搜档网
当前位置:搜档网 › 热力学第二定律导学案

热力学第二定律导学案

热力学第二定律导学案
热力学第二定律导学案

【教学目标】

1、了解热传导过程的方向。

2、了解什么是第二类永动机,为什么第二类永动机不可能制成。

3、了解热力学第二定律的两种不同的表述以及这两种表述的物理实质。

4、了解什么是能量耗散。

5、知道绝对零度不可能达到。

6、指导学生分析事例,培养学生分析问题和理论联系实际的能力

【重点、难点分析】

重点:1、热力学第二定律两种常见的表述

2、什么是绝对零度,知道它是不可达到的

难点:1、热力学第二定律表述的物理实质

2、自然界中进行的涉及热现象的宏观过程都具有方向性

【课时安排】一课时

【课前准备】

教师:投影仪及胶片,一个电冰箱模型,一盆凉水,准备一个酒精灯和一个铁块,铁钳

学生:课下预习课文,在家观察自家的电冰箱

【教学设计】

引入新课

我们在初中学过,当物体温度升高时,就要吸收热量;当物体温度降低时,就要放出热量。而且热量公式Q = cm△t,这里有一个有趣的问题:地球上有大量的海水,它的总质量约为1.4×1018 t , 如果这些海水的温度降低0.1o C,将要放出多少焦耳的热量?海水的比热容为C=4.2×103J/(kg·℃)。下面请大家计算一下。

学生计算:Q = 4.2×103×1.4×1018×103×0.1 = 5.8×1023J

这相当于1800万个功率为100万千瓦的核电站一年的发电量。为什么人们不去研究这“新能源”呢?原来,这样做是不可能的,这涉及物理学的一个基本定律,这就是本节要讨论的热力学第二定律。

【板书】第六节热力学第二定律

【板书】一、热传导的方向性

教师实验,点燃酒精灯,用钳夹住事先准备好的铁块,在火焰上灼烧一段时间后,问学生现在用手摸会出现什么现象?下面把灼热的铁块放入冷水中,过一段时间,拿出铁块现在你们敢用手摸吗?通过这个实验说明什么问题?

学生思考,教师给予启发

学生答:热量从温度高的物体自发地传给温度低的物体

再让学生列举一些这样的例子

例如:雪花落在手上就融化,挨着火炉就温暖等等

教师反问学生:大家是否想过热量为什么不会自发地从低温物体传给高温物体,使低温物体的温度越来越低,高温物体的温度越来越高。这里所说的“自发地”,指的是没有任何外界的影响或帮助。学生思考讨论一会后,有的同学可能产生疑问:电冰箱内部的温度比外部低,为什么致冷系统还能够不断地把冰箱内的热量传给外界的空气?

事前我们让大家观察自家的电冰箱,请同学做简要的回答,教师进行点拨。然后,展示电冰箱模型给学生简要讲解。

这是因为电冰箱消耗了电能,对致冷系统做了功。一旦切断电源,电冰箱就不能把其内部的热量传给外界的空气了。相反,外界的热量会自发地传给电冰箱,使其温度逐渐升高。

学生总结:

热传导的方向性:两个温度不同的物体相互接触时,热量会自发地从高温物体传给低温物体。要实现相反过程,必须借助外界的帮助,因而产生其他影响或引起其他变化。

【板书】二、第二类永动机

前面我们学习了第一类永动机,不能制成的原因是什么?(违背了能量守

恒),什么是第二类永动机呢?

学生看书,并思考讨论下列问题:

(投影片)1、热机是一种把什么能转化成什么能的装置?

2、热机的效率能否达到100%?

3、第二类永动机模型

4、机械能和内能转化的方向性

然后由各小组代表回答,教师进行思路点拨

1、热机是一种把内能转化成机械能的装置

2、热机的效率不能达到100%

原因分析:

以内燃机为例,气缸中的气体得到燃烧时产生的热量为Q

1

,推动活塞做工W,

然后排出废气,同时把热量Q

2

散发到大气中,

由能量守恒定律可知:Q

1 = W + Q

2

我们把热机做的功W和它从热源吸收的热量Q

1

的比值叫做热机的效率,用表示

η=W /Q1

实际上热机不能把得到的全部内能转化为机械能,热机必须有热源和冷凝器,

,热机工作时,总要向冷凝器散热,不可避免的要由工作物质带走一部分热量Q

2所以有:

>W

Q

1

因此,热机的效率不可能达到100%,汽车上的汽油机械效率只有20%~30%,蒸汽轮机的效率比较高,也只能达到60%,即使是理想热机,没有摩擦,也没有漏气等能量损失,它也不可能把吸收的热量百分之百的转化成机械能,总要有一部分散发到冷凝器中

3、能从单一热源吸收热量,然后全部用来做功,而不引起其他变化的

机器,称为第二类永动机。

第二类永动机并不违反能量守恒定律,人们为了制造出第二类永动机作出了各种努力,但同制造第一类永动机一样,都失败了。

为什么第二类永动机不可能制成呢?

因为机械能和内能的转化过程具有方向性。

4、机械能全部转化成内能,内能却不能全部转化为机械能,同时不引起其他变化

【板书】三、热力学第二定律

再举实例,说明有些物理过程具有方向性

〈学生思考回答,教师引导点拨〉

①气体的扩散现象

②书上连通器的小实验(气体向其中膨胀)

【板书】热力学第二定律的两种表述

表述一:不可能使热量由低温物体传递到高温物体,而不引起其他变化

(按照热传递的方向性来表述的)

表述二:不可能从单一热源吸收热量并把它全部用来做功,而不引起其他变化。也可表述为第二类永动机是不可能制成的。(机械能与内能转化具有方向性)这两种表述是等价的,可以从一种表述导出另一种表述,所以他们都称为热力学第二定律。

热力学第二定律揭示了有大量分子参与的宏观过程的方向性。(自然界中进行的涉及热现象的宏观过程都具有方向性)

【板书】四、能量耗散

(设疑)既然自然界中的能量是守恒的,为什么还要节约能源呢?因为有的能量可以利用有的能量不便于利用。

举例说明:流动的水带动水磨做功

电池中的化学能转变成电能,电能又在灯泡中转变成光能

火炉把屋子烧暖等

学生总结:流散的内能无法重新收集起来加以利用的现象,称为能量耗散

能量耗散是从能量转化的角度反映出自然界中宏观过程具有方向性。

【板书】五、绝对零度不可达到

宇宙中存在着温度的下限:—273.15℃,以这个下限为起点的温度叫做热力学温度,用T,单位是开尔文,符号是K,热力学温度T同摄氏温度t的换算关系是:T = t + 273.15K

一些实际的温度值(投影仪显示此表或让学生看书上的表)

学生分析此表,并结合课本可以知道,实验室中的低温已经非常接近热力学零度了(也称绝对零度)

对大量事实的分析表明:热力学零度不可达到。这个结论称做热力学第三定律。

尽管热力学零度不可能达到,但是只要温度不是绝对零度就总有可能降低。因此,热力学第三定律不阻止人们想办法尽可能地接近绝对零度。

小结:(教师用投影仪写出框架,学生进行总结)

【随堂练习】

1、热力学第二定律使人们认识到,自然界中进行的涉及现象的宏观过程都具有性,例如机械能可以转化为内能,但内能全部转化成机械能,而不引起其他变化。

2、热传导的规律为:()

A、热量总是从热量较多的物体传递给热量较少的物体

B、热量总是从温度较高的物体传递给温度较低的物体

C、热量总是从内能较多的物体传递给内能较少的物体

D、热量总是从比热容较大的物体传递给比热容较小的物体

思考题:

一种冷暖两用型空调铭牌标注有如下指标:输入功率1KW,制冷能力1.2×104KJ/h,制热能力1.3×104 KJ/h。这样,该空调在制热时,每消耗1J电能,将放出3J多热量,是指标注错误还是能量不守恒呢?

【教学设计说明】

1、从学生比较熟悉的热传导的方向性入手,研究与分子热运动有关的方向性问

题,通过简单的实验,帮助学生理解,以期引起学生思维的深化,也作为学习热力学第二定律的基础。

2、热力学第一定律和第二定律是构成热力学知识的理论基础,热力学第一定律

对自然过程没有任何限制,只指出在任何热力学过程中能量不会有任何增加或损失。热力学第二定律解决哪些过程可以发生。教学时要注意讲清二者的关系。

3、热机的效率不能达到100%,不可避免地要把一部分热传递给低温的环境,

所以第二类永动机不可能制成。

4、热力学第二定律的两种表述,一种是按照热传导过程的方向性表述的另一种

是按照机械能与内能转化过程的方向性表述的。这两种表述是等价的,它们都表明,自然界中一切与热现象有关的实际宏观过程都是不可逆的。教学时,要注意说明这两种不同表述的内在联系,讲清这两种表述的物理实质。

5、能量耗散从能量角度揭示一切与热现象有关的实际宏观过程是不可逆的。

6、热力学零度是不可达到的,但是只要温度不是绝对零度就总有可能降低。

7、教案设计主要以学生思考讨论总结归纳为主,教师从中引导点拨,要充分调

动学生的想象力和参与意识。

热力学第二定律练习题及答案

热力学第二定律练习题 一、是非题,下列各题的叙述是否正确,对的画√错的画× 1、热力学第二定律的克劳修斯说法是:热从低温物体传给高温物体是不可能的 ( ) 2、组成可变的均相系统的热力学基本方程 d G =-S d T +V d p +d n B ,既适用于封闭系统也适用于敞 开系统。 ( ) 3、热力学第三定律的普朗克说法是:纯物质完美晶体在0 K 时的熵值为零。 ( ) 4、隔离系统的熵是守恒的。( ) 5、一定量理想气体的熵只是温度的函数。( ) 6、一个系统从始态到终态,只有进行可逆过程才有熵变。( ) 7、定温定压且无非体积功条件下,一切吸热且熵减少的反应,均不能自发发生。 ( ) 8、系统由状态1经定温、定压过程变化到状态2,非体积功W ’<0,且有W ’>G 和G <0,则此状态变化一定能发生。( ) 9、绝热不可逆膨胀过程中S >0,则其相反的过程即绝热不可逆压缩过程中S <0。( ) 10、克-克方程适用于纯物质的任何两相平衡。 ( ) 11、如果一个化学反应的r H 不随温度变化,则其r S 也不随温度变化, ( ) 12、在多相系统中于一定的T ,p 下物质有从化学势较高的相自发向化学势较低的相转移的趋势。 ( ) 13、在10℃, kPa 下过冷的H 2O ( l )凝结为冰是一个不可逆过程,故此过程的熵变大于零。 ( ) 14、理想气体的熵变公式 只适用于可逆过程。 ( ) 15、系统经绝热不可逆循环过程中S = 0,。 ( ) 二、选择题 1 、对于只做膨胀功的封闭系统的(A /T )V 值是:( ) (1)大于零 (2) 小于零 (3)等于零 (4)不确定 2、 从热力学四个基本过程可导出V U S ??? ????=( ) (1) (2) (3) (4) T p S p A H U G V S V T ???????????? ? ? ? ????????????? 3、1mol 理想气体(1)经定温自由膨胀使体积增加1倍;(2)经定温可逆膨胀使体积增加1倍;(3)经绝热自由膨胀使体积增加1倍;(4)经绝热可逆膨胀使体积增加1倍。在下列结论中何者正确( )

第二章 热力学第二定律

第二章热力学第二定律 一、单选题 1) 理想气体绝热向真空膨胀,则() A. ?S = 0,?W = 0 B. ?H = 0,?U = 0 C. ?G = 0,?H = 0 D. ?U =0,?G =0 2) 对于孤立体系中发生的实际过程,下式中不正确的是() A. W = 0 B. Q = 0 C. ?S > 0 D. ?H = 0 3) 理想气体经可逆与不可逆两种绝热过程,则() A. 可以从同一始态出发达到同一终态。 B. 不可以达到同一终态。 C. 不能确定以上A、B中哪一种正确。 D. 可以达到同一终态,视绝热膨胀还是绝热压缩而定。 4) 1mol,100℃及p?下的水向真空蒸发为p?,373K的水蒸汽,过程的△A为( )K J A. 0 B. 0.109 C.-3.101 D.40.67 5) 对于封闭体系的热力学,下列各组状态函数之间的关系中正确的是:() (A) A > U; (B) A < U; (C) G < U; (D) H < A。 6) 将氧气分装在同一气缸的两个气室内,其中左气室内氧气状态为p1=101.3kPa,V1=1dm3,T1=273.2K;右气室内状态为p2=101.3kPa,V2=1dm3,T2=273.2K;现将气室中间的隔板抽掉,使两部分气体充分混合。此过程中氧气的熵变为: ( ) A. ?S >0 B. ?S <0 C. ?S =0 D. 都不一定 7)1mol理想气体向真空膨胀,若其体积增加到原来的10倍,则体系、环境和孤立体系的熵变分别为( )J·K-1 A. 19.14, -19.14, 0 B. -19.14, 19.14, 0 C. 19.14, 0, 19.14 D. 0 , 0 , 0 8) 1 mol,373 K,p?下的水经下列两个不同过程变成373 K,p?下的水蒸汽,(1) 等温等压可逆蒸发,(2) 真空蒸发,这两个过程中功和热的关系为:( ) (A) W1> W2Q1> Q2(B) W1< W2Q1> Q2 (C) W1= W2Q1= Q2(D) W1> W2Q1< Q2 9)封闭系统中, W'= 0,恒温恒压下的化学反应可用( )计算系统的熵变. A. ΔS=Q/T; B. ΔS=ΔH/T; C. ΔS=(ΔH-ΔG)/T D. ΔS=nRln( V2/V1) 10) 理想气体经历等温可逆过程,其熵变的计算公式是:( ) A. ?S =nRT ln(p1/p2) B. ?S =nRT ln(V2/V1) C. ?S =nR ln(p2/p1) D. ?S =nR ln(V2/V1) 11) 固体碘化银(AgI)有α和β两种晶型,这两种晶型的平衡转化温度为419.7K,由α型转化为β型时,转化热等于6462J·mol-1,由α型转化为β型时的熵变?S 应为:( ) J·K-1 A. 44.1 B. 15.4 C. -44.1 D. -15.4 12) dA= -SdT-PdV适用的过程是()。 A.理想气体向真空膨胀B.-10℃,100KPa下水凝固为冰 C.N2(g)+3H2(g) = 2NH3(g)未达平衡D.电解水制取氧 13) 封闭系统中发生等温等压过程时,系统的吉布斯函数改变量△G等于() A.系统对外所做的最大体积功, B. 可逆条件下系统对外所做的最大非体积功, C.系统对外所做的最大总功, D. 可逆条件下系统对外做的最大总功. 14) 在p?下,373K的水变为同温下的水蒸汽。对于该变化过程,下列各式中哪个正确:( ) A.?S体+?S环> 0 B. ?S体+?S环 < 0 C.?S体+?S环 = 0 D. ?S体+?S环的值无法确定 15) 某体系等压过程A→B的焓变?H与温度 T无关,则该过程的:() (A) ?U与温度无关 (B) ?S与温度无关 (C) ?A与温度无关;(D) ?G与温度无关。 16) 1mol理想气体从p1,V1,T1分别经:(1) 绝热可逆膨胀到p2,V2,T2;(2) 绝热恒外压下膨胀到p2′,V2′,T2′,若p2 = p2′ 则:( ) A.T2′= T2, V2′= V2, S2′= S2 B.T2′> T2, V2′< V2, S2′< S2 C.T2′> T2, V2′> V2, S2′> S2 D.T2′< T2, V2′< V2, S2′< S2

热力学第二定律习题解答

第八章热力学第二定律 一选择题 1. 下列说法中,哪些是正确的( ) (1)可逆过程一定是平衡过程; (2)平衡过程一定是可逆的; (3)不可逆过程一定是非平衡过程;(4)非平衡过程一定是不可逆的。 A. (1)、(4) B. (2)、(3) C. (1)、(3) D. (1)、(2)、(3)、(4) 解:答案选A。 2. 关于可逆过程和不可逆过程的判断,正确的是( ) (1) 可逆热力学过程一定是准静态过程; (2) 准静态过程一定是可逆过程; (3) 不可逆过程就是不能向相反方向进行的过程;

(4) 凡是有摩擦的过程一定是不可逆的。 A. (1)、(2) 、(3) B. (1)、(2)、(4) C. (1)、(4) D. (2)、(4) 解:答案选C。 3. 根据热力学第二定律,下列哪种说法是正确的( ) A.功可以全部转换为热,但热不能全部 转换为功; B.热可以从高温物体传到低温物体,但 不能从低温物体传到高温物体; C.气体能够自由膨胀,但不能自动收缩;D.有规则运动的能量能够变成无规则运 动的能量,但无规则运动的能量不能 变成有规则运动的能量。 解:答案选C。 4 一绝热容器被隔板分成两半,一半是真空,另一半是理想气体,若把隔板抽出,气体将进行自由膨胀,达到平衡后:

( ) A. 温度不变,熵增加; B. 温度升高,熵增加; C. 温度降低,熵增加; D. 温度不变,熵不变。 解:绝热自由膨胀过程气体不做功,也无热量交换,故内能不变,所以温度不变。因过程是不可逆的,所以熵增加。 故答案选A 。 5. 设有以下一些过程,在这些过程中使系统的熵增加的过程是( ) (1) 两种不同气体在等温下互相混合; (2) 理想气体在等体下降温; (3) 液体在等温下汽化; (4) 理想气体在等温下压缩; (5) 理想气体绝热自由膨胀。 A. (1)、(2)、(3) B. (2)、(3)、(4) C. (3)、(4)、(5) D. (1)、(3)、(5) 解:答案选D。

第五章--热力学基础Word版

第五章 热力学基础 一、基本要求 1.掌握理想气体的物态方程。 2.掌握内能、功和热量的概念。 3.理解准静态过程。 4.掌握热力学第一定律的内容,会利用热力学第一定律对理想气体在等体、等压、等温和绝热过程中的功、热量和内能增量进行计算。 5.理解循环的意义和循环过程中的能量转换关系。掌握卡诺循环系统效率的计算,会计算其它简单循环系统的效率。 6.了解热力学第二定律和熵增加原理。 二、本章要点 1.物态方程 理想气体在平衡状态下其压强、体积和温度三个参量之间的关系为 RT M m PV = 式中是m 气体的质量,M 是气体摩尔质量。 2.准静态过程 准静态过程是一个理想化的过程,准静态过程中系统经历的任意中间状态都是平衡状态,也就是说状态对应确定的压强、体积、和温度。可用一条V P -曲线来表示 3.内能 是系统的单值函数,一般气体的内能是气体温度和体积的函数),(V T E E =,而理想气体的内能仅是温度的函数)(T E E =。 4.功、热量 做功和传递热量都能改变内能,内能是状态参量,而做功和传递热量都与过程有关。气体做功可表示为 ?=2 1 V V PdV W 气体在温度变化时吸收的热量为 T C M m Q ?= 5.热力学第一定律 在系统状态发生变化时,内能、功和热量三者的关系为 W E Q +?= 应用此公式时应注意各量正负号的规定:0>Q ,表示系统吸收热量,0?E 表示内能增加,0W 系统对外界做功,0

6.摩尔热容 摩尔热容是mol 1物质在状态变化过程中温度升高K 1所吸收的热量。对理想气体来说 dT dQ C V m V = , dT dQ C P m P =, 上式中m V C ,、m P C ,分别是理想气体的定压摩尔热容和定体摩尔热容,两者之差为 R C C m V m P =-,, 摩尔热容比:m V m P C C ,,/=γ。 7.理想气体的几个重要过程 8.循环过程和热机效率 (1)循环过程 系统经过一系列变化后又回到原来状态的过程,称为循环过程。 (2)热机的效率 吸 放吸 净Q Q Q W - == 1η (3)卡诺循环 卡诺循环由两个等温过程和两个绝热过程组成。其效率为 1 2 1T T - =η 工作在相同的高温热源和相同低温热源之间的热机的效率与工作物质无关,且以可逆卡诺热机的效率最高。

高中物理 热力学第一定律 能量守恒定律导学案 教科版选修

高中物理热力学第一定律能量守恒定律导学 案教科版选修 能量守恒定律课标: 1、通过有关史实,了解热力学第一定律和能量守恒定律的发现过程。体会科学探索中的挫折和失败对科学发现的意义。 2、认识热力学第一定律。理解能量守恒定律。用能量守恒观点解释自然现象。体会能量守恒定律是最基本、最普遍的自然规律之一。 学习目标: 1、了解热力学第一定律,并会用其数学表达式进行简单的计算 2、理解热力学第一定律中各量的正负号的含义 3、理解能量守恒定律,能用其解释一些常见的现象 4、知道是什么是第一类永动机,不能制成的原因是违背了能量守恒定律重点和难点: 1、利用热力学第一定律和能量守恒定律分析计算一些常见的物理习题 2、热力学第一定律中各量的正负的取值课程导学: 1、内能的决定因素改变物体内能的两种方式和 2、区分内能、热量、功预习:

一、热力学第一定律 1、内容: 2、表达式: 3、公式中各量的符号: ① ΔU:内能增加,取值;内能减少取值② W:外界对系统做功,即系统对外界做负功,取值;系统对外界做功,即外界对系做负功,取值③ Q:系统从外界吸收热量,即外界向系统传递热量,取值系统向外界放出热量,即外界从系统吸收热量,取值 【练习1】 一定量的气体在某一过程中,外界对气体做了8104J的功,气体的内能减少了 1、2105J,则下列各式中正确的是() A、W=8104J,ΔU = 1、2105J ,Q=4104J B、W=8104J,ΔU =- 1、2105J ,Q=-2105J C、W=-8104J,ΔU = 1、2105J ,Q=2104J D、W=-8104J,ΔU =- 1、2105J ,Q=-4104J 【练习2】

热力学定律导学案

热力学第一定律 能量守恒定律 一、学习目标: 1、理解物体跟外界做功和热传递的过程中W 、Q 、△U 的物理意义。 2、会确定W 、Q 、△U 的正负号。 3、理解、掌握热力学第一定律,从能量转化和转移的观点理解热力学第一定律。 4、会用△U = W + Q 分析和计算问题。 5、理解、掌握能量守恒定律及其重要性。 二、基础知识: 回顾:热力学第零定律:如果两个热力学系统中的每一个都与第三个热力学系统处于热平衡,那么它们也必定处于热平衡。 (一)热力学第一定律 1.改变内能的两种方式: 2.功和内能:如果一个物体既不吸收热量也不放出热量,那么,当外界对它做功W 时,它的内能增量是ΔU ,则 。 3. 热和内能:如果一个物体既不对外做功,外界也不对物体做功,那么,当物体从外界吸收热量Q 时,它的内能增量量是ΔU ,则 。热传递的三种方式: 、 、 。 (1)做功和热传递在改变物体的内能上是等效的. (2)做功和热传递在本质上是不同的. 做功使物体的内能改变,是其他形式的能量和内能之间的转化(不同形式能量间的转化) 热传递使物体的内能改变,是物体间内能的转移(同种形式能量的转移) 4. 热力学第一定律:一个热力学系统的内能增量等于 与 的和。 (1)表达式为: (2)与热力学第一定律相匹配的符号法则 做功W 热量Q 内能的改变ΔU 取正值“+” 取负值“-” 5.几种特殊情况: (1)物体与外界没有热交换时(绝热过程) Q = 0 外界对物体做多少功,它的内能就增加多少,反之物体对外界做功多少,它的内能就减少多少,W = ?U (2)物体与外界间没有做功时,物体从外界吸收多少热量,它的内能就增加多少;物体向外界放出多少热量,它的内能就减少多少, Q = ?U (3)若过程中始、末物体内能不变, ?U =0, 则W + Q =0或W = - Q 外界对物体做的功等于物体放出的热量 针对练习: 1.物体的内能增加了20J,则 A .一定是外界对物体做了20J的功 B .一定是物体吸收了20J 的热量 C .可能是外界对物体做了20J 的功,也可能是物体吸收了20J 的热量 D .可能是物体吸收热量的同时外界对物体做了功,且热量和功共20J 2.气体膨胀对外做功100J ,同时从外界吸收了120J 的热量,它的内能变化可能是 A .减少20J B .增大20J C .减少220J D .增大220J 3.金属制成的气缸中装有柴油与空气的混合物,有可能使气缸中柴油达到燃点的过程是( ) A .迅速向里推活塞 B .迅速向外拉活塞 C .缓慢向里推活塞 D .缓慢向外技活塞 4.如图所示,把浸有乙醚的一小块棉花放在厚玻璃筒内底部,当很快向下压活塞时,由于被压缩的气体骤然变热,温度升高达到乙醚的燃点,使浸有乙醚的棉花燃烧起来,此实验的目的是要说明对物体( ) A 、做功可以增加物体的热量 B 、做功可以改变物体的内能 C 、做功一定会升高物体的温度 D 、做功一定可以使物态发生变化 5.关于物体内能,下列说法中正确.. 的是( ) A .手感到冷时,搓搓手就会感到暖和些,这是利用做功改变物体的内能 B .将物体举高或使它们的速度增大,是利用做功来使物体的内能增大

大学物理化学2-热力学第二定律课后习题及答案

热力学第二定律课后习题答案 习题1 在300 K ,100 kPa 压力下,2 mol A 和2 mol B 的理想气体定温、定压混合后,再定容加热到600 K 。求整个过程的?S 为若干?已知C V ,m ,A = 1.5 R ,C V ,m ,B = 2.5 R [题解] ?? ? ??B(g)2mol A(g)2mol ,,纯态 3001001K kPa ,() ?→???? 混合态 ,,2mol A 2mol B 100kPa 300K 1 +==?? ? ????p T 定容() ?→??2 混合态 ,,2mol A 2mol B 600K 2 +=??? ??T ?S = ?S 1 + ?S 2,n = 2 mol ?S 1 = 2nR ln ( 2V / V ) = 2nR ln2 ?S 2 = ( 1.5nR + 2.5nR ) ln (T 2 / T 1)= 4nR ln2 所以?S = 6nR ln2= ( 6 ? 2 mol ? 8.314 J ·K -1·mol -1 ) ln2 = 69.15 J ·K -1 [导引]本题第一步为理想气体定温定压下的混合熵,相当于发生混合的气体分别在定温条件下的降压过程,第二步可视为两种理想气体分别进行定容降温过程,计算本题的关键是掌握理想气体各种变化过程熵变的计算公式。 习题2 2 mol 某理想气体,其定容摩尔热容C v ,m =1.5R ,由500 K ,405.2 kPa 的始态,依次经历下列过程: (1)恒外压202.6 kPa 下,绝热膨胀至平衡态; (2)再可逆绝热膨胀至101.3 kPa ; (3)最后定容加热至500 K 的终态。 试求整个过程的Q ,W ,?U ,?H 及?S 。 [题解] (1)Q 1 = 0,?U 1 = W 1, nC V ,m (T 2-T 1))( 1 1 22su p nRT p nRT p --=, K 4005 4 6.2022.405)(5.1122121 1 212====-= -T T kPa p kPa p T p T p T T ,得,代入,

物理化学第二章 热力学第一定律

第二章 热力学第一定律 一.基本要求 1.掌握热力学的一些基本概念,如:各种系统、环境、热力学状态、系 统性质、功、热、状态函数、可逆过程、过程和途径等。 2.能熟练运用热力学第一定律,掌握功与热的取号,会计算常见过程中 的, , Q W U ?和H ?的值。 3.了解为什么要定义焓,记住公式, V p U Q H Q ?=?=的适用条件。 4.掌握理想气体的热力学能和焓仅是温度的函数,能熟练地运用热力学 第一定律计算理想气体在可逆或不可逆的等温、等压和绝热等过程中, , , , U H W Q ??的计算。 二.把握学习要点的建议 学好热力学第一定律是学好化学热力学的基础。热力学第一定律解决了在恒 定组成的封闭系统中,能量守恒与转换的问题,所以一开始就要掌握热力学的一 些基本概念。这不是一蹴而就的事,要通过听老师讲解、看例题、做选择题和做 习题等反反复复地加深印象,才能建立热力学的概念,并能准确运用这些概念。 例如,功和热,它们都是系统与环境之间被传递的能量,要强调“传递”这 个概念,还要强调是系统与环境之间发生的传递过程。功和热的计算一定要与变 化的过程联系在一起。譬如,什么叫雨?雨就是从天而降的水,水在天上称为云, 降到地上称为雨水,水只有在从天上降落到地面的过程中才被称为雨,也就是说, “雨”是一个与过程联系的名词。在自然界中,还可以列举出其他与过程有关的 名词,如风、瀑布等。功和热都只是能量的一种形式,但是,它们一定要与传递 的过程相联系。在系统与环境之间因温度不同而被传递的能量称为热,除热以外, 其余在系统与环境之间被传递的能量称为功。传递过程必须发生在系统与环境之 间,系统内部传递的能量既不能称为功,也不能称为热,仅仅是热力学能从一种 形式变为另一种形式。同样,在环境内部传递的能量,也是不能称为功(或热) 的。例如在不考虑非膨胀功的前提下,在一个绝热、刚性容器中发生化学反应、 燃烧甚至爆炸等剧烈变化,由于与环境之间没有热的交换,也没有功的交换,所 以0, 0, 0Q W U ==?=。这个变化只是在系统内部,热力学能从一种形式变为

热力学第二定律习题

热力学第二定律习题 选择题 .ΔG=0 的过程应满足的条件是 (A) 等温等压且非体积功为零的可逆过程(B) 等温等压且非体积功为零的过程(C) 等温等容且非体积功为零的过程(D) 可逆绝热过程答案:A .在一定温度下,发生变化的孤立体系,其总熵 (A)不变(B)可能增大或减小(C)总是减小(D)总是增大 答案:D。因孤立系发生的变化必为自发过程,根据熵增原理其熵必增加。 .对任一过程,与反应途径无关的是 (A) 体系的内能变化(B) 体系对外作的功(C) 体系得到的功(D) 体系吸收的热 答案:A。只有内能为状态函数与途径无关,仅取决于始态和终态。 .氮气进行绝热可逆膨胀 ΔU=0(B) ΔS=0(C) ΔA=0(D) ΔG=0 答案:B。绝热系统的可逆过程熵变为零。

.关于吉布斯函数G, 下面的说法中不正确的是 (A)ΔG≤W'在做非体积功的各种热力学过程中都成立 (B)在等温等压且不做非体积功的条件下, 对于各种可能的变动, 系统在平衡态的吉氏函数最小 (C)在等温等压且不做非体积功时, 吉氏函数增加的过程不可能发生 (D)在等温等压下,一个系统的吉氏函数减少值大于非体积功的过程不可能发生。 答案:A。因只有在恒温恒压过程中ΔG≤W'才成立。 .关于热力学第二定律下列哪种说法是错误的 (A)热不能自动从低温流向高温 (B)不可能从单一热源吸热做功而无其它变化 (C)第二类永动机是造不成的 (D热不可能全部转化为功 答案:D。正确的说法应该是,热不可能全部转化为功而不引起其它变化 .关于克劳修斯-克拉佩龙方程下列说法错误的是 (A) 该方程仅适用于液-气平衡 (B) 该方程既适用于液-气平衡又适用于固-气平衡 (C) 该方程假定气体的体积远大于液体或固体的体积 (D) 该方程假定与固相或液相平衡的气体为理想气体

2019届一轮复习教科版 热力学定律与气体实验定律的结合 学案

第20点 热力学定律与气体实验定律的结合 热力学第一定律与气体实验定律的结合量是气体的体积和温度,当温度变化时,气体的内能变化;当体积变化时,气体将伴随着做功.解题时要掌握气体变化过程的特点: (1)等温过程:内能不变ΔU =0. (2)等容过程:W =0. (3)绝热过程:Q =0. 对点例题 如图1所示,体积为V 、内壁光滑的圆柱形导热汽缸顶部有一质量和厚度均可忽略的活塞;汽缸内密封有温度为2.4T 0、压强为1.2p 0的理想气体,p 0和T 0分别为大气的压强和温度.已知:气体内能U 与温度T 的关系为U =aT ,a 为正的常量;容器内气体的所有变化过程都是缓慢的.求: 图1 (1)汽缸内气体与大气达到平衡时的体积V 1; (2)在活塞下降过程中,汽缸内气体放出的热量Q . 解题指导 (1)在气体由压强p =1.2p 0下降到p 0的过程中,气体体积不变,温度由T =2.4T 0 变为T 1,由查理定律得T 1T =p 0p 在气体温度由T 1变为T 0的过程中,体积由V 减小到V 1,气体压强不变,由盖吕萨克定律得 V V 1=T 1T 0 解得V 1=12 V (2)在活塞下降过程中,活塞对气体做的功为 W =p 0(V -V 1) 在这一过程中,气体内能的减少量为 ΔU =a (T 1-T 0)

由热力学第一定律得,汽缸内气体放出的热量为 Q =W +ΔU 解得Q =12 p 0V +aT 0 答案 (1)12V (2)12 p 0V +aT 0 规律总结 气体实验定律与热力学定律的综合问题的解题思路: (1)气体实验定律的研究对象是一定质量的理想气体. (2)分清气体的变化过程是求解问题的关键. (3)理想气体体积变化对应着做功;温度变化,内能一定变化. (4)结合热力学第一定律求解. 为适应太空环境,去太空执行任务的航天员都要穿上航天服,航天服有一套生命保障系统,为航天员提供合适的温度、氧气和气压,让航天员在太空中如同在地面上一样.假如在地面上航天服内气压为1atm ,气体体积为2L ,到达太空后由于外部气压低,航天服急剧膨胀,内部气体体积变为4L ,使航天服达到最大体积,假设航天服内气体可视为理想气体且温度不变,将航天服视为封闭系统. (1)求此时航天服内气体的压强,并从微观角度解释压强变化的原因. (2)由地面到太空过程中航天服内气体吸热还是放热,为什么? (3)若开启航天服生命保障系统向航天服内充气,使航天服内的气压缓慢恢复到0.9atm ,则需补充1atm 的等温气体多少升? 答案 见解析 解析 (1)航天服内气体可以视为理想气体,由于做等温变化,由玻意耳定律得p 1V 1=p 2V 2, 解得:p 2=p 1V 1V 2 =0.5atm. 由于气体的压强与分子数密度和分子平均动能有关,在气体体积变大的过程中,该气体的分子数密度变小,而温度不变,即分子的平均动能不变,故该气体的压强减小. (2)由于一定质量理想气体的内能只与温度有关,而该气体可视为理想气体且温度不变,故其内能不变,即ΔU =0;由于气体体积变大,故气体对外界做功,即W <0,由热力学第一定律ΔU =W +Q 可得:Q >0,即在此过程中气体吸热. (3)设需要1atm 的等温气体体积为V ,以该气体和航天服原有气体为研究对象,根据理想气体等温变化规律:p 1V 1+p 1V =p 3V 2 解得:V =1.6L .

高中物理 第十章 热力学定律 第2节 热和内能导学案 新人教版选修33

2 热和内能 方式在改变系统内能上的区别。 打气筒是日常生活中的一种工具,当我们用打气筒给自行车打气的时候,就是在克服气体压力和摩擦力做功。打气的过程中你有没有试着去摸一下打气筒的外壳,有什么感觉?这是怎么回事? 提示:打气筒的温度升高了,这是由于给自行车打气时,压缩空气做功使得系统的内能增加,所以温度升高。 一、焦耳的实验 1.实验条件 绝热过程:系统只通过对外界____或外界对它____而与外界交换能量,它不从外界____,也不向外界____。 2.代表性实验 (1)让重物下落带动叶片搅拌容器中的水,引起水温____。 (2)通过电流的______给水加热。 3.实验结论 在各种不同的绝热过程中,如果使系统从状态1变为状态2,所需外界做功的数量是____的。即:要使系统状态通过绝热过程发生变化,做功的数量只由过程始末两个________决定,而与做功的方式____。 二、功和内能 1.内能的定义 任何一个热力学系统都必定存在一个只依赖于系统________的物理量,这个物理量在两个状态间的差别与外界在绝热过程中____________相联系,是系统的一种____,我们把它称为系统的内能。 2.绝热过程中做功与系统内能变化的关系 当系统从某一状态经过____过程达到另一状态时,内能的增加量ΔU就等于外界对系统所做的功W,即:ΔU=____。 思考1:如图所示,大口玻璃瓶内有一些水,水的上方有水蒸气,向瓶内打气,在瓶塞跳出的过程中,会观察到什么现象?这个过程是外界对系统做功还是系统对外界做功?该过程系统的内能如何变化?

三、热和内能 1.热传递 (1)热传递的条件:不同物体(或一个物体的不同部分)存在____差。 (2)热传递的方向:热量从____物体传向____物体。 (3)热传递的结果:最终____相同。 (4)热传递的实质:不同物体(或一个物体的不同部分)之间____的转移。 2.热量:是用来衡量热传递过程中________多少的一个物理量,是一个____量,不能说物体具有多少热量,只能说物体__________多少热量。 3.热传递与系统内能变化的关系 系统在单纯的传热过程中内能的增量ΔU等于外界向系统传递的______,即ΔU=____。 思考2:物体内能增加是否一定是从外界吸收了热量? 答案:一、1.做功做功吸热放热 2.(1)上升(2)热效应 3.相同状态1、2 无关 二、1.自身状态对系统做的功能量 2.绝热W 思考1 提示:当瓶塞跳出时,我们会发现瓶内和瓶口处有“白雾”产生。我们所选的研究对象是瓶内水面上方的水蒸气,在瓶塞跳出的过程中,是系统膨胀对外界做功,在这个过程中系统的内能减少,温度降低。瓶内和瓶口处的“白雾”实际上是瓶内的水蒸气遇冷液化形成的小液滴。 三、1.(1)温度(2)高温低温(3)温度(4)内能 2.内能变化过程吸收或放出了 3.热量Q Q 思考2 提示:不一定,这是因为做功和热传递都可以改变物体的内能。 一、功、内能、内能的变化之间的关系 1.内能与内能的变化 (1)物体的内能是指物体内所有分子的动能和势能之和。在微观上由分子数和分子热运动剧烈程度和相互作用力决定,宏观上体现为物体的温度和体积,因此物体的内能是一个状态量。 (2)当物体温度变化时,分子热运动剧烈程度发生改变,分子平均动能变化。物体体积变化时,分子间距离变化,分子势能发生变化,因此物体的内能变化只由初、末状态决定,与中间过程及方式无关。 2.做功与内能的变化的关系 做功改变物体内能的过程是将其他形式的能(如机械能)与内能相互转化的过程。 例如在绝热过程中做功使物体内能发生变化时,内能改变了多少用做功的数值来量度。外界对物体做多少功,物体的内能就增加多少;物体对外界做多少功,物体的内能就减少多少。 压缩气体时,外界对气体做了功,气体的内能增加,气体内能的增加量等于外界对气体做的功;气体膨胀,是气体对外界做功,气体内能减少,气体内能的减少量等于气体膨胀对外做的功。

南京大学《物理化学》练习 第二章 热力学第二定律

第二章热力学第二定律 返回上一页 1. 5 mol He(g)从273.15 K和标准压力变到298.15K和压力p=10×, 求过程的ΔS(已知 。C(V,m)=3/2 R) 。 2. 0.10 kg 28 3.2 K的水与0.20 kg 313.2 K 的水混合,求ΔS设水的平均比热为 4.184kJ/(K·kg)。 。3. 实验室中有一大恒温槽(例如是油浴)的温度为400 K,室温为300 K因恒温槽绝热不良而有4000 J的热传给空气,用计算说明这一过程是否为可逆? 。0.2 4. 在298.15K的等温情况下,两个瓶子中间有旋塞连通开始时,一放 mol O2,压力为0.2×101.325kPa,另一放0.8 mol N2,压力为0.8×101.325 kPa,打开旋塞后,两气体互相混合计算: 。 (1)终了时瓶中的压力。 (2)混合过程中的Q,W,ΔU,ΔS,ΔG; (3)如果等温下可逆地使气体回到原状,计算过程中的Q和W。

5. (1)在298.2 K时,将1mol O2从101.325 kPa 等温可逆压缩到 6×101.325 kPa,求Q,W,ΔU m,ΔH m,ΔF m,ΔG m,ΔS m,ΔS iso (2)若自始至终用6×101.325 kPa的外压等温压缩到终态,求上述各热力学量的变化值。 。β6. 在中等的压力下,气体的物态方程可以写作p V(1-βp)=nRT式中系数 与气体的本性和温度有关今若在 。273K时,将0.5 mol O2由1013.25kPa的压力减到101.325 kPa,试求ΔG已知氧的 。β=-0.00094。 7. 在298K及下,一摩尔过冷水蒸汽变为同温同压下的水,求此过程的 。298.15K时水的蒸汽压为3167Pa。 ΔG m已知 8. 将298.15K 1 mol O2从绝热可逆压缩到6×,试求Q,W,ΔU m, ΔH m, 。(298K,O2)=205.03 ΔF m, ΔG m, ΔS m和ΔS iso(C(p,m)=7/2 R)已知 J/(K·mol) 。 9. 在298.15K和时,反应H2(g)+HgO(s)=Hg(l)+H2O(l) 的为195.8 。 J/mol若设计为电池,在电池

10.3 热力学第一定律 能量守恒定律 学案(含答案)

10.3 热力学第一定律能量守恒定律学案 (含答案) 于热水,热水温度会降低,故 A. B.C错误;由能量守恒知,叶片吸收的能量一部分转化成叶片的动能,一部分释放于空气中,故D正确 三.气体实验定律和热力学第一定律的综合应用如图所示,一定质量的理想气体由a状态变化到b状态,请在图象基础上思考以下问题1在变化过程中是气体对外界做功,还是外界对气体做功2在变化过程中气体吸热,还是向外放热气体内能如何变化答案1由a状态变化到b状态,气体体积变大,因此气体对外界做功,即W0.由UWQ得Q0,即气体吸热,内能增加热力学第一定律与理想气体状态方程结合问题的分析思路1利用体积的变化分析做功问题气体体积增大,气体对外界做功;气体体积减小,外界对气体做功2利用温度的变化分析理想气体内能的变化一定质量的理想气体的内能仅与温度有关,温度升高,内能增加;温度降低,内能减小3利用热力学第一定律判断是吸热还是放热由热力学第一定律UWQ,则QUW,若已知气体的做功情况和内能的变化情况,即可判断气体状态变化是吸热过程还是放热过程例3多选xx 全国卷如图2,一定量的理想气体从状态a变化到状态b,其过程

如pV图中从a到b的直线所示在此过程中图2A气体温度一直降低B气体内能一直增加C气体一直对外做功D气体吸收的热量一直全部用于对外做功答案BC解析在pV图中理想气体的等温线是双曲线的一支,而且离坐标轴越远温度越高,故从a到b温度升高,A错;一定质量的理想气体的内能由温度决定,温度越高,内能越大,B对;气体体积膨胀,对外做功,C对;根据热力学第一定律UQW,得QUW,气体吸收的热量一部分用来对外做功,一部分用来增加气体的内能,D错例4如图3所示,倒悬的导热汽缸中封闭着一定质量的理想气体,轻质活塞可无摩擦地上下移动,活塞的横截面积为S,活塞的下面吊着一个重为G的物体,大气压强恒为p0,起初环境的热力学温度为T0时,活塞到汽缸底面的距离为L.当环境温度逐渐升高,导致活塞缓慢下降,该过程中活塞下降了0.1L,汽缸中的气体吸收的热量为Q.求图31汽缸内部气体内能的增量U;2最终的环境温度T.答案1Q0.1p0SL0.1LG 21.1T0解析1密封气体的压强pp0GS密封气体对外做功大小WpS0.1L由热力学第一定律得UQ0.1p0SL0.1LG2该过程是等压变化,由盖吕萨克定律有LST0L0.1LST解得T 1.1T0.1热力学第一定律的理解和应用关于内能的变化,以下说法正确的是A物体吸收热量,内能一定增大B物体对外做功,内能一定减少C物体吸收热量,同时对外做功,内能可能不变D 物体放出热量,同时对外做功,内能可能不变答案C解析根据热力学第一定律UWQ,物体内能的变化与做功及热传递两个因素均有

高中物理第十章热力学定律第5、6节热力学第二定律的微观解释能源和可持续发展教学案人教版3

第5、6节热力学第二定律的微观解释能源和可持续发展 1.热力学第二定律的微观意义:一切自然过程总是沿 着分子热运动的无序性增大的方向进行。 2.热力学第二定律可叫做熵增加原理:在任何自然过 程中,一个孤立系统的总熵不会减小。 3.能量耗散虽然不会导致能量总量的减少,却会导致 能量品质的降低,实际上是将能量从高度有用的高品 质形式降低为不大可用的低品质形式。 一、热力学第二定律的微观解释 1.有序、无序 一个系统的个体按确定的某种规则,有顺序地排列即有序;个体分布没有确定的要求,“怎样分布都可以”即无序。 2.宏观态、微观态 系统的宏观状态即宏观态,系统内个体的不同分布状态即微观态。 3.热力学第二定律的微观意义 一切自发过程总是沿着分子热运动的无序性增大的方向进行。 4.熵及熵增加原理 (1)熵:表达式S=k ln Ω,k表示玻耳兹曼常量,Ω表示一个宏观状态所对应的微观状态的数目。S表示系统内分子运动无序性的量度,称为熵。 (2)熵增加原理:在任何自然过程中,一个孤立系统的总熵不会减小。 二、能源和可持续发展 1.能量耗散和品质降低 (1)能量耗散:有序度较高(集中度较高)的能量转化为内能,成为更加分散因而也是无序度更大的能量,分散到环境中无法重新收集起来加以利用的现象。 (2)各种形式的能量向内能转化方向是无序程度较小的状态向无序程度较大的状态的转化,是能自动发生、全额发生的。 (3)能量耗散从能量转化的角度反映出自然界中的自发变化过程具有方向性。

(4)能量耗散虽然不会导致能量总量的减少却会导致能量品质的降低,实际上是将能量从高度有用的高品质形式降级为不大可用的低品质形式。 2.能源和环境 1.自主思考——判一判 (1)熵越小,系统对应的微观态就越少。(√) (2)在任何自然过程中,一个孤立系统的总熵不会增加。(×) (3)大量分子无规则的热运动能够自动变为有序运动。(×) (4)能量耗散会导致总能量的减少,也会导致能量品质的降低。(×) (5)热传递的自然过程是大量分子从无序程度小的运动状态向无序程度大的运动状态转化的过程。(√) (6)既然能量是守恒的,那么人类就没必要节约能源。(×) 2.合作探究——议一议 (1)怎样理解一个孤立的系统熵不会减小? 提示:从微观的角度看,热力学第二定律是一个统计规律;自发的宏观过程总是向无序性更大的方向发展。而熵较大代表着较为无序,熵小代表有序,所以一个孤立系统总是从熵小的状态向熵大的状态发展。 (2)既然能量守恒,为什么还要节约能源? 提示:人们在使用能源的时候,高品质的能量释放出来并最终转化为低品质的内能。虽然能量不会减少,但能源会越来越少,所以要节约能源。 (3)流动的水带动水磨做功,由于磨盘之间的摩擦、磨盘和粮食之间的摩擦和挤压,使磨盘和粮食的温度升高,水流的一部分机械能转变成了内能,这些内能最终流散到周围的空气中,我们没有办法把这些流散的内能重新收集起来加以利用。请思考:内能与机械能相比,哪种能量的品质低? 提示:内能。能量的耗散虽然不会使能量减少,却会导致能量品质的降低,它实际上将能量从高度有用的形式降级为不大可用的形式。故内能较之机械能是一种低品质的能量。 热力学第二定律的微观意义

大学热力学第二定律(李琳丽)

第二章 热力学第二定律与化学平衡 1. 1mol 理想气体由298 K 、0.5 dm 3膨胀到5 dm 3。假定过程为 (1) 恒温可逆膨胀; (2) 向真空膨胀。 计算各过程系统的熵变?S 及总熵变孤立S ?。由此得到怎样结论? 解:(1) 恒温可逆过程 12ln V V nR S =?=3.385 .05ln 314.82=?? J .K -1 3.38ln ln 1 2 1 2 -=-=- =- == ?V V nR T V V nRT T Q T Q S 环 系统环 环境环境 J .K -1 0=???环境孤立+=S S S 说明过程是可逆的。 (2) S ?只决定于始、终态,与过程的具体途径无关,过程(2)的熵变与过程(1)的相同,因此有S ?=38.3 J .K -1。 理想气体在向真空膨胀过程中,0=外p ,W =0,Q =0,说明系统与环境无热量交换,所以 0=?环境S 3.38=???环境孤立+=S S S J .K -1 >0 由于0>?孤立S ,说明向真空膨胀过程是自发过程。 2. 1 mol 某理想气体(11m ,mol K J 10.29--??=p C ),从始态(400 K 、200kPa )分别经下列不同过程达到指定的终态。试计算各过程的Q 、W 、?U 、?H 、及?S 。 (1) 恒压冷却至300 K ; (2) 恒容加热至600 K ; (3) 绝热可逆膨胀至100 kPa ;

解:(1) == 111p nRT V L 63.16m 1063.1610 200400314.813 33=?=???- 1 122V T V T = 47.1263.16400 3001122=?=?= V T T V L 832)63.1647.12102003-=-??=?=(外V P W kJ )400300()314.810.29(1m ,-?-?=?=?T nC U V kJ 08.2-= )400300(314.810.291m ,-???=?=?T nC H p kJ 2.24-= kJ 830=-?=W U Q ? =?2 1 d T T P T T C S =37.810.29300 400-=??T dT J ?K -1 (2) 0=W )400600()314.810.29(1m ,-?-?=?=?T nC U V kJ 16.4= )400600(314.810.291m ,-???=?=?T nC H p kJ 4.48= kJ 16.4=-?=W U Q ? =?2 1 d T T V T T C S =43.8)314.810.29(600 400=?-?T dT J ?K -1 (3) 40.1314 .810.2910.29,,=-= = m V m P C C γ,γ γγγ--=122111P T P T 40.1140 .12 40.1140.1100200400--=T 3282=T K 0=Q )400328()314.810.29(1m ,-?-?-=?-=?-=T nC U W V

物理化学答案——第二章-热力学第二定律

第二章 热力学第二定律 一、基本公式和基本概念 基本公式 1. 热力学第二定律的数学表达式----克劳修斯不等式 () A B A B Q S T δ→→?-≥∑ 2. 熵函数的定义 ()R Q dS T δ=, ln S k =Ω 3. 熵变的计算 理想气体单纯,,p V T 变化 22,1122,11 22,,1 1 ln ln ln ln ln ln V m p m p m V m T V S C R T V T p S C R T p V p S C C V p ?=+?=-?=+ 理想气体定温定压混合过程 ln i i i S R n x ?=-∑ 封闭系统的定压过程 2 1 ,d T p m T C S n T T ?=? 封闭系统定容过程 2 1 ,d T V m T C S n T T ?=? 可逆相变 m n H S T ??= 标准状态下的化学反应 ,()r m B m B B S S T θ θ ν ?= ∑ 定压下由1T 温度下的化学反应熵变求2T 温度下的熵变 2 1 ,21()()d T p m r m r m T C S T S T T T ??=?+ ? 4. 亥姆霍兹函数 A U T S ≡- 5. 吉布斯函数 G H T S ≡- 6. G ?和A ?的计算(A ?的计算原则与G ?相同,做相应的变换即可)

定温过程 G H T S ?=?-? 组成不变的均相封闭系统的定温过程 21 d p p G V p ?= ? 理想气体定温过程 21 ln p G nRT p ?= 7. 热力学判据 熵判据:,()0U V dS ≥ 亥姆霍兹函数判据:,,'0(d )0T V W A =≤ 吉布斯函数判据:,,'0(d )0T p W G =≤ 8. 热力学函数之间的关系 组成不变,不做非体积功的封闭系统的基本方程 d d d d d d d d d d d d U T S p V H T S V p A S T p V G S T V p =- =+=--=-+ 麦克斯韦关系 S V p S T V p T T p V S T V p S S p V T S V p T ?????? =- ? ? ???????????? = ? ? ???????????? = ? ? ???????????? =- ? ? ?????? 9. 吉布斯-亥姆霍兹方程 2 ()p G H T T T ??? ????=-??????? 基本概念 1. 热力学第二定律 在研究化学或物理变化驱动力来源的过程中,人们注意到了热功交换的规律,抓住了事物的共性,提出了具有普遍意义的熵函数。根据熵函数以及由此导出的其他热力学函数,可

相关主题