搜档网
当前位置:搜档网 › PHILIP有害物质限量标准.

PHILIP有害物质限量标准.

PHILIP有害物质限量标准.
PHILIP有害物质限量标准.

Royal Philips Electronics List of Restricted Substances in Products

Royal Philips Electronics 产品中限制物质清单

Articles (i.e. materials, components, subassemblies, products) delivered to and used in Royal Philips must be free of the "Restricted substances" as mentioned in this list. 出货到以及用于Royal Philips的物品(比如物料,配件,装配件,产品)必须没有在清单中提到的"限制物料"

a.The restriction does not apply to exemptions in European Directive RoHS (2002/95/EC). 限制不应用于欧洲的

ROHS指令里面的免除条例 (2002/95/EC)

b.Does not apply to Medical equipment, which is presently excluded from the EU RoHS Directive. Neither d oes

it apply to the exemptions in EU-RoHS. 不应用于医疗设备, 这个目前不包含在EU RoHS指示中, 两个都不适用于ROHS指令中的免除条例

c.Lead-based soldering in electronic circuit boards and other electric applications is exempted in automotive applications

under the European ELV directive (2000/53/EC). 电子线路板中以铅为基础的锡焊以及其他电子应用在欧洲的ELV指示(2000/53/EC)中自动化应用下是免除的

d.Mercury is allowed only in gas discharge lamps with certain conditions referred in EU RoHS. 汞只在气体放电灯泡中被

接受,参考EU RoHS中的一定条件

e.Ozone depleting substances, as published in 2000 in the Montreal protocol on substances that deplete the ozone layer:

CFCs (Chlorofluorocarbons), HCFCs (Hydrogenated chlorofluorocarbons), Halons, Methyl Bromide, HBFCs (Hydrobromofluorocarbons), 1,1,1-Trichloroethane, Carbon tetrachloride and bromochloromethane. 臭氧消耗物质, 如在2000年发布的蒙特利尔协议中的关于消耗臭氧层的物质, CFCs (Chlorofluorocarbon s), HCFCs (Hydrogenated chlorofluorocarbons), Halons, Methyl Bromide, HBFCs (Hydrobromofluorocarbons), 1-1-1 Trichloroethane, 四氯化碳, 溴氯甲烷.

1Above this restriction threshold the substance is restricted and declaration of the substance is obliged. For Cadmium (in plastics only) and Mercury and their compounds declaration is needed above 50 ppm. In fact, restricted substances are not to be intentionally used, that is, Royal Philips

Electronics accepts that certain materials contain a certain amount of naturally occurring restricted substances. Thresholds can represent legal limits, or refer to currently accepted analysing thresholds. Furthermore these thresholds should be declared on component level. Substances are measured in

f.Polybrominated diphenylethers (PBDE) are the same as polybrominated biphenylethers (PBBE); polybrominated

diphenyloxides (PBDO) are the same as polybrominated biphenyl oxides (PBBO). Polybrominated diphenylethers (PBDE) 是与Polybrominated diphenylether s (PBDE)相同的; biphenylethers (PBBE); polybrominated diphenyloxides (PBDO)与多溴化联(二)苯 (PBBO)是相同的

C: Additionally Restricted Substances when used in specific applications在用于特别应用上

h.Does not apply to Medical devices and associated equipment. Medical device safety standards require

biocompatibility testing to ensure that chemical substances, which may contact patients during use per the

device's intended use, do not pose a health risk, specifically with respect to biocompatibility. 不应用于医疗设备和相关设备.医疗设备安全标准要求生物适应性测试来确保化学物质, 根据设备有目的的用途这个可能接触患者,不会引起健康风险,特别是对于生物适应性

i.CE (Consumer Electronics) requirements for phenol in laminates of printed wiring boards: 对于线路板层石碳酸CE(消

费者电子)要求

?Smell Emission : <200 odor unit/m2/day 气味散发: <200气味单位/m2/天

Test method: Measured in duplo according to NVN2820 (or NEN-EN 13725:2003) by TNO Apeldoorn, the

Netherlands, with 10 dm2 of single sided copper cladded laminate after 3 days at room temperature in a PTFE bag of

approximately 40 l. 测试方法:用 TNO Apeldoorn根据NVN2820 (or NEN-EN 13725:2003)在duplo中测量,荷兰, 在

一个PTEE袋子里大约401室温下放3天后单面铜层带10dm2

?Phenol monomer : <50 mg/l phenolics 石碳酸单体: <50 mg/l 酚醛塑料

Test method : Phenolics content in water (according to ISO 6439) after shaking for 23 hours a mixture of 75 g of

milled (to 3 mm) laminate in 1.5 l of demineralized water at pH 4). 测试方法: 在摇23小时碾压过的(到3mm)75g

混合物在水中的酚醛塑料容量(根据ISO 6439), 在1.51软化水,PH4

1Above this declaration threshold the substance is restricted and declaration of the substance is obliged. In fact, restricted substances are not to be intentionally used, that is, Royal Philips Electronics accepts that certain materials contain a certain amount of naturally occurring restricted substances. Thresholds can represent legal limits, or refer to currently accepted analysing thresholds. Furthermore these thresholds should be declared on component level. Substances are measured in homogeneous materials. Exemptions of specific applications, mentioned in legislation, are also exempted. Nevertheless declaration is still needed. 上述声明极限物质是受限制的,并且物质声明是合法的.事实上,受限的物质不是被故意地使用,确切地说, Royal Philips Electronics接受一定的物料包含一定量得自然地产生的受限的物质.极限可以代表法律限制,或者参考目前接受的分析极限.此外,这些极限应该在配件水平声明.物质是用相似物料测量的.除了明确的应用,在法律上提及的也是免除的不过声明仍然需要.

声学基础专业英文

声学英文词彙 声音,声学及其分支 声音:sound 可听声(阈):audible sound 超声:ultrasound 次声:infrasound 水声:underwater sound 地声:underground sound 噪声:noise 声学:Acoustics 物理声学:Physical Acoustics;非线性声学:Nonlinear Acoustics 超声学:Ultrasonics;次声学:Infrasonics;水声学:Underwater Acoustics 气动声学:Aeroacoustics 建筑声学:Architectural Acoustics;室內声学:Room Acoustics 音乐声学:Musical Acoustics 环境声学:Environmental Acoustics 海洋声学:Oceanic Acoustics 电声学:Electroacoustics 语言声学:Speech Acoustics;语音信号处理:Speech Processing 声信号处理:Acoustical Signal Processing 光声学:Optoacoustics 医学超声学:Medical Ultrasonics 生物声学:Bioacoustics

声化学:Sonochemistry 生理声学:Physiological Acoustics;心理声学:Phsychoacoustics 振动 振动:vibration 受迫振动:forced vibration 阻尼振动 弹性:elasticity 劲度:stiffness;弹性常数:stiffness constant 恢复力:restoration;张力:tension 惯性,声质量:inertance 力(机械)阻抗(阻,順,抗):mechanical impedance (resistance, compliance, reactance) 力导纳(导,納):mechanical admittance, mobility (responsiveness, excitability)集总线路元件:lumped circuit elements 共振:resonance;反共振:antiresonance 参量共振:parametric resonance 共鸣器,共振器:resonator 亥姆霍茲共鸣器:Helmholtz resonator 振子:oscillator 激振器:vibrator 隔振:isolation (阻抗型,导纳型)类比:(impedance-type, mobility-type) analogy 摩擦(力):friction (force) 阻尼(系数):damping (coefficient) 衰变:decay 谐波:harmonics,谐和:harmony

揭秘扬声器主要参数之间的关系

揭秘扬声器主要参数之间的关系 2016/2/3 10:22:36来源:艾维音响网 [ 提要 ] 扬声器性能是电学、力学、声学、磁学等物理参数共同作用的结果,由鼓纸、弹波、音圈、磁路等关键零部件的性能共同确定,其中一些参数相互制约相互影响,因 而必须综合考虑和设计。 艾维音响网讯扬声器性能是电学、力学、声学、磁学等物理参数共同作用的结果,由鼓纸、弹波、音圈、磁路等关键零部件的性能共同确定,其中一些参数相互制约相互影响,因而必须综合考虑和设计。 1、主要参数综合设计和分析 扬声器常用机电参数以及计算公式、测量方法简述如下: 直流电阻 Re 由音圈决定,可直接用直流电桥测量。 共振频率 Fo 由扬声器的等效振动质量Mms和等效顺性 Cms决定,见公式 (5) , Fo 可直接用 Fo 测试仪测量或通过测量阻抗曲线获得。 共振频率处的最大阻抗Zo 由音圈、磁路、振动系统( 鼓纸、弹波 ) 共同决定,可用替代法测量或通过测量阻抗曲线获得。 Zo = Re+[(BL)2/(Rms+Rmr)] (10) 机械力阻 Rms 由鼓纸、弹波的内部阻尼及使用胶水的特性决定,可由测量出机械品质因数Qms后通过下列公式计算: Rms =(1/Qms)*SQR(Mms/Cms) (11) 这里 SQR( ) 表示对括号 ( )中的数值开平方根,下同。 辐射力阻 Rmr 由口径、频率决定,低频时可忽略。 Rmr = 0.022*(f/Sd)2 (12) 等效辐射面积Sd 只与口径 ( 等效半径 a) 有关。 Sd =π * a2 (13) 机电耦合因子BL 由磁路 Bg 值和音圈线有效长度L 决定,也可通过测量电气品质因数Qes后用下列公式计算: (BL)2 =(Re/Qes)*SQR(Mms/Cms) (14) 等效振动质量Mms 由音圈质量 Mm1、鼓纸等效质量Mm2、辐射质量 Mmr共同决定,Mms可由附加质量法测量获得。 Mms=Mm1+Mm2+2Mmr 辐射质量 Mmr 只与口径 ( 等效半径 a) 有关。

扬声器的的主要参数

扬声器的的主要参数 字体: 小中大| 打印发布: 2010-9-26 01:19 作者: 网络转载来源: 互联网查看: 735次 1.扬声器主要参数综合设计和分析 扬声器性能是电学、力学、声学、磁学等物理参数共同作用的结果,由鼓纸、弹波、音圈、磁路等关键零部件的性能共同确定,其中一些参数相互制约相互影响,因而必须综合考虑和设计。 扬声器常用机电参数以及计算公式、测量方法简述如下: 直流电阻Re 由音圈决定,可直接用直流电桥测量。 共振频率Fo 由扬声器的等效振动质量Mms和等效顺性Cms决定,见公式(5),Fo可直接用Fo测试仪测量或通过测量阻抗曲线获得。 共振频率处的最大阻抗Zo 由音圈、磁路、振动系统(鼓纸、弹波)共同决定,可用替代法测量或通过测量阻抗曲线获得。 Zo = Re+[(BL)2/(Rms+Rmr)] (10) 机械力阻Rms 由鼓纸、弹波的内部阻尼及使用胶水的特性决定,可由测量出机械品质因数Qms后通过下列公式计算: Rms =(1/Qms)*SQR(Mms/Cms) (11) 这里SQR( )表示对括号( )中的数值开平方根,下同。 辐射力阻Rmr 由口径、频率决定,低频时可忽略。 Rmr = *(f/Sd)2 (12) 等效辐射面积Sd 只与口径(等效半径a)有关。 Sd =π* a2 (13)

机电耦合因子BL 由磁路Bg值和音圈线有效长度L决定,也可通过测量电气品质因数Qes后用下列公式计算: (BL)2 =(Re/Qes)*SQR(Mms/Cms) (14) 等效振动质量Mms 由音圈质量Mm1、鼓纸等效质量Mm2、辐射质量Mmr共同决定,Mms可由附加质量法测量获得。 Mms=Mm1+Mm2+2Mmr 辐射质量Mmr 只与口径(等效半径a)有关。 Mmr =*ρo* a3 (16) 其中ρo=m3为空气密度,a为扬声器等效半径。 等效顺性Cms 是指扬声器振动系统的支撑部件的柔顺度.其值越大,扬声器的整个振动系统越软.单位:毫米/牛顿(mm/N). 由鼓纸顺性Cm1、弹波顺性Cm2共同决定,此顺性即是我们所称的变位,只是单位需换算为国际单位制:m/N, 而变位可以用变位仪直接测量。Cms可由附加容积法测量获得。 Cms=(Cm1*Cm2)/(Cm1+Cm2) (17) 等效容积Vas 只与等效顺性、等效辐射面积有关。 Vas =ρo*c2*Sd2*Cms (18) 此处c为空气中的声速,c=344m/s 机械品质因数Qms 由振动系统的等效振动质量Mms、等效顺性Cms、机械力阻Rms共同决定,Qms可由阻抗曲线的测量获得。 Qms =(1/Rms)*SQR(Mms/Cms)=(Fo/Δf)*(Zo/Re) (19) f 为阻抗曲线上阻抗等于SQR(Zo*Re)所对应的两个频率的差值。

喇叭扬声器设计与制作分析

声学和扬声器基础知识教学大纲 一、要求:掌握音频声学的基础理论和电\磁\机械学中与喇叭有关的基本知识,了解 扬声器测试的要求和T/S参数的计算的原理和方法. 二、文化基础要求:高中 三、内容与学时安排: 第一章音频声学基础 1.1 声波的产生 1.2 描述声学的物理量 1.3 声级,分贝及运算 1.4 声波的传播特征 第二章人耳听觉特征 2.1 响度与频响曲线 2.2 音调与倍频音程 2.3 音色 2.4 波的分解,付氏解析法 2.5 失真与失真察觉 2.6 哈斯效应 2.7 屏蔽效应 第三章电、磁、机械振动基础 3.1 电学基础知识 3.2 磁场与电磁感应 3.3 交流电路中的电容 3.4 交流电路中的电感 3.5 复阻抗 3.6 谐振电路 3.7 机械振动 3.8 电机类比 第四章扬声器结构与参数测试 4.1 喇叭结构,名称(磁场,间隙,短路环,音圈,锥盒,指向性,防尘帽,音架,弹

波,边,磁流液) 4.2 Thiele和Small参数测试类比电路图 4.3 扬声器阻抗曲线及其物理解释 4.4 阻抗测试 4.5 质量测试 4.6 BL测试,力顺测试 4.7 品质因素Q的计算 4.8 等效容积Vas 的计算 4.9 效率与灵敏度的测试 4.10 扬声器基本参数及T/S参数汇总 4.11 基于PC的扬声器测试信号,相位,clio, Sound check,Klippel, LMS. 第五章音箱,分频器的设计计算 5.1 音箱的设计 5.2 无限平板上的喇叭负载 5.3封闭音箱中的喇叭 5.4 填充物的作用 5.5 倒相音箱的设计和计算 5.6分频器的种类与计算 第一章音频声学的基础 1.1波动和声波 振动产生波,如绳子的振动能量以波的形式传播。常用绳子多点的位移来描述绳子波的传动,一个波动可用正弦函数来表示。 正弦函数:y = A sin ? A为最大振辐(m) ?为角度(相位角)。 在x-y 坐标系里,若x代表角度,y代表振幅,画出的波形图叫正弦曲线。一般

声学基础资料-专业名词解释

波长 声波振动一次所传播的距离,用声波的速度除以声波的频率就可以计算出该频率声波的波长,声波的波长范围为17米至1.7厘米,在室内声学中,波长的计算对于声场的分析有着十分重要的意义,要充分重视波长的作用。例如只有障碍物在尺寸大于一个声波波长的情况下,声波才会正常反射,否则绕射、散射等现象加重,声影区域变小,声学特性截然不同;再比如大于2倍波长的声场称为远场,小于2倍波长的声场称为近场,远场和近场的声场分布和声音传播规律存在很大的差异;此外在较小尺寸的房间内(与波长相比),低音无法良好再现,这是因为低音的波长较长的缘故,故在一般家庭中,如果听音室容积不足够大,低音效果很难达到理想状态。 很多现场调音师都没有理会到音频与波长的关系,其实这是很重要的:音频及波长与声音的速度是有直接的关系。在海拔空气压力下,21摄氏温度时,声音速度为344m/s,而我接触国内的调音师,他们常用的声音速度是34Om/s,这个是在15摄氏度的温度时声音的速度,但大家最主要记得就是声音的速度会随着空气温度及空气压力而改变的,温度越低,空气里的分子密度就会增高,所以声音的速度就会下降,而如果在高海拔的地方做现场音响,因为空气压力减少,空气内的分子变得稀少,声音速度就会增加。音频及波长与声音的关系是:波长=声音速度/频率;λ=v/f,如果假定音速是344 m/s时,100Hz的音频的波长就是3.44 m,1000hz(即lkHz)的波长就是34.4 cm,而一个20kHz的音频波长为1.7cm。 动态范围 音响设备的最大声压级与可辨最小声压级之差。设备的最大声压级受信号失真、过热或损坏等因素限制,故为系统所能发出的最大不失真声音。声压级的下限取决于环境噪声、热噪声、电噪声等背景条件,故为可以听到的最小声音。动态范围越大,强声音信号就越不会发生过荷失真,就可以保证强声音有足够的震撼力,表现雷电交加等大幅度强烈变化的声音效果时能益发逼真,与此同时,弱信号声音也不会被各种噪声淹没,使纤弱的细节表现得淋漓尽致。一般来说,高保真音响系统的动态范围应该大于90分贝,太小时还原的音乐力度效果不良,感染力不足。在专业音响系统的调整过程中,音响师在调音时要主意以下两方面问题:一是调音台的的输入增益量不要调的过小,否则微弱的声音会被调音台的设

扬声器的工作原理

扬声器的工作原理 一、术语 扬声器(speaker,loudspeaker),俗称喇叭;1993年出版的《电声辞典》指出:扬声器是能将电信号转换成声信号并辐射到空气中去的电声换能器。 据有关资料记载,最早发明扬声器在1877年,德国人西门子(E.W.Scimens)提出了扬声器雏型专利,他首先提出了由一个圆形线圈放置在径向磁场组成的电动结构。 1924年,美国的赖斯(C.W.Rice)和凯洛格(E.W.Kollogg)发明了电动式扬声器。 二、扬声器原理 扬声器应用了电磁铁来把电流转化为声音。原来,电流与磁力有很密切的关系。试试把铜线绕在长铁钉上,然后再接上小电池,你会发现铁钉可以把万字夹吸起。当电流通过线圈时会产生磁场,磁场的方向就由右手法则来决定。 扬声器同时运用了电磁铁和永久磁铁,假设现在要播放C 调(频率为256 Hz,即每秒振动256次),唱机就会输出256 Hz的交流电,换句话说,在一秒钟内电流的方向会改变256 次。每一次电流改变方向时,电磁铁上的线圈所产生的磁场方向也会随着改变。我们都知道,磁力是「同极相拒,异极相吸」的,线圈的磁极不停地改变,与永久磁铁一时相吸,一时相斥,产生了每秒钟256次的振动。线圈与一个薄膜相连,当薄膜与线圈一起振动时,便会推动了周围的空气。振动的空气,不就是声音吗?这就是扬声器的运作原理了。 三、扬声器易响却难精 扬声器在全世界每年的产量数以亿计,它在通信、广播、教育、日常生活等方面有广泛的用途,和布、帛、菽、粟一样成为人们不可须夷离开的东西。对我们从事扬声器设计、制造的技术人员来说,对扬声器的理论、实践、工艺等方面需要深入、系统、全面的了解。有人讲扬声器很简单,不过是雕虫小技,谁都可以生产扬声器,这话不能说全无道理,声学本来就是一个小学科,扬声器更是一个小器件。不过十几个到几十个部件,生产的门槛确是不高,但问题的另一面是扬声器又不容易做好。 扬声器是一个电声器件,是电声学研究的内容之一。电声学是包括电子学、声学、电磁学、磁学等的交叉学科。扬声器虽然只有不多的几十个部件,但是其复杂繁难的程度远远超过我们的想象。这是因为:

声学基础

主观音质评价 与客观测量的相关性

一.什么叫音质评价?assessment of sound quality 二.为什么要进行音质评价? 三、实施手段: 四、主观音质评价的特点: 五、谁能作出正确评价? 六、如何去评价,评价哪些方面? 七、常用音质测试设备和A/B比较听音方法 八、音质评价术语的含义及与客观物理参数之间的关系 主观音质评价与客观测量的相关性

◆什么叫音质评价? assessment of sound quality 通过听觉判断声音(原声或重放声)的质量水平。目前,对于语言主要从语言清晰度,而对音乐则从与作品类型和风格相吻合的音乐的可听性和欣赏价值来判断其声音质量水平的高低。

◆为什么要进行音质评价? 因为现有的客观测试还不能完全揭示音质的所有特性的本质,音质评价术语还没有一一对应的物理指标。甚至有时客观指标与主观感受有许多不一致的地方,有待人们进一步去研究、揭示,所以,客观测试不能代替主观评价。我们制作音响产品的最终目标是满足人们听觉享受,因此,有必要对我们开发的音响产品进行主观评定。

◆实施手段: 1、听音测试listening test 让一定数量的、经过训练的听音员,在规定声学特性的房间(也有人叫试听室、听音室或审听室等)内,按照共同规定的听音试验方法,对音响设备、节目源、乐音或乐器音等的音质进行主观感觉的评定,最后用数理统计或其他方法对评定数据进行计算,评定出结果的试验。有人也叫试听试验。

◆主观音质评价的特点: 1.声音质量评价的模糊性blur of sound quality assessment 2、评价尺度---多维尺度法multi-dimensional scaling 3. 哪些因素导致主观音质评价的差异 4、室内声学---为什么需要试音室? 5、国内关于听音室的标准

扬声器胶粘剂的发展概况(发表)

扬声器胶粘剂的发展概况 陆企亭侯一斌 上海康达化工有限公司 在“十五”期间,我国电声器件产业高速发展,技术水平和产品质量迅速提高,形成了从部件加工到成品设计和生产的完整的产业链,已成为世界第一的电声器件生产国和出口国,全球电声器件的生产中心。为了满足市场对电声器件越来越高的要求,电声行业在不断创新,新技术、新材料的应用日益增多。与此同时,也对胶粘剂在电声器件中的应用提出了新的挑战,本文概述了扬声器胶粘剂所面临的新挑战、新进展和发展趋势。 一、扬声器胶粘剂面临的新挑战 1.扬声器的大功率化 超低音扬声器和汽车扬声器的发展趋向于大功率、大口径,例如JBL公司的W15GTI超低音扬声器额定功率2000W,瞬时功率5000W,MAGNAT公司的Omega 530扬声器口径为20″,更大的扬声器口径在30 ″以上。 对胶粘剂的挑战: Psychotenology,Inc.在2006 ALMA冬季会议上发表的《测量音圈温度的实时系统》论文表明,扬声器在某种工作条件下音圈温度可高达350℃以上。这足以表明越来越大功率、口径的扬声器对胶粘剂尤其是中心胶粘剂的耐温要求也越来越高。 2. 扬声器的微型化 随着手机、笔记本电脑、MP3、MP4、PDA等向小型化和微型化发展,要求这些产品使用的扬声器要微型化、高保真。例如日本村田制作所最新研制的压电扬声器外形尺寸只有31×16×1mm3。 对胶粘剂的挑战: 除了要考虑胶粘剂本身对音质的影响外,还要考虑施胶工艺的一致性对音质的影响,即胶粘剂要便于涂胶量的控制和保证混合或固化效果的一致性。 3. 扬声器新材料的多样花 随着材料科学技术的快速发展,近年来开发出了大量的新材料扬声器配件,既提高了扬声器的性能又增加了美观效果。几乎所有的配件都有新材料的应用:

音响工程师必备知识之-声学基础

声学基础 声音在人类生活中具有重要意义,人们就是靠声音传递语言、交流思想的。声音来源于物体的振动。例如人的发声是由声带动引起的;扬声器发声则产生于扬声器膜片的振动;锣、鼓是靠锣面、鼓面膜的振动发声的;弦乐器是靠弦的振动发声的;笛、箫等则依靠空气柱的振动发声……正在发出声音的振动物体称为声源,传播声音的必要条件。没有物体的振动有传声介质(如在真空中),同样也没有声音。声音不仅能在气体中传播,在固体和液体中也能够传播。当声源在空气中振动中,使邻近的空气随之产生振动并以波动的方式向四周传播,传至人耳将引起耳膜振动,最后通过听觉神经产生声音的感觉对于专业音响工作者来说,掌握一些声学基础和生理声学方面的知识是至关重要的。 声音信号的特性 语音和音乐信号都是不规则的随机信号,由基频信号和各种谐波(泛音)成分组成。要“原汁原味”地重放这些随即音频信号,扩声音响系统必须具备符合语言和音乐的平均特性。 其中最重要的三个特性是平均频谱(频率响应特性)、平均声压级和声音的动态范围。 1.1、人声信号 人声信号是一种典型的随机过程,它于人的生理特点、情绪与语言内容等因素有关。 1)、语言基音的频率范130-350HZ包括全部谐波(泛音)频率范围为130-4000HZ2)、演唱歌声的频率范围比较宽,可分为男低音、男中音、男高音、女高音等5个声部。 基音的频率范80-1100HZ,包括全部谐波(泛音)频率范围为80-8000HZ。5个声部的范围是:80-294HZ;110-392HZ;147-523HZ;196-698HZ和262-1047HZ。 3)、声压级正常谈话时语言的声功率为1微瓦,大声讲话时可增加到1毫瓦。正常讲话时与讲话人距1米时的平均声压级为65-69dB。

南京大学版声学基础答案

习题1 1-1 有一动圈传声器的振膜可当作质点振动系统来对待,其固有频率为f ,质量为m ,求它的弹性系数。 解:由公式m m o M K f π 21= 得: m f K m 2)2(π= 1-2 设有一质量m M 用长为l 的细绳铅直悬挂着,绳子一端固定构成一单摆,如图所示,假设绳子的质量和弹性均可忽略。试问: (1) 当这一质点被拉离平衡位置ξ时,它所受到的恢复平衡的力由何产生?并应怎样表示? (2) 当外力去掉后,质点m M 在此力作用下在平衡位置附近产生振动,它的振动频率应如何表示? (答:l g f π21 0= ,g 为重力加速度) 图 习题1-2 解:(1)如右图所示,对m M 作受力分析:它受重力m M g ,方向竖直向下;受沿绳方向的拉力T ,这两 力的合力F 就是小球摆动时的恢复力,方向沿小球摆动轨迹的切线方向。 设绳子摆动后与竖直方向夹角为θ,则sin l ξ θ= 受力分析可得:sin m m F M g M g l ξ θ== (2)外力去掉后(上述拉力去掉后),小球在F 作用下在平衡位置附近产生摆动,加速度的方向与位 移的方向相反。由牛顿定律可知:22d d m F M t ξ =- 则 22d d m m M M g t l ξξ-= 即 22d 0,d g t l ξξ+=

∴ 2 0g l ω= 即 01 ,2πg f l = 这就是小球产生的振动频率。 1-3 有一长为l 的细绳,以张力T 固定在两端,设在位置0x 处,挂着一质量m M ,如图所示,试问: (1) 当质量被垂直拉离平衡位置ξ时,它所受到的恢复平衡的 力由何产生?并应怎样表示? (2) 当外力去掉后,质量m M 在此恢复力作用下产生振动,它 的振动频率应如何表示? (3) 当质量置于哪一位置时,振动频率最低? 解:首先对m M 进行受力分析,见右图, 0)(2 2 02 2 00=+-+--=ε ε x x T x l x l T F x (0x ??ε ,2 022020220)()(,x l x l x x -≈+-≈+∴εε 。) 2 2 2 2 0)(ε ε ε ε +++-=x T x l T F y x T x l T ε ε +-≈ ε) (00x l x Tl -= 可见质量m M 受力可等效为一个质点振动系统,质量m M M =,弹性系数) (00x l x Tl k -= 。 (1)恢复平衡的力由两根绳子拉力的合力产生,大小为ε) (00x l x Tl F -= ,方向为竖直向下。 (2)振动频率为m M x l x Tl M K )(00-== ω。 (3)对ω分析可得,当2 0l x = 时,系统的振动频率最低。 1-4 设有一长为l 的细绳,它以张力T 固定在两端,如图所示。设在绳的0x 位置处悬有一质量为M 的重物。求该系统的固有频率。提示:当悬有M 时,绳子向下产生静位移0ξ以保持力的平衡,并假定M 离平衡位置0ξ的振动ξ位移很小,满足0ξξ<<条件。 图 习题1-3

声学基础

压强式电容传声器的简单工作原理。 压强式电容传声器常作声学测试用,它的特点是工作频带宽,接收灵敏度频率特性均匀。这种传声器的简单工作有原理如图所示。 它有一接收声波的振膜作为力学振动系统,振膜与背极形成一静态电容C0,这个电容串接到有直流电源E0和负载电阻Re 的电路中,当振膜受到声波的作用力FF 作用时就产生位移,从而使振膜与背极间已形成的静态电容发生变化,这一电容量的变化导致负载电阻中电流相应的变化,由此就在此电阻上产生与声波频率相应的交变电压输出。简单计算可以得到,当负载电阻Re 甚大时,传声器的开路输出电压E 与振膜的位移ξ之间有如下关系:E =ξD E 0,其中D 为振膜与背极之间的静态距离,E0为在它们之间垢极化电压。这一关系表示了电容传声器的开路输出电压与振膜的位移是成正比的,因此如果能在结频率恒定的力的振幅FA 作用下,使振膜产生恒定的位移振幅ξA ,那么传声器就能产生对频率恒定的开路输出电压幅值EA ,根据上面对振动位移控制的分析可知,如果把振膜设计在弹性控制状态,即将振膜的固有频率设计在远高于工作频率范围,这时就可得振膜的位移振幅为M A A K F ≈ξ,它与频率无关。如果再根据前面1-4-3中的分析,使振膜的力学品质因素QM 接近1,那么就可以使位移振幅对频率均匀 特性范围扩大到固有频率附近,而使电容传声器的工作频段范围更为宽广。 压强式动圈传声器工作原理 图1-4-6是一种作为广播或录音等用的普通压强式动圈传声器的工作原理图。传声器的振动系统由音膜与音圈组成。音膜的边缘压成折环状起着弹簧的作用,音膜的球顶部分和音圈连在一起起着质量块的作用。音圈放在磁极间的缝隙中,当有一由声波而产生的力FF 作用在音膜上时,音膜连同音圈产生振动,音圈在磁场中切割磁力线,从而使音圈的导线感应出电压。根据电磁学原理可知,当总长为l 的导体在磁感庆通量密度为B (单位为韦伯/米2)的磁场中以速度v 运动时,其感应的开路电压为E =Blv.此关系式表示了,这种传声器的开路电压是与振动系统的速度成正比的。因此如果在对频率恒定的力作用下,使音膜产生恒定的速度振幅V A ,那么就能使传声器产生对频率恒定的开路电压幅值EA 。根据上面对振劝速度控制的分析可知,如果把音膜-音圈的振动系统设计在力阻控制状态,这时系统的速度振幅可得为VA M A A R F V ≈,它与频率无关,如果力阻愈大,则受这一力阻控制的频率范围愈宽,传声器具有均匀频率特性的频段也愈宽。根据1-4-3中的分析,对力阻RM 的控制可归结为对力字品质因素QM 的控制,例如取QM =0.1,则可以使传声器频率特性的均匀

扬声器的的主要参数

扬声器的的主要参数 字体: 小中大 | 打印发布: 2010-9-26 01:19 作者: 网络转载来源: 互联网查看: 735次 1.扬声器主要参数综合设计和分析 扬声器性能是电学、力学、声学、磁学等物理参数共同作用的结果,由鼓纸、弹波、音圈、磁路等关键零部件的性能共同确定,其中一些参数相互制约相互影响,因而必须综合考虑和设计。 扬声器常用机电参数以及计算公式、测量方法简述如下: 直流电阻Re 由音圈决定,可直接用直流电桥测量。 共振频率Fo 由扬声器的等效振动质量Mms和等效顺性Cms决定,见公式(5), Fo 可直接用Fo测试仪测量或通过测量阻抗曲线获得。 共振频率处的最大阻抗Zo 由音圈、磁路、振动系统(鼓纸、弹波)共同决定,可用替代法测量或通过测量阻抗曲线获得。 Zo = Re+[(BL)2/(Rms+Rmr)] (10) 机械力阻Rms 由鼓纸、弹波的内部阻尼及使用胶水的特性决定,可由测量出机械品质因数Qms后通过下列公式计算: Rms =(1/Qms)*SQR(Mms/Cms) (11) 这里SQR( )表示对括号( )中的数值开平方根,下同。 辐射力阻Rmr 由口径、频率决定,低频时可忽略。 Rmr = *(f/Sd)2 (12) 等效辐射面积Sd 只与口径(等效半径a)有关。 Sd =π* a2 (13)

机电耦合因子BL 由磁路Bg值和音圈线有效长度L决定,也可通过测量电气品质因数Qes 后用下列公式计算: (BL)2 =(Re/Qes)*SQR(Mms/Cms) (14) 等效振动质量Mms 由音圈质量Mm1、鼓纸等效质量Mm2、辐射质量Mmr共同决定, Mms 可由附加质量法测量获得。 Mms=Mm1+Mm2+2Mmr 辐射质量Mmr 只与口径(等效半径a)有关。 Mmr =*ρo* a3 (16) 其中ρo=m3为空气密度, a为扬声器等效半径。 等效顺性Cms 是指扬声器振动系统的支撑部件的柔顺度.其值越大,扬声器的整个振动系统越软.单位:毫米/牛顿(mm/N). 由鼓纸顺性Cm1、弹波顺性Cm2共同决定,此顺性即是我们所称的变位,只是单位需换算为国际单位制:m/N, 而变位可以用变位仪直接测量。Cms可由附加容积法测量获得。 Cms=(Cm1*Cm2)/(Cm1+Cm2) (17) 等效容积Vas 只与等效顺性、等效辐射面积有关。 Vas =ρo*c2*Sd2*Cms (18) 此处c为空气中的声速,c=344m/s 机械品质因数Qms 由振动系统的等效振动质量Mms、等效顺性Cms、机械力阻Rms共同决定,Qms可由阻抗曲线的测量获得。 Qms =(1/Rms)*SQR(Mms/Cms)=(Fo/Δf)*(Zo/Re) (19) f 为阻抗曲线上阻抗等于SQR(Zo*Re)所对应的两个频率的差值。

室内声学基础与音箱摆位

第一章声音的基本性质 一、声音的产生与传播 声音是人耳通过听觉神经对空气振动的主观感受。 声音产生于物体的振动,例如扬声器的纸盆、拨动的琴弦等等。这些振动的物体称之为声源。声源发声后,必须经过一定的介质才能向外传播。这种介质可以是气体,也可以是液体和固体。在受到声源振动的干扰后,介质的分子也随之发生振动,从而使能量向外传播。但必须指出,介质的分子只是在其未被扰动前的平衡位置附近作来回振动,并没有随声波一起向外移动。介质分子的振动传到人耳时,将引起人耳耳膜的振动,最终通过听觉神经而产生声音的感觉。例如,扬声器的纸盆,当音圈通过交变电流时就会产生振动。这种振动引起邻近空气质点疏密状态的变化,又随即沿着介质依次传向较远的质点,最终到达接收者。可以看出,在声波的传播过程中,空气质点的振动方向与波的传播方向相平行,所以声波是纵波。 扬声器纸盒就相当于上图中的活塞。 在空气中,声音就是振动在空气中的传播,我们称这为声波。声波可以在气体、固体、液体中传播,但不能在真空中传播。 二、声波的频率、波长与速度 当声波通过弹性介质传播时,介质质点在其平衡位置附近作来回振动。 质点完成一次完全振动所经历的时间称为周期,记为T,单位是秒(s)。质点在1秒内完成完全振动的次数称为频率,记作f,单位为赫兹(Hz),它是周期的倒数,即: f=1/T 介质质点振动的频率即声源振动的频率。频率决定了声音的音调。高频声音是高音调,低频声音是低音调。人耳能够听到的声波的频率范围约在20—20000Hz之间。低于20Hz的声波称为次声波,高于20000Hz的称为超声波。次声波与超声波都不能使人产生听感觉。 声波在其传播途径上,相邻两个同相位质点之间的距离称为波长,记为λ,单位是米(m)。或者说,波长是声波在每一次完全振动周期中所传播的距离。

喇叭原理及培训资料

柏坤电子有限公司培训资料GREAT WELL ELECTRONIC LIMITED 关于扬声器原理 首先,我们来谈谈如何认识一个扬声器,随着电子技术的发展,扬声器在不断地改进,扬声器品种繁多,若按扬声器换能原理来分类,则可为电磁式扬声器、励磁式扬声器、静电式扬声器,压电陶瓷式扬声器、电动式扬声器、挂画式平面扬声器。本书主要介绍电动式喇叭(耳机喇叭)。

第一章扬声器的类型 扬声器(喇叭)器件是一种电能与声转换器件,扬声器品种繁多,若按扬声器换能原理来分类,则可为电磁式扬声器、励磁式扬声器、静电式扬声器,压电陶瓷式扬声器、电动式扬声器、挂画式平面扬声器。 一、电磁式扬声器 电磁式扬声器(舌簧式)主要由永久磁铁(马早蹄形)、衔铁(舌簧)、线圈、纸盘和盆架等组成。 电磁式扬声器的特点:灵敏度高,结构简单,成本低。但其阻抗高,频率特性差,较高和较低的音频都有发不出来,失真大,振幅小,声压低,承受功率在1/4-1/2W之间。这是一种老式扬声器,20世纪50年代农村广播网曾大量使用,现今已逐渐被电动式纸盘扬声器所取用。 二、励磁式扬声器 励磁式扬声器与永磁电动式扬声器相似,主要区别在于磁体部分。励磁式扬声器的大形线圈是 整流系统中的扼流圈,它通过高电压大电流产生磁力,并与音频信号电流互相作用,推动音圈作活塞式振动,带动纸盘发出声音。 这种扬声器主要用于老式交流电子管式收音机上。收音机不工作时,扬声器没有磁力存在;只当收音机工作,电流通过励磁线圈产生磁力时,扬声器才能正常工作。可见,这种扬声器的使用有着极大的局限性,现今逐渐被沟汰。 三、静电式扬声器 静电式中高频扬声器的工作原理极简单,它是以电容器原理制作而成,可以看做是一个能振动发声的电容器。按结构类型,静电扬声器可分单极式、推挽式和驻极式。 1、单极式 它用一块属板作固定极板,用导电材料制成轻且的动膜片作另一块电极(辐射极),两极板小,振动膜片采用金属箔或金属化涤纶薄制成。 2、推挽式 推挽式静扬声器是在单极式静电扬声器中增加地一电极而成。它用两块固定的电极板,振动电极片置于固定电极板之间。 3、驻极体式 驻极体式扬声器是将电容器的极板改用驻极体材料(如四氟乙烯、聚全氟乙烯等)制成的。其结构则与上述的静电扬声器相同。驻极体式静电扬声器最大的特点是不需要极化电压。 静电式扬声器频响特性平坦,放音清晰,层次感极好,音质优美。但由于需要极化电压,目前低电压的晶体管扩大器中要增设这一极化电压设备,可以说,得不偿失。因此,普及和发展静电式扬声器有一定难度。 四、压电陶瓷式扬声器 压电陶瓷扬声器又称晶体式扬声器。它利用某些晶体式陶瓷材料的压电效应而制成。当在陶瓷体加上音频电压时,陶瓷片即向上或向下弯曲,产生与音频信号电压相对立的振动,利用振动,便可推动扬声器的纸盒作相应的振动,从而激励空气发出声音。 陶瓷扬声器结构简单,没有线圈及磁铁,消耗功率小,灵敏度高,高频特性好,重量轻,体积小,制造容易,成本低,价格便宜。但工作不够稳定,性能脆弱易损坏,音质较差。由于振幅小频率高,声量不如电动式纸盒扬声器大,所以通常只作高音单元使用。如果与大纸盒粘合,则适用于农村有线广播网;若造得轻巧小型,则适合双声道四喇叭收录机作高频单元。在警示器中也经常用这种小高音扬声器,在家用音箱中有时也会有用到这种高音单元。 五、电动式扬声器 电动式(动圈式)扬声器广泛应用于音响系统中,是人们最熟悉的扬声器。按频率特性及其结构,可分为纸盆式、号筒式和球顶式三种。纸盆式又分为圆形、椭圆形及密封;高音号筒式有圆形、长方形等多种;球顶式分硬球顶及软球顶,其形状有凹形和凸形之分。 (一)、电动式纸盆扬声器

声学基础

声学基础 1、人耳能听到的频率范围是20—20KHZ。 2、把声能转换成电能的设备是传声器。 3、把电能转换成声能的设备是扬声器。 4、声频系统出现声反馈啸叫,通常调节均衡器。 5、房间混响时间过长,会出现声音混浊。 6、房间混响时间过短,会出现声音发干。 7、唱歌感觉声音太干,当调节混响器。 8、讲话时出现声音混浊,可能原因是加了混响效果。 9、声音三要素是指音强、音高、音色。 10、音强对应的客观评价尺度是振幅。 11、音高对应的客观评价尺度是频率。 12、音色对应的客观评价尺度是频谱。 13、人耳感受到声剌激的响度与声振动的频率有关。 14、人耳对高声压级声音感觉的响度与频率的关系不大。 15、人耳对中频段的声音最为灵敏。 16、人耳对高频和低频段的声音感觉较迟钝。 17、人耳对低声压级声音感觉的响度与频率的关系很大。 18、等响曲线中每条曲线显示不同频率的声压级不相同,但人耳感觉的响度相同。 19、等响曲线中,每条曲线上标注的数字是表示响度级。 20、用分贝表示放大器的电压增益公式是20lg(输出电压/输入电压)。 21、响度级的单位为phon。 22、声级计测出的dB值,表示计权声压级。 23、音色是由所发声音的波形所确定的。 24、声音信号由稳态下降60dB所需的时间,称为混响时间。 25、乐音的基本要素是指旋律、节奏、和声。 26、声波的最大瞬时值称为振幅。 27、一秒内振动的次数称为频率。 28、如某一声音与已选定的1KHz纯音听起来同样响,这个1KHz纯音的声压级值就定义为待测声音的响度。 29、人耳对1~3KHZ的声音最为灵敏。 30、人耳对100Hz以下,8K以上的声音感觉较迟钝。 31、舞台两侧的早期反射声对原发声起加重和加厚作用,属有益反射声

相关主题