搜档网
当前位置:搜档网 › 数据挖掘作业完整版

数据挖掘作业完整版

数据挖掘作业完整版
数据挖掘作业完整版

数据挖掘作业

HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

1、给出K D D的定义和处理过程。

KDD的定义是:从大量数据中提取出可信的、新颖的、有用的且可以被人理解的模式的高级处理过程。因此,KDD是一个高级的处理过程,它从数据集中识别出以模式形式表示的知识。这里的“模式”可以看成知识的雏形,经过验证、完善后形成知识:“高级的处理过程”是指一个多步骤的处理过程,多步骤之间相互影响反复调整,形成一种螺旋式上升的过程。

KDD的全过程有五个步骤:1、数据选择:确定发现任务的操作对象,即目标数据,它是根据用户的需要从原始数据库中抽取的一组数据;2、数据预处理:一般可能包括消除噪声、推到技术却只数据、消除重复记录、完成数据类型转换等;3、数据转换:其主要目的是消减数据维数或降维,即从初始特征中找出真正有用的特征以减少数据开采时要考虑的特征或变量个数;4、数据挖掘:这一阶段包括确定挖掘任务/目的、选择挖掘方法、实施数据挖掘;5、模式解释/评价:数据挖掘阶段发现出来的模式,经过用户或机器的评价,可能存在冗余或无关的模式,需要剔除;也有可能模式不满足用户的要求,需要退回到整个发现阶段之前,重新进行KDD过程。

2、阐述数据挖掘产生的背景和意义。

数据挖掘产生的背景:随着信息科技的进步以及电子化时代的到来,人们以更快捷、更容易、更廉价的方式获取和存储数据,使得数据及信息量以指数方式增长。据粗略估计,一个中等规模企业每天要产生100MB以上的商业数据。而电信、银行、大型零售业每天产生的数据量以TB来计算。人们搜集的数据越来越多,剧增的数据背后隐藏着许多重要的信息,人们希望对其进行更高层次的分析,以便更好的利用这些数据。先前的数据库系统可以高效的实现数据的录入、查询、统计等功能,但无法发现数据中存在的关系与规则,无法根据现有的数据来预测未来的发展趋势。缺乏挖掘数据背后隐藏的知识的手段。导致了“数据爆炸但知识贫乏”的现象。于是人们开始提出“要学会选择、提取、抛弃信息”,并且开始考虑:如何才能不被信息淹没如何从中及时发现有用的知识、提高信息利用率如何从浩瀚如烟海的资料中选择性的搜集他们认为有用的信息这给我们带来了另一些头头疼的问题:第一是信息过量,难以消化;第二是信息真假难以辨别;第三是信息安全难以保证;第四是信息形式不一致,难以统一处理

面对这一挑战,面对数量很大而有意义的信息很难得到的状况面对大量繁杂而分散的数据资源,随着计算机数据仓库技术的不断成熟,从数据中发现知识(KnowledgeDiscoveryinDatabase)及其核心技术——数据挖掘(DataMining)便应运而生,并得以蓬勃发展,越来越显示出其强大的生命力。

数据挖掘的意义:数据挖掘之所以被称为未来信息处理的骨干技术之一,主要在于它正以一种全新的概念改变着人类利用数据的方式。在20世纪,数据库技术取得了重大的成果并且得到了广泛的应用。但是,数据库技术作为一种基本的信息储存和管理方式,仍然是以联机事务处理为核心应用,缺少对决策、分析、预测等高级功能的支持机制。众所周知,随着硬盘存储容量及的激增以及磁盘阵列的普及,数据库容量增长迅速,数据仓库以及Web等新型数据源出现,联机分析处理、决策支持以及分类、聚类等复杂应用成为必然。面对这样的挑战,数据挖掘和知识发现技术应运而生,并显现出强大的生命力。数据挖掘和知识发现使数据处理技术进入了一个更加高级的阶段。它不仅能对过去的数据进行查询,而且能够找出过去数据之间的潜在联系,进行更高层次的分析,以便更好地作出决策、预测未来的发展趋势等等。通过数据挖掘,有价值的知识、规则或更高层次的信息就能够从数据库的相关数据集合中抽取出来,从而使大型数据库作为一个丰富、可靠的资源为知识的提取服务。

3、给出一种关联规则的算法描述,并举例说明。

Apriori算法描述:Apriori算法由Agrawal等人于1993年提出,是最有影响的挖掘布尔关联规则频繁项集的算法,它通过使用递推的方法生成所有频繁项目集。基本思想是将关联规则挖掘算法的设计分解为两步:(1)找到所有频繁项集,含有k个项的频繁项集称为k-项集。Apriori使用一种称作逐层搜索的迭代方法,k-项集用于探索(k+1)-项集。首先,出频繁1-项集的集合。该集合记作L1。L1用于找频繁2-项集的集合L2,而L2用于找L3,如下去,直到不能找到频繁k-项集。找出每个Lk都需要一次数据库扫描。为提高频繁项集层产生的效率,算法使用Apriori性质用于压缩搜索空间。(2)使用第一步中找到的频繁项集产生关联规则。从算法的基本思想可知,Apriori算法的核心和关键在第一步。而第一步的关键是如何将Apriori性质用于算法,利用Lk-1找Lk。这也是一个由连接和剪枝组成的两步过程:(1)连接步:为找Lk,通过Lk-1与自己连接产生候选k-项集的集合。该候选项集的集合记作Ck。设l1和l2是Lk-1中的项集。记号li[j]表示li的第j项(例如,l1[k-2]表示l1的倒数第3项)。为方便计,假定事务或项集

中的项按字典次序排序。执行连接Lk-1Lk-1;其中,Lk-1的元素是可连接的,如果它们前(k-2)项相同;即Lk-1的元素l1和l2是可连接的,如果(l1[1]=l2[1])∧(l1[2]=l2[2])∧...∧(l1[k-2]=l2[k-2])∧(l1[k-1]

l1[1]l1[2]...l1[k-1]l2[k-1]。(2)剪枝步:Ck是Lk的超集;即,它的成员可以是,也可以不是频繁的,但所有的频繁k-项集都包含在Ck中。扫描数据库,确定Ck中每个候选的计数,从而确定Lk(即,根据定义,计数值不小于最小支持度计数的所有候选是频繁的,从而属于Lk)。然而,Ck可能很大,这样所涉及的计算量就很大。为压缩Ck,可以用以下办法使用Apriori性质:任何非频繁的(k-1)-项集都不可能是频繁k-项集的子集。因此,如果一个候选k-项集的(k-1)-子集不在Lk-1中,则该候选也不可能是频繁的,从而可以由Ck中删除。

Apriori算法举例:如有如下数据

每一行表示一条交易,共有9行,既9笔交易,左边表示交易ID,右边表示商品名称。最小支持度是22%,那么每件商品至少要出现9*22%=2次才算频繁。第一次扫描数据库,使得在每条交易中,按商品名称递增排序。第二次扫描数据,找频繁项集为1的元素有:

左边表示商品名称,右边表示出现的次数,都大于阈值2。在此基础上找频繁项集是2的元素,方法是两两任意组合,第三次扫描数据得到它们出现的次数:

此时就有规律性了,在频繁项集为K的元素上找频繁项集为K+1的元素的方法是:在频繁项集为K的项目(每行记录)中,假如共有N行,两两组合,满足两两中前K-1个元素相同,只后一个元素要求前一条记录的商品名称小于后一条记录的商品名称,这样是为了避免重复组合,求它们的并集得到长度为K+1的准频繁项集,那么最多共有Apriori算法种可能的组合,有:

想想如果N很大的话,Apriori算法是一个多么庞大的数字,这时就要用到Apriori的核心了:如果K+1个元素构成频繁项集,那么它的任意K个元素的子集也是频繁项集。然后将每组K+1个元素的所有长度为K的子集,有Apriori算法中组合,在频繁项集为K的项集中匹配,没有找到则删除,用第一条记录{I1,I2,I3}它的长度为2的频繁项集有:Apriori算法分别是:{I1,I2},{I1,I3},{I2,I3}种情况,幸好这三种情况在频繁项集为2的项集中都找到了。通过这步过滤,得到的依旧是准频繁项集,它们是:

此时第四次扫描数据库,得到真正长度为3的频繁项集是:

因为{I1,I2,I4}只出现了1次,小于最小支持度2,删除。就这个例子而言,它的最大频繁项集只有3,就是{I1,I2,I3}和{I1,I2,I5}。

4、给出一种聚类算法描述,并举例说明。

k-means 算法是一种属于划分方法的聚类算法,通常采用欧氏距离作为 2 个样本相似程度的评价指标,其基本思想是:随机选取数据集中的 k 个点作为初始

聚类中心,根据数据集中的各个样本到k 个中心的距离将其归到距离最小的类中,然后计算所有归到各个类中的样本的平均值,更新每个类中心,直到平方误差准则函数稳定在最小值。

算法步骤:1.为每个聚类确定一个初始聚类中心,这样就有K 个初始聚类中心。2.将样本集中的样本按照最小距离原则分配到最邻近聚类3.使用每个聚类中的样本均值作为新的聚类中心。4.重复步骤步直到聚类中心不再变化。

k-means 算法举例:数据对象集合S 见下表,作为一个聚类分析的二维样本,要求的簇的数量k=2。

(1)选择 , 为初始的簇中心,即 , (2)对剩余的每个对象,根据其与各个簇中心的距离,将它赋给最近的簇。

对 : 显然

,故将 分配给 对于 : 因为

,所以将 分配给 对于

: 因为

,所以将 分配给 更新,得到新簇 和 计算平方误差准则,单个方差为

总体平均方差是: (3)计算新的簇的中心。 重复(2)和(3),得到O 1分配给C 1;O 2分配给

C 2,O 3分配给C 2 ,O 4分配给C 2,O 5分配给C 1。更新,得到新簇 和 。

中心为

, 。 单个方差分别为

总体平均误差是: 由上可以看出,第一次迭代后,总体平均误差值~,显着减小。由于在两次迭代中,簇中心不变,所以停止迭代过程,算法停止。

()10,2O 20,0O

()110,2

M O ==()220,0M O ==3O ()

13, 2.5d M O =

=()23, 1.5

d M O ==()()231

3,,d M O d M O ≤3O 2C 4O ()

14,d M O ==()24,5

M O ==()()2414,,d M O d M O ≤4O 5

O ()15

,5d M O ==()25,d M O ==()()1525,,d M O d M O ≤5O 1C {}115,C O O ={}2234,,C O O O =()())(()2

22210022052225E ????=-+-+-+-=????

122527.2552.25E E E =+=+=()()()()

2,5.2222,2501=++=M {}115,C O O ={}2234,,C O O O =()2,5.21=M ()2 2.17,0M =()())(()2222

10 2.522 2.552212.5E ????=-+-+-+-=????

5、 给出一种分类的算法描述,并举例说明。

决策树算法是数据挖掘领域的核心分类算法之一,其中ID3算法是最为经典的

决策树算法。ID3算法理论清晰、使用简单、学习能力较强,且构造的决策树平均深度较小,分类速度较快,特别适合处理大规模的学习问题,目前已得到广泛应用。

在ID3决策树归纳方法中,通常是使用信息增益方法来帮助确定生成每个节点时所应采用的合适属性。这样就可以选择具有最高信息增益(熵减少的程度最大)的属性最为当前节点的测试属性,以便对之后划分的训练样本子集进行分类所需要的信息最小,也就是说,利用该属性进行当前(节点所含)样本集合划分,将会使得所产生的样本子集中的“不同类别的混合程度”降为最低。因此,采用这样一种信息论方法将有效减少对象分来所需要的次数,从而确保所产生的决策树最为简单。

设E = F1 ×F2 ×…×Fn 是n 维有穷向量空间,其中j

F 是有穷离散符号集, E

中的元素e = <

1V ,

2

V ,…,

n

V >叫做例子,其中

j

V ∈

j

F , j = 1 ,2 , …, n 。设PE

和NE 是E 的F 两个例子集,分别叫正例集和反例集。

假设向量空间E 中的正例集PE 和反例集NE 的大小分别为p 和n ,ID3基于下列两个假设: (1)在向量空间E 上的一棵正确决策树,对任意例子的分类概率同E 中的正、反例的概率一致;(2)一棵决策树能对一例子做出正确类别判断所需的信息量为:

I (p,n )=log 2log 2

p p n p n

p n p n -

--+++ 如果以属性A 作为决策树的根, A 具有v 个值(1V ,

2

V ,…,

n

V ) ,它将E 分为v

个子集(1E ,

2

E ,…,

v

E ) ,假设

i

E 中含有Pi 个正例和

i

n 个反例,子集

i

E 的信息熵为

I(Pi,

i

n ) ,以属性A 为根分类后的信息熵为:

因此,以A 为根的信息增益是Gain (A) = I (p,n) - E(A) 。ID3 选择使Gain (A) 最大(即E(A) 最小)的属性作为根结点。对的不同的取值对应的E 的v 个子集

i

E 递归调用上述过程,生成

的子结点,

12,,B B …,

V

B 。

ID3 的基本原理是基于两类分类问题,但很容易扩展到多类。设样本集S 共有C 类样本,每类样本数为pi ,( i = 1 ,2 ,3 , …c) 。若以属性A 作为决策树的根,

A 具有V 个值

1V ,

2

V ,…,

n

V ,它将E 分成V 个子集[

1E ,

2

E ,…,

v

E ] ,假设i

E 中含

有j 类样本的个数为

ij

p ,j = 1,2,…,c 那么,子集

j

E 的信息量是I(

i

E )。

以A 为根分类的信息熵为: 选择属性

使E( A) 最小,信息增益也将增大。

理想的决策树分成3种: (1)叶节点数最小, (2)叶节点深度最小; (3)叶节点数量最少且叶子结点深度最小。决策树的好坏,不仅影响分类的效率,而且还影响分类的准确率。人们为了寻求较优的解,不得不寻求各种启发式的方法。有的采用基于属性相关性的启发式函数;有的对生成的决策树进行剪枝处理;有的则扩充决策树,形成决策图。

如今普遍采用的是优化算法,基本思想:首先用ID3选择属性F1,建立树T1,左、右子树的属性分别为F2,F3,再以F2,F3为根,重建树T2,T3;较T1,T2,T3的结点个数,选择结点最少的树。对于选择定树的儿子结点采用同样的方法递归建树。尽管作者用一个实验证明能建立理想的决策树,但算法有较大的弱点:时间开销太大,因为每选择一个新的属性,算法都需要建立3 棵决策树,从中选优。

ID3算法举例:

性格 父母教育程度 性别

类别

内向 外向 外向 内向 外向 内向 外向 外向 外向 内向 内向 内向 良 良 中 差 中 良 差 差 良 中 中 差

女生 男生 女生 女生 男生 男生 女生 男生 女生 女生 男生 男生

好 好 差 差 好 好 好 差 好 差 差 差

此例假定要按某校学生学习成绩好坏这个概念对一个集合进行分类,该集合中用来描述学生的属性有性格、父母教育程度和性别。性格的取值为外向、内向。父母教育程度取值为良好、中等和差。性别的取值为男生、女生。例子集中共有12 名学生,如表所示。在类别一栏,将正例即“学习成绩好”的学生用“好”标出,反例即“学生成绩差”的学生用“差”标出。

这些例子一开始全部包含在根结点中,为了找出当前的最佳划分属性,先须根据信息论中的公式计算训练实例集Es 的熵值。则根节点的熵值为:

6666()log 2log 212661266Entropy Es =-

-++ = 1

下面分别计算例子集中各个属性的信息赢取值。对属性“性格”来说,分外向和内向两个分支。当v =“外向”时,有4 名“外向”小学生是“学习成绩好”的,有2 名“外向”小学生是“学习成绩差”的。因此,

当v =“内向”时,有2 名“内向”小学生是“学习成绩好”的,有4 名“内向”小学生是“学习成绩差”的。因此,

所以根据“性格”属性来进行例子集分类的信息赢取值为:

Gain(Es)=Entropy(Es)-Entropy(Esv)=11

1-(*0.9183+*0.9183)=0.0817

22

同理,对“父母教育程度”来说:Gain(Es, 父母教育程度)= ; 对“性别”来说:Gain( Es,性别) = 0 。

因为Gain ( Es ,性别) < Gain ( Es ,性格) < Gain ( Es , 父母教育程度) 可以看出以“父母教育程度”这个属性进行例子集分类的信息赢取值最大,于是“父母教育程度”就被选为用于划分的属性,得到如下图所示的决策树。

现在必须根据所提供的信息进一步分析“父母教育程度”为“中”或“差”的小学生的“学习成绩好坏”,因此必须对“中”和“差”两个分支的实例组成的例子集(共8个例子) 重复上述计算过程。这里简化计算过程,算出:Gain(Es,性格)= 和Gain(Es,性别) =。

因为Gain ( Es ,性别) < Gain ( Es ,性格) ,所以用属性“性格”作第二步划分,于是得到如下图所示的决策树。

内向,良,女生:好

外向,良,男生:好

内向,良,男生:好

外向,良,女生:好

内向,中,女生:差

内向,中,男生:差外向,差,女生:好

外向,差,男生:差

现在只有“父母教育程度”为“中”和“差”的“外向”小学生还没有明确类别,它们要用属性“性别”来进一步划分。最终得到的决策树如下图所示。

最终得到的决策树

IF 父母教育程度=“良” THEN 学习成绩 =“好”

IF 父母教育程度=“中”AND 性格=“内向” THEN 学习成绩 =“差”

IF 父母教育程度=“差”AND 性格=“内向” THEN 学习成绩 =“差”

IF 父母教育程度=“中”AND 性格=“外向”AND 性别=“女生” THEN学习成绩 =“差”

IF 父母教育程度=“中”AND 性格=“外向”AND 性别=“男生” THEN学习成绩 =“好”

IF 父母教育程度=“差”AND 性格=“外向”AND 性别=“女生” THEN学习成绩 =“好”

IF 父母教育程度=“差”AND 性格=“外向”AND 性别=“男生” THEN学习成绩 =“差”

大工20春《数据挖掘》课程大作业满分答案

网络教育学院 《数据挖掘》课程大作业 题目: 姓名: 学习中心: 第一大题:讲述自己在完成大作业过程中遇到的困难,解决问题的思路,以及相关感想,或者对这个项目的认识,或者对Python与数据挖掘的认识等等,300-500字。 《数据挖掘》这门课程是一门实用性非常强的课程,数据挖掘是大数据这门前沿技术的基础,拥有广阔的前景,在信息化时代具有非常重要的意义。数据挖掘的研究领域非常广泛,主要包括数据库系统、基于知识的系统、人工智能、机器学习、知识获取、统计学、空间数据库和数据可视化等领域。学习过程中,我也遇到了不少困难,例如基础差,对于Python基础不牢,尤其是在进行这次课程作业时,显得力不从心;个别算法也学习的不够透彻。在接下来的学习中,我仍然要加强理论知识的学习,并且在学习的同时联系实际,在日常工作中注意运用《数据挖掘》所学到的知识,不断加深巩固,不断发现问题,解决问题。另外,对于自己掌握不牢的知识要勤复习,多练习,使自己早日成为一名合格的计算机毕业生。 第二大题:完成下面一项大作业题目。

2020春《数据挖掘》课程大作业 注意:从以下5个题目中任选其一作答。 题目一:Knn算法原理以及python实现 要求:文档用使用word撰写即可。 主要内容必须包括: (1)算法介绍。 (2)算法流程。 (3)python实现算法以及预测。 (4)整个word文件名为 [姓名奥鹏卡号学习中心](如 戴卫东101410013979浙江台州奥鹏学习中心[1]VIP )作业提交: 大作业上交时文件名写法为:[姓名奥鹏卡号学习中心](如:戴卫东101410013979浙江台州奥鹏学习中心[1]VIP) 以附件形式上交离线作业(附件的大小限制在10M以内),选择已完成的作业(注意命名),点提交即可。如下图所示。 。 注意事项: 独立完成作业,不准抄袭其他人或者请人代做,如有雷同作业,成绩以零分计!

数据挖掘实验报告

《数据挖掘》Weka实验报告 姓名_学号_ 指导教师 开课学期2015 至2016 学年 2 学期完成日期2015年6月12日

1.实验目的 基于https://www.sodocs.net/doc/4411553114.html,/ml/datasets/Breast+Cancer+WiscOnsin+%28Ori- ginal%29的数据,使用数据挖掘中的分类算法,运用Weka平台的基本功能对数据集进行分类,对算法结果进行性能比较,画出性能比较图,另外针对不同数量的训练集进行对比实验,并画出性能比较图训练并测试。 2.实验环境 实验采用Weka平台,数据使用来自https://www.sodocs.net/doc/4411553114.html,/ml/Datasets/Br- east+Cancer+WiscOnsin+%28Original%29,主要使用其中的Breast Cancer Wisc- onsin (Original) Data Set数据。Weka是怀卡托智能分析系统的缩写,该系统由新西兰怀卡托大学开发。Weka使用Java写成的,并且限制在GNU通用公共证书的条件下发布。它可以运行于几乎所有操作平台,是一款免费的,非商业化的机器学习以及数据挖掘软件。Weka提供了一个统一界面,可结合预处理以及后处理方法,将许多不同的学习算法应用于任何所给的数据集,并评估由不同的学习方案所得出的结果。 3.实验步骤 3.1数据预处理 本实验是针对威斯康辛州(原始)的乳腺癌数据集进行分类,该表含有Sample code number(样本代码),Clump Thickness(丛厚度),Uniformity of Cell Size (均匀的细胞大小),Uniformity of Cell Shape (均匀的细胞形状),Marginal Adhesion(边际粘连),Single Epithelial Cell Size(单一的上皮细胞大小),Bare Nuclei(裸核),Bland Chromatin(平淡的染色质),Normal Nucleoli(正常的核仁),Mitoses(有丝分裂),Class(分类),其中第二项到第十项取值均为1-10,分类中2代表良性,4代表恶性。通过实验,希望能找出患乳腺癌客户各指标的分布情况。 该数据的数据属性如下: 1. Sample code number(numeric),样本代码; 2. Clump Thickness(numeric),丛厚度;

数据挖掘习题题

数据挖掘复习题 单选题 1. 某超市研究销售纪录数据后发现,买啤酒的人很大概率也会购买尿布,这种属于数据挖掘的哪类问题?(A) A. 关联规则发现 B. 聚类 C. 分类 D. 自然语言处理 2. 以下两种描述分别对应哪两种对分类算法的评价标准? (A) (a)警察抓小偷,描述警察抓的人中有多少个是小偷的标准。 (b)描述有多少比例的小偷给警察抓了的标准。 A. Precision, Recall B. Recall, Precision A. Precision, ROC D. Recall, ROC 3. 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B. 分类和预测 C. 数据预处理 D. 数据流挖掘 4. 当不知道数据所带标签时,可以使用哪种技术促使带同类标签的数据与带其他标签的数据相分离?(B) A. 分类 B. 聚类 C. 关联分析 D. 隐马尔可夫链 5. 什么是KDD? (A) A. 数据挖掘与知识发现 B. 领域知识发现 C. 文档知识发现 D. 动态知识发现 6. 使用交互式的和可视化的技术,对数据进行探索属于数据挖掘的哪一类任务?(A) A. 探索性数据分析 B. 建模描述 C. 预测建模 D. 寻找模式和规则 7. 为数据的总体分布建模;把多维空间划分成组等问题属于数据挖掘的哪一类任务?(B) A. 探索性数据分析 B. 建模描述 C. 预测建模 D. 寻找模式和规则 8. 建立一个模型,通过这个模型根据已知的变量值来预测其他某个变量值属于数据挖掘的哪一类任务?(C) A. 根据内容检索 B. 建模描述 C. 预测建模 D. 寻找模式和规则 9. 用户有一种感兴趣的模式并且希望在数据集中找到相似的模式,属于数据挖掘哪一类任务?(A) A. 根据内容检索 B. 建模描述 C. 预测建模 D. 寻找模式和规则 11.下面哪种不属于数据预处理的方法? (D) A变量代换 B离散化 C 聚集 D 估计遗漏值 12. 假设12个销售价格记录组已经排序如下:5, 10, 11, 13, 15, 35, 50, 55, 72, 92, 204,

数据挖掘期末大作业任务

数据挖掘期末大作业 1.数据挖掘的发展趋势是什么?大数据环境下如何进行数据挖掘。 对于数据挖掘的发展趋势,可以从以下几个方面进行阐述: (1)数据挖掘语言的标准化描述:标准的数据 挖掘语言将有助于数据挖掘的系统化开发。改进多个数据挖掘系统和功能间的互操作,促进其在企业和社会中的使用。 (2)寻求数据挖掘过程中的可视化方法:可视 化要求已经成为数据挖掘系统中必不可少的技术。可以在发现知识的过程中进行很好的人机交互。数据的可视化起到了推动人们主动进行知识发现的作用。 (3)与特定数据存储类型的适应问题:根据不 同的数据存储类型的特点,进行针对性的研究是目前流行以及将来一段时间必须面对的问题。 (4)网络与分布式环境下的KDD问题:随着 Internet的不断发展,网络资源日渐丰富,这就需要分散的技术人员各自独立地处理分离数据库的工作方式应是可协作的。因此,考虑适应分布式与网络环境的工具、技术及系统将是数据挖掘中一个最为重要和繁荣的子领域。 (5)应用的探索:随着数据挖掘的日益普遍,其应用范围也日益扩大,如生物医学、电信业、零售业等 领域。由于数据挖掘在处理特定应用问题时存在局限性,因此,目前的研究趋势是开发针对于特定应用的数据挖掘系统。 (6)数据挖掘与数据库系统和Web数据库系统的集成:数据库系统和Web数据库已经成为信息处 理系统的主流。 2. 从一个3输入、2输出的系统中获取了10条历史数据,另外,最后条数据是系统的输 入,不知道其对应的输出。请使用SQL SERVER 2005的神经网络功能预测最后两条数据的输出。 首先,打开SQL SERVER 2005数据库软件,然后在界面上右键单击树形图中的“数据库”标签,在弹出的快捷菜单中选择“新建数据库”命令,并命名数据库的名称为YxqDatabase,单击确定,如下图所示。 然后,在新建的数据库YxqDatabas中,根据题目要求新建表,相应的表属性见下图所示。

数据挖掘的功能及应用作业

数据挖掘的其他基本功能介绍 一、关联规则挖掘 关联规则挖掘是挖掘数据库中和指标(项)之间有趣的关联规则或相关关系。关联规则挖掘具有很多应用领域,如一些研究者发现,超市交易记录中的关联规则挖掘对超市的经营决策是十分重要的。 1、 基本概念 设},,,{21m i i i I =是项组合的记录,D 为项组合的一个集合。如超市的每一张购物小票为一个项的组合(一个维数很大的记录),而超市一段时间内的购物记录就形成集合D 。我们现在关心这样一个问题,组合中项的出现之间是否存在一定的规则,如A 游泳衣,B 太阳镜,B A ?,但是A B ?得不到足够支持。 在规则挖掘中涉及到两个重要的指标: ① 支持度 支持度n B A n B A )()(?= ?,显然,只有支持度较大的规则才是较有价值的规则。 ② 置信度 置信度)() ()(A n B A n B A ?=?,显然只有置信度比较高的规则才是比较可靠 的规则。 因此,只有支持度与置信度均较大的规则才是比较有价值的规则。 ③ 一般地,关联规则可以提供给我们许多有价值的信息,在关联规则挖掘时,往往需要事先指定最小支持度与最小置信度。关联规则挖掘实际上真正体现了数据中的知识发现。 如果一个规则满足最小支持度,则称这个规则是一个频繁规则; 如果一个规则同时满足最小支持度与最小置信度,则通常称这个规则是一个强规则。 关联规则挖掘的通常方法是:首先挖掘出所有的频繁规则,再从得到的频繁规则中挖掘强规则。在少量数据中进行规则挖掘我们可以采用采用简单的编程方法,而在大量数据中挖掘关联规则需要使用专门的数据挖掘软件。关联规则挖掘可以使我们得到一些原来我们所不知道的知识。 应用的例子: * 日本超市对交易数据库进行关联规则挖掘,发现规则:尿片→啤酒,重新安排啤酒柜台位置,销量上升75%。 * 英国超市的例子:大额消费者与某种乳酪。 那么,证券市场上、期货市场上、或者上市公司中存在存在哪些关联规则,这些关联规则究竟说明了什么? 关联规则挖掘通常比较适用与记录中的指标取离散值的情况,如果原始数据

数据挖掘作业

1、给出K D D的定义和处理过程。 KDD的定义是:从大量数据中提取出可信的、新颖的、有用的且可以被人理解的模式的高级处理过程。因此,KDD是一个高级的处理过程,它从数据集中识别出以模式形式表示的知识。这里的“模式”可以看成知识的雏形,经过验证、完善后形成知识:“高级的处理过程”是指一个多步骤的处理过程,多步骤之间相互影响反复调整,形成一种螺旋式上升的过程。 KDD的全过程有五个步骤:1、数据选择:确定发现任务的操作对象,即目标数据,它是根据用户的需要从原始数据库中抽取的一组数据;2、数据预处理:一般可能包括消除噪声、推到技术却只数据、消除重复记录、完成数据类型转换等;3、数据转换:其主要目的是消减数据维数或降维,即从初始特征中找出真正有用的特征以减少数据开采时要考虑的特征或变量个数;4、数据挖掘:这一阶段包括确定挖掘任务/目的、选择挖掘方法、实施数据挖掘;5、模式解释/评价:数据挖掘阶段发现出来的模式,经过用户或机器的评价,可能存在冗余或无关的模式,需要剔除;也有可能模式不满足用户的要求,需要退回到整个发现阶段之前,重新进行KDD过程。 2、阐述数据挖掘产生的背景和意义。 ?数据挖掘产生的背景:随着信息科技的进步以及电子化时代的到来,人们以更快捷、更容易、更廉价的方式获取和存储数据,使得数据及信息量以指数方式增长。据粗略估计,一个中等规模企业每天要产生100MB以上的商业数据。而电信、银行、大型零售业每天产生的数据量以TB来计算。人们搜集的数据越来越多,剧增的数据背后隐藏着许多重要的信息,人们希望对其进行更高层次的分析,以便更好的利用这些数据。先前的数据库系统可以高效的实现数据的录入、查询、统计等功能,但无法发现数据中存在的关系与规则,无法根据现有的数据来预测未来的发展趋势。缺乏挖掘数据背后隐藏的知识的手段。导致了“数据爆炸但知识贫乏”的现象。于是人们开始提出“要学会选择、提取、抛弃信息”,并且开始考虑:如何才能不被信息淹没?如何从中及时发现有用的知识、提高信息利用率?如何从浩瀚如烟海的资料中选择性的搜集他们认为有用的信息?这给我们带来了另一些头头疼的问题:第一是信息过量,难以消化;第二是信息真假难以辨别;第三是信息安全难以保证;第四是信息形式不一致,难以统一处理?

大学数据挖掘期末考试题

第 - 1 - 页 共 4 页 数据挖掘试卷 课程代码: C0204413 课程: 数据挖掘A 卷 一、判断题(每题1分,10分) 1. 从点作为个体簇开始,每一步合并两个最接近的簇,这是一种分裂的层次聚类方法。( ) 2. 数据挖掘的目标不在于数据采集策略,而在于对已经存在的数据进行模式的发掘。( ) 3. 在聚类分析当中,簇内的相似性越大,簇间的差别越大,聚类的效果就越差。( ) 4. 当两个点之间的邻近度取它们之间距离的平方时,Ward 方法与组平均非常相似。( ) 5. DBSCAN 是相对抗噪声的,并且能够处理任意形状和大小的簇。( ) 6. 属性的性质不必与用来度量他的值的性质相同。( ) 7. 全链对噪声点和离群点很敏感。( ) 8. 对于非对称的属性,只有非零值才是重要的。( ) 9. K 均值可以很好的处理不同密度的数据。( ) 10. 单链技术擅长处理椭圆形状的簇。( ) 二、选择题(每题2分,30分) 1. 当不知道数据所带标签时,可以使用哪种技术促使带同类标签的数据与带其他标签的数据相分离?( ) A.分类 B.聚类 C.关联分析 D.主成分分析 2. ( )将两个簇的邻近度定义为不同簇的所有点对邻近度的平均值,它是一种凝聚层次聚类技术。 A.MIN(单链) B.MAX(全链) C.组平均 D.Ward 方法 3.数据挖掘的经典案例“啤酒与尿布试验”最主要是应用了( )数据挖掘方法。 A 分类 B 预测 C 关联规则分析 D 聚类 4.关于K 均值和DBSCAN 的比较,以下说法不正确的是( ) A.K 均值丢弃被它识别为噪声的对象,而DBSCAN 一般聚类所有对象。 B.K 均值使用簇的基于原型的概念,DBSCAN 使用基于密度的概念。 C.K 均值很难处理非球形的簇和不同大小的簇,DBSCAN 可以处理不同大小和不同形状的簇 D.K 均值可以发现不是明显分离的簇,即便簇有重叠也可以发现,但是DBSCAN 会合并有重叠的簇 5.下列关于Ward ’s Method 说法错误的是:( )

数据挖掘作业

《数据挖掘》作业 第一章引言 一、填空题 (1)数据库中的知识挖掘(KDD)包括以下七个步骤:、、、、、和 (2)数据挖掘的性能问题主要包括:、和 (3)当前的数据挖掘研究中,最主要的三个研究方向是:、和 (4)在万维网(WWW)上应用的数据挖掘技术常被称为: (5)孤立点是指: 二、单选题 (1)数据挖掘应用和一些常见的数据统计分析系统的最主要区别在于: A、所涉及的算法的复杂性; B、所涉及的数据量; C、计算结果的表现形式; D、是否使用了人工智能技术 (2)孤立点挖掘适用于下列哪种场合? A、目标市场分析 B、购物篮分析 C、模式识别 D、信用卡欺诈检测(3)下列几种数据挖掘功能中,()被广泛的应用于股票价格走势分析 A. 关联分析 B.分类和预测 C.聚类分析 D. 演变分析 (4)下面的数据挖掘的任务中,()将决定所使用的数据挖掘功能 A、选择任务相关的数据 B、选择要挖掘的知识类型 C、模式的兴趣度度量 D、模式的可视化表示 (5)下列几种数据挖掘功能中,()被广泛的用于购物篮分析 A、关联分析 B、分类和预测 C、聚类分析 D、演变分析 (6)根据顾客的收入和职业情况,预测他们在计算机设备上的花费,所使用的相应数据挖掘功能是() A.关联分析 B.分类和预测 C. 演变分析 D. 概念描述(7)帮助市场分析人员从客户的基本信息库中发现不同的客户群,通常所使用的数据挖掘功能是() A.关联分析 B.分类和预测 C.聚类分析 D. 孤立点分析 E. 演变分析(8)假设现在的数据挖掘任务是解析数据库中关于客户的一般特征的描述,通常所使用的数据挖掘功能是() A.关联分析 B.分类和预测 C. 孤立点分析 D. 演变分析 E. 概念描述 三、简答题 (1)什么是数据挖掘? (2)一个典型的数据挖掘系统应该包括哪些组成部分? (3)请简述不同历史时代数据库技术的演化。 (4)请列举数据挖掘应用常见的数据源。(或者说,我们都在什么样的数据上进行数据挖掘)(5)什么是模式兴趣度的客观度量和主观度量? (6)在哪些情况下,我们认为所挖掘出来的模式是有趣的? (7)根据挖掘的知识类型,我们可以将数据挖掘系统分为哪些类别?

数据挖掘作业

一:用R语言编程实现P56页19题 以19(2)为例编写R语言程序,其他小题程序类似1.余弦相似度 > x=c(0,1,0,1) > y=c(1,0,1,0) > xy=sum(x*y) > x1=sqrt(sum(x^2)) > y1=sqrt(sum(y^2)) > c=xy/(x1*y1) > c [1] 0 2.相关性 > x=c(0,1,0,1) > y=c(1,0,1,0) > xbar=mean(x) > ybar=mean(y) > len=length(x) > sx=sqrt((1/(len-1))*sum((x-xbar)^2)) > sy=sqrt((1/(len-1))*sum((y-ybar)^2)) > sxy=(1/(len-1))*sum((x-xbar)*(y-ybar)) > corrxy=sxy/(sx*sy) > corrxy

3.欧几里得距离 > x=c(0,1,0,1) > y=c(1,0,1,0) > dxy=sqrt(sum((x-y)^2)) > dxy [1] 2 4.Jaccard系数 > x=c(0,1,0,1) > y=c(1,0,1,0) > f00=f01=f10=f11=0 > len=length(x) > j=1 > while(j

数据挖掘作业

第5章关联分析 5.1 列举关联规则在不同领域中应用的实例。 5.2 给出如下几种类型的关联规则的例子,并说明它们是否是有价值的。 (a)高支持度和高置信度的规则; (b)高支持度和低置信度的规则; (c)低支持度和低置信度的规则; (d)低支持度和高置信度的规则。 5.3 数据集如表5-14所示: (a) 把每一个事务作为一个购物篮,计算项集{e}, {b, d}和{b, d, e}的支持度。 (b) 利用(a)中结果计算关联规则{b, d}→{e} 和 {e}→{b, d}的置信度。置信度是一个对称的度量吗? (c) 把每一个用户购买的所有商品作为一个购物篮,计算项集{e}, {b, d}和{b, d, e}的支持度。 (d) 利用(b)中结果计算关联规则{b, d}→{e} 和 {e}→{b, d}的置信度。置信度是一个对称的度量吗? 5.4 关联规则是否满足传递性和对称性的性质?举例说明。 5.5 Apriori 算法使用先验性质剪枝,试讨论如下类似的性质 (a) 证明频繁项集的所有非空子集也是频繁的 (b) 证明项集s 的任何非空子集s ’的支持度不小于s 的支持度 (c) 给定频繁项集l 和它的子集s ,证明规则“s’→(l – s’)”的置信度不高于s →(l – s)的置信度,其中s’是s 的子集 (d) Apriori 算法的一个变形是采用划分方法将数据集D 中的事务分为n 个不相交的子数据集。证明D 中的任何一个频繁项集至少在D 的某一个子数据集中是频繁的。 5.6 考虑如下的频繁3-项集:{1, 2, 3},{1, 2, 4},{1, 2, 5}, {1, 3, 4},{1, 3, 5},{2, 3, 4},{2, 3, 5},{3, 4, 5}。 (a)根据Apriori 算法的候选项集生成方法,写出利用频繁3-项集生成的所有候选4-项集。 (b)写出经过剪枝后的所有候选4-项集 5.7 一个数据库有5个事务,如表5-15所示。设min_sup=60%,min_conf = 80%。

数据挖掘大作业

1.音乐分类的数据集 在这个题目中,使用了SVM分类器和贝叶斯分类器,并通过sklearn库中的GridSearchCV方法对SVM分类模型的参数进行调优,使最终的正确率提高了5个百分点左右。但仍没有文档中的论文达到的分类正确率高,因为论文中的分类器的设计使专一对音乐音调分类的,其中设计到神经网络和深度学习的一些方法。而我使用的分类器使对大部分分类问题都有效的方法。下面是对数据集的一个简单的介绍: 数据标签 第3-14列:YES or NO 第15列:共16个取值('D', 'G#', 'D#', 'Bb', 'Db', 'F#', 'Eb', 'F', 'C#', 'Ab', 'B', 'C', 'A#', 'A', 'G', 'E') 第16列:共5个取值(1,2,3,4,5) 第17列:共102个类别('C#M', 'F_m', 'D_m', 'D_d7', 'G#m', 'D_m6', 'C_m6', 'C_d7', 'F_M', 'D_M', 'BbM7', 'F#d', 'C#d', 'E_d', 'F_d7', 'F#d7', 'G_m', 'C#d7', 'AbM', 'EbM', 'D#d', 'Bbm6', 'G_M7', 'F#m6', 'Dbd', 'B_m6', 'G#M', 'D_m7', 'B_M', 'F#M7', 'Bbm', 'A#d', 'D#d7', 'Abd', 'G_M', 'F#M4', 'E_M', 'A_M4', 'E_m7', 'D#M', 'C_M7', 'A_m6', 'Dbm', 'A#d7', 'F#M', 'C#m7', 'F_m7', 'C_M', 'C#M4', 'F_M6', 'A_M', 'G_m6', 'D_M4', 'F_M7', 'B_M7', 'E_M4', 'E_m6', 'A_m4', 'G#d', 'C_m7', 'C_M6', 'Abm', 'F_m6', 'G_m7', 'F_d', 'Bbd', 'G_M4', 'B_d', 'A_M7', 'E_m', 'C#M7', 'DbM', 'EbM7', 'C#d6', 'F#m', 'G_M6', 'G_d', 'Dbd7', 'B_m7', 'DbM7', 'D_M6', 'D#d6', 'G#d7', 'A_m7', 'B_d7', 'B_M4', 'A_d', 'A_m', 'C_d6', 'D#m', 'C_M4', 'A_M6', 'BbM', 'C#m', 'D_M7', 'E_M7', 'F_M4', 'F#m7', 'Dbm7', 'B_m', 'C_m', 'Ebd') 这是一个多分类问题 1.1数据读取与训练集和测试集分离

数据挖掘离线作业

浙江大学远程教育学院 《数据挖掘》课程作业 姓名:学号: 年级:学习中心:————————————————————————————— 第一章引言 一、填空题 (1)数据库中的知识挖掘(KDD)包括以下七个步骤:数据清理、数据集成、数据选择、数据交换、数据挖掘、模式评估和知识表示 (2)数据挖掘的性能问题主要包括:算法的效率、可扩展性和并行处理 (3)当前的数据挖掘研究中,最主要的三个研究方向是:统计学、数据库技术和机器学习 (4)孤立点是指:一些与数据的一般行为或模型不一致的孤立数据 二、简答题 (1)什么是数据挖掘? 答:数据挖掘指的是从大量的数据中挖掘出那些令人感兴趣的、有用的、隐含的、先前未知的和可能有用的模式或知识。 (2)一个典型的数据挖掘系统应该包括哪些组成部分? 答:一个典型的数据挖掘系统应该包括以下部分:1、数据库、数据仓库或其他信息库,2、数据库或数据仓库服务器,3、知识库,4、数据挖掘引擎,5、模式评估魔磕,6图形用户界面。 (3)Web挖掘包括哪些步骤? 答:数据清理:(这个可能要占用过程60%的工作量)、数据集成、将数据存入数据仓库、建立数据立方体、选择用来进行数据挖掘的数据、数据挖掘(选择适当的算法来找到感兴趣的模式)、展现挖掘结果、将模式或者知识应用或者存入知识库。 (4)请列举数据挖掘应用常见的数据源。 (或者说,我们都在什么样的数据上进行数据挖掘) 答:常见的数据源包括关系数据库、数据仓库、事务数据库和高级数据库系统和信息库。其中高级数据库系统和信息库包括:空间数据库、时间数据库和时间序列数据库、流数据、多媒体数据库、面向对象数据库和对象——关系数据库、异种数据库和遗产数据库、文本数据库和万维网等。

期末大作业

期末大作业 数据挖掘和基于数据的决策是目前非常重要的研究领域,是从数据库的大量数据中揭示出隐含的、先前未知的并有潜在价值的信息的特殊过程。在商业上,数据挖掘是一种决策支持过程,它主要基于人工智能、机器学习、模式识别、统计学、数据库、可视化技术等,高度自动化地分析技术,可用于分析企业数据,做出归纳性的推理,从中挖掘出潜在的模式,帮助决策者调整市场策略,减少风险,做出正确的决策。 本次作业要求完成一个相亲配对程序,让相亲者更容易找到自己的意中人。查阅相关文献,以python为工具实现K-近邻算法,从而完成一个基本版的相亲配对系统,在此基础上深入研究聚类算法(K-近邻算法为其中一种),讨论各种聚类思路及算法优劣,完成相应的研究论文。 基本的设计思路提示如下:利用附件datingTestSet.txt文档中提供的三种属性(前三列,其中第1列为对方每年出差/旅行的公里数,第2列为对方玩游戏消耗时间的百分比,第3列为对方每周消费的冷饮公升数)作为测度是否和对方匹配的标准。附件文件第4列表示了你遇到此类人产生的好恶情感,其中largeDoses表示对你极有吸引力,smallDoses表示对你吸引力一般,didntLike 表示是你不喜欢的类型。利用此文件提供的数据,以K-近邻算法为工具,进行数据挖掘,发现你的喜好标准,对新的未标定的待匹配方(即只有前三行数据)给出第4行的好恶情感标签(即largeDoses、smallDoses或didntLike)。 具体要求如下: 1.查找文献,理解完整的K-近邻算法;

2.使用python语言编程实现K-近邻算法,解决相亲配对这一明确的应用问题; 3.撰写的研究论文要有关于聚类算法的详细叙述,论文中的算法应该与程序实 现的算法相印证。 大作业要求: 1.自己设计解决方案,简易的解决方案得分较低,完整的解决方案,即使部分 完成,得分也会较高; 2.作业上交形式为电子版文件。所有文件打包为一个文件,以“学号+姓名” 的方式命名; 3.算法的python源程序(py文件); 4.对此问题进行研究得到的研究性论文,论文包括前言(简介),算法部分(算 法流程图为核心),程序设计部分(程序流程图为核心),实验结果和分析,小结等内容(doc文件); 5.论文必须有规范的发表论文格式,包括题目、作者、单位、摘要、关键字、 正文及参考文献; 6.附有少量参考资料。 字数:论文部分字数限于2000±300,太多太少均扣分。 上交期限:19周周日,由学习委员收齐统一上交。 抄袭0分!

北邮数据挖掘作业

北京邮电大学 2015-2016学年第1学期实验报告 课程名称:数据仓库与数据挖掘 实验名称:文本的分类 实验完成人: 姓名:学号: 日期: 2015 年 12 月

实验一:文本的分类 1.实验目的 1. 了解一些数据挖掘的常用算法,掌握部分算法; 2. 掌握数据预处理的方法,对训练集数据进行预处理; 3. 利用学习的文本分类器,对未知文本进行分类判别; 4. 掌握评价分类器性能的评估方法。 2.实验分工 数据准备、预处理、LDA主题模型特征提取实现、SVM算法都由范树全独立完成。 3.实验环境 ●操作系统:win7 64bit 、Ubuntu-14.04-trusty ●开发环境:java IDE eclipse 、Python IDLE 4.主要设计思想 4.1实验工具介绍 1.Scrapy 0.25 所谓网络爬虫,就是一个抓取特定网站网页的HTML数据的程序。不过由于一个网站的网页很多,而我们又不可能事先知道所有网页的URL地址,所以,如何保证我们抓取到了网站的所有HTML页面就是一个有待考究的问题了。一般的方法是,定义一个入口页面,然后一般一个页面会有其他页面的URL,于是从当前页面获取到这些URL加入到爬虫的抓取队列中,然后进入到新页面后再递归的进行上述的操作,其实说来就跟深度遍历或广度遍历一样。 Scrapy是一个基于Twisted,纯Python实现的爬虫框架,用户只需要定制开发几个模块就可以轻松的实现一个爬虫,用来抓取网页内容以及各种图片,非常之方便。Scrapy 使用Twisted这个异步网络库来处理网络通讯,架构清晰,并且包含了各种中间件接口,可以灵活的完成各种需求。 2.JGibbLDA-v.1.0 jGibbLDA是java版本的LDA实现,它使用Gibbs采样来进行快速参数估计和推断。LDA 是一种由基于概率模型的聚类算法。该算法能够对训练数据中的关键项集之于类簇的概率参数拟合模型,进而利用该参数模型实施聚类和分类等操作。 3.ICTCLAS50 中科院计算技术研究所在多年研究基础上,耗时一年研制出了基于多层隐码模型的汉语词法分析系统ICTCLAS,该系统有中文分词,词性标注,未登录次识别等功能。 4.libSVM-3.20 libSVM是台湾大学林智仁教授等开发设计的一个简单、易用和快速有效的SVM模式识

数据挖掘作业

数据挖掘作业The document was prepared on January 2, 2021

1、给出K D D的定义和处理过程。 KDD的定义是:从大量数据中提取出可信的、新颖的、有用的且可以被人理解的模式的高级处理过程。因此,KDD是一个高级的处理过程,它从数据集中识别出以模式形式表示的知识。这里的“模式”可以看成知识的雏形,经过验证、完善后形成知识:“高级的处理过程”是指一个多步骤的处理过程,多步骤之间相互影响反复调整,形成一种螺旋式上升的过程。 KDD的全过程有五个步骤:1、数据选择:确定发现任务的操作对象,即目标数据,它是根据用户的需要从原始数据库中抽取的一组数据;2、数据预处理:一般可能包括消除噪声、推到技术却只数据、消除重复记录、完成数据类型转换等;3、数据转换:其主要目的是消减数据维数或降维,即从初始特征中找出真正有用的特征以减少数据开采时要考虑的特征或变量个数;4、数据挖掘:这一阶段包括确定挖掘任务/目的、选择挖掘方法、实施数据挖掘;5、模式解释/评价:数据挖掘阶段发现出来的模式,经过用户或机器的评价,可能存在冗余或无关的模式,需要剔除;也有可能模式不满足用户的要求,需要退回到整个发现阶段之前,重新进行KDD过程。 2、阐述数据挖掘产生的背景和意义。 数据挖掘产生的背景:随着信息科技的进步以及电子化时代的到来,人们以更快捷、更容易、更廉价的方式获取和存储数据,使得数据及信息量以指数方式增长。据粗略估计,一个中等规模企业每天要产生100MB以上的商业数据。而电信、银行、大型零售业每天产生的数据量以TB来计算。人们搜集的数据越来越多,剧增的数据背后隐藏着许多重要的信息,人们希望对其进行更高层次的分析,以便更好的利用这些数据。先前的数据库系统可以高效的实现数据的录入、查询、统计等功能,但无法发现数据中存在的关系与规则,无法根据现有的数据来预测未来的发展趋势。缺乏挖掘数据背后隐藏的知识的手段。导致了“数据爆炸但知识贫乏”的现象。于是人们开始提出“要学会选择、提取、抛弃信息”,并且开始考虑:如何才能不被信息淹没如何从中及时发现有用的知识、提高信息利用率如何从浩瀚如烟海的资料中选择性的搜集他们认为有用的信息这给我们带来了另一些头头疼的问题:第一是信息过量,难以消

数据仓库与数据挖掘试题

武汉大学计算机学院 2014级研究生“数据仓库和数据挖掘”课程期末考试试题 要求:所有的题目的解答均写在答题纸上,需写清楚题目的序号。每张答题纸都要写上姓名和学号。 一、单项选择题(每小题2分,共20分) 1. 下面列出的条目中,()不是数据仓库的基本特征。B A.数据仓库是面向主题的 B.数据仓库是面向事务的 C.数据仓库的数据是相对稳定的 D.数据仓库的数据是反映历史变化的 2. 数据仓库是随着时间变化的,下面的描述不正确的是()。 A.数据仓库随时间的变化不断增加新的数据内容 B.捕捉到的新数据会覆盖原来的快照 C.数据仓库随事件变化不断删去旧的数据内容C D.数据仓库中包含大量的综合数据,这些综合数据会随着时间的变化不断地进行重新综合 3. 以下关于数据仓库设计的说法中()是错误的。A A.数据仓库项目的需求很难把握,所以不可能从用户的需求出发来进行数据仓库的设计,只能从数据出发进行设计 B.在进行数据仓库主题数据模型设计时,应该按面向部门业务应用的方式来设计数据模型 C.在进行数据仓库主题数据模型设计时要强调数据的集成性 D.在进行数据仓库概念模型设计时,需要设计实体关系图,给出数据表的划分,并给出每个属性的定义域 4. 以下关于OLAP的描述中()是错误的。A A.一个多维数组可以表示为(维1,维2,…,维n) B.维的一个取值称为该维的一个维成员 C.OLAP是联机分析处理 D.OLAP是数据仓库进行分析决策的基础 5. 多维数据模型中,下列()模式不属于多维模式。D A.星型模式 B.雪花模式 C.星座模式 D.网型模式 6. 通常频繁项集、频繁闭项集和最大频繁项集之间的关系是()。C A.频繁项集?频繁闭项集?最大频繁项集 B.频繁项集?最大频繁项集?频繁闭项集 C.最大频繁项集?频繁闭项集?频繁项集 D.频繁闭项集?频繁项集?最大频繁项集

数据挖掘习题及解答-完美版

Data Mining Take Home Exam 学号: xxxx 姓名: xxx (1)计算整个数据集的Gini指标值。 (2)计算属性性别的Gini指标值 (3)计算使用多路划分属性车型的Gini指标值 (4)计算使用多路划分属性衬衣尺码的Gini指标值 (5)下面哪个属性更好,性别、车型还是衬衣尺码为什么 (3)

/20+{1-(1/8)^2-(7/8)^2}*8/20=26/160 = /4)^2-(2/4)^2}*4/20]*2=8/2 5+6/35= (5) 比较上面各属性的Gini值大小可知,车型划分Gini值最小,即使用车型属性更好。 2. ( (1) 将每个事务ID视为一个购物篮,计算项集{e},{b,d} 和{b,d,e}的支持度。(2)使用(1)的计算结果,计算关联规则{b,d}→{e}和{e}→{b,d}的置信度。(3)将每个顾客ID作为一个购物篮,重复(1)。应当将每个项看作一个二元变量(如果一个项在顾客的购买事务中至少出现一次,则为1,否则,为0)。(4)使用(3)的计算结果,计算关联规则{b,d}→{e}和{e}→{b,d}的置信度。答:(1)由上表计数可得{e}的支持度为8/10=;{b,d}的支持度为2/10=;{b,d,e} 的支持度为2/10=。 (2)c[{b,d}→{e}]=2/8=; c[{e}→{b,d}]=8/2=4。 (3)同理可得:{e}的支持度为4/5=,{b,d}的支持度为5/5=1,{b,d,e}的支持度为4/5=。

(4)c[{b,d}→{e}]=5/4=,c[{e}→{b,d}]=4/5=。 3. (20分)以下是多元回归分析的部分R输出结果。 > ls1=lm(y~x1+x2) > anova(ls1) Df Sum Sq Mean Sq F value Pr(>F) x1 1 *** x2 1 ** Residuals 7 > ls2<-lm(y~x2+x1) > anova(ls2) Df Sum Sq Mean Sq F value Pr(>F) x2 1 ** x1 1 *** Residuals 7 (1)用F检验来检验以下假设(α = H0: β1 = 0 H a: β1≠ 0 计算检验统计量;是否拒绝零假设,为什么 (2)用F检验来检验以下假设(α = H0: β2 = 0 H a: β2≠ 0 计算检验统计量;是否拒绝零假设,为什么 (3)用F检验来检验以下假设(α = H0: β1 = β2 = 0 H a: β1和β2 并不都等于零 计算检验统计量;是否拒绝零假设,为什么 解:(1)根据第一个输出结果F=>F(2,7)=,p<,所以可以拒绝原假设,即得到不等于0。 (2)同理,在α=的条件下,F=>F(2,7)=,p<,即拒绝原假设,得到不等于0。(3)F={(+)/2}/(7)=>F=(2,7)=,即拒绝原假设,得到和并不都等于0。 4. (20分)考虑下面20个观测值: [1] [6] [11] [16]

数据挖掘作业

1?下表由雇员数据库的训练数据组成,数据已泛化。例如,年龄“ 31…3表示31到35的之 间。对于给定的行,count表示department, status, age和salary在该行上具有给定值的元组数。status是类标号属性。 1)如何修改基本决策树算法,以便考虑每个广义数据元组(即每个行)的count。 Status分为2个部分:Department分为4个部分: Senior 共计52 Sales 共计110 Junior 共计113 Systems 共计31 Marketi ng 共计14 Secretary 共计10 Age分为6个部分:Salary分为6各部分: 21-25 共计20 26K …30K 共计46 26-30 共计49 31K …35K 共计40 31-35 共计79 36K-40K 共计 4 36-40 共计10 41K-45K 共计 4 41-45 共计3 46K-50K 共计63 46-50 共计4 66K-70K 共计8 —位

位 位 位 由以上的计算知按信息增益从大到小对属性排列依次为:salary、age、department,所以定 salary作为第一层,之后剩下的数据如下: 由这个表可知department和age的信息增益将都为0。所以第二层可以为age也可以为 department。 2)构造给定数据的决策树。 由上一小问的计算所构造的决策树如下:

3)给定一个数据元组, 它在属性department, age 和salary 上的值分别为 “ systems "“ 26 (30) 和“46...50K 。"该元组status 的朴素贝叶斯分类结果是什么? P(status=se nior)=52/165=0.3152 P(status=ju nior)=113/65=0.6848 P(departme nt=systems|status=se ni or)=8/52=0.1538 P(departme nt=systems|status=ju nior)=23/113=0.2035 P(age=26 ?-30|status=se nior)=1/52=0.0192 P(age=26…30|status=ju nior)=49/113=0.4336 P(salary=46K- 50K|status=se nior)=40/52=0.7692 P(salary=46K- 50K|status=ju nior)=23/113=0.2035 使用上面的概率,得到: P(X|status=se ni or)=P(departme nt=systems|status=se ni or)*P(age= 26 ?-30|status=se ni or)* P(salary=46K- 50K|status=se nior)=0.0023 P(X|status=j uni or)=P(departme nt=systems|status=j uni or)*P(age= 26 ?-30|status=j unior)* P(salary=46K- 50K|status= ju ni or)=0.0180 26:30 :35 Senior Salary 26K:30K Junior 41K:45K Jun ior Senior Jun ior Jun ior 66K:70K 31K:35K 46K:50K 21:25 36:40 Jun ior Sen ior 36K:40 Sen ior

数据挖掘期末考试计算题及答案

题一: 一阶项目集支持度 a5 b4 c2 d5 e3 f4 g6 一阶频繁集支持度 a5 b4 d5 f4 g6 二阶候选集支持度ab3 ad4 af2 ag5 bd3

bf1 bg3 df3 dg4 fg3 二阶频繁集支持度 ad4 ag5 dg4 三阶候选集支持度 adg4 三阶频繁集支持度 adg4 题二 Distance(G,A)2=0.1; Distance(G,B)2=0.03; Distance(G,C)2=0.11 Distance(G,D)2=0.12; Distance(G,E)2=0.16; Distance(G,F)2=0.05 G的三个最近的邻居为B,F,A,因此G的分类为湖泊水 Distance(H,A)2=0.03; Distance(H,B)2=0.18; Distance(H,C)2=0.22

Distance(H,D)2=0.03; Distance(H,E)2=0.21; Distance(H,F)2=0.16 H的三个最近的邻居为A,D,F,因此H的分类为冰川水 题三 首先计算各属性的信息增益 Gain(Ca+浓度)=0 Gain(Mg+浓度)=0.185 Gain(Na+浓度)=0 Gain(Cl-浓度)=0.32 选择 Cl- 计算各属性的信息增益 Gain(Ca+浓度)=0 Gain(Mg+浓度)=0.45 Gain(Na+浓度)=0.24 选择Mg+ Cl-浓度 冰川水? 高低 Cl-浓度 冰川水Mg+浓度 高低 高低

计算各属性的信息增益 Gain(Ca+浓度)=0.24 Gain(Na+浓度)=0.91 Cl-浓度 高低 冰川水Mg+浓度 高低 Na+浓度湖泊水 高低 湖泊水冰川水 题四 P(Ca+浓度=低,Mg+浓度=高,Na+浓度=高,Cl-浓度=低| 类型=冰川水)*P(冰川水) =P(Ca+浓度=低| 类型=冰川水)* P(Mg+浓度=高| 类型=冰川水)* P(Na+浓度=高| 类型=冰川水)* P(Cl-浓度=低| 类型=冰川水) *P(冰川水) =0.5*0.75*0.5*0.5*0.5=0.0468

相关主题