搜档网
当前位置:搜档网 › 高考物理五大专题

高考物理五大专题

高考物理五大专题
高考物理五大专题

2015年高考物理五大专题精讲

专题一: 物理思想与方法

一、整体法、隔离法:

【解题思想】 1.如图所示,有两个铁环P 、Q 分别套在粗糙的水平杆和光滑的竖直杆上,铁环P 、Q 之间用细线相连且处于静止状态。现将铁环P 向右稍微移动一小段距离(Q 也会上移),两环仍然静止不动,则关于两环的受力分析,正确说法是 [ ] A .细线上的拉力将变大 B .竖直杆对铁环Q 的弹力将变大 C .水平杆对铁环P 的摩擦力将变大 D .水平杆对铁环P 的弹力将变大

2.如图所示,甲是一个带正电的小物块,乙是一个不带电的绝缘物块,甲、乙叠放在一起置于粗糙的水平地板上,地板上方有水平方向的匀强磁场。现用水平恒力拉乙物块,使甲、乙无相对滑动地一起水平向左加速运动,在加速运动阶段 [ ] A.乙物块与地之间的摩擦力不断增大

B.甲、乙两物块间的摩擦力不断增大

C.甲、乙两物块间的摩擦力大小不变

D.甲、乙两物块间的摩擦力不断减小

3.如图所示,质量分别为m A 、m B 的两个物块用细绳相连,跨过光滑的滑轮,A 在倾角为θ的斜面上,B 悬空,设A 与斜面、斜面与水平面均光滑A 沿斜面加速下滑,求斜面受到高出地面的竖直台阶的水平方向作用力的大小。

B

二、极值法:

【解题思想】

4.如图所示,甲乙两在河两岸通过纤绳拉小船,使船行驶在河流的中心线上。甲沿与河岸成θ角的方向拉纤绳,

(1)若使船受到一个恒定拉力F ,则乙如何用力最小?最小力F 2是多大?此时甲的拉力F 1多大? (2)若甲的拉力为F 1,则乙如何用力最小?最小力F 2是多大?此时船受到的拉力F 多大?

5.如图所示,娱乐场空中列车由许多节完全相同的车厢组成,列车先沿水平轨道行驶,然后滑上半径为R 的空中圆环形光滑轨道.若列车全长为L(L >2πR),R 远于一节车厢的长度和高度,那么列车在运行到圆环前的速度v 0

6. 如图,一半径为R 的光滑绝缘半球面开口向下,固定在水平面上。整个空间存在匀强磁场,磁感应强度方向竖直向下。一电荷量为q (q >0)、质量为m 的小球P 在球面上做水平的匀速圆周运动,圆心为O ′。球心O 到该圆周上任一点的连线与竖直方向的夹角为θ(0<θ<)2π

。为了使小球能够在该

圆周上运动,求磁感应强度大小的最小值及小球P 相应的速率。重力加速度为g 。

三、等效法:

【解题思想】

7. (2013陕西)如图,一半径为R 的圆盘上均匀分布着电荷量为Q 的电荷。在垂直于圆盘过圆心c 点的轴线上存在a,b,d 三个点。a 和b,b 和c,c 和d 的距离均为R,在a 点处有一电荷量为q(q>0)的固定点电荷。已知b 点处的场强为0,则d 点处的场强大小为(k 为静电力常量) ( )

A. 2

3R q

k B. 2

910R q k

C. 2

R q Q k

+ D.

2

99R q Q k

+

8. 如图,真空中有一足够大的薄金属板左侧相距r 处放置一电量为Q 的正点电荷,求点电荷与金属板之间的静电力为多大?(已知静电力常量为k )

9. 如图所示,在水平地面上有一质量为m 的物块,它与地面间的动摩擦因数μ,在与水平方向夹角为θ的拉力F 作用下,沿水平地面匀速运动,求θ为多大时,拉力F 最小?最小值是多少?(角度可用反三角函数表示)

10.如图所示,一个“V”型玻璃管倒置于竖直平面内,并处于E=103

v/m 、方向竖直向下的匀强电场中,一个带负电的小球,重为G=10-3

N ,电量q=2×10-6

C ,从A 点由静止开始运动,球与管壁的摩擦因数μ=0.5.已知管长AB=BC=2m ,倾角α=37°,且管顶B 处有一很短的光滑圆弧.求: (1)小球第一次运动到B 时的速度多大?

(2)小球运动后,第一次速度为0的位置在何处? (3)从开始运动到最后静止,小球通过的总路程是多少? (已知sin37°=0.6,cos37°=0.8;g=10m/s 2

)

四、图像法:

【解题思想】 11.(2013广东)如图7,游乐场中,从高处A 到水面B 处有两条长度相同的光滑轨道。甲、乙两小孩沿不同轨道同时从A 处自由滑向B 处,下列说法正确的有 [ ] A .甲的加速度始终比乙的大 B .甲、乙在同一高度的速度大小相等 C .甲、乙在同一时刻总能到达同一高度 D .甲比乙先到达B 处

12. 如图所示,AB 两平行金属板,A 板接地,B板的电势做如右图的周期性变化,在两板间形成交变电场。一电子(重力不计)分别在下列各不同时刻从A 板的小孔处进入场区,进入电场时的初速度V 0=0,板间距足够大。要使电子最终能达到B 板,电子进入电场的时刻可能是 [ ] A. t =0时,电子进入场区 B. t =T/8时,电子进入场区 C. t =T/4时,电子进入场区 D. t =T/2时,电子进入场区

五、微元法:

【解题思想】 13.如图所示,水平放置的导体电阻为R ,R 与两根光滑的平行金属导轨相连导轨间距为L ,其间有垂直导轨平面的、磁感应强度为B 的匀强磁场,导轨上有一质量为m 的导体棒ab 以初速度V 向右运动。求这个过程的总位移。

A

14.来自质子源的质子(初速度为零),经一加速电压为 800kV的直线加速器加速,形成电流强度为 l mA 的细柱形质子流。已知质子电荷e=1.60×10-19C。这束质子流每秒打到靶上的质子数为多少?假定分布在质子源到靶之间的加速电场是均匀的,在质子束中与质子源相距 l 和 4l 的两处,各取一段极短的相等长度的质子流,其中的质子数分别为 n1和n2,求n1:n2=?

15.(2013陕西压轴题)如图,两条平行导轨所在平面与水平地面的夹角为θ,间距为L,导轨上端接有一平行板电容器,电容为C,导轨处于匀强磁场中,磁感应强度大小为B,方向垂直于导轨平面。在导轨上放置一质量为m的金属棒,棒可沿导轨下滑,且在下滑过程中保持与导轨垂直并良好接触。已知金属棒与导轨之间的动摩擦因数为μ,重力加速度大小为g。忽略所有电阻,让金属棒从导轨上端由静止开始下滑,求:

(1)电容器极板上积累的电荷量与金属棒速度大小的关系;

(2)金属棒的速度大小随时间变化的关系。

专题二:力与运动

一、对力的认识:

1.关于力的概念.力是物质间的相互作用.体现了力的物质性和相互性.力是矢量.

2.力的效果:

(1)力的静力学效应:力能使物体发生形变.

(2)力的动力学效应:

a.瞬时效应:使物体产生加速度F=ma

b.空间积累效应:做功W=Fs,使物体的动能发生变化△E k=W

(c.时间积累效应:产生冲量I=Ft,使物体的动量发生变化Ft=△p)

3.物体受力分析的基本方法:

(1)确定研究对象(是隔离体还是整体).

(2)按照次序画受力图,先画重力,再找弹力,然后是摩擦力,最后是电场力、磁场力等。

(3)结合物体的运动状态:是静止还是运动,是直线运动还是曲线运动.如物体做曲线运动时,在某点所受合外力的方向一定指向轨迹弧线内侧的某个方向.

二、常见的几种力:

三、力和运动的关系:

1. F=0时,加速度a =0.静止或匀速直线运动

F=恒量: F与v在一条直线上——匀变速直线运动

F与v不在一条直线上——曲线运动(如平抛运动)

2.特殊力: F大小恒定,方向与v始终垂直——匀速圆周运动

F=-kx——简谐振动

四、基本理论与应用:

解题主要理论:匀变速直线运动规律、力的合成与分解、牛顿运动定律、平抛运动的规律、圆周运动的规律等.主要应用如各种交通运输工具、天体的运行、带电物体在电、磁场中的运动等。

一、力与运动的关系:

两大类题:一是已知力情况求运动;二是已知运动求力.两类问题中,加速度a都起着桥梁的作用.而对物体进行受力分析、运动状态及运动过程分析是解题的突破口。

1.如图所示,一高度为h=0.2m的水平面在A点处与一倾角为θ=30°的斜面连接,一小球以v0=5m/s 的速度在平面上向右运动。求小球从A点运动到地面所需的时间(平面与斜面均光滑,取g=10m/s2)。

某同学对此题的解法为:小球沿斜面运动,则

,

sin

2

1

sin

2

t

g

t

v

h

?

+

θ由此可求得落地的时间t。

问:你同意上述解法吗?若同意,求出所需的时间;若不同意,则说明理由并求出你认为正确的结果。

解:不同意。

小球应在A点离开平面做平抛运动,而不是沿斜面下滑。正确做法为:落地点与A点的水平距离

斜面底宽

小球离开A点后不会落到斜面,因此落地时间即为平抛运动时间。

2.(2012辽宁)如图所示,一个弹簧台秤的秤盘和弹簧质量都不计.盘内放一个质量m=12kg 并处于静止的物体P .弹簧劲度系数k=300N/m ,现给P 施加一个竖直向上的力F ,使P 从静止开始始终向上做匀加速直线运动.在这过程中,前0.2s 内F 是变力,在0.2s 以后F 是恒力,g 取10m/s 2

,则物体P 做匀加速运动,加速度a 的大小为多少? 力F 的最小值是多少?最大值是多少? 解:设刚开始时弹簧压缩量为x ,则:

m k mg x 4.0300

10

12=?==

在前0.2s 时间内,有运动学公式得:2

2

1at x = 代入数据得:a=20m/s 2

由牛顿第二定律得开始时的力为:F min =ma=12×20=240N , 最终分离后的力为:F max -mg=ma ,

即:F max =m (g+a )=12×(10+20)=360N ; 故答案为:240N ,360N .

二、临界状态的求解:

临界状态的问题经常和最大值、最小值联系在一起,关键:(1)要能分析出临界状态的由来.(2)要能抓住处于临界状态时物体的受力、运动状态的特征.(3)题中经常有“恰好”、“即将”、“瞬间”等字样,暗示突然减少或增加一个力之意。

3.一根劲度系数为k 、质量不计的轻弹簧,上端固定,下端系一质量为m 的物体,有一水平板将物体托住,并使弹簧处于自然长度,如图所示。现让木板由静止开始以加速度a (a <g)匀加速向下移动。求经过多长时间木板将与物体分离。

解:设物体与平板一起向下运动的距离为x 时,物体受重力mg 、弹簧的弹力F=kx 和平板的支持力N 作用

据牛顿第二定律有:mg-kx-N=ma ,得:N=mg-kx-ma

当N=0时,物体与平板分离,所以此时

因为,所以

4.一个质量为m=5×10-5㎏,带有电量q=5×10-4C的小滑块放置在倾角为θ=300光滑的斜面上(物块的电量保持不变),斜面置于B=0.5T的匀强磁场中,磁场方向垂直纸面向里,如图所示,小滑块由静止开始沿斜面下滑,设斜面足够长,小滑块滑至某一位置时,要离开斜面。求:

⑴小滑块带何种电荷?

⑵小滑块离开斜面时的瞬时速度多大?

⑶该斜面长度至少多长?

(答案中m=0.1g)

解:(1)小滑块沿斜面下滑过程中,受重力mg、斜面支持力N和洛伦兹力F,若要小滑块离开斜面,洛伦兹力F方向应垂直斜面向上,根据左手定则可知,小滑块应带负电荷

(2)小滑块沿斜面下滑时,垂直斜面方向的加速度为零,有

qvB+N-mg cosα=0

当N=0时,小滑块开始脱离斜面,此时qvB=mg cosα,得

v==×0.5m/s=2m/s

(3)下滑过程中,只有重力做功,由动能定理得mgx sinα=mv2

斜面的长度至少应是x=m=1.2 m

5.如图所示,abcd为质量M=2kg的导轨,放在光滑绝缘的水平面上。质量m=0.6kg的金属棒PQ平行于bc放在水平导轨上,PQ棒左边靠着绝缘的竖直立柱e、f(e、f光滑,固定不动),导轨处于匀强

O 为界,左侧的磁场方向竖直向上,右侧的磁场方向水平向右,磁感应强度大小都磁场中,磁场以O

为B=0.8 T.导轨的bc段长L=0.5 m,其电阻r=0.4Ω,金属棒的电阻R=0.2Ω,其余电阻均可

不计.金属棒与导轨间的动摩擦因数μ=0.2.若在导轨上作用一个方向向左、大小为F=2N的水平

10m/s,试求:

拉力,设导轨足够长,重力加速度g取2

(1)导轨运动的最大加速度;

(2)导轨的最大速度。

解:(1)导轨向左运动时,导轨受到向左的拉力F,向右的安培力F1和向右的摩擦力f。根据牛顿第二定律:

(3分) F1=BI l(1分) f=μ(mg―BI l)(3分)(2分)

当I=0时,即刚拉动时,a最大.

(2)随着导轨速度增大,感应电流增大,加速度减小. 当a=0时,I最大即(2分)

(1分)

(3)当a=0时,I最大,导轨速度最大.(2分) (1分)

(3分)

三、在生活中的运用:

高考对学生能力的考察,不仅要让学生掌握知识本身,更要让学生知道这些知识能解决哪些实际问题,因而新的高考试题十分强调对知识的实际应用的考查.

6.两个人要将质量M=1000kg的小车沿一小型铁轨推上长L=5m,高h=1m的斜坡顶端,如图所示。已知车在任何情况下所受的摩擦阻力恒为车重的0.12倍,两人能发挥的最大推力各为800N。在不允许使用别的工具的情况下,两人能否从坡底将车刚好推到坡顶?如果能,写出证明的过程。如果不能,该

从距离坡底多远的水平面S处推小车?(g取10m/s2 )

解:车沿斜坡运动时所受阻力为:Fμ=Mgsinα+kMg=1000×10×N+0.12×1000×10 N=3200 N 而两人的推力合力最大为:F=800×2 N=1600 N<Fμ

所以,如果两人直接沿斜坡推物体,不可能将物体推到坡顶。但因物体在水平面上所受阻力为Fμ′

=kMg=0.12×1000×10 N=1200 N,故可先在水平面上推一段距离后再上斜坡。

设在水平面上先推s的距离,则据动能定理有:Fs+Fl-kMg(l+s)-Mgh=0

即(1600-1200)(5+s)-103×10×1=0

解得:s=20 m

7.如图,长为L的细绳一端固定在O点,另一端系一质量为m的小球,开始时绳子与水平方向成300角,现将小球由静止释放,求小球运动到最低点C时的速度。

1

2

mv B2①

物体到达B点时的速度为v B=

2gL

物体到达B点绷紧绳的瞬间,绳的拉力的作用使分速度v2损失掉,物体以分速度v1为初速度开始沿圆弧运动,从B到C机械能守恒,则有

mgL(1-cos60°)+

1

2

mv12=

1

2

mv c2③

v1=v B cos30°④

所以,物体到达最低点C时的速度为

V C=.

答案:

8.蹦床是运动员在一张绷紧的弹性网上蹦跳、翻滚并做各种空中动作的运动项目。一个质量为 60kg 的运动员,从离水平网面 3.2m 高处自由下落,着网后沿竖直方向蹦回到离水平网面 5.0m 高处。已知运动员与网接触的时间为 1.2s。若把在这段时间内网对运动员的作用力当作恒力处理,求此力的大小。(g=10m/s2)

解一:将运动员看作质量为m的质点,从h1高处下落,刚接触网时速度的大小,向下

弹跳后到达的高度为h2,刚离网时速度的大小,向上

速度的改变量,向上

以a表示加速度,△t表示接触时间,则

接触过程中运动员受到向上的弹力F和向下的重力mg。由牛顿第二定律

由以上五式解得

代入数值得N

解二:设运动员从h1处下落,刚触网的速度为

v1=

2gh1

=8m/s(方向向下),

运动员反弹到达高度h2,离网时速度为

v2=

2gh2

=10m/s(方向向上).

在接触网的过程中,运动员受到向上的弹力F和向下的重力mg,设向上方向为正,由动量定理有

(F-mg)t=mv2-(-mv1)

F=1.5×103 N.

答:网对运动员的平均作用力1.5×103 N.

四、曲线运动:

当物体受到的合力的方向与速度的方向不在一条直线上时,物体就要做曲线运动.主要有两种情形:一种是平抛运动,一种是圆周运动.平抛运动的问题重点是掌握力及运动的合成与分解.圆周运动的问题重点是向心力的来源和运动的规律。

9.在光滑水平面上有一质量m=1.0×10-3kg,电量q=1.0×10-10C的带正电小球,静止在O点,以O 点为原点,在该水平面内建立直角坐标系Oxy. 现突然加一沿x轴正方向、场强大小为E=2.0×106V/m的匀强电场,使小球开始运动,经过1.0s,所加电场突然变为沿y轴正方向,场强大小仍为E=2.0×106V/m的匀强电场,再经过1.0s所加电场又突然变为另一个匀强电场.使小球在此电场作用下经1.0s速度变为零.求速度为0时小球的位置.

解:由牛顿第二定律得知,在匀强电场中小球加速度的大小恒为:a=

qE

m

代入数值得:a=

1.0×10-10×

2.0×106

1.0×10-3

m/s2=0.20m/s2

第1s内:场强沿x正方向时,经过1秒钟小球的速度大小为:

V x=at=0.20×1.0=0.20m/s

速度的方向沿x轴正方向,小球沿x轴方向移动的距离

△x1=

1

2

at2=

1

2

×0.20×1.02=0.10m

第2秒内:电场方向沿y轴正方向,故小球在x方向做速度为V x的匀速运动,在y方向做初速为零的匀加速运动,

沿x方向移动的距离:△x2=V x t=0.20m

沿y方向移动的距离:△y=

1

2

at2=

1

2

×0.20×1.02=0.10m

故在第2秒末小球到达的位置坐标:x2=△x1+△x2=0.30m

y2=△y=0.10m

在第2秒末小球在x方向的分速度仍为V x,在y方向的分速度为

V y=at=0.20×1.0=0.20m/s

由上可知,此时运动方向与x轴成45°角.要使小球速度能变为零,则在第3秒内所加匀强电场的方向必须与此方向相反,即指向第三象限,与x轴成225°角.

第3秒内:设在电场作用下小球加速度的x分量和y分量分别为a x,a y,则

a x=

V x

t

=0.20m/s2,

a y=

V y

t

=0.20m/s2

在第3秒未小球到达的位置坐标为

x3=x2+V x t-

1

2

a x t2=0.40m,

y3=y2+V y t-

1

2

a y t2=0.20m

答:此电场的方向为指向第三象限,与x轴成225°角.速度变为零时小球的位置为x3=0.40m,y3=0.20m.

10.如图所示,有一质量为m的小球P与穿过光滑水平板上小孔O的轻绳相连,用手拉着绳子另一端,使小球在水平板上绕O点做半径为r1、角速度为 的匀速圆周运动.求:

(1)此时绳上的拉力有多大?

(2)若将绳子从此状态迅速放松,后又拉直,使小球绕O做半径为r2的匀速圆周运动.从放松到拉直这段过程经历了多长时间?

(3)小球做半径为r2的匀速圆周运动时,绳子上的拉力又是多大?

解:(1)根据线速度和角速度的关系得v1=ω1r1.

(2)如图所示,绳子放松后,小球保持v1的速度沿切线方向做匀速直线运动,从放开到拉紧这一段过程位移为x,

则x=,所以t=.

(3)拉直时,v1分解为切向速度v2和法向速度v3,小球将以速度v2做半径为r2的匀速圆周运动,而法向速度损失,所以有v2=v1cosα,其中v2=ω2r2,cosα=r1/r2.所以有

ω2r2=ω1r1×r1/r2,解出ω2=r12/r22ω1.

.

五、图像的运用:

运动和力的图像,主要有x-t、v-t、F-t等,最主要的是v-t中图线的斜率、横轴和纵轴的截距、面积的含义。

11.用一根细线一端系一小球(可视为质点),另一端固定在一光滑锥顶上,如图(1)所示,设小球在水平面内作匀速圆周运动的角速度为ω,线的张力为T,则T随ω2变化的图象是图(2)中的[ ]

解析:

设小球刚要离开圆锥面时的角速度为,圆锥面与竖直方向的夹角为,则小球离开圆锥面前,

,,解得,

即是的一次函数,当时,AB错;当时,,C 正确。

12.(2013浙江)如图所示,两质量相等的物块A、B通过一轻质弹簧连接,B足够长、放置在桌面上,所有接触面均光滑。弹簧开始时处于原长,运动过程中始终处在弹性限度内。在物块A上施加一水平恒力,A、B从静止开始运动到第一次速度相等的过程中,下列说法正确的是 [ ]

A.当A、B加速度相等时,系统的机械能最大

B.当A、B加速度相等时,A、B的速度差最大

C.当A、B的速度相等时,A的速度达到最大

D.当A、B的速度相等时,弹簧的弹性势能最大

?BCD

解析:对A、B进行受力分析如图甲,

则分析知:拉力F对系统做功最多时,即拉力位移最大,弹簧被拉到最长时,系统机械能最大,A错;

由牛顿第二定律,,开始x较小,a A>a B,A速度增加快,B速度增加慢,二者速度差越来越大,随x增大,a A减小,a b增大,当a A=a B时,二者速度差最大,B正确.画出A、B运动的v-t图如图乙,图中t1时A、B 各自v-t图的斜率相同,表明a A=a B,此后随x增大,a B增大,a A减小,二者速度差又减小,当v A=v B时,弹簧被拉到最长,弹性势能最大(t2时刻),此时A速度最大,C、D均正确.

13.如图所示,一对平行光滑轨道设置在水平面上,两轨道间距L=0.20m,电阻R=1.0Ω;有一导体杆静止地放在轨道上,与两轨道垂直,杆及轨道的电阻皆可忽略不计,整个装置处于磁感应强度B=0.5T

的匀强磁场中,磁场方向垂直轨道向下,现用一外力F沿轨道方向拉杆,使之做匀加速运动,测得力F与时间t的关系如图所示.求杆的质量m和加速度a。

解:外力F作用于导体棒上,使之做匀加速直线运动,导体棒切割磁感线产生的感应电动势必均匀增加,感应电流均匀增加,安培力均匀增加,这样就导致外力F随时间t均匀增加,利用法拉第电磁感应定律、欧姆定律、牛顿第二定律找出外力F随时间变化的函数关系,再从图像上取两点的坐标(0,1)和(30,4)代入,解方程组即可得出答案

导体棒在轨道上做匀加速直线运动,用v表示其速度,t表示时间,则有v=at ①

导体棒切割磁感线,将产生感应电动势E=Blv ②

在导体棒、轨道和电阻组成的闭合回路中产生电流I=③

导体棒受到的安培力为f=IBl ④

根据牛顿第二定律,有F-f=ma ⑤

联立以上各式,得⑥

由图像上取两点的坐标(0,1)和(30,4)代入⑥式,可解得a=10m/s2,m=0.1kg

专题三:功与能量

方法提炼:

①重力做功等于重力势能的变化量;

②弹力做功等于弹性势能的变化量;

③合力做功等于动能的变化量; ④电场力做功等于电势能的变化量;

⑤安培力做功等于产生的电能,电能再通过电路转化为其他形式的能; ⑥电流做多少功就消耗多少电能;

⑦纯电阻电路中,电路消耗的电能等于产生的热;

⑧滑动摩擦力“打滑”做多少功,就产生多少热(Q=fs 相对); ⑨只有重力和系统内的弹力做功,其它力不做功,机械能守恒; ⑩重力以外有其它力做的功等于机械能的变化;

⑾只有重力、电场力做功的系统内,动能、重力势能、电势能间发生相互转化,但总和保持不变。 一、选择题:

1.某带电粒子仅在电场力作用下,由A 点运动到B 点,如图3所示,可以判定( B ) A .粒子在A 点的加速度大于在B 点的加速度 B .粒子在A 点的动能小于在B 点的动能 C .粒子在A 点的电势能小于在B 点的电势能 D .该粒子带负电荷

2.如图所示,实线为一簇电场线,虚线是间距相等的等势面,一带电粒子沿着电场线方向运动,当它位于等势面φ1上时,其动能为20eV ,当它运动到等势面φ3上时,动能恰好等于零,设φ2=0,则,当粒子的动能为8eV 时,其电势能为( B ) A 、12eV

B 、2eV

C 、10eV

D 、0

3.一个初动能为E K 的带电粒子,沿着与电场线垂直的方向射入两平行金属板间的匀强电场中,飞出时该粒子的动能为2E K ,如果粒子射入时的初速度变为原来的2倍,那么当它飞出电场时动能为( B ) A 、4E K

高考物理重点专题突破 (70)

1.正确、灵活地理解应用折射率公式 (1)公式为n=sin i sin r(i为真空中的入射角,r为某介质中的折射角)。 (2)根据光路可逆原理,入射角、折射角是可以随光路的逆向而“换位”的,我们可以这样来理解、记忆:折射率等于真空中光线与法线夹角的正弦跟介质中光线与法线夹角的正弦之比,再简单一点说就是大角的正弦与小角的正弦之比。 2.n的应用及有关数学知识 (1)同一介质对紫光折射率大,对红光折射率小,着重理解两点:第一,光的频率由光源决定,与介质无关;第二,同一介质中,频率越大的光折射率越大。 (2)应用n=c v,能准确而迅速地判断出有关光在介质中的传播速度、波长、入射光线与 折射光线偏折程度等问题。 3.产生全反射的条件 光从光密介质射入光疏介质,且入射角大于或等于临界角。 1.半径为R、介质折射率为n的透明圆柱体,过其轴线OO′的截面如图所示。位于截面所在的平面内的一细束光线,以入射角i0由O点入射,折射光线由上边界的A点射出。当光线在O点的入射角减小至某一值时,折射光线在上边界的B点恰好发生全反射。求A、B两点间的距离。 解析:当光线在O点的入射角为i0时,设折射角为r0,由折射定律得sin i0 sin r0=n① 设A点与左端面的距离为d A,由几何关系得

sin r 0= R d A 2+R 2 ② 若折射光线恰好发生全反射,则在B 点的入射角恰好为临界角C ,设B 点与左端面的距离为d B ,由折射定律得 sin C =1n ③ 由几何关系得 sin C = d B d B 2+R 2 ④ 设A 、B 两点间的距离为d ,可得d =d B -d A ⑤ 联立①②③④⑤式得 d =? ????1 n 2-1-n 2-sin 2i 0sin i 0R 。⑥ 答案:? ????1 n 2-1-n 2-sin 2i 0sin i 0R 1.测玻璃的折射率 常用插针法:运用光在玻璃两个界面处的折射。 如图所示为两面平行的玻璃砖对光路的侧移。用插针法找出与入 射光线AO 对应的出射光线O ′B ,确定出O ′点,画出折射光线OO ′,量出入射角i 和折射角r ,根据n = sin i sin r 计算出玻璃的折射率。 2.测水的折射率 常见的方法有成像法、插针法、观察法、视深法等。 (1)成像法 原理:利用水面的反射成像和水面的折射成像。 方法:如图所示,在一盛满水的烧杯中,紧挨杯口竖直插一直尺,在直尺 的对面观察水面,能同时看到直尺在水中的部分和露出水面部分的像,若从点P 看到直尺在水下最低点的刻度B 的像B ′(折射成像)恰好跟直尺在水面上刻度A 的像A ′(反射成像)重合,读出AC 、BC 的长,量出烧杯内径d ,即可求 出水的折射率 n = (BC 2+d 2)(AC 2+d 2) 。

高考物理图像专题解法合集

2 例5图 高考物理图像专题解法合集 课时综述 1.“图”在物理学中有着十分重要的地位,它是将抽象的物理问题直观化、形象化的最佳工具。作为一种解决问题的方法,图解法具有简易、方便的特点,学习中应通过针对性训练、强化对图像的物理意义的理解,以达到熟练应用图像处理物理问题,熟能生巧的目的。 2.中学物理常用的“图”有示意图、过程图、函数图、矢量图、电路图和光路图等。若题干和选项中已给出函数图,需从图像横、纵坐标所代表的物理意义,图线中的“点”、“线”、“斜率”、“截距”、“面积”等诸多方面寻找解题的突破口。即使题干和选项中没有出现函数图,有时用图象法解题不但快速、准确,而且还可以避免繁杂的中间运算过程,甚至可以解决用计算分析无法解决的问题。 互动探究 例1.如图所示,质量为m 的子弹以速度v 0水平击穿放在光滑水平地面上的木块,木块长为L ,质量为M ,木块对子弹的阻力恒定不变,子弹穿过木块后木块获得动能为E k ,若木块或子弹的质量发生变化,但子弹仍能穿过,则 A .M 不变,m 变小,则木块获得的动能一定变大 B .M 不变,m 变小,则木块获得的动能一定变小 C .m 不变,M 变小,则木块获得的动能一定变大 D .m 不变,M 变小,则木块获得的动能一定变小 例2.如图所示,硬质裸导线做成的闭合矩形线框abcd 固定在匀强磁场中,ab

高考物理课外辅导讲义1含解析

四川省广安市武胜县2018届高考物理课外辅导讲义(1) 一、选择题 1.(2017·湖南省长沙市长郡中学高三上学期月考)如图所示,中间有孔的物块A 套在光滑的竖直杆上,通过滑轮用不可伸长的轻绳将物体拉着匀速向上运动,则关于拉力F 以及拉力作用点的移动速度v 的下列说法正确的是( ) A .F 不变,v 不变 B .F 增大,v 减小 C .F 增大,v 增大 D .F 增大,v 不变 解析:选B.设绳子与竖直方向上的夹角为θ,因为A 做匀速直线运动,在竖直方向上合力为零,有:Fcos θ=mg ,因为θ增大,则F 增大,物体A 沿绳子方向上的分速度v 1=vcos θ,因为θ增大,则v 减小,故B 正确,ACD 错误. 2.(2017·重庆市永川中学高三第一次模拟诊断)如图所示,下列有关运动的说法正确的是 ( ) A .图甲中撤掉挡板A 的瞬间,小球的加速度竖直向下 B .图乙中固定在竖直面内的圆环内径r =1.6 m ,小球沿环的内表面通过最高点的速度可以为2 m/s C .图丙中皮带轮上b 点的向心加速度大小等于a 点的向心加速度大小(a 点的半径为r ,b 点的半径4r ,c 点的半径为2r) D .图丁中用铁锤水平打击弹簧片后,B 球比A 球先着地 解析:选C.开始小球受重力、弹簧的弹力和支持力处于平衡,重力和弹簧的合力方向与支持力方向相反,撤掉挡板的A 的瞬间,支持力为零,弹簧弹力不变,则弹力和重力的合力方向与之前支持力的方向相反,则加速度的方向为垂直挡板向下.故A 错误.小球在圆环的最高点的临 界情况是:mg =m v 2r ,解得v =gr =4 m/s ,知最高点的最小速度为4 m/s.故B 错误.a 、c 两点的线速度大小相等,根据a =v 2r ,则a 、c 两点的向心加速度之比为2∶1,b 、c 两点的角速度相等,根据a =rω2,则b 、c 两点的加速度之比为2∶1,可知a 、b 两点的加速度相等.故C 正确.图丁中用铁锤水平打击弹簧片后,A 做平抛运动,B 做自由落体运动,两球同时落地.故D 错误.故选C. 3.如图,在x 轴上方存在垂直纸面向里的磁感应强度为B 的匀强磁场,x 轴下方存在垂直纸面 向外的磁感应强度为B 2 的匀强磁场.一带负电的粒子从原点O 以与x 轴成60°角的方向斜向上射入磁场,且在上方运动半径为R(不计重力),则( ) A .粒子经偏转一定能回到原点O B .粒子在x 轴上方和下方两磁场中运动的半径之比为2∶1

2019年高考物理专题复习:力学题专题

力学题的深入研究 最近辅导学生的过程中,发现几道力学题虽然不是特别难,但容易错,并且辅导书对这几道题或语焉不详,或似是而非,或浅尝辄止,本文对其深入研究,以飨读者。 【题1】(1)某同学利用图甲所示的实验装置,探究物块在水平桌面上的运动规律。物块在重物的牵引下开始运动,重物落地后,物块再运动一段距离停在桌面上(尚未到达滑轮处)。从纸带上便于测量的点开始,每5个点取1个计数点,相邻计数点间的距离如图1所示。打点计时器电源的频率为50Hz 。 ○ 1通过分析纸带数据,可判断物块在相邻计数点 和 之间某时刻开始减速。 ○ 2计数点5对应的速度大小为 m/s ,计数点6对应的速度大小为 m/s 。(保留三位有效数字)。 ○3物块减速运动过程中加速度的大小为a = m/s 2,若用a g 来计算物块与桌面间的动摩擦因数(g 为重力加速度),则计算结果比动摩擦因数的真实值 (填“偏大”或“偏小”)。 【原解析】一般的辅导书是这样解的: ①和②一起研究:根据T s s v n n n 21++=,其中s T 1.050 15=?=,得

1.0210)01.1100.9(25??+=-v =s m /00.1,1 .0210)28.1201.11(2 6??+=-v =s m /16.1, 1 .0210)06.1028.12(2 7??+=-v =s m /14.1,因为56v v >,67v v <,所以可判断物块在两相邻计数点6和7之间某时刻开始减速。 这样解是有错误的。其中5v 是正确的,6v 、7v 是错误的。因为公式T s s v n n n 21++=是匀变速运动的公式,而在6、7之间不是匀变速运动了。 第一问应该这样解析: ①物块在两相邻计数点6和7之间某时刻开始减速。 根据1到6之间的cm 00.2s =?,如果继续做匀加速运动的话,则6、7之间的距离应该为01.1300.201.11s 5667=+=?+=s s ,但图中cm s 28.1267=,所以是在6和7之间开始减速。 第二问应该这样解析: ②根据1到6之间的cm 00.2s =?,加速度s m s m T s a /00.2/1 .01000.222 2=?=?=- 所以s m aT v v /20.11.000.200.156=?+=+=。 因为s m T s s v /964.01 .0210)61.866.10(22 988=??+=+=- aT v v -=87=s m /16.11.0)2(964.0=?--。 ③ 首先求相邻两个相等时间间隔的位移差,从第7点开始依次为,cm s 99.161.860.101=-=?,cm s 01.260.661.82=-=?, cm s 00.260.460.63=-=?,求平均值cm s s s s 00.2)(3 1321=?+?+?=?,所以加速度222 2/.1 .01000.2s m T s a -?=?==2/00.2s m 根据ma =mg μ,得g a μ=这是加速度的理论值,实际上'ma f mg =+μ(此式中f 为纸带与打点计时器的摩擦力),得m f g a + =μ',这是加速度的理论值。因为a a >'所以g a =μ的测量值偏大。

(推荐)上海高考物理专题电路

上海高考物理专题电路 【高考考点梳理】 一.多用电表 将电压表、电流表、欧姆表组合在一起就成了多用电表。目前常用的多用电表主要有指针式和数字式多用电表。 2 .多用电表的原理 多用电表是一种多用仪表,一般可用来测量直流和交流电流、直流和交流电压以及电阻等,并且每种测量都有几个量程。 (l)测量直流电流、直流电压的原理和直流电流表、直流电压表的原理相同。 (2)测量电阻:内部电路原理如上右图所示,其原理是根据闭合回路的欧姆定律测量,即I=E/(R+r+R g+R x). 式中R、r、R,均为定值电阻,不同的R x对应不同的电流I(当然电流I和被测电阻R x不是正比的关系,所以电阻值的刻度是不均匀的)。如果在刻度盘直接标出与电流I对应的电阻R x值,可以从刻度盘上直接读出被测量电阻的阻值。 (3) “调零”原理:当两表笔接触时,R x=0,此时电流调到满偏值I g=E/(R+r+R g)(最大值),对应电阻值为零. (4)中值电阻:(R+r+R g)是多用电表欧姆挡的内阻,当被测电阻R=R+r+R g时,通过表头的电流I=I g/2,即通过表头的电流为满偏电流的一半,此时指针指在刻度盘的中央,所以一般叫欧姆挡的内阻称为中值电阻. 3 .多用电表的使用方法 ( 1 )测量电流时,跟电流表一样,应把多用电表串联在被测电路中,对于直流电,必须使电流从红表笔流进多用电表从黑表笔流出来。 ( 2 )测量电压时,跟电压表一样,应把多用电表并联在被测电路两端,对于直流电,必须用红表笔接电势较高的点,用黑表笔接电势较低的点。 ( 3 )测量电阻时,在选择好挡位后,要先把两表笔相接触,调整欧姆挡的调零旋钮,使指针指在电阻刻度的零位置,然后再把两表笔分别与待测电阻的两端相连。应当注意:换用欧姆挡的另一个量程时,需要重新调整欧姆挡的调零旋钮,才能进行测量。 4 .实验:练习使用多用电表 ( 1 )观察多用电表的外形,认识选择开关的测量项目及量程。 ( 2 )检查多用电表的指针是否停在表盘刻度左端的零位置。若不指零,则可用小螺丝刀调整机械调零旋钮使指针指零。 ( 3 )将红、黑表笔分别插入“十”、“一”插孔。 测电压 ( 4 )将选择开关置于直流电压2.5V挡,测1.5V干电池的电压。

2020届高考物理二轮复习 专题 波的性质与波的图像试题

2020届高考二轮复习专题:波的性质与波的图像 【例1】一简谐横波的波源的振动周期为1s,振幅为1crn,波速为1m/s,若振源质点从平衡位置开始振动,且从振源质点开始振动计时,当 t=0.5s时()A.距振源?λ处的质点的位移处于最大值 B.距振源?λ处的质点的速度处于最大值 C.距振源?λ处的质点的位移处于最大值 D.距振源?λ处的质点的速度处于最大值 解析:根据题意,在0.5s 内波传播的距离Δx=vt=0.5m.即Δx=?λ.也就是说,振动刚好传播到?λ处,因此该处的质点刚要开始振动,速度和位移都是零,所以选项C、D都是不对的,振源的振动传播到距振源?λ位置需要的时间为T/4=0。25s,所以在振源开始振动0.5 s后.?λ处的质点,振动了0.25 s,即1/4个周期,此时该质点应处于最大位移处,速度为零.答案:A 【例2】地震震动以波的形式传播,地震波有纵波和横波之分。 (1)图中是某一地震波的传播图,其振幅为A,波长为λ,某 一时刻某质点的坐标为(λ,0)经1/4周期该质点的坐标是多 少?该波是纵波还是横波。 A.纵波(5λ/4.0) B.横波(λ,-A) C.纵波(λ,A) D.横波(5λ/4.A) (2)若 a、b两处与c地分别相距300 km和200 km。当 C处地下15 km处发生地震,则 A.C处居民会感到先上下颠簸,后水平摇动 B.地震波是横波 C.地震波传到a地时,方向均垂直地面 D.a、b两处烈度可能不同 解析:(1)由题图知,该地震波为横波,即传播方向与振动方向垂直。 某质点的坐标(λ,0)即为图中a点,经1/4周期,a点回到平衡位置下面的最大位移处,即位移大小等于振幅,坐标为(λ,-A),(水平方向质点并不随波逐流)。故答案为B

原子核-高考物理总复习-高考物理总复习讲义

第64讲 原子核 弱项清单,核反应方程的书写没有真正了解衰变的本质特征,核反应方程式书写错误,质 量亏损的方程ΔE =Δmc 2 写错,对核反应中吸能和放能不理解. 知识整合 一、天然放射现象 1.天然放射现象:某些元素________放射某些射线的现象称为天然放射现象,这些元素称为________.

2.三种射线的实质与对比 3.原子核的组成 (1)原子核:由________和________组成,质子和中子统称为________. (2)核电荷数(Z):等于核内____________,也等于核外____________,还等于元素周期表中的____________. (3)核质量数(A):等于核内的________,即________与________之和. (4)原子核通常用A Z X 表示.具有相同质子数和不同中子数的原子核,在元素周期表中处于同一位置,因而互称________.有放射性的称放射性________. 二、原子核的衰变 1.定义:原子核自发地放出某种粒子而转变为________的变化叫原子核的________. 2.分类 (1)α衰变:A Z X →A -4Z -2Y +4 2He ,同时放出γ射线; (2)β衰变:A Z X → A Z +1Y +0 -1e ,同时放出γ射线. 3.半衰期 (1)定义:放射性元素的原子核________发生衰变需要的时间. (2)半衰期的大小由放射性元素的________决定,跟原子所处的外部条件(如压强、温度等)和化学状态(如单质或化合物)无关.

三、放射性同位素及应用 1.放射性同位素放出的射线应用于工业、探伤、农业、医疗等. 2.做示踪原子. 四、核反应 用高能粒子轰击靶核,产生另一种新核的反应过程. 典型核反应: 1.卢瑟福发现质子的核反应方程为:14 7N+42He→17 8O+11H. 2.查德威克发现中子的核反应方程为:94Be+42He→12 6C+10n. 3.约里奥居里夫妇发现放射性同位素和正电子的核反应方程为:2713Al+42He→3015P+10n,3015P →3014Si+01e. 常见的核反应有:________、________、________和________. 五、核力与结合能 1.核力和结合能 由于原子核中的核子间存在强大的核力,使得原子核成为一个坚固的集合体,要把原子核中的核子拆散,就得克服核力而做巨大的功,反之,要把核子集合成一个原子核,就要放出巨大的能量. 原子核是核子结合在一起的,要把它们分开,也需要能量,这就是原子核的结合能.原子核越大,结合能越________,因此有意义的是它的结合能与核子数之比,称________,也叫平均结合能.平均结合能越________,表示原子核子核中核子结合的越牢固,原子核越稳定. 2.质能方程 (1)质能方程:________,m是物体的质量,c是真空中的光速. 上述表明:物体的质量和能量间有一定联系,即物体具有的能量与其质量成正比,当物体的能量增加或减小ΔE,它的质量也会相应地增加或减少Δm,ΔE与Δm的关系是________. (2)质量亏损 核子结合成原子核时要释放能量,按上述关系,原子核的质量要________组成原子核的核子总质量,这个质量差异叫质量亏损. 3.获得核能的途径 (1)重核裂变:重核俘获一个中子后分裂成为两个(或多个)中等质量核的反应过程.重核裂变的同时放出几个________,并释放出大量核能.重核裂变时发生链式反应的最小体积叫临界体积. (2)轻核聚变:某些轻核结合成质量较大的核的反应过程,同时释放出大量的核能,要想使氘和氚核合成氦核,必须达到几百万摄氏度以上的高温,因此聚变反应又叫________. 方法技巧考点1 原子核和原子核的衰变 1.衰变规律及实质 (1)两种衰变的比较

高考物理专题物理学史知识点难题汇编含答案

高考物理专题物理学史知识点难题汇编含答案 一、选择题 1.万有引力的发现实现了物理学史上第一次大统一:“地上物理学”和“天上物理学”的统一.它表明天体运动和地面上物体的运动遵从相同的规律.牛顿发现万有引力定律的过程中将行星的椭圆轨道简化为圆轨道,还应用到了其他的规律和结论.下面的规律和结论没有被用到的是( ) A.开普勒的研究成果 B.卡文迪许通过扭秤实验得出的引力常量 C.牛顿第二定律 D.牛顿第三定律 2.在物理学的发展过程中,许多物理学家都做出了重要的贡献,他们也创造出了许多物理学研究方法。下列关于物理学史与物理学研究方法的叙述中正确的是() A.物理学中所有物理量都是采用比值法定义的 B.元电荷、点电荷都是理想化模型 C.奥斯特首先发现了电磁感应现象 D.法拉第最早提出了“电场”的概念 3.电闪雷鸣是自然界常见的现象,古人认为那是“天神之火”,是天神对罪恶的惩罚,下面哪位科学家()冒着生命危险在美国费城进行了著名的风筝实验,把天电引了下来,才使人类摆脱了对雷电现象的迷信。 A.库仑 B.安培 C.富兰克林 D.伏打 4.在物理学发展过程中,许多科学家做出了贡献,下列说法正确的是() A.自然界的电荷只有两种,美国科学家密立根将其命名为正电荷和负电荷,美国物理学家富兰克林通过油滴实验比较精确地测定了电荷量e的数值 B.卡文迪许用扭秤实验测定了引力常量G和静电力常量k的数值 C.奥斯特发现了电流间的相互作用规律,同时找到了带电粒子在磁场中的受力规律D.开普勒提出了三大行星运动定律后,牛顿发现了万有引力定律 5.发明白炽灯的科学家是() A.伏打 B.法拉第 C.爱迪生 D.西门子 6.在物理学发展的历程中,许多物理学家的科学研究推动了人类文明的进程。以下对几位物理学家所作科学贡献的叙述中,正确的是 A.牛顿运用理想实验法得出“力不是维持物体运动的原因” B.安培总结出了真空中两个静止点电荷之间的作用规律 C.爱因斯坦创立相对论,提出了一种崭新的时空观 D.第谷通过大量的观测数据,归纳得到了行星的运行规律 7.自然界的电、热和磁等现象都是相互联系的,很多物理学家为寻找它们之间的联系做出了贡献。下列说法不.正确的是() A.奥斯特发现了电流的磁效应,揭示了电现象和磁现象之间的联系 B.欧姆发现了欧姆定律,说明了热现象和电现象之间存在联系

备战2021新高考物理重点专题:受力分析与平衡练习(二)

备战2021新高考物理-重点专题-受力分析与平衡练习(二) 一、单选题 1.一条形磁体静止在斜面上,固定在磁体中心的竖直上方的水平导线中通有垂直纸面向里的恒定电流,如图所示.若将磁体的N极位置与S极位置对调后,仍放在斜面上原来的位置,则磁体对斜面的压力F N和摩擦力F f的变化情况分别是() A.F N增大,F f减小 B.F N减小,F f增大 C.F N与F f都增大 D.F N与F f都减小 2.如图所示,有8个完全相同的长方体木板叠放在一起,每个木板的质量为100 g,某人用手在这叠木板的两侧加一水平压力F,使木板水平静止.若手与木板之间的动摩擦因数为0.5,木板与木板之间的动摩擦因数为0.2,最大静摩擦力等于滑动摩擦力,g取10 m/s2.则水平压力F至少为() A.8 N B.16N C.15 N D.30 N 3.如图所示,在竖直平面内一根不可伸长的柔软轻绳通过光滑的轻质滑轮悬挂一重物。轻绳一端固定在墙壁上的A点,另一端从墙壁上的B点先沿着墙壁缓慢移到C点,后由C点缓慢移到D点,不计一切摩擦,且墙壁BC段竖直,CD段水平,在此过程中关于轻绳的拉力F 的变化情况,下列说法正确的是() A.F一直减小 B.F一直增小 C.F先增大后减小 D.F先不变后增大 4.如图所示,倾角为的粗糙斜劈放在粗糙水平面上,物体a放在斜劈上,轻质细线一端固定在物体a上,另一端绕过光滑的滑轮固定在c点,滑轮2下悬挂物体b,系统处于静止状态若将固定点c向左移动少许,而a与斜劈始终静止,则()

A.斜劈对物体a的摩擦力减小 B.斜劈对地面的压力减小 C.细线对物体a的拉力增大 D.地面对斜劈的摩擦力减小 5.如图所示,体操运动员在保持该姿势的过程中,以下说法中错误的是() A.环对人的作用力保持不变 B.当运动员双臂的夹角变小时,运动员会相对轻松一些 C.环对运动员的作用力与运动员受到的重力是一对平衡力 D.运动员所受重力的反作用力是环对运动员的支持力 6.如图所示,用一水平力将木块压在粗糙的竖直墙面上,现增加外力,则关于木块所受的静摩擦力和最大静摩擦力,说法正确的是() A.都变大 B.都不变 C.静摩擦力不变,最大静摩擦力变大 D.静摩擦力增大,最大静摩擦力不变 7.如图所示,A、B两物体靠在一起静止放在粗糙水平面上,质量分别为kg, kg,A、B与水平面间的滑动摩擦因数均为0.6,g取10m/s2,若用水平力F A=8N推A物体。则下列有关说法不正确的是() A.A对B的水平推力为8N B.B物体受4个力作用 C.A物体受到水平面向左的摩擦力,大小为6N D.若F A变为40N,则A对B的推力为32N 8.如图所示,一只可视为质点的蚂蚁在半球形碗内缓慢从底部经过a点爬到最高点b点,之后开始沿碗下滑并再次经过a点滑到底部,蚂蚁与碗内各处的动摩擦因数均相同且小于1,若最大静摩擦力等于滑动摩擦力,下列说法正确的是()

高中物理全套培优讲义

U x 第1讲 运动的描述 质点、参考系 (考纲要求 Ⅰ) 1.质点 (1)定义:忽略物体的大小和形状,把物体简化为一个有质量的物质点,叫质点. (2)把物体看做质点的条件:物体的大小和形状对研究问题的影响可以忽略. 2.参考系 (1)定义:要描述一个物体的运动,首先要选定某个其它的物体做参考,这个被选作参考的物体叫参考系. (2)选取:可任意选取,但对同一物体的运动,所选的参考系不同,运动的描述可能会不同,通常以地面为参考系. 判断正误,正确的划“√”,错误的划“×”. (1)质点是一种理想化模型,实际并不存在. ( ) (2)只要是体积很小的物体,就能被看作质点. ( ) (3)参考系必须要选择静止不动的物体. ( ) (4)比较两物体的运动情况时,必须选取同一参考系. ( ) 答案 (1)√ (2)× (3)× (4)√ 位移、速度 (考纲要求 Ⅱ) 1.位移和路程 (1)位移:描述物体位置的变化,用从初位置指向末位置的有向线段表示,是矢量. (2)路程:是物体运动轨迹的长度,是标量. 2.速度 (1)平均速度:在变速运动中,物体在某段时间内的位移与发生这段位移所用时间的比值,即v =x t ,是矢量. (2)瞬时速度:运动物体在某一时刻(或某一位置)的速度,是矢量. 3.速率和平均速率 (1)速率:瞬时速度的大小,是标量. (2)平均速率:路程与时间的比值,不一定等于平均速度的大小. 判断正误,正确的划“√”,错误的划“×”. (1)一个物体做单向直线运动,其位移的大小一定等于路程.( ) (2)一个物体在直线运动过程中路程不会大于位移的大小. ( ) (3)平均速度的方向与位移的方向相同. ( ) (4)瞬时速度的方向就是该时刻(或该位置)物体运动的方向.( ) 答案 (1)√ (2)× (3)√ (4)√

高考物理试题专题汇编3

普通高校招生考试试题汇编-选修3-5 18 (全国卷1).已知氢原子的基态能量为E ,激发态能量2 1/n E E n =,其中n=2,3…。用 h 表示普朗克常量,c 表示真空中的光速。能使氢原子从第一激发态电离的光子的最大波长为 A. 143hc E - B.12hc E - C.14hc E - D. 1 9hc E - 解析:原子从n=2跃迁到+∞所以 1 24 E hc E E λ +∞=-=- 故:14hc E λ=-选C 19(海南).模块3-5试题(12分) (1)(4分)3月11日,日本发生九级大地震,造成福岛核电站的核泄漏事故。在泄露的污染物中含有131I 和137Cs 两种放射性核素,它们通过一系列衰变产生对人体有危害的辐射。在下列四个式子中,有两个能分别反映 131I 和137Cs 衰变过程,它们分别是_______和 __________(填入正确选项前的字母)。131I 和137Cs 原子核中的中子数分别是________和 _______. A.X 1→ 137 156 0Ba n + B.X 2→1310541Xe e -+ C.X 3→137 56Ba + 1 e - D.X 4→13154Xe +1 1p 解析:由质量数和核电荷数守恒可以得出正确选项 B C 78 82 (2)(8分)一质量为2m 的物体P 静止于光滑水平地面上,其截面如图所示。图中ab 为粗糙的水平面,长度为L ;bc 为一光滑斜面,斜面和水平面通过与ab 和bc 均相切的长度可忽略的光滑圆弧连接。现有一质量为m 的木块以大小为v 0的水平初速度从a 点向左运动,在斜面上上升的最大高度为h ,返回后在到达a 点前与物体P 相对静止。重力加速度为g 。求 (i )木块在ab 段受到的摩擦力f ; (ii )木块最后距a 点的距离s 。 解析:(i )设木块和物体P 共同速度为v,两物体从开始到第一次到达共同速度过程由动量和能量守恒得:0(2)mv m m v =+ ① 22011 (2)22 mv m m v mgh fL =+++② 由①②得:20(3) 3m v gh f L -=③ (ii )木块返回与物体P 第二次达到共同速度与第一次相同(动量守恒)全过程能量守恒

高考物理专题物理学史知识点全集汇编

高考物理专题物理学史知识点全集汇编 一、选择题 1.在物理学发展过程中,许多科学家做出了贡献,下列说法正确的是() A.伽利略利用“理想斜面”得出“力是维持物体运动的原因”的观点 B.牛顿提出了行星运动的三大定律 C.英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了万有引力常量 D.开普勒从理论和实验两个角度,证明了轻、重物体下落一样快,从而推翻了古希腊学者亚里士多德的“小球质量越大下落越快”的错误观点 2.伽利略是实验物理学的奠基人,下列关于伽利略在实验方法及实验成果的说法中不正确的是 A.开创了运用逻辑推理和实验相结合进行科学研究的方法 B.通过实验发现斜面倾角一定时,不同质量的小球从不同高度开始滚动,加速度相同C.通过实验和理想实验,提出了惯性的概念,从而奠定了牛顿力学的基础 D.为了说明力是维持物体运动的原因用了理想实验法 3.下列选项不符合历史事实的是() A.富兰克林命名了正、负电荷 B.库仑在前人工作的基础上通过库仑扭秤实验确定库仑定律 C.麦克斯韦提出电荷周围存在一种特殊的物质--电场 D.法拉第为了简洁形象描述电场,提出电场线这一辅助手段 4.2014年,我国在实验中发现量子反常霍尔效应,取得世界级成果。实验在物理学的研究中有着非常重要的作用,下列关于实验的说法中正确的是() A.在探究求合力的方法的实验中运用了控制变量法 B.密立根利用油滴实验发现电荷量都是某个最小值的整数倍 C.牛顿运用理想斜面实验归纳得出了牛顿第一定律 D.库仑做库仑扭秤实验时采用了归纳的方法 5.发明白炽灯的科学家是() A.伏打 B.法拉第 C.爱迪生 D.西门子 6.了解物理规律的发现过程,学会像科学家那样观察和思考,往往比掌握知识本身更重要。以下符合史实的是( ) A.焦耳发现了电流的磁效应 B.法拉第发现了电磁感应现象,并总结出了电磁感应定律 C.惠更斯总结出了折射定律 D.英国物理学家托马斯杨利用双缝干涉实验首先发现了光的干涉现象 7.下列描述中符合物理学史的是() A.开普勒发现了行星运动三定律,从而提出了日心说 B.牛顿发现了万有引力定律并测定出引力常量G C.法拉第在实验中观察到,在通有恒定电流的静止导线附近的固定导线圈中,会出现感应电流 D.楞次在分析了许多实验事实后提出,感应电流应具有这样的方向,即感应电流的磁场

高考物理经典专题:时间与空间

高考物理经典专题:时间与空间 力与运动 思想方法提炼 一、对力的几点认识 1.关于力的概念.力是物体对物体的相互作用.这一定义体现了力的物质性和相互性.力是矢量. 2.力的效果 (1)力的静力学效应:力能使物体发生形变. (2)力的动力学效应: a.瞬时效应:使物体产生加速度F=ma b.时间积累效应:产生冲量I=Ft,使物体的动量发生变化Ft=△p c.空间积累效应:做功W=Fs,使物体的动能发生变化△E k=W 3.物体受力分析的基本方法 (1)确定研究对象(隔离体、整体). (2)按照次序画受力图,先主动力、后被动力,先场力、后接触力. (3)只分析性质力,不分析效果力,合力与分力不能同时分析. (4)结合物体的运动状态:是静止还是运动,是直线运动还是曲线运动.如物体做曲线运动时,在某点所受合外力的方向一定指向轨迹弧线内侧的某个方向. 二、中学物理中常见的几种力 三、力和运动的关系 1.F=0时,加速度a =0.静止或匀速直线运动 F=恒量:F与v在一条直线上——匀变速直线运动 F与v不在一条直线上——曲线运动(如平抛运动) 2.特殊力:F大小恒定,方向与v始终垂直——匀速圆周运动 F=-kx——简谐振动 四、基本理论与应用 解题常用的理论主要有:力的合成与分解、牛顿运动定律、匀变速直线运动规律、平抛运动的规律、圆周运动的规律等.力与运动的关系研究的是宏观低速下物体的运动,如各种交通运输工具、天体的运行、带电物体在电磁场中的运动等都属于其研究范畴,是中学物理的重要内容,是高考的重点和热点,在高考试题中所占的比重非常大.选择题、填空题、计算题等各种类型的试题都有,且常与电场、磁场、动量守恒、功能部分等知识相结合.

高考物理专题汇编物理带电粒子在电场中的运动(一)

高考物理专题汇编物理带电粒子在电场中的运动(一) 一、高考物理精讲专题带电粒子在电场中的运动 1.在如图甲所示的直角坐标系中,两平行极板MN 垂直于y 轴,N 板在x 轴上且其左端与坐标原点O 重合,极板长度l =0.08m ,板间距离d =0.09m ,两板间加上如图乙所示的周期性变化电压,两板间电场可看作匀强电场.在y 轴上(0,d /2)处有一粒子源,垂直于y 轴连续不断向x 轴正方向发射相同的带正电的粒子,粒子比荷为 q m =5×107C /kg ,速度为v 0=8×105m/s .t =0时刻射入板间的粒子恰好经N 板右边缘打在x 轴上.不计粒子重力及粒子间的相互作用,求: (1)电压U 0的大小; (2)若沿x 轴水平放置一荧光屏,要使粒子全部打在荧光屏上,求荧光屏的最小长度; (3)若在第四象限加一个与x 轴相切的圆形匀强磁场,半径为r =0.03m ,切点A 的坐标为(0.12m ,0),磁场的磁感应强度大小B =23 T ,方向垂直于坐标平面向里.求粒子出磁场后与x 轴交点坐标的范围. 【答案】(1)4 0 2.1610V U =? (2)0.04m x ?= (3)0.1425m x ≥ 【解析】 【分析】 【详解】 (1)对于t =0时刻射入极板间的粒子: 0l v T = 7110T s -=? 211()22T y a = 2y T v a = 22 y T y v = 122 d y y =+ Eq ma =

U E d = 解得:4 0 2.1610V U =? (2)2T t nT =+ 时刻射出的粒子打在x 轴上水平位移最大:032 A T x v = 所放荧光屏的最小长度A x x l ?=-即:0.04x m ?= (3)不同时刻射出极板的粒子沿垂直于极板方向的速度均为v y . 速度偏转角的正切值均为:0 tan y v v β= 37β=o cos37v v = o 6110m/s v =? 即:所有的粒子射出极板时速度的大小和方向均相同. 2 v qvB m R = 0.03m R r == 由分析得,如图所示,所有粒子在磁场中运动后发生磁聚焦由磁场中的一点B 离开磁场. 由几何关系,恰好经N 板右边缘的粒子经x 轴后沿磁场圆半径方向射入磁场,一定沿磁场圆半径方向射出磁场;从x 轴射出点的横坐标:tan 53C A R x x ? =+ 0.1425m C x =. 由几何关系,过A 点的粒子经x 轴后进入磁场由B 点沿x 轴正向运动. 综上所述,粒子经过磁场后第二次打在x 轴上的范围为:0.1425m x ≥ 2.如图所示,在空间坐标系x <0区域中有竖直向上的匀强电场E 1,在一、四象限的正方形区域CDEF 内有方向如图所示的正交的匀强电场E 2和匀强磁场B ,已知CD =2L ,OC =L ,E 2

高考物理专题复习讲义

动量 知识网络: 单元切块: 按照考纲的要求,本章内容可以分成两部分,即:动量、冲量、动量定理;动量守恒定律。其中重点是动量定理和动量守恒定律的应用。难点是对基本概念的理解和对动量守恒定律的应用。 动量冲量动量定理 教学目标: 1.理解和掌握动量及冲量概念; 2.理解和掌握动量定理的内容以及动量定理的实际应用; 3.掌握矢量方向的表示方法,会用代数方法研究一维的矢量问题。 教学重点:动量、冲量的概念,动量定理的应用 教学难点:动量、冲量的矢量性 教学方法:讲练结合,计算机辅助教学 教学过程: 一、动量和冲量 1.动量 按定义,物体的质量和速度的乘积叫做动量:p=mv (1)动量是描述物体运动状态的一个状态量,它与时刻相对应。

(2)动量是矢量,它的方向和速度的方向相同。 (3)动量的相对性:由于物体的速度与参考系的选取有关,所以物体的动量也与参考系选取有关,因而动量具有相对性。题中没有特别说明的,一般取地面或相对地面静止的物体为参考系。 2.动量的变化: = ? p-' p p 由于动量为矢量,则求解动量的变化时,其运算遵循平行四边形定则。 (1)若初末动量在同一直线上,则在选定正方向的前提下,可化矢量运算为代数运算。 (2)若初末动量不在同一直线上,则运算遵循平行四边形定则。 【例1】一个质量为m=40g的乒乓球自高处落下,以速度v=1m/s碰地,竖直向上弹回,碰撞时间极短,离地的速率为v'=0.5m/s。求在碰撞过程中,乒乓球动量变化为多少? 2.冲量 按定义,力和力的作用时间的乘积叫做冲量:I=Ft (1)冲量是描述力的时间积累效应的物理量,是过程量,它与时间相对应。 (2)冲量是矢量,它的方向由力的方向决定(不能说和力的方向相同)。如果力的方向在作用时间内保持不变,那么冲量的方向就和力的方向相同。如果力的方向在不断变化,如绳子拉物体做圆周运动,则绳的拉力在时间t内的冲量,就不能说是力的方向就是冲量的方向。对于方向不断变化的力的冲量,其方向可以通过动量变化的方向间接得出。 (3)高中阶段只要求会用I=Ft计算恒力的冲量。对于变力的冲量,高中阶段只能利用动量定理通过物体的动量变化来求。 (4)要注意的是:冲量和功不同。恒力在一段时间内可能不作功,但一定有冲量。 【例2】质量为m的小球由高为H的光滑固定斜面顶端无初速滑到底端过程中,重力、弹力、合力的冲量各是多大? m 点评:特别要注意,该过程中弹力虽然不做功,但对物体有冲量。 二、动量定理 1.动量定理 物体所受合外力的冲量等于物体的动量变化。既I=Δp (1)动量定理表明冲量是使物体动量发生变化的原因,冲量是物体动量变化的量度。这里所说的冲量必须是物体所受的合外力的冲量(或者说是物体所受各外力冲量的矢量和)。

2019年高考物理试题分类汇编(热学部分)Word版

2019年高考物理试题分类汇编(热学部分) 全国卷I 33.[物理—选修3–3](15分) (1)(5分)某容器中的空气被光滑活塞封住,容器和活塞绝热性能良好,空气可视为理想气体。初始时容器中空气的温度与外界相同,压强大于外界。现使活塞缓慢移动,直至容器中的空气压强与外界相同。此时,容器中空气的温度__________(填“高于”“低于”或“等于”)外界温度,容器中空气的密度__________(填“大于”“小于”或“等于”)外界空气的密度。 (2)(10分)热等静压设备广泛用于材料加工中。该设备工作时,先在室温下把惰性气体用压缩机压入到一个预抽真空的炉腔中,然后炉腔升温,利用高温高气压环境对放入炉腔中的材料加工处理,改善其性能。一台热等静压设备的炉腔中某次放入固体材料后剩余的容积为0.13 m3,炉腔抽真空后,在室温下用压缩机将10瓶氩气压入到炉腔中。已知每瓶氩气的容积为3.2×10-2 m3,使用前瓶中气体压强为1.5×107 Pa,使用后瓶中剩余气体压强为2.0×106 Pa;室温温度为27 ℃。氩气可视为理想气体。 (i)求压入氩气后炉腔中气体在室温下的压强; (ii)将压入氩气后的炉腔加热到1 227 ℃,求此时炉腔中气体的压强。 全国卷II 33.[物理—选修3-3](15分) (1)(5分)如p-V图所示,1、2、3三个点代表某容器中一定量理想气体的三个不同状态,对应的温度分别是T1、T2、T3。用N1、N2、N3分别表示这三个状态下气体分子在单位 时间内撞击容器壁上单位面积的次数,则N1______N2,T1______T3,N2______N3。(填“大于”“小于”或“等于”)

高考物理重点专题突破 (50)

第1节光的干涉 1.杨氏双缝干涉实验证明光是一种波。 2.要使两列光波相遇时产生干涉现象,两光源必须具有相同的频率和振动方向。 3.在双缝干涉实验中,相邻两条亮纹或暗纹间的距离Δy=l d λ,可利用λ= d l Δy测定 光的波长。 4.由薄膜两个面反射的光波相遇而产生的干涉现象叫薄膜干涉。 [自读教材·抓基础] 1.实验现象 在屏上出现明暗相间的条纹。相邻两条亮纹或暗纹间的距离Δy=l dλ,式中的d表示两缝间距,l表示两缝到光屏的距离,λ为光波的波长。 2.实验结论 证明光是一种波。 3.光的相干条件 相同的频率和振动方向。 [跟随名师·解疑难] 1.杨氏双缝干涉实验原理透析 (1)双缝干涉的装置示意图:实验装置如图所示,有光源、单缝、双缝和光屏。

(2)单缝的作用:获得一个线光源,使光源有唯一的频率和振动情况,如果用激光直接照射双缝,可省去单缝,杨氏那时没有激光,因此他用强光照亮一条狭缝,通过这条狭缝的光再通过双缝发生干涉。 (3)双缝的作用:平行光照射到单缝S 上,又照到双缝S 1、S 2上,这样一束光被分成两束频率相同和振动情况完全一致的相干光。 2.光屏上某处出现亮、暗条纹的条件 频率相同的两列波在同一点引起的振动发生叠加,如亮条纹处某点同时参与的两个振动步调总是一致,即振动方向总是相同,总是同时过最高点、最低点、平衡位置;暗条纹处振动步调总相反,具体产生亮、暗条纹的条件为: (1)亮条纹的条件:光屏上某点P 到两缝S 1和S 2的路程差正好是波长的整数倍或半波长的偶数倍。 即|PS 1-PS 2|=kλ=2k ·λ2 (k =0,1,2,3,…) (2)暗条纹的条件:光屏上某点P 到两缝S 1和S 2的路程差正好是半波长的奇数倍。 即|PS 1-PS 2|=(2k +1)λ2 (k =0,1,2,3,…) 3.双缝干涉图样的特点 (1)单色光的干涉图样:若用单色光作光源,则干涉条纹是明暗相间的 条纹,且条纹间距相等。如图所示中央为亮条纹,两相邻亮纹(或暗纹)间 距离与光的波长有关,波长越大,条纹间距越大。 (2)白光的干涉图样:若用白光作光源,则干涉条纹是彩色条纹,且中 央条纹是白色的,这是因为: ①从双缝射出的两列光波中,各种色光都能形成明暗相间的条纹,各种色光都在中央条纹处形成亮条纹,从而复合成白色条纹。 ②两相邻亮(或暗)条纹间距与各色光的波长成正比,即红光的亮条纹间距宽度最大,紫光的亮条纹间距宽度最小,即除中央条纹以外的其他条纹不能完全重合,这样便形成了彩色干涉条纹。 [特别提醒] (1)双缝干涉实验的双缝必须很窄,且双缝间的距离必须很小。 (2)双缝干涉中,双缝的作用主要就是用双缝获得相干光源。 [学后自检]┄┄┄┄┄┄┄┄┄┄┄┄┄┄(小试身手)

相关主题