搜档网
当前位置:搜档网 › 2021年函数单调性的定义与应用

2021年函数单调性的定义与应用

2021年函数单调性的定义与应用
2021年函数单调性的定义与应用

函数的性质——单调性

欧阳光明(2021.03.07)

【教学目的】使学生了解增函数、减函数的概念,掌握判断函数增减性的方法步骤;

【重点难点】重点:函数的单调性的有关概念;

难点:证明或判断函数的单调性

一、增函数与减函数

⒈增函数与减函数定义:对于函数f(x)的定义域I内某个区间上的任意两个自变量的值x1,x2.

⑴若当x1

⑵若当x1(fx2),则说f(x) 在这个区间上是减函数

说明:函数是增函数还是减函数,是对定义域内某个区间而言的.有的函数在一些区间上是增函数,而在另一些区间上不是增函数.例如函数y=x2,当x∈[0,+∞)时是增函数,当x∈(-∞,0)时是减函数.

⒉单调性与单调区间

若函数y=f(x)在某个区间是增函数或减函数,则就说函数y=f(x)在这一区间具有(严格的)单调性,这一区间叫做函数y=f(x)的单调区间.此时也说函数是这一区间上的单调函数.

在单调区间上,增函数的图象是上升的,减函数的图象是下降

说明:⑴函数的单调区间是其定义域的子集;

⑵应是该区间内任意的两个实数,忽略需要任意取值这个条件,就不能保证函数是增函数(或减函数),例如,图5中,在x 1,x 2那样的特定位置上,虽然使得

f(x 1)<(fx 2),但显然此图象表示的函数不是一

个单调函数;

⑶除了严格单调函数外,还有不严格单调函数,它的定义类似上述的定义,只要将上述定义中的“f(x 1)<(fx 2) 或f(x 1)>(fx 2) ”改为“f(x 1)≤(fx 2) 或f(x 1)≥(fx 2)”即可;

⑷定义的内涵与外延:内涵是用自变量的大小变化来刻划函数值的变化情况;外延:①一般规律:自变量的变化与函数值的变化一致时是单调递增,自变量的变化与函数值的变化相对时是单调递减. ②几何特征:在自变量取值区间上,若单调函数的图象上升,则为增函数,图象下降则为减函数.

⒊ 例题

例1图6是定义在闭区间[-5,5]上的函数y=f(x)的图象,根据图象说出y=f(x)的单调区间,以及在每一单调区间上,函数y=f(x)是增函数还是减函数.

练习:1、函数11-=x y 的增减性的正确说

法是:

A .单调减函数 B.在)0,(-∞上是减函数,在),0(+∞上是减函

C. 在)1,(-∞是减函数,在),1(+∞是减函数

D.除1=x 点外,在),(+∞-∞上是单调递减函数

二次函数的单调性:对函数c bx ax x f ++=2)()0(≠a ,

当0>a 时函数)(x f 在对称轴

a b x 2-=的左侧单调减小,右侧单调增加;

当0

a b x 2-=的左侧单调增加,右侧单调减小;

例:讨论函数322+-=ax x f(x)在(-2,2)内的单调性。

二、函数单调性的证明步骤:

① 任取x 1,x 2∈D ,且x 1

② 作差f(x 1)-f(x 2);

③变形(通常是因式分解和配方);

④定号(即判断差f(x 1)-f(x 2)的正负);

⑤下结论(即指出函数f(x)在给定的区间D 上的单调性). 例1、证明函数x x y 1

+=在(1,+∞)上为减函数.

例2、证明函数

x x x f -1)(2+=在R 上是单调减函数。 练习1 证明函数f(x)=1/x 在(0,+∞)上是减函数.

练习2 试判断函数x x x f 1

-)(2=在)(0,+∞上的单调性并加以证明。

例 已知函数f(x)=

x a x

+2(a>0)在(2,+∞)上递增,求实数a 的取值

范围.

三、复合函数单调性

对于函数y =f (u )和u =g (x ),如果u =g (x )在区间(a ,b )上具有单调性,当x ∈(a ,b )时,u ∈(m ,n ),且y =f (u )在区间(m ,n )上也具有单调性,则复合函数y =f (g (x ))在区间(a ,b )具有单调性的规律见下表:

例:函数322-+=x x y 的单调减区间是 ( )

A.]3,(--∞

B.),1[+∞-

C.]1,(--∞

D.),1[+∞

求函数单调区间(复合函数)

1.函数1

y x =-的单调区间是( )

A .(-∞,+∞) B.(-∞,0) (1,∞,)

C.(-∞,1) 、(1,∞)

D. (-∞,1)(1,∞)

2. 下列函数中,在区间(0,2)上为增函数的是( ).

A .32y x =-+

B .3

y x = C .245y x x =-+

D .23810y x x =+-

3.函数y =的增区间是( )。

A .[-3,-1]

B .[-1,1]

C .1

13a -<<-(,3)-∞- D .(1,)-∞

4、已知函数1

()f x x x =+,判断()

f x 在区间〔0,1〕和(1,

+∞)上

的单调性。

五、函数单调性的应用:判断函数)(x f y =的单调性;比较大小;解不等式;求最值(值域)。

例 (1)若函数

52)(2++=ax x x f 在)(-2,+∞上单调递增,在)2,-(-∞上单调递减,求其实数a 的取值;

(2)若函数

52)(2++=ax x x f 在)(-2,+∞上单调递增,其实数a 的

取值范围; (3)若函数52x )(2++=ax x f 在)(-2,+∞上单调递增,其实数a 的

取值范围;

例 若函数

5)2(log )(22++=x ax x f 在)(-2,+∞上单调递增,其实数a 的取

值范围; 例 已知函数

???≥<+=1log 14)1-3()(x x x a x a x f a 是),(-+∞∞上的减函数,求实数

a 的取值范围; 练 习

判断函数的单调性

1.在区间)1,(-∞上为增函数的是: A.)

1(log 21x y --= B.21x y -= C.2)1(+-=x y D.

x x y -=1 2.设),(a -∞是函数

221)(--=x x x f 的反函数的一个单调增区间,则实数a 的

取值范围是 A.2≤a B.2≥a C.2-≤a D.2-≥a

3.下列命题:(1)若)(x f 是增函数,则)(1x f 是减函数;(2)若)(x f 是减函数,

则2)]([x f 是减函数;(3)若)(x f 是增函数,)(x g 是减函数,)]([x f g 有意义,则)]([x f g 为减函数,其中正确的个数有:

A.1

B.2

C.3

D.0

4.2)1(2)(2+-+=x a x x f 在区间(]4,∞-上是减函数,则实数a 的取值范

围是

5.已知函数f (x )=|2-x |+|x |的值随x 值的增大而增大,求x 的取值范围.

6.)(x f 是定义在),0(+∞上的增函数,则不等式)]2(8[)(->x f x f 的解集是

7.已知函数f (x )=13--x , 用函数单调性的定义证明:)(x f 在(-∞,+∞)

上单调递减.

8.讨论函数21)(x x f -=在区间[-1,1]上的单调性,并证明.

9.函数x x x f -+=2)(,求证

)(x f 在]47,(-∞上是增函数. 二次函数的单调性

1. 函数2

2)1()(2-+-+=a x a x x f 在]3,(-∞上是减函数,求a 的取值范围。 2. 函数14)3(2)(2-+-+-=a x a x

x f 在),1[+∞上是减函数求a 的取值范围。 3. 函数b

ax x x f +-=2)(在)1,(-∞上是减函数,在),1(+∞上是增函数,求a 。 4. 函数1)13()(2++-=x m mx

x f 在[-1,2]上是增函数,求m 的取值范围。 5. 已知2)1(2)(2+-+=x a x x f 在)4,(-∞上是减函数,且,0)(>x f 求a 的取值范围。

6.

2)1(2)(2+-+=x a x x f 在区间(]4,∞-上是减函数,则实数a 的取值

范围

7.已知二次函数f (x )的二次项系数为正,且对于任意实数x ,都有f (2-x )=f (x +2),讨论函数f (x )的单调性。

单调性与大小关系

1.如果ax 2+bx +c >0(a ≠0)的解集为{x |x <-2或x >4},设f (x )=ax 2+bx +c ,试比较f (-1),f (2),f (5)的大小.

2.比较大小:)0,.(,>>++m b a m b m a b a

3.设10<-=m a x m y 都是正数,则a 的范围是:

A.0≤a

B.0

C.1≤a

D.1>a

4.)(x f 是定义在),0(+∞上的增函数,则不等式)]2(8[)(->x f x f 的解集是

5.)(x f 是定义在R 上增函数,且满足)()()(y f x f y x f -=

(1)求)1(f 的值; (2)若1)6(=f ,解不等式2)1()3(<-+x f x f

高一数学 函数单调性讲解

高中数学必修一函数——单调性 考纲解读: 了解单调函数及单调区间的意义,掌握判断函数单调性的方法;掌握增,减函数的意义,理解函数单调函数的性质。 能力解读:函数单调性的判断和函数单调性的应用。利用函数单调性判断方法来判断函数的单调性,利用函数的单调性求解函数的最值问题。掌握并熟悉抽象函数以及符合函数的单调性判断方法。 知识要点: 1.函数单调性的定义, 2.证明函数单调性; 3.求函数的单调区间 4.利用函数单调性解决一些问题; 5.抽象函数与函数单调性结合运用 一、单调性的定义 (1)设函数)(x f y =的定义域为A ,区间A I ? 如果对于区间I 内的任意两个值1x ,2x ,当21x x <时,都有)()(21x f x f <,那么就说 )(x f y =在区间I 上是单调增函数,I 称为)(x f y =的单调增区间 如果对于区间I 内的任意两个值1x ,2x ,当21x x <时,都有)()(21x f x f >,那么就说 )(x f y =在区间I 上是单调减函数,I 称为)(x f y =的单调减区间 (2)设函数)(x f y =的定义域为A 如果存在定值A x ∈0,使得对于任意A x ∈,有)()(0x f x f ≤恒成立,那么称)(0x f 为 )(x f y =的最大值; 如果存在定值A x ∈0,使得对于任意A x ∈,有)()(0x f x f ≥恒成立,那么称)(0x f 为 )(x f y =的最小值。 二、函数单调性的证明 重点:函数的单调性只能在函数的定义域内来讨论,所以求函数的单调区间,必须 先求函数的定义域; (1)定义法求单调性 函数单调性定义中的1x ,2x 有三个特征:一是任意性;二是大小,即 )(2121x x x x <<;三是同属于一个单调区间,三者缺一不可;

《解函数的单调性时需注意的几个概念》

解函数的单调性时需注意的几个概念 函数的单调性是函数的一个很重要的性质,也是历年高考命题的重点。但是不少同学由于对概念认识不足,审题不清,在解答这类题时容易出现错解。下面对做这类题时需注意的事项加以说明,以引起同学们的重视。 一、应用定义证明,要注意步骤的严密性 例1. 证明函数f x x ()=-+31在R 上是减函数。 解:任取x x R 12,∈,且x x 12<,则 f x f x x x x x ()()()()121323231 311-=-+--+=- =-++()()x x x x x x 21222112 ∵x x x x x x x x x 1222121212222234 0<++=++>,() ∴x x f x f x f x f x 21121200->->>,,即()()()() ∴函数f x x ()=-+31在R 上是减函数。 提示:有的同学证明时,没有说明x x x x x x x 12122212222234 0++=++>(),就直接说f x f x ()()12>,这个过程不能省。 二、对函数单调性的概念理解不正确 例2. 若αβππ,,∈()2 ,且tan α<cot β,则有( ) A. αβπ+> 2 B. αβπ+<2 C. αβπ+<32 D.αβπ+>32 错解:因为tan tan()απ β<-2,所以απ β<-2,故选B 。 剖析:∵βππ∈()2 ,

∴π βπ 220-∈-(),。显然,απ β,2-不在同一单调区间,故此时不能使用 函数的单调性。 正确解法:∵βππ∈()2 , ∴322πβππ-∈(),,由题意知,tan tan()απβ<-32,又y x =tan 在()ππ2,上单调递增,故选C 。 三、研究函数的单调性千万不要忘记函数的定义域 例3. 函数y x x =--lg()223的单调递增区间是( ) A. [)1,+∞ B. (3,+∞) C. (-∞,1] D. (-∞,-1) 错解:∵令t x x x x =--=-->2223141(),时,t 为增函数,而y =lgt 在t ∈+∞()0,上是增函数, ∴函数y x x =--lg()223的单调增区间是[1,+∞)。故选A 。 剖析:此题除注意两个函数的单调性外,函数的定义域也不要忘记。 正确解法:此函数的定义域为(-∞,-1) ()3,+∞。 令t x x x x =--=--∈-∞-+∞22231413()()(),,, ∵y =lgt 在t ∈+∞()0,上是增函数,t x x x =--=--222314(),而x ∈-∞-+∞()(),,13 的单调增区间为(3,+∞), ∴选B 。 例4. 已知函数f x x x x ()sin ()=+∈-511,,,如果f a f a ()()1102-+-<,则实数a 的取值范围是__________。 错解:由题意知f(x)是奇函数且在(-1,1)上单调递增,又由 f a f a ()()1102-+-<, 得f a f a f a ()()()11122-<--=-,因此,112-<-a a ,即a >1或a <-2。 剖析:忽略了复合函数的定义域,从而导致解题错误。 正确解法:由题意知f(x)是奇函数且在(-1,1)上单调递增,又由

专题5 导数的应用-含参函数的单调性讨论(答案)

〖专题5〗导数的应用—含参函数的单调性讨论 “含参数函数的单调性讨论问题”是近年来高考考查的一个常考内容,也是我们高考复习的重点.从这几年来的高考试题来看,含参数函数的单调性讨论常常出现在研究函数的单调性、极值以及最值中,因此在高考复习中更应引起我们的重视. 一、思想方法: 上为常函数 在区间时上为减函数在区间时上为增函数在区间时和增区间为和增区间为D x f x f D x D x f x f D x D x f x f D x D C x f D C x x f B A x f B A x x f )(0)(')(0)(')(0)('...,)(...0)('...,)(...0)('?=∈?<∈?>∈?∈? 讨论函数的单调区间可化归为求解导函数正或负的相应不等式问题的讨论. 二、典例讲解 [典例1]讨论x a x x f + =)(的单调性,求其单调区间. 解:x a x x f + =)(的定义域为),0()0,(+∞-∞ )0(1)('2 22≠-=-=x x a x x a x f (它与a x x g -=2 )(同号) I )当0≤a 时,)0(0)('≠>x x f 恒成立, 此时)(x f 在)0,(-∞和),0(+∞都是单调增函数, 即)(x f 的增区间是)0,(-∞和),0(+∞; II) 当0>a 时 a x a x x x f > -或)0(0)(' a x x a x x f <<<<-?≠<00)0(0)('或 此时)(x f 在),(a --∞和),(+∞a 都是单调增函数, )(x f 在)0,(a -和),0(a 都是单调减函数, 即)(x f 的增区间为),(a --∞和),(+∞a ; )(x f 的减区间为)0,(a -和),0(a . 步骤小结:1、先求函数的定义域, 2、求导函数(化为乘除分解式,便于讨论正负), 3、先讨论只有一种单调区间的(导函数同号的)情况, 4、再讨论有增有减的情况(导函数有正有负,以其零点分界), 5、注意函数的断点,不连续的同类单调区间不要合并. [变式练习1]讨论x a x x f ln )(+=的单调性,求其单调区间.

2函数的单调性及其应用高三复习专题

函数的单调性 1.单调性与单调区间: 例1.下列函数中,满足“对任意1x ,2x ∈(0,+∞),当1x <2x 时,都有1()f x >2()f x ”的是( ) A .()f x =1x B .()f x =2(1)x - C .()f x =x e D .()ln(1)f x x =+ 演变1.给定函数:①1 2y x =,②12 log (1)y x =+,③|1|y x =-,④12x y +=,其中在区间 (0,1)上单调递减的函数序号是( ) A .①② B .②③ C .③④ D .①④ 例2.函数2()21 x f x x -= -的单调区间为__________ 演变1.函数25---=a x x y 在),1(+∞-上单调递增,则a 的取值范围是__________ 例3.函数267)(x x x f --=的单调递增区间为__________ 演变1. 函数()f x =__________ 例4.函数2()2||3f x x x =--的单调递增区间为__________ 演变1.函数|32|)(2--=x x x f 的单调递增区间为__________ 2.利用单调性求参数范围: 例1.已知函数2)1(22+-+=x a x y 在)4,(-∞上是减函数,则实数a 的取值范围是_______ 演变1.若ax x x f 2)(2+-=与1 )(+=x a x g 在区间[1,2]上都是减函数,则a 的取值范围是__________ 例2.已知函数(31)4(1)()log (1)a a x a x f x x x -+

函数的单调性 知识点与题型归纳

1.理解函数的单调性、最大值、最小值及其几何意义. 2.会运用基本初等函数的图象分析函数的性质. ★备考知考情 1.函数的单调性是函数的一个重要性质,是高考的热点,常见问题有:求单调区间,判断函数的单调性,求参数的取值,利用函数单调性比较数的大小,以及解不等式等.客观题主要考查函数的单调性,最值的确定与简单应用. 2.题型多以选择题、填空题的形式出现,若与导数交汇命题,则以解答题的形式出现. 一、知识梳理《名师一号》P15 注意: 研究函数单调性必须先求函数的定义域, 函数的单调区间是定义域的子集 单调区间不能并! 知识点一函数的单调性 1.单调函数的定义 1

2 2.单调性、单调区间的定义 若函数f (x )在区间D 上是增函数或减函数,则称函数f (x )在这一区间上具有(严格的)单调性,区间D 叫做f (x )的单调区间. 注意: 1、《名师一号》P16 问题探究 问题1 关于函数单调性的定义应注意哪些问题? (1)定义中x 1,x 2具有任意性,不能是规定的特定值. (2)函数的单调区间必须是定义域的子集; (3)定义的两种变式: 设任意x 1,x 2∈[a ,b ]且x 1-f x f x x x ? f (x )在[a ,b ]上是增函数;

3 1212 ()() 0-<-f x f x x x ? f (x )在[a ,b ]上是减函数. ②(x 1-x 2)[f (x 1)-f (x 2)]>0?f (x )在[a ,b ]上是增函数; (x 1-x 2)[f (x 1)-f (x 2)]<0?f (x )在[a ,b ]上是减函数. 2、《名师一号》P16 问题探究 问题2 单调区间的表示注意哪些问题? 单调区间只能用区间表示,不能用集合或不等式表示; 如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结. 知识点二 单调性的证明方法:定义法及导数法 《名师一号》P16 高频考点 例1 规律方法 (1) 定义法: 利用定义证明函数单调性的一般步骤是: ①任取x 1、x 2∈D ,且x 10,则f (x )在区间D 内为增函数;如果f ′(x )<0,则f (x )在区间D 内为减函数. 注意:(补充) (1)若使得f ′(x )=0的x 的值只有有限个,

高一数学函数单调性的定义图象及应用

函数的单调性习题 一. 选择题: 1.函数1 1 --=x y 的单调区间是 ( ) ),.(+∞-∞A )0,.(-∞B ),1(),1,.(+∞-∞C ()+∞-∞,1)1,.(Y D 2.如果函数)(x f 在],[b a 上是增函数,那么对于任意的)(],,[,2121x x b a x x ≠∈,下列结论中不正确的是 ( ) 0) ()(. 2 121>--x x x f x f A 0)]()()[.(2121>--x f x f x x B )()()()(.21b f x f x f a f C <<< 0) ()(. 121 2>--x f x f x x D 3.函数2)1(2)(2+-+=x a x x f 在区间]4,(-∞上单调递减,则a 的取值范围是( ) ),3.[+∞-A ]3,.(--∞B ]5,.(-∞C ),3[+∞ 4.函数2 1 )(++= x ax x f 在区间),2(+∞-上单调递增,则a 的取值范围是( ) )21,0.(A ),1()1,.(+∞--∞Y B ),2 1 .(+∞C ),2.(+∞-D 5.函数)2(,2 3 -≠+=x x y 在区间]5,0[上的最大值、最小值分别是( ) 0,73.A 0,23.B 73,23.C .D 最大值7 3 ,无最小值。 6.函数23)(2++=x x x f 在区间)5,5(+-上的最大值、最小值分别是( ) 12,42.A 41,42.-B 41,12.-C D 最小值4 1 -,无最大值。 7.下列命题正确的是 ( ) A 定义在),(b a 上的函数)(x f ,若存在),(21b a x x ∈,使得21x x <时有 )()(21x f x f <,那么)(x f 在),(b a 上为增函数。 B 定义在),(b a 上的函数)(x f ,若有无穷多对),(21b a x x ∈,使得21x x <时有 )()(21x f x f <,那么)(x f 在),(b a 上为增函数。 C 若)(x f 在区间1I 上为增函数,在区间2I 上也为增函数,那么)(x f 在21I I Y 上也一定为增函数, D 若在)(x f 区间I 上为增函数且),(),()(2121I x x x f x f ∈<,那么21x x <。 8.设),(),,(d c b a 都是)(x f 的单调增区间,且),(),,(21d c x b a x ∈∈21x x <,则)(1x f 与)(2x f 的大小关系为 ( ) )()(.21x f x f A < )()(.21x f x f B > )()(.21x f x f C = D 不能确定 9.考察函数:①x y =;②x x y =;③x x y 2 -=;④x x x y +=。其中在)0,(-∞上 为增函数的有( ) .A ①② B 。②③ C 。③④ .D ①④ 10.已知函数32)(2+-=x x x f 在闭区间],0[m 上有最大值3,最小值2,则m 的取值范围是( ) ),1.[+∞A ]2,0.[B ]2,.(--∞C ]2,1.[D 二. 填空题: 1. 函数x y -=在),[+∞a 上是减函数,则a 的取值范围是 2. 函数x x y 1 2- =的单调递增区间是 3. 函数562+-=x x y 的单调增区间是 4. 已知函数)(x f 在区间),0(+∞上是减函数,那么)1(2+-a a f 与)4 3 (f 的大小关 系为 5. 函数245x x y --=的单调递增区间是

函数的基本性质——单调性与最大(小)值

函数的基本性质——单调性与最大(小)值 【教学目标】 1.知识与技能:了解单调函数、单调区间的概念:能说出单调函数、单调区间这两个概念的大致意思 2.过程与方法:理解函数单调性的概念:能用自已的语言表述概念;并能根据函数的图象指出单调性、写出单调区间 3.情感、态度与价值观:掌握运用函数的单调性定义解决一类具体问题:能运用函数的单调性定义证明简单函数的单调性 【教学重难点】 教学重点:函数的单调性的概念。 教学难点:利用函数单调的定义证明具体函数的单调性 【教学过程】 一、复习引入。 1 分别画函数2x y =和3x y =的图象。2 x y =的图象如图1,3x y =的图象如图2. 2.引入:从函数2x y = 的图象(图1)看到: 图象在y 轴的右侧部分是上升的,也就是说,当x 在区间[0,+∞)上取值时,随着x 的增大,相应的y 值也随着增大,即如果取21,x x ∈[0,+∞),得到1y =)(1x f ,2y =)(2x f ,那么当 1x <2x 时,有1y <2y 。 这时我们就说函数y =)(x f =2x 在[0,+∞)上是增函数。图象在y 侧部分是下降的,也就是说,当x 在区间(-∞,0)上取值时,随着x 的增大,相应的y 值反而随着减小,即如果取21,x x ∈(-∞,0),得到1y =)(1x f , 2y =)(2x f ,那么当1x <2x 时,有1y >2y 。

这时我们就说函数y =)(x f =2x 在(-∞,0)上是减函数。函数的这两个性质,就是今天我们要学习讨论的。 二、讲解新课。 1.增函数与减函数。 定义:对于函数)(x f 的定义域I 内某个区间上的任意两个自变量的值 21,x x ,(1)若当1x <2x 时,都有)(1x f <)(2x f ,则说)(x f 在这个区间上是 增函数(如图3);(2)若当1x <2x 时,都有)(1x f >)(2x f ,则说)(x f 在这个区间上是减函数(如图4)。 说明:函数是增函数还是减函数,是对定义域内某个区间而言的。有的函数在一些区间上是增函数,而在另一些区间上不是增函数。例如函数2 x y =(图1),当x ∈[0,+∞)时是增 函数,当x ∈(-∞,0)时是减函数。 2.单调性与单调区间。 若函数y=f (x )在某个区间是增函数或减函数,则就说函数)(x f 在这一区间具有(严格的)单调性,这一区间叫做函数)(x f 的单调区间。此时也说函数是这一区间上的单调函数。 在单调区间上,增函数的图象是上升的,减函数的图象是下降的。 说明:(1)函数的单调区间是其定义域的子集; (2)应是该区间内任意的两个实数,忽略需要任意取值这个条件,就不能保证函数是增函数(或减函数),例如,图5中,在21,x x 那样的特定位置上,虽然使得)(1x f >)(2x f , (3)除了严格单调函数外,还有不严格单调函数,它的定义类似上述的定义,只要将上述定义中的“)(1x f <)(2x f 或)(1x f >)(2x f ,”改为“)(1x f )(2x f 或) (1x f ≥ )(2x f ,”即可; (4)定义的内涵与外延: 内涵是用自变量的大小变化来刻划函数值的变化情况; 外延①一般规律:自变量的变化与函数值的变化一致时是单调递增,自变量的变化与函数值的变化相对时是单调递减。 ②几何特征:在自变量取值区间上,若单调函数的图象上升,则为增函数,图象下降则为减函数。 三、讲解例题。

函数单调性的应用毕业论文

安阳师范学院人文管理学院 本科毕业论文(设计) 学号: 函数单调性的应用 系别 专业 班级 姓名 指导教师 2013年5月8日

摘要 函数单调性是函数的重要性质之一,同时也是解决实际问题求最值的重要方法。本课题从函数单调性的概念与定义入手,主要介绍函数单调性的若干性质和判别方法,然后深入探讨和总结单调性在数学领域的相关应用,继而联系实际,分析单调性在解决实际问题中的重要作用,从而总结出函数单调性所适用的条件,应用的围等。所以,无论是从研究教学来讲,还是实际应用来讲,研究函数的单调性都具有重要理论意义和现实意义。 关键词:函数单调性,判别,导数,应用 Abstract Monotonic function not only is one of the important natures of the function , but also is an important method for the practical problems. This project plan to start with the concept and definition of the function monotonicity, mainly introduces some properties of monotone functions and discriminant methods, and then further discussed and summarized monotonic related applications in the field of mathematics, and then contact with practice, analysis what’s the important role of monotonic in solving practical problems, thus summed the conditions applied, the application scope and so on. So, whether it is from research and teaching, or from its practical application, monotonicity also has important theoretical and practical significance. Keywords:Monotonic function,Distinguish,Derivative,Application

用函数单调性定义证明

用函数单调性定义证明 例1、用函数单调性定义证明: (1)为常数)在上是增函数. (2)在上是减函数. 分析:虽然两个函数均为含有字母系数的函数,但字母对于函数的单调性并没有影响,故无须讨论. 证明: (1)设是上的任意两个实数,且, 则 = 由得,由得, . ,,即 . 于是即 . 在上是增函数. (2) 设是上的任意两个实数,且, 则 由得,由得

.又 , . 于是 即 . 在 上是减函数. 小结:由(1)中所得结论可知二次函数的单调区间只与对称轴的位置和开口方向有关,与常数 无关.若函数解析式是分式,通常变形时需要通分,将分子、分母都化成乘积的形式便于判断符号. 根据单调性确定参数 例1、函数 在 上是减函数,求 的取值集合. 分析:首先需要对 前面的系数进行分类讨论,确定函数的类型,再做进一步研究. 解:当 时,函数此时为 ,是常数函数,在 上不 具备增减性. 当 时, 为一次函数,若在 上是减函数,则有 ,解得 .故所求 的取值集合为 . 小结:此题虽比较简单,但渗透了对分类讨论的认识与使用. 例1、 设函数ax x x f -+=1)(2,其中0>a ,求a 的取值范围,使函数)(x f 在 区间[]+∞,0上是单调函数. 分析:由于函数的单调性不易直接判断,而且含有字母系数,求解过程中需要讨论字母的范围,因此可以从单调性定义出发,从定义求解释一种基本的方法,不可忽视. 解: 在[]+∞,0上任取1x ,2x ,使得21x x < )()(21x f x f -

)(11212 221x x a x x --+-+= )(1 12122 212 2 21x x a x x x x --+++-= )1 1)( (22 21 2121a x x x x x x -++++-= (Ⅰ)当1≥a 时,因为11 122 21 21<++++x x x x , 01 122 21 21<-++++a x x x x ,又 021<-x x , 所以0)()(21>-x f x f ,即)()(21x f x f > 所以当1≥a 时,函数)(x f 在区间[]+∞,0上是单调递减函数 (Ⅱ)当10<

函数单调性的应用

函数单调性的应用 一、比较大小 例1 若函数f (x )=x 2+mx +n ,对任意实数x 都有f (2-x )=f (2+x )成立,试比较f (-1),f (2),f (4)的大小. 解 依题意可知f (x )的对称轴为x =2, ∴f (-1)=f (5). ∵f (x )在[2,+∞)上是增函数, ∴f (2)

(3)利用单调性解不等式时,一定要注意变量的限制条件,以防出错. 三、求参数的值或取值范围 例3 已知a>0,函数f(x)=x3-ax是区间[1,+∞)上的单调函数,求实数a的取值范围. 解任取x1,x2∈[1,+∞),且x10. Δy=f(x2)-f(x1)=(x32-ax2)-(x31-ax1) =(x2-x1)(x21+x1x2+x22-a). ∵1≤x13. 显然不存在常数a,使(x21+x1x2+x22-a)恒为负值. 又f(x)在[1,+∞)上是单调函数, ∴必有一个常数a,使x21+x1x2+x22-a恒为正数, 即x21+x1x2+x22>a. 当x1,x2∈[1,+∞)时,x21+x1x2+x22>3, ∴a≤3.此时,∵Δx=x2-x1>0,∴Δy>0, 即函数f(x)在[1,+∞)上是增函数, ∴a的取值范围是(0,3]. 四、利用函数单调性求函数的最值 例4 已知函数f(x)=x2+2x+a x,x∈[1,+∞). (1)当a=4时,求f(x)的最小值;

函数单调性的判定方法

函数单调性的判定方法 1.判断具体函数单调性的方法 对于给出具体解析式的函数,由函数单调性的定义出发,本文列举的判断函数单调性的方法有如下几种: 1.1 定义法 首先我们给出单调函数的定义。一般地,设f 为定义在D 上的函数。若对任何1x 、 D x ∈2,当21x x <时,总有 (1))()(21x f x f ≤,则称f 为D 上的增函数,特别当成立严格不等)()(21x f x f <时,称f 为D 上的严格增函数; (2))()(21x f x f ≥,则称f 为D 上的减函数,特别当成立严格不等式)()(21x f x f > 时,称f 为D 上的严格减函数。 给出函数单调性的定义,我们就可以利用函数单调性的定义来判定及证明函数的单调性。用单调性的定义判断函数单调性的方法叫定义法。利用定义来证明函数 )(x f y =在给定区间D 上的单调性的一般步骤: (1)设元,任取1x ,D x ∈2且21x x <; (2)作差)()(21x f x f -; (3)变形(普遍是因式分解和配方); (4)断号(即判断)()(21x f x f -差与0的大小); (5)定论(即指出函数 )(x f 在给定的区间D 上的单调性)。 例1.用定义证明)()(3R a a x x f ∈+-=在),(+∞-∞上是减函数。 证明:设1x ,),(2+∞-∞∈x ,且21x x <,则

).)(()()()(212 221123132323121x x x x x x x x a x a x x f x f ++-=-=+--+-=- 由于04 3)2(2 2221212221>++ =++x x x x x x x ,012>-x x 则0))(()()(212 2211221>++-=-x x x x x x x f x f ,即)()(21x f x f >,所以)(x f 在() +∞∞-,上是减函数。 例2.用定义证明函数x k x x f + =)()0(>k 在),0(+∞上的单调性。 证明:设1x 、),0(2+∞∈x ,且21x x <,则 )()()()(221121x k x x k x x f x f +-+ =-)()(2 121x k x k x x -+-= )( )(211221x x x x k x x -+-=)()(212121x x x x k x x ---=))((2 12121x x k x x x x --=, 又210x x <<所以021<-x x ,021>x x , 当1x 、],0(2k x ∈时021≤-k x x ?0)()(21≥-x f x f ,此时函数)(x f 为减函数; 当1x 、),(2+∞∈k x 时021>-k x x ?0)()(21<-x f x f ,此时函数)(x f 为增函数。 综上函数x k x x f + =)()0(>k 在区间],0(k 内为减函数;在区间),(+∞k 内为增函数。 此题函数)(x f 是一种特殊函数(对号函数),用定义法证明时通常需要进行因式分解,由于k x x -21与0的大小关系)0(>k 不是明确的,因此要分段讨论。 用定义法判定函数单调性比较适用于那种对于定义域内任意两个数21,x x 当 21x x <时,容易得出)(1x f 与)(2x f 大小关系的函数。在解决问题时,定义法是最直 接的方法,也是我们首先考虑的方法,虽说这种方法思路比较清晰,但通常过程比较繁琐。 1.2 函数性质法 函数性质法是用单调函数的性质来判断函数单调性的方法。函数性质法通常与我

函数单调性的应用 教案

《函数单调性的应用》教案 一、教材分析-----教学内容、地位和作用 本课是北师大版新课标普通高中数学必修一第二章第三节《函数的单调性》的内容,该节中内容包括:函数的单调性、函数的最值。总课时安排为3课时,《函数单调性的应用》是本节中的第三课时。 函数的单调性是函数众多性质中的重要性质之一,函数的单调性一节中的知识是今后研究具体函数的单调性理论基础;在解决函数值域、最值,比较两个函数值的大小或自变量的大小、求参变量的取值范围以及解函数不等式等具体问题中均有着广泛的应用;在历年的高考中对函数的单调性的应用考查每年都有涉及;同时在这一节中利用函数图象来研究函数性质的数形结合思想将贯穿于我们整个高中数学教学。 在本节课是以函数的单调性的应用为主线,它始终贯穿于整个课堂教学过程;这是本节课的重点内容。 二、学情分析 教学目标的制定与实现,主要取决于我们对学习者掌握的程度。只有了解学习者原来具有的认知结构,学习者的准备状态,学习风格,情感态度等,我们才能制定合适的教学目标,安排合适的教学活动与评价标准。不同的教学环境,不同的学习主体有着不同的学习动机和学习特点。 我所教授的班级的学生具体学情具体到我们班级学生而言有以下特点:学习习惯不太好,需要不断的引导和规范;数学基本功不太扎实,演算不能做到又准又快;独立解决问题能力弱,畏难情绪严重,探索精神不足。只有少部分学生学习习惯良好,学风严谨,思维缜密。 三、教学目标: 根据新课标的要求,以及对教材结构与内容分析,考虑到学生已有的认知结构及心理特征,制定如下教学目标: (一)三维目标 1 知识与技能: (1).会利用函数单调性求最值或值域. (2).会利用函数单调性比较两个函数值或两个自变量的大小. (3).会利用函数单调性求参变量的取值范围. (4).会利用函数单调性解函数不等式. (5) .通过函数单调性应用的教学,逐步培养学生观察、分析、概括与合作能力; 2 过程与方法: (1)通过本节课的学习,通过“数与形”之间的转换,渗透数形结合的数学思想。 (2)通过合作探究活动,明白考虑问题要细致、缜密,说理要严密、明确。 3 情感,态度与价值观:在平等的教学氛围中,通过学生之间、师生之间的交流、合作与评价,拉近学生之间、师生之间的情感距离,培养学生对数学的兴趣。。(二)重点、难点 重点:利用函数单调性求最值或值域,求参变量的取值范围

函数单调性

函数单调性及其应用 1.一元函数单调性及其应用 2.多元函数单调性及其应用 2.1 多元函数单调性的定义 一元函数)(x f y =在某个区间上的单调性,如该区间为),(+∞-∞时,可看成该函数在有向直线x 轴上的单调性;如该区间为[]b a ,或()b a ,时,可以看成该函数在x 轴上的一条有向线段(方向与x 轴正方向相同)上的单调性等等,类似地,可定义二元函数在xoy 面上的一条有向线段,有向直线或射线上的单调性。 定义 设AB 为xoy 面上的一条有向线段,二元函数),(y x f z =在AB 上有定义,对于AB 任意两点21,P P ,设21P P 与AB 同向。 若)()(21P f P f <,则称二元函数),(y x f z =在AB 上单调增加。 若)()(21P f P f >,则称二元函数),(y x f z =在AB 上单调减少。 2.2多元函数单调性的判别法 如果),(y x f u =在点),(y x P 可微,l 的方向余弦是βαcos ,cos ,则),(y x f u =在),(y x P 沿射线l 的方向导数存在,且 βαcos cos y f x f l f ??+??=??。其中l 是),(y x P 出发的一条射线,他的方向向量记作l 由二元函数的中值公式:),(),(0000y x f k y h x f -++ =k h y h x f h k y h x f y x ),(),(0000?+?++?+?+θθθθ 定理 1 设二元函数),(y x f z =在区域I 内连续,有向线段I AB l ?=,且),(y x f z =在),(B A 内每个点处都可微,则在),(B A 内至少存在一点C ,使得 AB l f A f B f C ???=-)()( 其中),(B A 表示有向线段AB 上不包括两个端点的所有点构成的点集。AB 表示AB 的长度,l 是点A 出发的并且经过点B 的一条射线。 定理2 设二元函数),(y x f z =在区域I 内连续,有向线段I AB l ?=,且

对数函数的单调性及其应用

对数函数的单调性及其性质 一、相关内容 1、当01时,指数函数x a y log =在R 上单调递增。 二、基础练习 1、比较下列各组数值的大小 (1)3.37.1和1.28.0 (2)7.03.3和8.04.3 (3)25log ,27log ,23 98 (4)60.70.70.76log 6,, (5)3.0222,3.0log ,3.0===c b a (6)(61)0,2,log 221 ,log 0.523 (7)6.05,56.0,5log 6.0 (8)a=log 0.50.6,b=log 20.5,c=log 35 (9)0.52a =,πlog 3b =,2log 0.5c =

2、选择题 1) 若(0,1)x ∈,则下列结论正确的是( ) A .122lg x x x >> B .122lg x x x >> C .122lg x x x >> D .1 2lg 2x x x >> 2) 若b a ,是任意实数,且b a >,则( ) A 22b a > B 1-b a D b a ??? ??0 B .a 1-a >1 C .log a (1-a )<0 D .(1-a )2>a 2 6) 设2a =5b =m ,且1a +1b =2,则m =( ) A.10 B .10 C .20 D .100 7) 已知log 12b 2a >2c B .2a >2b >2c C .2c >2b >2a D .2c >2a >2b 8) 函数x y a log =当x >2 时恒有y >1,则a 的取值范围是( ) A .1221 ≠≤≤a a 且 B .02121 ≤<≤,函数()log a f x x =在区间[,2]a a 上的最大值与最小值之差为1 2,则a = ( ) A .2 B .2 C .22 D .4 11) 若0,0,1a b ab >>>,12log ln 2a =,则log a b 与a 2 1log 的关系是( ) A .12log log a b a < B .12log log a b a = C .12log log a b a > D .12 log log a b a ≤ 12) 已知函数log (2)a y ax =-在区间[0,1]上是x 的减函数,则a 的取值范围是( ) A .(0,1) B .(1,2) C .(0,2) D .(2,)+∞

函数的单调性的题型分类及解析

函数的单调性 知识点 1、增函数定义、减函数的定义: (1)设函数)(x f y =的定义域为A ,区间M ?A ,如果取区间M 中的任意两个值21,x x ,当改变量012>-=?x x x 时,都有0)()(12>-=?x f x f y ,那么就称函数)(x f y =在区间M 上是增函数,如图(1)当改变量012>-=?x x x 时,都有0)()(12<-=?x f x f y ,那么就称 函 数)(x f y =在区间M 上是减函数,如图(2) 注意:单调性定义中的x 1、x 2有什么特征:函数单调性定义中的x 1,x 2有三个特征,一是任意性,二是有大小,三是同属于一个单调区间. 1、 根据函数的单调性的定义思考:由f (x )是增(减)函数且f (x 1)x 2) 2、我们来比较一下增函数与减函数定义中y x ??,的符号规律,你有什么发现没有? 3、如果将增函数中的“当012>-=?x x x 时,都有0)()(12>-=?x f x f y ”改为当 012<-=?x x x 时,都有0)()(12<-=?x f x f y 结论是否一样呢? 4、定义的另一种表示方法 如果对于定义域I 内某个区间D 上的任意两个自变量x 1,x 2,若 0) ()(2 121>--x x x f x f 即 0>??x y ,则函数y=f(x)是增函数,若0)()(2 121<--x x x f x f 即0

函数的单调性教案课程(优秀)

课题:函数的单调性 授课教师:王青 【教学目标】 1.知识与技能:使学生从形与数两方面理解函数的单调性概念,初步掌握利用 函数图象和单调性定义判断、证明函数的单调性的方法,了解函数单调区间的概念。 2.过程与方法:通过对函数单调性定义的探究,渗透数形结合的数学思想方法, 培养学生的观察、归纳、抽象思维能力。 3.情感态度与价值观:在参与的过程中体验成功的喜悦,感受学习数学的乐趣。【教学重点】函数单调性的概念、判断及证明. 【教学难点】归纳抽象函数单调性的定义以及根据定义证明函数的单调性.【教学方法】教师启发讲授,学生探究学习. 【使用教具】多媒体教学 【教学过程】 一、创设情境,引入课题 1、下图是北京市今年8月8日一天24小时内气温随时间变化的曲线图. 引导学生识图,捕捉信息,启发学生思考. 问题: (1)当天的最高温度、最低温度以及何时达到; (3)哪些时段温度升高?哪些时段温度降低? 在生活中,我们关心很多数据的变化规律,了解这些数据的变化规律,对我们的生活是很有帮助的. 归纳:用函数观点看,其实就是随着自变量的变化,函数值是变大还是变小.〖设计意图〗由生活情境引入新课,激发兴趣.

二、归纳探索,形成概念 对于自变量变化时,函数值是变大还是变小,初中同学们就有了一定的认识,但是没有严格的定义,今天我们的任务首先就是系统地学习这块内容. 1.借助图象,直观感知 问题1:分别作出函数1+=x y ,1+-=x y ,2)(x x f =的图象,并且思考 (1) 函数1+=x y 的图象从左至右是上升还是下降,在区间_____上) (x f 的值随x 的增大而_______ (2) 函数1+-=x y 的图象从左至右是上升还是下降,在区间_____上 )(x f 的值随x 的增大而_______ (3) 函数2)(x x f =在区间_____上,)(x f 的值随x 的增大而增大 (4) 函数2)(x x f =在区间_____上,)(x f 的值随x 的增大而减小 〖设计意图〗从图象直观感知函数单调性,完成对函数单调性的第一次认识. 2.抽象思维,形成概念 问题:你能用数学符号语言描述第(3)(4)题吗? 任取2121),,0[,x x x x <+∞∈且,因为0))((21212 221<-+=-x x x x x x ,即2 221x x <,所以()()21x f x f > 任意的x 1,x 2∈(0-,∞),x 1 任意的x 1,x 2∈(0-,∞),x 1

相关主题