搜档网
当前位置:搜档网 › 硬盘基本知识(磁道、扇区、柱面、磁头数、簇、MBR)

硬盘基本知识(磁道、扇区、柱面、磁头数、簇、MBR)

硬盘基本知识(磁道、扇区、柱面、磁头数、簇、MBR)
硬盘基本知识(磁道、扇区、柱面、磁头数、簇、MBR)

硬盘基本知识(磁道、扇区、柱面、磁头数、簇、MBR、DBR)

2007-11-18 22:20

硬盘的DOS管理结构

1.磁道,扇区,柱面和磁头数

硬盘最基本的组成部分是由坚硬金属材料制成的涂以磁性介质的盘片,不同容量硬盘的盘片数不等。每个盘片有两面,都可记录信息。盘片被分成许多扇形的区域,每个区域叫一个扇区,每个扇区可存储128×2的N次方(N=0.1.2.3)字节信息。在DOS中每扇区是128×2的2次方=512字节,盘片表面上以盘片中心为圆心,不同半径的同心圆称为磁道。硬盘中,不同盘片相同半径的磁道所组成的圆柱称为柱面。磁道与柱面都是表示不同半径的圆,在许多场合,磁道和柱面可以互换使用,我们知道,每个磁盘有两个面,每个面都有一个磁头,习惯用磁头号来区分。扇区,磁道(或柱面)和磁头数构成了硬盘结构的基本参数,帮这些参数可以得到硬盘的容量,基计算公式为:

存储容量=磁头数×磁道(柱面)数×每道扇区数×每扇区字节数

要点:(1)硬盘有数个盘片,每盘片两个面,每个面一个磁头

(2)盘片被划分为多个扇形区域即扇区

(3)同一盘片不同半径的同心圆为磁道

(4)不同盘片相同半径构成的圆柱面即柱面

(5)公式:存储容量=磁头数×磁道(柱面)数×每道扇区数×每扇区字节数

(6)信息记录可表示为:××磁道(柱面),××磁头,××扇区

2.簇

“簇”是DOS进行分配的最小单位。当创建一个很小的文件时,如是一个字节,则它在磁盘上并不是只占一个字节的空间,而是占有整个一簇。DOS视不同的存储介质(如软盘,硬盘),不同容量的硬盘,簇的大小也不一样。簇的大小可在称为磁盘参数块(BPB)中获取。簇的概念仅适用于数据区。

本点:(1)“簇”是DOS进行分配的最小单位。

(2)不同的存储介质,不同容量的硬盘,不同的DOS版本,簇的大小也不一样。

(3)簇的概念仅适用于数据区。

3.扇区编号定义:绝对扇区与DOS扇区

由前面介绍可知,我们可以用柱面/磁头/扇区来唯一定位磁盘上每一个区域,或是说柱面/磁头/扇区与磁盘上每一个扇区有一一对应关系,通常DOS将“柱面/磁头/扇区”这样表示法称为“绝对扇区”表示法。但DOS不能直接使用绝对扇区进行磁盘上的信息管理,而是用所谓“相对扇区”或“DOS扇区”。“相对扇区”只是一个数字,如柱面140,磁头3,扇区4对应的相对扇区号为2757。该数字与绝对扇区“柱面/磁头/扇区”具有一一对应关系。当使用相对扇区编号时,DOS 是从柱面0,磁头1,扇区1开始(注:柱面0,磁头0,扇区1没有DOS扇区编号,DOS下不能访问,只能调用BIOS访问),第一个DOS扇区编号为0,该磁道上剩余的扇区编号为1到16(设每磁道17个扇区),然后是磁头号为2,柱面为0的17个扇区,形成的DOS扇区号从17到33。直到该柱面的所有磁头。然后再移到柱面1,磁头1,扇区1继续进行DOS扇区的编号,即按扇区号,磁头号,柱面号(磁道号)增长的顺序连续地分配DOS扇区号。

公式:记DH--第一个DOS扇区的磁头号

DC--第一个DOS扇区的柱面号

DS--第一个DOS扇区的扇区号

NS--每磁道扇区数

NH--磁盘总的磁头数

则某扇区(柱面C,磁头H,扇区S)的相对扇区号RS为:

RS=NH×NS×(C-DC)+NS×(H-DH)+(S-DS)

若已知RS,DC,DH,DS,NS和NH则

S=(RS MOD NS)+DS

H=((RS DIV NS)MOD NH)+DH

C=((RS DIV NS)DIV NH)+DC

要点:(1)以柱面/磁头/扇区表示的为绝对扇区又称物理磁盘地址

(2)单一数字表示的为相对扇区或DOS扇区,又称逻辑扇区号

(3)相对扇区与绝对扇区的转换公式

4.DOS磁盘区域的划分

格式化好的硬盘,整个磁盘按所记录数据的作用不同可分为主引导记录(MBR:Main Boot Record),Dos引导记录(DBR:Dos Boot Record),文件分配表(FAT:File Assign Table),根目录(BD:Boot Directory)和数据区。前5个重要信息在磁盘的外磁道上,原因是外圈周长总大于内圈周长,也即外圈存储密度要小些,可靠性高些。

要点:(1)整个硬盘可分为MBR,DBR,FAT,BD和数据区。

(2)MBR,DBR,FAT,和BD位于磁盘外道。

5.MBR

MBR位于硬盘第一个物理扇区(绝对扇区)柱面0,磁头0,扇区1处。由于DOS是由柱面0,磁头1,扇区1开始,故MBR不属于DOS扇区,DOS不能直接访问。MBR中包含硬盘的主引导程序和硬盘分区表。分区表有4个分区记录区。记录区就是记录有关分区信息的一张表。它从主引导记录偏移地址01BEH处连续存放,每个分区记录区占16个字节。

分区表的格式

分区表项的偏移意义占用字节数

00 引导指示符 1B

01 分区引导记录的磁头号 1B

02 分区引导记录的扇区和柱面号 2B

04 系统指示符 1B

05 分区结束磁头号 1B

06 分区结束扇区和柱面号 2B

08 分区前面的扇区数 4B

0C 分区中总的扇区数 4B

4个分区中只能有1个活跃分区,即C盘。标志符是80H在分区表的第一个字节

处。若是00H则表示非活跃分区。例如:

80 01 01 00 0B FE 3F 81 3F 00 00 00 C3 DD 1F 00

00 00 01 82 05 FE BF 0C 02 DE 1F 00 0E 90 61 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

要点:(1)MBR位于硬盘第一个物理扇区柱面0,磁头0,扇区1处。不属于DOS 扇区,

(2)主引导记录分为硬盘的主引导程序和硬盘分区表。

6.DBR

DBR位于柱面0,磁头1,扇区1,即逻辑扇区0。DBR分为两部分:DOS引导程序和BPB(BIOS参数块)。其中DOS引导程序完成DOS系统文件(IO.SYS,MSDOS.SYS)的定位与装载,而BPB用来描述本DOS分区的磁盘信息,BPB位于DBR 偏移0BH处,共13字节。它包含逻辑格式化时使用的参数,可供DOS计算磁盘上的文件分配表,目录区和数据区的起始地址,BPB之后三个字提供物理格式化(低格)时采用的一些参数。引导程序或设备驱动程序根据这些信息将磁盘逻辑地址(DOS扇区号)转换成物理地址(绝对扇区号)。BPB格式

序号偏移地址意义

1 03H-0AH OEM号

2 0BH-0CH 每扇区字节数

3 0DH 每簇扇区数

4 0EH-0FH 保留扇区数

5 10H FAT备份数

6 11H-12H 根目录项数

7 13H-14H 磁盘总扇区数

8 15H 描述介质

9 16H-17H 每FAT扇区数

10 18H-19H 每磁道扇区数

11 1AH-1BH 磁头数

12 1CH-1FH 特殊隐含扇区数

13 20H-23H 总扇区数

14 24H-25H 物理驱动器数

15 26H 扩展引导签证

16 27H-2AH 卷系列号

17 2BH-35H 卷标号

18 36H-3DH 文件系统号

DOS引导记录公式:

文件分配表≡保留扇区数

根目录≡保留扇区数+FAT的个数×每个FAT的扇区数

数据区≡根目录逻辑扇区号+(32×根目录中目录项数+(每扇区字节数-1))DIV每扇区字节数

绝对扇区号≡逻辑扇区号+隐含扇区数

扇区号≡(绝对扇区号MOD每磁道扇区数)+1

磁头号≡(绝对扇区号DIV每磁道扇区数)MOD磁头数

磁道号≡(绝对扇区号DIV每磁道扇区数)DIV磁头数

要点:(1)DBR位于柱面0,磁头1,扇区1,其逻辑扇区号为0

(2)DBR包含DOS引导程序和BPB。

(3)BPB十分重要,由此可算出逻辑地址与物理地址。

7.文件分配表

文件分配表是DOS文件组织结构的主要组成部分。我们知道DOS进行分配的最基本单位是簇。文件分配表是反映硬盘上所有簇的使用情况,通过查文件分配表可以得知任一簇的使用情况。DOS在给一个文件分配空间时总先扫描FAT,找到第一个可用簇,将该空间分配给文件,并将该簇的簇号填到目录的相应段内。即形成了“簇号链”。FAT就是记录文件簇号的一张表。FAT的头两个域为保留域,对FAT12来说是3个字节,FAT来说是4个字节。其中头一个字节是用来描述介质的,其余字节为FFH 。介质格式与BPB相同。

第一个字节的8位意义:

7 6 5 4 3 210

└─────-┘ │ │ │┌0非双面

置1 │ │ └┤

│ │ └1双面

│ │┌0不是8扇区

│ └┤

│ └1是8扇区

│┌0不是可换的

└┤

└1是可换的

FAT结构含义

FAT12 FAT16 意义

000H 0000H 可用

FF0H-FF6H FFF0H-FFF6H 保留

FF7H FFF7H 坏

FF8H-FFFH FFF8H-FFFFH 文件最后一个簇

×××H ××××H 文件下一个簇

对于FAT16,簇号×2作偏移地址,从FAT中取出一字即为FAT中的域。

逻辑扇区号=数据区起始逻辑扇区号+(簇号-2)×每簇扇区数

簇号=(逻辑扇区号-数据区起始逻辑扇区号)DIV每簇扇区数+2

要点:(1)FAT反映硬盘上所有簇的使用情况,它记录了文件在硬盘中具体位置(簇)。

(2)文件第一个簇号(在目录表中)和FAT的该文件的簇号串起来形成文件的“簇号链”,恢复被破坏的文件就是根

据这条链。

(3)由簇号可算逻辑扇区号,反之,由逻辑扇区号也可以算出簇号,公式如上。

(4)FAT位于DBR之后,其DOS扇区号从1开始。

8.文件目录

文件目录是DOS文件组织结构的又一重要组成部分。文件目录分为两类:根目录,子目录。根目录有一个,子目录可以有多个。子目录下还可以有子目录,从而形成“树状”的文件目录结构。子目录其实是一种特殊的文件,DOS为目录项分配32字节。目录项分为三类:文件,子目录(其内容是许多目录项),卷标(只能在根目录,只有一个。目录项中有文件(或子目录,或卷标)的名字,扩展名,属性,生成或最后修改日期,时间,开始簇号,及文件大小。

目录项的格式

字节偏移意义占字节数

00H 文件名 8B

08H 扩展名 3B

0BH 文件属性 1B

0CH 保留 10B

16H 时间 2B

18H 日期 2B

1AH 开始簇号 2B

1CH 文件长度 4B

目录项文件名区域中第一个字节还有特殊的意义:00H代表未使用

05H代表实际名为E5H

EBH代表此文件已被删除

目录项属性区域的这个字节各个位的意义如下:76543210

未修修子卷系隐只

用改改目标统藏读

标标录属属属

志志性性性

注意:WINDOWS的长文件名使用了上表中所说的“保留”这片区域。

要点:(1)文件目录是记录所有文件,子目录名,扩展名属性,建立或删除最后修改日期。文件开始簇号及文件长度的一张

登记表.

(2)DOS中DIR列出的内容训是根据文件目录表得到的。

(3)文件起始簇号填在文件目录中,其余簇都填在FAT中上一簇的位置上。

9.物理驱动器与逻辑驱动器

物理驱动器指实际安装的驱动器。

逻辑驱动器是对物理驱动器格式化后产生的。

ai更换硬盘方法

当主机硬盘丢失 #lsvg -lp rootvg 结果 rootvg: PV_NAME PV STATE TOTAL PPs FREE PPs FREE DISTRIBUTION hdisk0 active 542 0 00..00..00..00..00 hdisk1 missing 542 0 00..00..00..00..00 #chpv -va hdisk1 看看能不能找回来 如果找不回来,则必须尽早予以跟换,跟换前必须做好备份! 先查看机器是否有磁带机,若无则 1、外置磁带机连接 #cfgmgr -v #lsdev -Cc tape 看一下 rmt0是不是avaiable 2、内置磁带机则直接备份 #smitty mksysb 3、查看硬盘的S/N,P/N号 #lscfg –vl hdisk* 查看物理卷 lspv 查看逻辑卷组 lsvg 查看在用的逻辑卷组 lsvg –o # lsvg -o

#sysdumpdev –l 4、查看所有硬盘(包括逻辑盘)的状态 # lsdev -Cc disk 查看7133磁盘柜硬盘状态 #lsdev –Cc pdisk 5、把HDISK0从ROOTVG中不做MIRROW #unmirrorvg rootvg hdisk0 (长时间40分钟) 查看物理卷 #lspv 这时HDISK0不在和HDISK1为MIRROR 把hdisk0从rootvg中去除 #reducevg rootvg hdisk0 (长时间0分2钟) 在HDISK1上创建boot image #bosboot –ad hdisk1 改变启动设备的顺序 #bootlist –m normal hdisk1 cd0 删除HDISK0 #rmdev –l hdisk0 –d #lspv #lscfg –vl hdisk0 以上2条命令不会显示HDISK0的相关信息 (如果无法unmirrorvg 和 rmdev 的话,就只能直接关机换盘了。) 6、关机后将对应的硬盘予以跟换,如果是热插拔的则可以热跟换。#shutdown –F 7、开机

双机热备ServHA 镜像集群节点更换操作教程

ServHA镜像集群节点更换(或重新连入)操作手册一、手册目的 本手册介绍ServHA镜像集群的节点更换、节点重新连入的操作步骤,当用户部分硬件损坏、系统及其应用重新安装导致的原有集群配置丢失时,可按照本手册操作步骤对集群进行恢复。 注:如严格按照本手册操作,可以在集群对外服务不中断的情况下将重新连入的节点加入集群。 手册中我们假定原有集群中一台服务器的集群配置完全丢失(同时其应用也均未安装,如更换了硬盘、重新安装了操作系统),下文中这台配置丢失的服务器我们称之为“新节点”(因为其配置完全丢失,在集群看来,这完全是一个全新的节点),原有的正常服务的主机我们称之为“原节点”。 本手册前提为:新节点完全与集群脱离关系,原节点还在受集群管理,集群对外服务正常,只是新节点在集群看来已经完全离线。 (我们以一次MySQL镜像集群恢复全过程作为例子,至于其他应用其原理与操作步骤都与此例相同。) 二、配置前准备工作 首先镜像集群中目前对外正在服务,所以新节点连入时,其业务数据必须以原节点为准,在配置前,必须在新节点划分出一个大于等于原节点镜像盘空间的分区,这个分区作为新节点的镜像盘,这样才能在不损失数据(数据是以原节点镜像盘为准的)的同时将新节点连入镜像集群,这点非常重要。同时记得将新节点的IP地址等还原为离线前的状态(即设置新节点的IP地址为之前集群中离线节点的IP地址)。

在新节点完全脱离集群后,集群工作状态如下图(配置监控端):(此例中节点192.168.1.91 为新节点、192.168.1.92为原节点)双机连接状态 资源树状态,此时原节点正常对外服务(即192.168.1.92) 镜像包状态

自己动手更换硬盘磁头恢复数据

自己动手更换硬盘磁头恢复数据 页面 1 共 6 磁头故障对于硬盘上的数据来说无疑是一个噩梦,但是通过更换磁头来恢复 数据也绝不是那么神秘。就更换磁头这一方法来说,不仅需要洁净的环境, 还需要工程师具有一定的知识基础和经验技巧。这项工作似乎看起来很有 趣,不过,如果确实需要恢复硬盘上的数据,还是应该依靠专业的数据恢复 机构。 E 目的: 演示Maxtor d540x-4k020h1 (20GB 5400 RPM,单碟)更换磁头的方法。 警告/免责声明: 1) 如果使用本文的方法造成的损坏,本人不承担责任。所有风险应该由你自己承担。打开硬盘后你的硬盘的质保将失效! 成功的可能性是未知的,你读完本文后你会了解这一个工作的可行性。如果你有损坏的硬盘并且想卖掉,请联系我。 谢谢。 2)打开硬盘的盘体会对硬盘上的数据造成永久的损坏。 3)永磁体的姿态不能改变。在卸下上磁铁之前应记住它原来的位置。 问题描述: 我的一个开公司的朋友的硬盘上保存有大量的数据。他的一台Dell计算机在使用了仅一年,而且他从来没有备份那台计算机上的数据。 无须多言,他的硬盘突然损坏了。经过仔细观察,我发现那块硬盘在加电后没有起转。 似乎硬盘的电路板损坏了,或者主轴电机烧毁了。 硬盘上的数据并不是非常重要,只是想尽可能的进行恢复。他的公司负担不起专业数据恢复公司的服务报价--通常是$1500 到$5000 美元。他决定如果不能找到便宜的解决方案的话,就放弃他的数据。 我决定接受这一挑战;我知道即使失败那么事情也不会变的更糟。 困难: 我首先检查硬盘的电路板,看是否有明显的损坏(比如,烧痕)。但是并没有什么发现;我记起当硬盘加电后,硬盘有一丝抖动,所以主轴电机上应该是有电压的--至少在最开始的几秒钟。 如果主轴电机上有电压,而且它试图启动然后又停止,说明主轴电机或者是卡住了,或者是电压不足。我快速的打开硬盘的盘体,发现主轴电机并没有被卡住。 然后我合上硬盘的盘体,开始检查硬盘的电路板。我移开电路板逐个的用绝缘胶带盖住电路板和盘体之间的触点。

GHOST全盘镜像制作(全盘备份)教程

GHOST全盘镜像制作(全盘备份)教程. 首先您必须准备两个硬盘. 硬盘1为源硬盘也就是您要备份至其它硬盘的主硬盘.以下简称为源盘 硬盘2用来存放备份硬盘1镜像的磁盘.以下简称为目标盘. 注意事项: 创建全盘镜像时建议使用GHOST 8.2或以前版本,不建议使用GHOST 8.3,容易引起制作后出现“不是有效镜像”或制作成功后硬盘空间被占用了而找不到备份的镜像问题。 目标盘容量至少需要跟源盘一样大,或者更大。 目标盘用来存放镜像的分区容量至少需要跟源盘一样大,或者更大。 目标盘分区格式建议使用FAT32分区,如果在WINDOWS下不能分超过32G的FAT32分区,建议在MAXDOS下使用DISKGEN。或其它DOS下分区软件如:DM,GDISK,SPFDISK 等,可以支持分出无限大小的FAT32分区。 如果使用NTFS分区格式,经常会出现镜像制作成功后硬盘空间被占用了而找不到备份的镜像问题。 如果出现镜像制作成功后硬盘空间被占用了而找不到备份的镜像问题,请参见此https://www.sodocs.net/doc/4913048302.html,/bbs/read.php?tid=23699 进入正题,首先将目标盘安装到主板的IDE2接口上(请一定要注意,否则后果很严重,主板上有标),然后将目标盘整个硬盘分为一个区. 启动系统后进入MAXDOS,输入DISKGEN 后回车.出现DISKGEN菜单后如下图: 图1:

按键盘上的ALT+D (如果不熟悉键盘操作,请在运行DISKGEN前运行MOUSE加载鼠标驱动),选择“第2硬盘”回车。使用键盘上的TAB键切换至左边的圆柱形容量图上,切换过去后圆柱形容量图边框会有红色线,请注意观看。如果存在其它分区请先将这些分区删除。(请此确认此硬盘的资料已经备份)使用光标↑↓切换选择存在的分区,按DEL键将存在的分区一个一个删除。删除完毕后,再按F8存盘。 接下来在开始分区,切换到圆柱形容量图,按回车,创建新分区,出现“请输入新分区的大小”如下图 图2:

WD硬盘盘片划伤成“环形跑道”的数据恢复之换磁头

WD硬盘盘片划伤成“环形跑道”的数据恢复之换磁头 磁头,指的是通过电磁性原理读取磁性介质上数据的部件。常见的磁头包括硬盘磁头、磁带录音机磁头等。硬盘磁头,是硬盘读取数据的关键部件,它的主要作用就是将存储在硬盘盘片上的磁信息转化为电信号向外传输,而它的工作原理则是利用特殊材料的电阻值会随着磁场变化的原理来读写盘片上的数据,磁头的好坏在很大程度上决定着硬盘盘片的存储密度。具体结构如图1: 图1磁头是硬盘硬件的重要组成部分 1、实战对象:西数2TB硬盘,SATA接口,如图2所示(外观完好,没有明显的摔伤痕迹): 图2西数硬盘(案例盘) 2、硬盘准备(3块实体盘)

(1)恢复盘A:有故障、存储有需要提取的数据 (2)镜像盘B:镜像拷贝数据,后期分析 (3)配件盘C:更换磁头(与A同型号、同批次) 3、故障现象:第一天晚上正常使用,断电,第二天连接电脑后,硬盘无法识别,并伴有不正常的敲打声。 4、故障原因:经效率源工程师初期检测,硬盘磁头有损坏,盘片有严重伤痕(送来前,硬盘被反复通电,造成损伤),这就是硬盘不识别的原因。具体如图3所示,A为正常盘片,B为划伤盘片(案例硬盘盘片实景照),中间出现了整整一圈白色的“环形跑道”,划伤程度“惨不忍睹”。A图是在B图基础上修正处理成正常盘的效果,以对比呈现盘片的划伤程度。 图3硬盘盘片划伤严重(B图) 5、数据恢复: 故障原因确定后,即可对症下药,正式进入数据恢复环节。首先,需要解决“磁头故障”,如果更换磁头后可正常读取,恢复工作圆满结束。如果不行,因为盘片划伤太严重,也不排除还会有其他暂未发现的隐藏故障,就还需要增加其他解决方案。 (1)更换磁头:继续在双百级无尘工作室,将配件盘C的磁头更换到恢复盘A上(磁头匹配),如图4,大约需要半小时。这里要特别注意,更换磁头必须非常细致,因为每一个细微抖动,都可能会对最后的数据恢复结果造成严重影响。

模拟更换硬盘以及迁移lp及lv(笔记)

先介绍几个命令 第一个命令:migratelp 命令 用途 在不同的物理卷上,将已分配的逻辑分区从一个物理分区移动到另一个物理分区。 语法 migratelp LVname/LPartnumber[ /Copynumber ] DestPV[/PPartNumber] 描述 migratelp将指定的逻辑卷LVname的逻辑分区LPartnumber移动到DestPV 物理卷。如果目标物理分区PPartNumber已指定,则使用指定的分区,否则使用逻辑卷的内部区域策略来选择目标分区。在缺省情况下,迁移第一个有问题的镜像副本。可以为Copynumber指定 1、2 或 3 的值来迁移一个特殊的镜像副本。 注:在并发卷组的情况下,必须考虑其他活动的并发节点上的分区使用情况,它是由lvmstat 报告。 migratelp命令不能迁移条带化逻辑卷的分区。 安全性 要使用migratelp,必须具有 root 用户权限。 示例 1.要将逻辑卷 lv00 的第一个逻辑分区移动到 hdisk1,请输入:migratelp lv00/1 hdisk1 2.要将逻辑卷 hd2 的第三个逻辑分区的第二个镜像副本移动到 hdisk5,请 输入: migratelp hd2/3/2 hdisk5

3.要将逻辑卷 testlv 的第 25 个逻辑分区的第三个镜像副本移动到 hdisk7,请输入: migratelp testlv/25/3 hdisk7/100 第二个命令:migratepv [ -i] [ -l LogicalVolume] SourcePhysicalVolume DestinationPhysicalVolume... 描述 migratepv命令将已分配的物理分区和它们包含的数据从SourcePhysicalVolume移到一个或多个其他物理分区。要限制传送到特定的物理卷,请在DestinationPhysicalVolume参数中使用一个或多个物理卷的名称;否则,卷组中的所有物理卷都可以传送。所有的物理卷必须在相同的卷组中。指定的源物理卷不能包含在DestinationPhysicalVolume参数列表中。 注: 所有的“逻辑卷管理器”迁移函数都是通过创建涉及的逻辑卷的镜像,然后重新同步逻辑卷来工作的。然后删除原始的逻辑卷。如果migratepv命令用于移动包含主转储设备的逻辑卷,则在命令执行过程中系统将不能够访问主转储设备。因此,在此执行过程中的转储操作将失败。要避免这一点,可以在使用sysdumpdev命令之前重新分配一个主转储设备,或者在使用migratepv之前确保有从转储设备。 您可以使用基于 Web 的系统管理器(wsm)中的卷应用程序来更改卷特征。您也可以使用“系统管理接口工具”(SMIT)smit migratepv快速路径来运行该命令。 注: 对于并发方式卷组,在 SSA 磁盘上增强并发方式是活动的或并发方式是活动的时,migratepv才可以使用。 -i从标准输入中读取DestinationPhysicalVolume参数。 -l LogicalVolume 仅移动已分配到指定的逻辑卷和位于指定的源物理卷上的物理分区。 示例 1.要将物理分区从 hdisk1 移动到 hdisk6 和 hdisk7 上,请输入: migratepv hdisk1 hdisk6 hdisk7

RoseMirrorHA 配置替换IP的操作步骤

RoseMirrorHA配置替换IP的操作说明 由于网络访问或应用服务主动发送数据包等情况,RoseMirrorHA需要配置替换IP,以实现正常的网络访问。RoseMirrorHA配置替换IP的操作步骤说明如下。 已经创建应用服务的情况下,配置替换IP的操作说明。 1. 执行rcc命令,打开RoseMirrorHA的管理工具RCC,如下图所示。 2. 分别选中主机视图区域,右键菜单中选择“通信”,将RCC与两台主机的RoseMirrorHA服务的通信IP更换为私网心跳IP,如下图所示。两台主机都需要更换通信IP。

3. 在通信窗口中,将“主机”指定为私网心跳IP,如下所示,请根据情况输 入实际环境中的私网心跳IP。点击“确定”。 4. 将两台主机的通信IP修改为私网心跳IP后,待RCC与RoseMirrorHA 服务连接成功后,如未登录,登录后查看所创建的应用服务状态。如现为“带入”状态,选中应用服务,右键菜单中执行“带出”应用服务操作。 应用服务“带出”状态如下所示:

5. 选中已“带出”的应用服务,右键菜单选择“修改/查看”,如下图所示:

6. 在修改应用服务的窗口中,切换至“活动IP”页面,勾选“替换IP地址”,点击“确定”即可保存修改配置。 7. 修改“替换IP”配置后,选中应用服务,右键菜单选择“带入”,即可将应用服务带入。如下图所示。

8. 带入后,测试通过活动IP的网络数据是否能够正常通信。 未创建应用服务的情况下,配置替换IP的操作说明。 1. 配置RCC连接RoseMirrorHA服务时,指定私网心跳IP连接 RoseMirrorHA。 2. 在创建应用服务过程中,在“活动IP”页面,勾选“替换IP地址”即可。

硬盘更换磁头全过程(图)

现在,硬盘的容量越来越大,给我们的工作带来了极大的方便.但是,硬盘的脆弱使得他一旦出现问题.我们又没有及时备份,后果将是带来无法估量的损失.幸好,目前在国内出现的一个新兴行业"数据恢复",使得我们遇到数据丢失,病毒破坏,误删除,误ghost,硬件故障...等不幸后可以极大地挽救重要数据,从而减少损失. 今天介绍的是大家最为关心,最为好奇,也很少见到的硬盘开盘更换磁头处理.首先我们要了解一下磁头与盘片的关系,大家都知道,数据是以磁记录方式存储在盘片上的,读取和写入都靠磁头来完成.然而,磁头并不是贴在盘片上读取的,由于磁盘的高速旋转,使得磁头利用“温彻斯特/Winchester”技术悬浮在盘片上.这使得硬盘磁头在使用中几乎是不磨损的,这使得数据存储非常稳定,硬盘寿命也大大增长.但磁头也是非常脆弱的,在硬盘工作状态下,即使是再小的振动,都有可能使磁头受到严重损坏.由于盘片是工作在无尘环境下,所以,我们在处理磁头故障,也就是更换磁头时,都必须在无尘室内完成,而且还要有扎实的基本功,熟练的技巧,才能使成功率大大提高上海数据恢复. 现在我们就来边看图片.边了解更换磁头的具体过程 首先,开盘需要特定的条件和工具,无尘环境是必不可少的,其次我们可以从图中看到还需要医用手套,美工刀,尖嘴钳,直头和弯头镊子,螺丝刀(一字和t8)

这次我们要更换磁头的硬盘是某客户的一个迈拓120g 硬盘,故障情况是工作后不认盘,电机转,有敲头声.首先,我们用美工刀小心地揭开硬盘上的保修标签.

接下来当然是拆除top上的所有螺丝,为了工作效率,外面不是要求很高的螺丝,我们可以用电动起子去卸.

硬盘拆解

1TB Seagate ST31000333AS 这块绿色电路版由SATA接头、电源接头组成的板子称为印刷回路板,简称PCB。 PCB内含电路零组件。而黑色铝质外壳内部组件称为磁头和硬碟组件,通称为HDA。而铝质外壳则称为硬碟基底。 现在拆卸PCB电路板并翻到反面,检视反面的电子零组件。

硬碟PCB上最大控制器为MCU (Micro Controller Unit),MCU主要功能: 1.计算读写通道A/D,D/A 2.掌控全盘硬碟运作状况. 3.MCU另担当的Protocol 与控制器间的转换. DDR DRAM 32MB ,实际上32MB Cache 部份会被硬碟挪用放入硬碟运作程式. 前言已叙述, 硬碟如同一个embedded system .需要载入OS运作. 下一个晶片是Voice Coil Motor controller,通称VCM控制器。这是PCB板上最耗电的晶片,VCM控制器控制电机马达的转动及磁头移动及定位,VCM控制器可在高达工作温度 Flash晶片储存部分的硬碟韧体与模块在盘片上位置DATA ,当你通电启动硬碟时,MCU晶片会读取Flash晶片内的资料到记忆体内并且开始编码。如果缺少了这样的步骤,硬碟无法运转。有时候,某些厂牌的硬碟PCB板上并没有Flash晶片,这表示原本Flash晶片内的资料已存在MCU晶片内了。 震动感应器

震动感应器可以感应硬碟多余的震动并且传送讯号给VCM控制器,VCM控制器接受讯号以后马上停止并复位磁头,在某些情况下,甚至会停止盘片转动,这个理论上会保护硬碟免於受损,但是实际上并无法达成保护的目的,所以请好好保护硬碟,别摔落、碰撞! 在某些硬碟中,震动感应器可以感测轻微振动,而VCM控制器可以藉由震动感应器传送的讯号调整磁头的运动,这样的硬碟通常都会配有两组以上的震动感应器。 二级体 另外一个保护的零组件是瞬态电压抑制二极体(Transient Voltage Suppression diode)或简称为TVS二极体。此组件可以保护PCB板免於连接电源时造成的瞬间电流激增,在这种情况下,TVS二极体会烧毁造成电源接头及接地之间的电路短路。硬碟都配有两组TVS二极体,一组5V电流一组12V电流。 在上图中,你可以看到隐藏在PCB板下的马达及磁头接头,另外在HDA上还有一个小到难以注意的小孔叫做进气孔。你可能听过一个谣言说硬碟内是真空状态,这并不是真正状况。硬碟利用这个进气孔来平衡HDA外部跟内部的压力,而硬碟可以透过进气孔过滤器关闭内部的进气孔来达到内部空气乾燥及乾净。 现在让我们来移开硬碟上盖并看在其之下的构造。

小型机更换内置硬盘实施方案

小型机更换内置硬盘实施方案 一、检查工作内容: 1、# lsvg -l rootvg //如何查看硬盘是否做过mirror? 2、#bootlist -m normal -o //查看当前的引导顺序 3、lsdev -Cc disk //检查硬盘状态 4、errpt //检查错误日志 5、diag //诊断硬盘 6、lspv 记录hdisk0 序列号 lscfg –vl hdisk0 lssrc –g cluster 显示如下两个进程表示HACMP是启动状态: subsystem group PID status clstrmge cluster 22454 active clsmuxpd cluster 15874 active 可观察CLUSTER的启动:/usr/es/adm/cluster.log, /tmp/hacmp.out CLUSTER的版本lslpp –l|grep cluster 网络的状态netstat -ni 二、更换硬盘操作: 1、unmirrorvg rootvg hdisk0 2、reducevg rootvg hdisk0 或reducevg -d rootvg hdisk0 3、chpv -c hdisk0 4、rmdev -dl hdisk0 bootlist -m normal hdisk1 关机换盘或通过diag进行热更换 5、chdev -l hdisk0 -a pv=yes 6、extendvg roovg hdisk0 或#extendvg -f rootvg hdisk0 强制把hdisk0加入到rootvg 7、mirrorvg roovg 8、chvg -Qn roovg 9、bosboot -ad hdisk0 bosboot -ad hdisk1 10、bootlist -m normal hdisk0 hdisk1 验证:

数据中心P系列小型机硬盘更换步骤

历史版本记录

目录 1编写目的 (3) 2北方中心DATA VG 硬盘更换步骤 (3)

1 编写目的 由于北方数据中心小机硬盘更换将成为日常工作内容之一,为方便大家将工作流程化,特编写文档。由于各种小机硬盘分布情况不尽相同,本文将举出4种北方中心小机硬盘更换例子。 例子1:环境为单硬盘rootvg加上单硬盘datavg的小型机,其中rootvg的PV名称为hdisk0,datavg的PV名称为hdiak1,需要替换datavg的PV名称为hdiak2。 例子2:环境为单硬盘rootvg加上单硬盘datavg的小型机,其中rootvg的PV名称为hdisk0,datavg的PV名称为hdiak1,需要替换rootvg的PV名称为hdiak2。 例子3:环境为双硬盘mirror的rootvg加上双硬盘mirror的datavg的小型机,其中rootvg的两个PV名称为hdiak0,hdisk1,datavg的两个PV名称为hdisk2,hdisk3,其中hdisk2需要被替换。 例子4:环境为双硬盘mirror的rootvg加上双硬盘mirror的datavg小型机,其中rootvg的两个PV名称为hdiak0,hdisk1,datavg的两个PV名称为hdisk2,hdisk3,其中hdisk0需要被替换。 2 北方中心数据中心P系列小机硬盘更换步骤 例子1: 注意:在更换硬盘之前,必须做好数据的备份工作。 1.将小机上的应用停掉。在空槽位插入新硬盘,使用cfgmgr 和lspv命令后,看新盘是否可用。如果新盘没有分配新的PID,那么执行chdev命令添加新硬盘的PID。 #chdev –l hdiak2 –a pv=yes 2.将新增加的硬盘hdisk2加入到datavg中: #extendvg –f datavg hdisk2 因为硬盘的数据迁移只能在同一个卷组中进行。 3.确保在新增加的硬盘中有足够的空间存储源硬盘的数据: #lspv hdisk1 |grep "USED PPs" 例如输出如下: USED PPs : 97(1552 megabytes)

硬盘拆解图解

硬盘拆解图解 1TB Seagate ST31000333AS 这块绿色电路版,由SATA接头、电源接头组成的板子称为印刷回路板,简称PCB。 PCB内含电路零组件。而黑色铝质外壳内部组件称为磁头和硬盘组件,通称为HDA。而铝质外壳则称为硬盘基底。 现在拆卸PCB电路板并翻到反面,检视反面的电子零组件。

MCU控制器 硬盘PCB上最大控制器为MCU (Micro Controller Unit),MCU主要功能: 1、计算读写通道A/D,D/A 2、掌控全盘硬盘运作状况。 3、MCU 另担当的Protocol 与控制器间的转换。 DDR DRAM DDR DRAM 32MB ,实际上32MB Cache 部份会被硬盘挪用放入硬盘运作程序。 前言已叙述,硬盘如同一个embedded system 。需要加载OS运作。 VCM控制器 下一个芯片是V oice Coil Motor controller,通称VCM控制器。这是PCB板上最耗电的芯片,VCM控制器控制电机马达的转动及磁头移动及定位,VCM控制器可在高达工作温度 Flash芯片

Flash芯片储存部分的硬盘韧体与模块在盘片上位置DATA ,当你通电启动硬盘时,MCU芯片会读取Flash芯片内的数据到内存内并且开始编码。如果缺少了这样的步骤,硬盘无法运转。有时候,某些厂牌的硬盘PCB板上并没有Flash芯片,这表示原本Flash 芯片内的数据已存在MCU芯片内了。 震动传感器 震动传感器可以感应硬盘多余的震动并且传送讯号给VCM控制器,VCM控制器接受讯号以后马上停止并复位磁头,在某些情况下,甚至会停止盘片转动,这个理论上会保护硬盘免于受损,但是实际上并无法达成保护的目的,所以请好好保护硬盘,别摔落、碰撞! 在某些硬盘中,震动传感器可以感测轻微振动,而VCM控制器可以藉由震动传感器传送的讯号调整磁头的运动,这样的硬盘通常都会配有两组以上的震动传感器。 二级体 另外一个保护的零组件是瞬态电压抑制二极管(Transient Voltage Suppression diode)或简称为TVS二极管。此组件可以保护PCB板免于连接电源时造成的瞬间电流激增,在这种情况下,TVS二极管会烧毁造成电源接头及接地之间的电路短路。硬盘都配有两组TVS二极管,一组5V电流一组12V电流。 在上图中,你可以看到隐藏在PCB板下的马达及磁头接头,另外在HDA上还有一

2.5寸硬盘拆解

如今,笔记本电脑对于大多数人来说已经不陌生了,更是很多人日常生活和工作中必不可少的工具。但是又有多少人了解笔记本电脑的硬件,知道他的工作原理呢?下面有一篇本友会网友所写的文章,将为您全面讲解笔记本硬盘的相关知识,图文并茂,通俗易懂,有兴趣的网友可以多了解下。 对于硬盘早就想拆开来看个究竟了,但是一直没这个机会(因为手里以前没有坏硬盘,好的可舍不得,拆开来就报废了,原因随后解释)。现在,天赐良机,我同学的坏硬盘落入我手中,经过一些修复尝试,发现已经完全无可救药。于是,以下的“碎尸惨案”就上演了…… 首先对于型号做一下介绍:这是一款富士通的2.5寸硬盘,型号是MHX2160BH,容量160GB,转速5400rpm,接口标准为SATA 1.0,产地在泰国,生产日期2008-8-1。 这是正面

反面 SATA接口特写 注:SATA的全称是Serial Advanced Technology Attachment(串行高级技术附件,一种基于行业标准的串行硬件驱动器接口),是由Intel、IBM、Dell、APT、Maxtor和Seagate公司共同提出的硬盘接口规范。这款硬盘使用的接口标准是SATA1.0,150MB/s的外部传输速率。目前市场上SATA2.0的产品已普及,300MB/s外部传输速率。有少部分台式机硬盘也已经采用了SATA3.0,600MB/s外部传输速率。 另外:许多人都会误把窄的一边认为是电源接口,宽的一边认为是数据接口,其实恰恰相反,请大家一定要注意。因为SATA采用串行传输,所以数据线并不需要很多。(7个数据引脚

中只有4个是有定义的,其余3个是空的。至于每个引脚的功能定义,我凭空背不出,感兴趣的同学可以百度一下“SATA接口定义”很容易找的) 拆下背面的主板: 可以看到,位于盘体内的电机与主板的接口是直插式的。

SUN-SVM-在线更换硬盘-RAID1

在线更换硬盘 说明:现有一台Sun T5220的主机系统的一个分区镜像损坏,分区处于维护模式,系统有如下报错:

一.基本检测: 1. 尝试同步分区 2.查看传输状态 结果:同步时,磁盘状态显示传输错误一直增加,分区镜像无法同步,需要在线更换损坏磁盘。 二.在线更换: 1.查询分区镜像信息

bash-3.2# metastat d6 d6: 镜像 次镜像0: d16 状态:确定 次镜像1: d26 状态:需要维护 传送:1 读入选项:roundrobin (缺省) 写入选项:parallel (缺省) 大小:74549376 块(35 GB) d16: d6 的次镜像 状态: 确定 大小:74549376 块(35 GB) 条0: 设备引导块Dbase 状态Reloc 热备援 c1t0d0s6 0 否确定是 d26: d6 的次镜像 状态: 需要维护 调用:metareplace d6 c1t1d0s6 <新设备> 大小:74549376 块(35 GB) 条0: 设备引导块Dbase 状态Reloc 热备援 c1t1d0s6 0 否维护是 bash-3.2# metadb flags first blk block count a m p luo 16 8192 /dev/dsk/c1t0d0s4 a p luo 8208 8192 /dev/dsk/c1t0d0s4 a p luo 16 8192 /dev/dsk/c1t1d0s4 a p luo 8208 8192 /dev/dsk/c1t1d0s4 a p luo 16400 8192 /dev/dsk/c1t1d0s4 bash-3.2# metastat -p d7 -m d17 d27 1 d17 1 1 c1t0d0s7 d27 1 1 c1t1d0s7 d5 -m d15 d25 1 d15 1 1 c1t0d0s5 d25 1 1 c1t1d0s5 d3 -m d13 d23 1 d13 1 1 c1t0d0s3 d23 1 1 c1t1d0s3

数据恢复硬盘开盘全过程(图文)

数据恢复硬盘开盘全过程 现在,硬盘的容量越来越大,给我们的工作带来了极大的方便.但是,硬盘的脆弱使得他一旦出现问题.我们又没有及时备份,后果将是带来无法估量的损失.幸好,目前在国内出现的一个新兴行业"数据恢复",使得我们遇到数据丢失,病毒破坏,误删除,误ghost,硬件故障...等不幸后可以极大地挽救重要数据,从而减少损失. 今天介绍的是大家最为关心,最为好奇,也很少见到的硬盘开盘更换磁头处理.首先我们要了解一下磁头与盘片的关系,大家都知道,数据是以磁记录方式存储在盘片上的,读取和写入都靠磁头来完成.然而,磁头并不是贴在盘片上读取的,由于磁盘的高速旋转,使得磁头利用“温彻斯特/Winchester”技术悬浮在盘片上.这使得硬盘磁头在使用中几乎是不磨损的,这使得数据存储非常稳定,硬盘寿命也大大增长.但磁头也是非常脆弱的,在硬盘工作状态下,即使是再小的振动,都有可能使磁头受到严重损坏.由于盘片是工作在无尘环境下,所以,我们在处理磁头故障,也就是更换磁头时,都必须在无尘室内完成,而且还要有扎实的基本功,熟练的技巧,才能使成功率大大提高上海数据恢复. 现在我们就来边看图片.边了解更换磁头的具体过程 首先,开盘需要特定的条件和工具,无尘环境是必不可少的,其次我们可以从图中看到还需要医用手套,美工刀,尖嘴钳,直头和弯头镊子,螺丝刀(一字和t8)

这次我们要更换磁头的硬盘是某客户的一个迈拓120g 硬盘,故障情况是工作后不认盘,电机转,有敲头声.首先,我们用美工刀小心地揭开硬盘上的保修标签. 接下来当然是拆除top上的所有螺丝,为了工作效率,外面不是要求很高的螺丝,我们可以用电动起子去卸.

11.31_Mirror_OS操作步骤

11.31系统镜像盘创建及更换 FOR PA-RISC:(同11.11) 一、创建mirror 脚本: RPV1="/dev/rdisk/disk0" RPV2="/dev/rdisk/disk1" PV2="/dev/disk/disk1" 使用带-B 选项的pvcreate 创建物理卷。-B 选项在磁盘上为LIF 卷、引导实用程序和BDRA 创建一个区域 pvcreate -B -f $RPV2 使用vgextend 将物理卷添加到现有的根卷组: vgextend vg00 $PV2 使用mkboot 命令将引导实用程序放在引导区域中(生成LIF区) mkboot $RPV2 使用mkboot 命令在磁盘引导区域中添加自动引导文件(AUTO文件)。如果希望仅当达不到Quorum 时从此磁盘引导,可以使用备用字符串“hpux –lq”禁用Quorum 检查: mkboot -a "hpux -lq" $RPV2 镜像根盘的逻辑卷 lvextend -m 1 /dev/vg00/lvol1 $PV2 lvextend -m 1 /dev/vg00/lvol2 $PV2 lvextend -m 1 /dev/vg00/lvol3 $PV2 lvextend -m 1 /dev/vg00/lvol4 $PV2 lvextend -m 1 /dev/vg00/lvol5 $PV2 lvextend -m 1 /dev/vg00/lvol6 $PV2 lvextend -m 1 /dev/vg00/lvol7 $PV2 lvextend -m 1 /dev/vg00/lvol8 $PV2 lvextend -m 1 /dev/vg00/lvol9 $PV2 指定BDRA区和LABEL文件的引导逻辑卷定义 lvlnboot -b /dev/vg00/lvol1 指定BDRA区和LABEL文件的swap逻辑卷定义 lvlnboot -s /dev/vg00/lvol2 指定BDRA区和LABEL文件的root逻辑卷定义 lvlnboot -r /dev/vg00/lvol3 指定BDRA区和LABEL文件的dump逻辑卷定义

计算机硬盘拆解全过程图解

硬盘拆解全过程详细图解 现在,硬盘的容量越来越大,给我们的工作带来了极大的方便.但是,硬盘的脆弱使得他一旦出现问题.我们又没有及时备份,后果将是带来无法估量的损失.幸好,目前在国内出现的一个新兴行业"数据恢复",使得我们遇到数据丢失,病毒破坏,误删除,误ghost,硬件故障...等不幸后可以极大地挽救重要数据,从而减少损失. 今天介绍的是大家最为关心,最为好奇,也很少见到的硬盘开盘更换磁头处理.首先我们要了解一下磁头与盘片的关系,大家都知道,数据是以磁记录方式存储在盘片上的,读取和写入都靠磁头来完成.然而,磁头并不是贴在盘片上读取的,由于磁盘的高速旋转,使得磁头利用“温彻斯特 /Winchester”技术悬浮在盘片上.这使得硬盘磁头在使用中几乎是不磨损的,这使得数据存储非常稳定,硬盘寿命也大大增长.但磁头也是非常脆弱的,在硬盘工作状态下,即使是再小的振动,都有可能使磁头受到严重损坏.由于盘片是工作在无尘环境下,所以,我们在处理磁头故障,也就是更换磁头时,都必须在无尘室内完成,而且还要有扎实的基本功,熟练的技巧,才能使成功率大大提高上海数据恢复. 现在我们就来边看图片.边了解更换磁头的具体过程

首先,开盘需要特定的条件和工具,无尘环境是必不可少的,其次我们可以从图中看到还需要医用手套,美工刀,尖嘴钳,直头和弯头镊子,螺丝刀(一字和t8) 这次我们要更换磁头的硬盘是某客户的一个迈拓120g 硬盘,故障情况是工作后不认盘,电机转,有敲头声.首先,我们用美工刀小心地揭开硬盘上的保修标签.

接下来当然是拆除top上的所有螺丝,为了工作效率,外面不是要求很高的螺丝,我们可以用电动起子去卸. 我们小心的将螺丝放在培养皿里,打开top,我们就可以一览无遗地看到硬盘的内部结构了,我们可以清楚地看到组成硬盘的各个组件,包括底座base,马达moter,磁盘disc,磁头eblk,和已经打开的顶盖top......

磁盘镜像的分析与实例

一.RAID1简介 RAID是Redundent Array of Inexpensive Disks的缩写,直译为“廉价冗余磁盘阵列”,也简称为“磁盘阵列”。后来RAID中的字母I 被改作了Independent,RAID就成了“独立冗余磁盘阵列”,但这只是名称的变化,实质性的内容并没有改变。 可以把RAID理解成一种使用磁盘驱动器的方法,它将一组磁盘驱动器用某种逻辑方式联系起来,作为逻辑上的一个磁盘驱动器来使用。 当读取数据时,系统先从源盘读取数据,如果读取数据成功,则系统不去管备份盘上的数据;如果读取源盘数据失败,则系统自动转而读取备份盘上的数据,不会造成用户工作任务的中断。当然,我们应当及时地更换损坏的硬盘并利用备份数据重新建立Mirror,避免备份盘在发生损坏时,造成不可挽回的数据损失。由于对存储的数据进行百分之百的备份,在所有RAID级别中,RAID 1提供最高的数据安全保障。同样,由于数据的百分之百备份,备份数据占了总存储空间的一半,因而,Mirror的磁盘空间利用率低,存储成本高。 Mirror 虽不能提高存储性能,但由于其具有的高数据安全性,使其尤其适用于存放重要数据,如服务器和数据库存储等领域。 二 RAID 1 的特点、原理与应用; RAID 1 又称为镜像(Mirroring),一个具有全冗余的模式,如图所示。RAID 1可以用于两个或2xN个磁盘,并使用0块或更多

的备用磁盘,每次写数据时会同时写入镜像盘。这种阵列可靠性很高,但其有效容量减小到总容量的一半,同时这些磁盘的大小应该相等,否则总容量只具有最小磁盘的大小。 RAID 1:镜象结构 对于使用这种RAID1结构的设备来说,RAID控制器必须能够同时对两个盘进行读操作和对两个镜象盘进行写操作。通过下面的结构图您也可以看到必须有两个驱动器。因为是镜象结构在一组盘出现问题

aix更换系统镜像盘

aix更换系统镜像盘 删除原有镜像操作: # cfgmgr # lsdev -Cc disk hdisk0 Available 11-09-00-8,0 16 Bit LVD SCSI Disk Drive hdisk1 Available 11-09-00-10,0 16 Bit LVD SCSI Disk Drive # lsvg rootvg # lsvg -p rootvg rootvg: PV_NAME PV STATE TOTAL PPs FREE PPs FREE DISTRIBUTION hdisk1 active 542 148 70..00..00..00..78 hdisk0 missing 542 148 70..00..00..00..78 # unmirrorvg rootvg hdisk0 0516-1246 rmlvcopy: If hd5 is the boot logical volume, please run 'chpv

-c <diskname>' as root user to clear the boot record and avoid a potential boot off an old boot image that may reside on the disk from which this logical volume is moved/removed. 0516-1132 unmirrorvg: Quorum requirement turned on, reboot system for this to take effect for rootvg. 0516-1144 unmirrorvg: rootvg successfully unmirrored, user should perform bosboot of system to reinitialize boot records. Then, user must modify bootlist to just include: hdisk1. # lsvg -p rootvg rootvg: PV_NAME PV STATE TOTAL PPs FREE PPs FREE DISTRIBUTION hdisk1 active 542 148 70..00..00..00..78 hdisk0 missing 542 542 109..108..108..108..109 # chpv -c hdisk0 # reducevg rootvg hdisk0 # lsvg -p rootvg rootvg:

硬盘备份使用方法(新)

有备无患 在Windows“Bug”不断出现、电脑病毒横行、软硬件冲突不可避免的今天,蓝屏、非法操作、死机就成了“家常菜”。此外,如果再冒出个硬盘磁道损坏之类的硬件故障,那可真是雪上加霜了。既然这些“不速之客”难以预料,那最好的“杀手锏”当然就是备份,毕竟有“备”方能无患嘛! PQ Drive Image Pro PQ Drive Image Pro是著名的PowerQuest公司推出的一款硬盘克隆工具软件(见图1)。它和Norton Ghost 旗鼓相当,其主要功能是可以快速地对一个硬盘或硬盘分区进行备份和恢复。Drive Image Pro的主程序同Norton Ghost一样,是一个在DOS实模式环境下运行的应用程序。由于它直接对硬盘进行读写,因此不能在Windows下使用。但它提供了DOS实模式引导功能,所以也能在像Windows Me等没有DOS模式的操作系统中使用。 此主题相关图片如下: 图1:备份超级酷PQ Drive Image Pro 无论是Ghost还是Drive Image Pro,在创建硬盘或分区镜像备份文件之前,都强烈建议您先进行删除多余文件、清空回收站、磁盘碎片整理等操作,以便减小镜像文件,保证镜像文件的准确性与可用性。 使用时首先运行“开始|程序|Drive Image Pro|Drive Image 3.0”,系统会重启进入DOS模式,之后显示程序主界面(见图2)。可见上面有四个选择按钮,其中“Create Image”表示创建硬盘或硬盘分区的镜像文件;“Restore Image”表示将备份的镜像文件还原到硬盘或硬盘分区中;“PowerCast”则是基于网络的功能,表示可以把备份的文件通过网络发送和接收;“Disk to Disk”表示硬盘对拷,可将一个硬盘中的文件完整地克隆到另一个硬盘上。 此主题相关图片如下:

hpux 更换根盘镜像

HP-UX 更换根盘镜像专题 方法一 1,拆除设备镜像,踢出坏盘. 解除镜像:vgdisplay vg00 //查看vg00中的LV的镜像状态。 lvreduce –m 0 /dev/vg00/lvol1 /dev/dsk/cXtYd0 lvreduce –m 0 /dev/vg00/lvol2 /dev/dsk/cXtYd0 . . .拆除所有vg00中所有mirror的lv vgreduce vg00 /dev/dsk/cXtYd0 2.换盘,做镜像 在镜像盘上创建物理卷,并设置成可引导设备。 # pvcreate -f -B /dev/rdsk/cXtYd0 //-B可以启动。 将此盘添加到根卷。 # vgextend /dev/vg00 /dev/dsk/cXtYd0 生成LIF引导信息和AUTO文件。 # mkboot /dev/rdsk/cXtYd0 //创建BOOT区 # mkboot -a "hpux -lq (;0)/stand/vmunix" /dev/rdsk/cXtYd0 # mkboot -a "hpux -lq (;0)/stand/vmunix" /dev/rdsk/cXtYd0 给根盘上的所有逻辑卷做镜像,务必从第一个LV开始,按顺序执行,镜像需要一定时间,请耐心等待。 # lvextend -m 1 /dev/vg00/lvol1 /dev/dsk/cXtYd0 /BOOT卷 # lvextend -m 1 /dev/vg00/lvol2 /dev/dsk/cXtYd0 # lvextend -m 1 /dev/vg00/lvol3 /dev/dsk/cXtYd0 # lvextend -m 1 /dev/vg00/lvol4 /dev/dsk/cXtYd0 # lvextend -m 1 /dev/vg00/lvol5 /dev/dsk/cXtYd0 # lvextend -m 1 /dev/vg00/lvol7 /dev/dsk/cXtYd0 # lvextend -m 1 /dev/vg00/lvol8 /dev/dsk/cXtYd0 . . .镜像所有的vg00中的lv 更新引导、根和主交换的镜像副本包含在BDRA中的引导信息。 # /usr/sbin/lvlnboot -r /dev/vg00/lvol3 //ROOT # /usr/sbin/lvlnboot -s /dev/vg00/lvol2 //SWAP # /usr/sbin/lvlnboot -d /dev/vg00/lvol2 # /usr/sbin/lvlnboot -b /dev/vg00/lvol1 检查BDRA是否正确,恢复链接。 # /usr/sbin/lvlnboot -R 给磁盘加上引导路径 # /usr/sbin/ setboot -a 验证是否正确创建镜像。 # lvlnboot –v

相关主题