可以忽略,此时有关系式 [η]称为特性粘度,它反映的是无限稀释溶液中高聚物分子与溶剂分子间的内摩擦,其值取决于溶剂的性质及高聚物分子的大小和形态。由于ηr和ηsp均是无因次量,所以他们的单位是浓度C单位的倒数。 在足够稀的高聚物溶液里,ηsp/c与C和lnηr/c与c之间分别符合下述经验关系式: 上两式中κ和β分别称为Huggins和Kramer常数。这是两直线方程,通过ηsp/c对C或ln ηr/c对c作图,外推至C=0时所得截矩即为[η]。显然,对于同一高聚物,由两线性方程作图外推所得截矩交于同一点,如图1。

粘度的测定方法

粘度的主要测定方法 对粘度测定有:运动粘度、动力粘度、和条件粘度三种测定方法。下面简单介绍一下 (1)运动粘度:在温度t℃时,运动粘度用符号γ表示,在国际单位制中,运动粘度单位为斯,即每秒平方米(m2/s),实际测定中常用厘斯,(cst)表示厘斯的单位为每秒平方毫米(即1cst=1mm2/s)。运动粘度广泛用于测定喷气燃料油、柴油、润滑油等液体石油产品深色石油产品、使用后的润滑油、原油等的粘度,运动粘度的测定采用逆流法 (2)动力粘度:ηt是二液体层相距1厘米,其面积各为1(平方厘米)相对移动速度为1厘米/秒时所产生的阻力,单位为克/里米·秒。1克/厘米·秒=1泊一般:工业上动力粘度单位用泊来表示。 (3)条件粘度:指采用不同的特定粘度计所测得的以条件单位表示的粘度,各国通常用的条件粘度有以下三种: ①恩氏粘度又叫思格勒(Engler)粘度。是一定量的试样,在规定温度(如:50℃、80℃、100℃)下,从恩氏粘度计流出200毫升试样所需的时间与蒸馏水在20℃流出相同体积所需要的时间(秒)之比。温度to时,恩氏粘度用符号Et表示,恩氏粘度的单位为条件度。 ②雷氏粘度即雷德乌德(Redwood)粘度。是一定量的试样,在规定温度下,从雷氏度计流出50毫升所需的秒数,以“秒”为单位。雷氏粘度又分为雷氏1号(Rt表示)和雷氏2号(用RAt表示)两种。 ③赛氏粘度,即赛波特(sagbolt)粘度。是一定量的试样,在规定温度(如100oF、F210oF 或122oF等)下从赛氏粘度计流出200毫升所需的秒数,以“秒”单位。赛氏粘度又分为赛氏通用粘度和赛氏重油粘度(或赛氏弗罗(Furol)粘度)两种。

粘度测试标准大全

粘度测试标准大全 TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】

GB 265-1988 石油产品运动粘度测定法和动力粘度计算法.pdf GB-T 10247-1988 粘度测试方法.pdf GB-T 11137-1989 深色石油产品运动粘度测定法(逆流法)和动力粘度计算法.pdf GB-T 11145-1989 车用流体润滑剂低温粘度测定法(勃罗克费尔特粘度计法).pdf GB-T 11409.8-1989 橡胶防老剂、硫化促进剂粘度的测定方法(旋转粘度计法).pdf GB-T 11543-1989 表面活性剂中、高粘度乳液的特性测试及其乳化能力的评定方法.pdf GB-T 12004.3-1989 聚氯乙烯增塑糊表观粘度测定方法.pdf GB/T 21989-2008塑料聚氯乙烯糊用Severs流变仪测定表观黏度 GB-T 12005.10-1992 聚丙烯酰胺分子量测定粘度法.pdf GB-T 12008.8-1992聚醚多元醇的粘度测定.pdf GB-T 12009.3-1989多亚甲基多苯基异氰酸酯粘度测定方法.pdf GB-T 12010.3-1989 聚乙烯醇树脂粘度测定方法.pdf GB-T 12029.2-1989 洗涤剂用羧甲基纤维素钠粘度的测定.pdf GB-T 12098-1989 淀粉粘度测定方法.pdf GB-T 1232.1-2000 未硫化橡胶用圆盘剪切粘度计进行测定第1部分:门尼粘度的测定.pdf

GB-T 1233-1992 橡胶胶料初期硫化特性的测定门尼粘度计法.pdf GB-T 13217.4-1991 凹版塑料油墨检验方法粘度检验.pdf GB-T 14074.3-1993 木材胶粘剂及其树脂检验方法粘度测定法.pdf GB-T 14235.8-1993 熔模铸造模料粘度测定方法.pdf GB-T 14490-1993 谷物及淀粉糊化特性测定法粘度仪法.pdf GB-T 14797.2-1993 浓缩天然胶乳硫化胶乳粘度的测定.pdf GB-T 14906-1994 内燃机油粘度分类.pdf GB-T 15357-1994 表面活性剂和洗涤剂旋转粘度计测定液体产品的粘度.pdf GB-T 1660-1982增塑剂运动粘度的测定(品氏法) .pdf GB-T 1661-1982 增塑剂运动粘度的测定(恩氏法) .pdf GB-T 1723-1993 涂料粘度测定法.pdf GB-T 17282-1998根据运动粘度确定石油分子量(相对分子质量)的方法.pdf GB-T 17473.5-1998 厚膜微电子技术用贵金属浆料测试方法粘度测定.pdf GB-T 17477-1998 驱动桥和手动变速器润滑剂粘度分类.pdf GB-T 1841-1980 聚烯烃树脂稀溶液粘度试验方法.pdf GB-T 1995-1998 石油产品粘度指数计算法.pdf

恒温槽调节及液体粘度的测定

实验1 恒温槽调节及液体粘度的测定 一、实验目的 1.了解恒温槽的构造、控温原理,掌握恒温槽的调节和使用。 2.掌握一种测量粘度的方法。 二、实验原理 1. 恒温槽 许多化学实验中的待测数据如粘度、蒸气压、电导率、反应速率常数等都与温度密切相关,这就要求实验在恒定温度下进行,常用的恒温槽有玻璃恒温水浴和超级水浴两种,其基本结构相同,主要由槽体、加热器、搅拌器、温度计、感温元件和温度控制器组成,如图1所示。 恒温槽恒温原理是由感温元件将温度转化为电信号输送给温度控制器,再由控制器发出指令,让加热器工作或停止工作。 水银定温计是温度的触感器,是决定恒温程度的关键元件,它与水银温度计的不同之处是毛细管中悬有一根可上下移动的金属丝,从水银球也 引出一根金属丝,两根金属丝温度控制器相联接。调节温度时,先松开固定螺丝,再转动调节帽,使指示铁上端与辅助温度标尺相切的温度示值较欲控温度低1~2℃。当加热到下部的水银柱与铂丝接触时,定温计导线成通路,给出停止加热的信号(可从指示灯辨出),此时观察水浴槽中的精密温度计,根据其与欲控温度的差值大小进一步调节铂丝的位置。如此反复调节,直至指定温度为止。 恒温槽恒温的精确度可用其灵敏度衡量,灵敏度是指水浴温度随时间变化曲线的振幅大小。即 灵敏度 = 2 ()(最低温度)最高温度t t 灵敏度与水银定温计、电子继电器的灵敏度以及加热器的功率、搅拌器的效率、各元件的布局等因素有关。搅拌效率越高,温度越容易达到均匀,恒温效果越好。加热器功率大,则到指定温度停止加热后释放余热也大。一个好的恒温槽应具有以下条件:①定温灵敏度高;②搅拌强烈而均匀;③加热器导热良好且功率适当。各元件的布局原则:加热器、搅拌器和定温计的位置应接近,使被加热的液体能立即搅拌均匀,并流经定温计及时进行温度控制。 图1 恒温槽装置示意图 1— 浴槽;2—加热器;3搅拌器;4—温度计; 5—水银定温计;6—恒温控制器;7—贝克曼温度计

黏度测定法

黏度测定法_(中国药品检验标准操作规范)_(2010年版) 黏度测定法 1 简述 黏度系指流体对流动的阻抗能力,《中国药典》2010年版二部附录ⅥG中以动力黏度、运动黏度或特性黏数表示。 液体以1cm/s的速度流动时,在每1cm2平面上所需剪应力的大小,称为动力黏度η,以Pa·s为单位。在相同温度下,液体的动力黏度与其密度(kg/m3)的比值,再乘以10-6,即得该液体的运动黏度[ν],以mm2/s为单位。高聚物稀溶液的相对黏度的对数值与其浓度的比值,称为特性黏数[η]。 第一法用平氏黏度计测定运动黏度或动力黏度 1 简述 1.1 本法系用相对法测量一定体积的液体在重力作用下流经毛细管所需时间,以求得液体的运动黏度或动力黏度。 1.2 本法适用于测定牛顿流体(如纯液体和低分子物质的溶液)的动力黏度或运动黏度。 2 仪器与用具 2.1 平氏黏度计(见《中国药典》2010年版二部附录ⅥG中的附图1),毛细管内径有0.8mm±0.05mm,1.0mm±0.05mm,1.2mm ±0.05mm,1.5mm±0.1mm或2.0mm±0.1mm多种,可根据各品种项下规定选用(流出时间应不小于200s)。 2.2 恒温水浴直径30cm以上、高40cm以上的玻璃缸或有机

玻璃缸,附有电动搅拌器及电热装置,除另有规定外,恒温精度±0.1℃。 2.3 温度计分度0.1℃,经周期检定。 2.4 秒表分度0.2s,经周期检定。 3 操作方法 3.1 黏度计的清洗和干燥取黏度计,置铬酸洗液中浸泡2h以上(沾有油渍者,应依次先用三氯甲烷或汽油、乙醇、自来水洗涤晾干后,再用铬酸洗液浸泡6h以上),自来水冲洗至内壁不挂水珠,再用水洗3次120℃干燥,备用。 3.2 按各品种项下规定的测定温度调整恒温水浴温度。 3.3 取黏度计,在支管F上连接一橡皮管,用手指堵住管口2,倒置黏度计,将管口!插入供试品(或供试溶液)中,自橡皮管的另一端抽气,使供试品充满球C与A并达到测定线m2处,提出黏度计并迅速倒转,抹去黏附于管外的供试品,取下橡皮管接于管口1上,将黏度计垂直固定于恒温水浴中,并使水浴的液面高于球C的中部,放置15min后,自橡皮管的另一端抽气,使供试品充满球A并超过测定线m1,开放橡皮管口,使供试品在管内自然下落,用秒表准确记录液面自测定线m1下降至测定线m2处的流出时间;依法重复测定3次以上,每次测定值与平均值的差值不得超过平均值的±5%。 另取一份供试品同样操作,并重复测定3次以上。 以先后两次取样测得的总平均值按公式计算,即得。 3.4 测定动力黏度时,按“相对密度测定法”标准操作规程测

运动粘度的测定

实验三石油产品运动粘度的测定 一、实验目的 1、了解测定石油产品运动黏度的意义; 2、掌握平氏粘度计测定运动粘度的操作技能; 3、能够正确处理和评价实验数据。 二、石油产品运动粘度测定原理 在某一恒定温度下,测定一定体积试样在重力下流过一个经过标定的玻璃毛细管黏度计的时间,毛细管黏度计常数与流动时间的乘积,即为该温度下测定液体的运动黏度。 对于指定同一毛细管粘度计来说,的毛细管常数C为常数(附在平氏粘度计纸条上)。则运动粘度计算公式为: νt=C·τt C为毛细管常数,mm2/s2; τ为温度为t℃是平均流动时间,s; υt为t℃所测油品的运动黏度,mm2/s。 三、准备实验 1、仪器 (1)粘度计:平氏粘度计一只。毛细管内径0.1mm。每只粘度计都有自己的毛细管常数。 (2)恒温水浴槽:带有透明玻璃的恒温浴,其高度大约180mm,容积约2L,附设自动搅拌装置以及能准确地调节温度的电热装置,温度能恒定到±0.1℃。以常用水作为恒温液体,根据油品要求不同自己温度。 (3)温度计 (4)秒表:刻度为0.1S。(用手机代替) (5)吸耳球和乳胶管。 2、试剂 95%乙醇、煤油 3、实验准备 (1)试样预处理:在实验前必须用滤纸对煤油进行过滤除去杂质。 (2)清洗粘度计:在测定试样粘度之前,粘度计必须用95%乙醇洗涤。然后放入烘箱中烘干或用通过棉花滤过的热空气吹干。

(3)装入试样:测定运动粘度时,用清洁、干燥的平氏粘度计吸入试样。在装试样之前,把橡皮管套在支管3上,并用手指堵住管身2的管口,同时倒置粘度计,将管身4插入装着试样的容器中,利用洗耳球将试样吸到标线b ,同时注意不要使管身4、扩张部分5和扩张部分6中的试样产生气泡和裂隙。当液面达到标线b 时,从容器中提出黏度计,并迅速恢复至正常状态,同时将管身4的管端外壁所沾着的多余试样擦去,并从支管3取下橡皮管套在管身4上。 (4)安装仪器:将装有试样的黏度计浸入恒温浴中,将粘度计固定在支架上,固定位置时,必须把毛细管粘度计的扩张部分5浸入一半。 四、试验步骤 1、调整温度:将粘度计调整成为垂直状态,将恒温浴调整到20℃,把装好试样的粘度计浸入恒温浴内,试验温度必须保持恒定,波动范围不超过±0.1oC 。 表3-1 黏度计在恒温浴中的恒温时间 2、调试试样液面位置:利用毛细管黏度计管身4所套的橡皮管用吸耳球将试样吸入扩张部分6中,使试样液面高于标线a 。并且注意不要让毛细管和扩张部分6的液体产生气泡和裂缝。 3、测定试样流动时间:观察试样在管身中的流动情况,液面恰好到达标线a 时,开动秒表;液面正好流到标线b 时,停止秒表。记录试样在扩张部分6流动时所用流动时间。 4、测定温度:分别在温度为30oC ,40oC ,50oC ,60oC ,70oC ,80oC 下测定流动时间,每个温度重复测定至少4次。,每次流动时间与算术平均值的差值应符合表3-2中的要求。最后,用不少于3次测定的流动时间计算算术平均值,作为试样的平均流动时间。 实验温度/℃ 30 40 50 60 70 80 恒温时间/min

液体黏度的测定实验报告记录

液体黏度的测定实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

物理实验报告 液体黏度的测定 各种实际液体都具有不同程度的黏滞性。当液体流动时,平行于流动方向的各层流体之间,其速度都不相同,即各层间存在着滑动,于是在层与层之间就有摩擦力产生。这一摩擦力称为“黏滞力”。它的方向在接触面内,与流动方向相反,其大小与接触面面积的大小及速度梯度成正比,比例系数称为“黏度”(又称黏滞系数,viscosity )。它表征液体黏滞性的强弱,液体黏度与温度有很大关系,测量时必须给出其对应的温度。在生产上和科学技术上,凡是涉及流体的场合,譬如飞行器的飞行、液体的管道输送、机械的润滑以及金属的熔铸、焊接等,无不需要考虑黏度问题。 测量液体黏度的方法很多,通常有:①管流法。让待测液体以一定的流量流过已知管径的管道,再测出在一定长度的管道上的压降,算出黏度。②落球法。用已知直径的小球从液体中落下,通过下落速度的测量,算出黏度。③旋转法。将待测液体放入两个不同直径的同心圆筒中间,一圆筒固定,另一圆筒以已知角速度转动,通过所需力矩的测量,算出黏度。④奥氏黏度计法。已知容积的液体,由已知管径的短管中自由流出,通过测量全部液体流出的时间,算出黏度。本实验基于教学的考虑,所采用的是奥氏黏度计法。 实验一 落球法测量液体黏度 一、【实验目的】 1、了解有关液体黏滞性的知识,学习用落球法测定液体的黏度; 2、掌握读数显微镜的使用方法。 二、【实验原理】 将液体放在两玻璃板之间,下板固定,而对上板施以一水平方向的恒力,使之以速度v 匀速移动。黏着在上板的一层液体以速度v 移动;黏着于下板的一层液体则静止不动。液体自上而下,由于层与层之间存在摩擦力的作用,速度快的带动速度慢的,因此各层分别以由大到小的不同速度流动。它们的速度与它们与下板的距离成正比,越接近上板速度越大。这种液体流层间的摩擦力称为“黏滞力”(viscosity force )。设两板间的距离为x ,板的面积为S 。因为没有加速度,板间液体的黏滞力等于外作用力,设为f 。由实验可知,黏滞力f 与面积S 及速度v 成正比,而与距离x 成反比,即 x v S f η= (2-5-1) 式中,比例系数η即为“黏度”。η的单位是“帕斯卡·秒”(Pa ·s )或k g ·m -1·s -1。

液体粘度的测定 实验报告

六、数据处理 由(4)可知,待 ,则 标 25时, 待标待 时, 待标待 时, 待标待 时, 待标待 表3黏度实验数据处理I 实验温度/25 30 35 40 水的密度 0.9970 0.9959 0.9940 0.9922 水 水的黏度 0.8904 0.7975 0.7194 0.6529 水 0.7852 0.7809 0.7767 0.7720 乙醇的密度 乙 水的流经时间 104.6 93.10 83.27 75.85 水 乙醇的流经时间154.9 141.6 130.6 117.2

乙 乙醇的黏度 乙 1.039 0.9507 0.8815 0.7981 以对作图,根据式(5)的直线关系求出无水乙醇的温度特性常数A 和B ,将数据处理结果列表 0.00318 0.003200.003220.003240.003260.003280.00330 0.003320.00334 0.003361/T (K -1 ) lg (Pa s) 表4 黏度实验数据处理II 实验温度 25 30 35 40

/ 乙0.01645 -0.02196 -0.05478 -0.09794 (1/T)/K 0.003356 0.003300 0.003247 0.003195 A/K 0.00142 B 0.00333 七、思考题 (1)液体黏度与温度有何关系? 温度越高,黏度越低。 (2)简述测定流体黏度的原理和方法。 测定黏度通常测定一定体积的流体经一定长度垂直的毛细管所需的时间,然后根据泊赛耳公式计算其黏度,然而直接由实验测定液体黏度的黏度是比较困难的,通常采用测定液体对标准液体的相对黏度,用已知的标准流体的黏度来求出待测流体的黏度。 方法:奥氏黏度计、乌氏黏度计。

丙二醇水溶液物性参数

粘度 丙二醇水溶液因为其无毒、无腐蚀等性质,在诸多领域作为载冷剂应用。其物理性质对设备和系统的设计都十分重要,下面是丙二醇水溶液的粘度(mPa.s)与其浓度和温度的关系。(数据来源ASHRAE手册2005) 温度℃乙二醇水溶液浓度(体积浓度) 10%20%30%40%50%60%70%80%90% –35 524.01916.181434.223813.29–30 330.39551.12908.472071.34–25 110.59211.43340.09575.921176.09–20 73.03137.96215.67368.77696.09–15 33.2249.792140.62239.86428.19–10 11.8723.2734.7862.7894.23159.02272.94 -5 4.989.0816.7524.9943.8464.83107.64179.78 0 2.68 4.057.0812.3718.431.3245.7474.45122.03 5 2.23 3.34 5.619.3513.8522.8733.0452.6385.15 10 1.89 2.79 4.527.2210.6517.0524.4137.9960.93 15 1.63 2.36 3.69 5.698.3412.9618.412844.62 20 1.42 2.02 3.06 4.57 6.6510.0414.1521.0433.38 25 1.25 1.74 2.57 3.73 5.397.9111.0816.125.45 30 1.11 1.52 2.18 3.09 4.43 6.348.8112.5519.76 350.99 1.34 1.88 2.6 3.69 5.157.129.9415.6 400.89 1.18 1.63 2.21 3.11 4.25 5.847.9912.49 450.81 1.06 1.43 1.91 2.65 3.55 4.85 6.5210.15 500.730.95 1.26 1.66 2.293 4.08 5.398.35 550.670.86 1.13 1.47 1.99 2.57 3.46 4.51 6.95 600.620.78 1.01 1.3 1.75 2.22 2.98 3.82 5.85 650.570.710.91 1.17 1.55 1.93 2.58 3.28 4.97 700.530.660.83 1.06 1.38 1.7 2.26 2.83 4.26 750.490.60.760.96 1.24 1.51 1.99 2.47 3.69 800.460.560.70.88 1.12 1.35 1.77 2.18 3.22 850.430.520.650.81 1.02 1.22 1.59 1.94 2.83 900.40.490.610.750.93 1.1 1.43 1.73 2.5 950.380.450.570.70.86 1.01 1.3 1.56 2.23 1000.350.430.530.660.790.92 1.18 1.422 1050.330.40.50.620.740.85 1.08 1.29 1.8 1100.320.380.470.590.690.791 1.19 1.63 1150.30.360.450.560.640.740.93 1.09 1.48 1200.280.340.430.530.60.690.86 1.02 1.35 1250.270.320.410.510.570.650.80.95 1.24

相关主题