搜档网
当前位置:搜档网 › 主机涡轮增压器喘振的分析与探讨

主机涡轮增压器喘振的分析与探讨

主机涡轮增压器喘振的分析与探讨
主机涡轮增压器喘振的分析与探讨

喘振原因分析及对策

离心式鼓风机喘振原因分析及对策 离心式鼓风机在使用过程中发生的喘振现象,对喘振产生的原因和影响喘振的主要因素进行了分析,提出了判断喘振的方法,并总结了几种消喘振的解决方案,如采用变频器启动、采用出风管放气、降低生物池的污泥浓度、保证管路畅通改变鼓风机的“争风”状态、加强人员技能培训、定期维护保养等。 关键词:离心式鼓风机;喘振;对策 1喘振 1.1喘振产生的原因 在鼓风机运转过程中,当流量不断减少到最小值Qmin(喘振工况)时,进入叶栅的气流发生分离,在分离区沿着叶轮旋转方向并以比叶轮旋转角速度小的速度移动。当旋转脱离扩散到整个通道,会使鼓风机出口压力突然大幅下降,而管网中压力并未马上减低,于是管网中的气体压力就大于鼓风机出口处的压力,管网中的气体倒流向鼓风机,直到管网中的压力下降至低于鼓风机出口压力才停止。接着,鼓风机开始向管网供气,将倒流的气体压出去,使机内流量减少,压力再次突然下降,管网中的气体重新倒流至风机内,如此周而复始,在整个系统中产生周期性的低频高振幅的压力脉动及气流振荡现象,并发出很大的声响,机器产生剧烈振动,以致无法工作,这就产生了喘振。 1.2影响喘振的主要因素 ①转速 离心式压缩机转速变化时,其性能曲线也将随之改变。当转速提高时,压缩机叶轮对气体所做的功将增大,在相同的容积流量下,气体的压力也增大,性能曲线上移。反之,转速降低则使性能曲线下移。随着转速的增加,喘振界限向大流量区移动。 ②管网特性 离心式鼓风机的工作点是鼓风机性能曲线与管网特性曲线的交点,只要其中一条曲线发生变化(如将鼓风机出口阀关小),工作点就会改变。管网阻力增大,其特性曲线将变陡,致使工作点向小流量方向移动。 ③进气状态 在实际生产中,进气压力过低、背压过高、进(排)气量忽然减少、进气温度过高、鼓风机转速忽然降低、机械故障、进口风道过滤网堵塞、生物池污泥浓度过高、曝气头堵塞、喘振报警装置失灵等都会引起鼓风机喘振。 2喘振的判断及消除 2.1喘振现象的判断 ①鼓风机抽出的风量时大时小,产生的风压时高时低,系统内气体的压力和流量也会发生很大的波动。

涡轮增压器工作原理和维修完整

涡轮增压器工作原理和维修 一、发动机和空气增压系统的工作原理 在讨论涡轮增压发动机系统之前,先回顾一下内燃机的基本工作原理及其同空气增压系统的关系。内燃机是一种耗气机械,因为燃油需要与空气混合才能完成燃烧冲程。一旦空燃比达到某一值后,再增加燃油,除了将黑烟和未燃尽的燃油排到大气中外,不会产生更多功率。发动机供油越多,黑烟就越浓。因此,超过空燃比极限后,增加供油量只会造成燃油消耗量过多、大气污染、废气温度升高,并使柴油机寿命缩短。由此可见,增加空气量的能力对发动机来说是多么重要。 涡轮增压器是一种利用发动机排气中的剩余能量来工作的空气泵。废气驱动涡轮叶轮总成,它与压气机叶轮相连接,如图1 所示。当涡轮增压器转子转动时,大量的压缩空气被输送到发动机的燃烧室里。由于增加了压缩空气的重量,就可以使更多的燃油喷入到发动机里去,使发动机在尺寸不变的条件下而产生更多的功率。 图1 废气涡轮增压系统 二、空气增压系统的优点 涡轮增压有许多好处。非增压发动机通过曲轴的运动直接从大气中吸进空气,而涡轮增压器向发动机提供压缩空气。由于进入气缸的空气增多,所以允许喷入较多的燃油,使发动机产生较多的功率并具有较高的燃烧效率。这意味着一台尺寸和重量相同的发动机经增压后可以产生较多的功率,或者说,一台小排量发动机经增压后可产生与较大发动机相同的功率。其它还有节约燃油和降低排放等优点。 由于涡轮增压器为发动机提供了更多的空气,燃油在发动机气缸里燃烧时会燃烧得更充分、更彻底。发动机进气管的空气保持正压力(大于大气压的压力)对发动机有几方面的好处。当发

动机进排气门重叠开启时,新鲜空气吹入燃烧室,清除所有残留在燃烧室里的废气,同时冷却气缸头、活塞和气门。 涡轮增压器可使非增压发动机在高原上工作时得到氧气补偿(使其达到标准大气条件)。发动机和涡轮增压器相匹配,使进气管压力保持海平面大气压。而一台自然吸气的发动机,随着海拔高度的增加,其功率将下降。 三、涡轮增压器的零部件 废气涡轮增压器(囹2)是由废气驱动的涡轮和径 流式压气机组成的,它们分别被安装在轴的两头并有 各自的铸造壳体。轴本身被安装在中间壳中并由中间 壳来支撑。中间壳的两侧分别同压气机壳和涡轮壳相 连接,典型的涡轮增压器转速可以在100000转/分以 上。 图2 涡轮增压器结构涡轮 涡轮部分是个向心式的径流或混流装置,由铸造的涡轮叶轮、叶轮隔热罩及涡轮壳组成,进气口位于涡轮壳的外直径处。废气流进涡轮,经叶轮叶片,从涡轮壳直径的中心部位流出。 压气机 压气机部分是个离心式或径向外流式装置,由铸造的压气机叶轮、后盖板及压气机壳组成,进气口位于压气机壳直径的中心部位处。空气在压气机内向外流,经叶轮叫片,从压气机壳的外直径处流出。 中间壳和转子 涡轮增压器卸去所连接的压气机壳和涡轮壳后剩下的部分称为中间壳和转子总成。中间壳(又称轴承壳)以一个精心设计的轴承系统来支撑压气机和涡轮的轮轮系统。这一为高速运转而设计的轴承系统不能象曲轴的轴承那样承受重的载荷,而是必须精确地定位两只叶轮的位置,使其尽可能靠近两端壳子的轮廓型线。这种定位的关键是向中间壳油孔、轴承和轴之间的间隙注入润滑油。注入到间隙里的润滑油对提高涡轮增压器的效率和延长使用寿命是极其重要的。 图3是润滑油流动的示意图,它说明从发动机润滑系统流出的润滑油是如何通过油孔和油槽流入两个主轴承的。润滑油流过轴承中的油孔去润滑和冷却轴承、轴承孔和轴颈。润滑油也从进

转动设备常见振动故障频谱特征案例分析

转动设备常见振动故障频谱特征及案例分析 一、不平衡 转子不平衡是由于转子部件质量偏心或转子部件出现缺损造成的故障,它是旋转机械最常见的故障。结构设计不合理,制造和安装误差,材质不均匀造成的质量偏心,以及转子运行过程中由于腐蚀、结垢、交变应力作用等造成的零部件局部损坏、脱落等,都会使转子在转动过程中受到旋转离心力的作用,发生异常振动。 转子不平衡的主要振动特征: 1、振动方向以径向为主,悬臂式转子不平衡可能会表现出轴向振动; 2、波形为典型的正弦波; 3、振动频率为工频,水平与垂直方向振动的相位差接近90度。 案例:某装置泵轴承箱靠联轴器侧振动烈度水平13.2 mm/s,垂直11.8mm /s,轴向12.0 mm/s。各方向振动都为工频成分,水平、垂直波形为正弦波,水平振动频谱如图1所示,水平振动波形如图2所示。再对水平和垂直振动进行双通道相位差测量,显示相位差接近90度。诊断为不平衡故障,并且不平衡很可能出现在联轴器部位。

解体检查未见零部件的明显磨损,但联轴器经检测存在质量偏心,动平衡操作时对联轴器相应部位进行打磨校正后振动降至2.4 mm/s。 二、不对中 转子不对中包括轴系不对中和轴承不对中两种情况。轴系不对中是指转子联接后各转子的轴线不在同一条直线上。轴承不对中是指轴颈在轴承中偏斜,轴颈与轴承孔轴线相互不平行。通常所讲不对中多指轴系不对中。 不对中的振动特征: 1、最大振动往往在不对中联轴器两侧的轴承上,振动值随负荷的增大而增高;

2、平行不对中主要引起径向振动,振动频率为2倍工频,同时也存在工频和多倍频,但以工频和2倍工频为主; 3、平行不对中在联轴节两端径向振动的相位差接近180度; 4、角度不对中时,轴向振动较大,振动频率为工频,联轴器两端轴向振动相位差接近180度。 案例:某卧式高速泵振动达16.0 mm/s,由振动频谱图(图3)可以看出,50 Hz(电机工频)及其2倍频幅值显著,且2倍频振幅明显高于工频,初步判定为不对中故障。再测量泵轴承箱与电机轴承座对应部位的相位差,发现接近180度。 解体检查发现联轴器有2根联接螺栓断裂,高速轴上部径向轴瓦有金属脱落现象,轴瓦间隙偏大;高速轴止推面磨损,推力瓦及惰性轴轴瓦的间隙偏大。检修更换高速轴轴瓦、惰性轴轴瓦及联轴器联接螺栓后,振动降到A区。 三、松动 机械存在松动时,极小的不平衡或不对中都会导致很大的振动。通常有三种类型的机械松动,第一种类型的松动是指机器的底座、台板和基础存在结构松动,或水泥灌浆不实以及结构或基础的变形,此类松动表现出的振动频谱主要为1x。第二种类型的松动主要是由于机器底座固定螺栓的松动或轴承座出现裂纹引起,其振动频谱除1X外,还存在相当大的2X分量,有时还激发出1/2X和3X振动

发动机涡轮增压器的特点及使用注意事项

发动机涡轮增压器的特点及使用注意事项 汽车发动机涡轮增压器主要由涡轮机罩、压气面罩及增压壳等组成。 废气涡轮增压就是利用柴油机排出的能量来驱动涡轮机,从而带动压气机,来提高进气压力增加充气量。增加发动机的进气压力,主要是靠装在发动机上的一个径流式废气涡轮增压器来实现。当发动机运转时,利用发动机排出的废气流经涡轮机的力量,迫使涡轮机叶轮高速旋转。因涡轮机叶轮与压气机叶轮同在一根轴上,所以在涡轮机叶轮高速旋转的同时,也带动压气机叶轮做相应的调整旋转,从而使通过压气机内的空气速度和压力增加。又因压气机出气口是和发动机进气支管相连接的,所以,这些经过增压后的空气,也就能顺利地进入发动机的燃烧室以供燃油燃烧。 柴油机采用废气涡轮增压不仅可提高功率,还可减少单位功率质量、缩小整机外形尺寸、降低燃油消耗。 1、废气涡轮增压的优点 1.1增压器与发动机只有气体管路连接而无机械传动,因此增压方式结构简单,不需要消耗功率。 1.2在发动机重量及体积增加很少的情况下,发动机结构无需做重大改动,便很容易提高功率20%-50%。 1.3由于废气涡轮增压回收了部分能量,故增压后发动机经济性也有明显提高,再加上相对减小了机械损失和散热损失,提高了发动机的机械效率和热效率,使发动机涡轮增压后燃油溺消耗率可降低5%-10%。 1.4涡轮增压发动机对海拔高度变化有较强的适应能力,因此装有废气涡轮增压的汽车在高原地区具有明显的优势。 2、废气涡轮增压器在使用中应注意一下几点: 2.1增压器的转子轴转速高达80000-100000r/min,若用一般机械中的轴承将无法正常工作。因此,增压器普遍采用全浮动轴承。全浮动轴承与转子轴和壳体轴承之间均有间隙,当转子轴高速旋转时,具有0.25-0.4Mpa压力的润滑油充满这两个间隙,使浮动轴承在内外两层油膜中随转子轴同向旋转,但其转速却比转子轴低得多,从而使轴承相对轴承孔和转子轴的相对线速度大幅度下降。由于有双层油膜,可以双层冷却,并产生双层阻尼。由此可知,浮动轴承具有高速轻载下工作可靠等优点,但同时也发现浮动轴承对润滑油的要求很高。必须注意按规定牌号加注润滑油。 2.2所用润滑油必须清洁,否则将加速轴承磨损,甚至导致增压器及发动机性能恶化。因此,必须严格按照保养规定,定期清洗机油滤清器滤芯。15000km磨合期更换一次机油和滤芯,以后每10000km更换一次机油。 2.3应按保养规定定期清洁空气滤清器,每两年便更换一次空气滤清器滤芯或按行驶里程定期更换。使用中应经常检查进气系统和排气系统的密封性。 2.4为确保浮动轴承的润滑,发动机刚起动时,应怠速运转几分钟(至少30s),因为机油的压力以及机油循环至浮动轴承处需要一定时间,否则浮动轴承的润滑条件得不到保障,加剧轴承磨损,甚至发生卡死故障。停机时也同样如此,逐渐减少负荷,直至怠速运转几分钟后方可停机。 2.5增压器在使用了2000-2500h后,应在发动机不解体的状态下测量转子轴的轴向移动量。测量前应先将进、排气管从增压器上拆下,把千分表触点顶在转子轴上,然后轴向推动叶轮进行测量,移动量应为0.10-0.30mm。若超差则应将增压器拆下检修,或更换增压器。

振动测试和分析技术综述分析解析

振动测试和分析技术综述 黄盼 (西华大学,成都四川 610039) 摘要:振动测试和分析对结构和系统动态特性分析及其故障诊断是一种有效的手段。综述了当前振动测试和分析技术,包括振动测试与信号分析的国内外发展概况、振动信号数据采集技术、振动测试技术、以及振动测试与信号分析的工程应用,最后对振动测试与分析技术的未来发展方向进行了展望。 关键词:振动测试; 信号分析; 动态特性; 综述 Summary of Vibration Testing and Analysis HuangPan ( Xihua University,Chengdu 610039,China) Abstract: Vibration testing and analysis is an effective tool in analyzing structure and system dynamic characteristic and detecting the failures of structures,systems and facilities. The present paper reviews the current vibration testing and analysis techniques,including the development of vibration measurement and analysis of domestic and foreign,vibration signal data acquisition,vibration testing technology ,vibration measurement and analysis in engineering application. Finally,the future development in the field of vibration testing and analysis is predicted. Key words: vibration testing; signal analysis; dynamic characteristic;overview

风机运行中常见故障原因分析及其处理

风机运行中常见故障原因分析及其处理方法
风机是一种将原动机的机械能转换为输送气体、给予气体能量的机械,是机 械热端最关键机械设备之一,虽然风机的故障类型繁多,原因也很复杂,但根据 经验实际运行中风机故障较多的是:轴承振动、轴承温度高、运行时异响等。 1 风机轴承振动超标 风机轴承振动是运行中常见的故障,风机的振动会引起轴承和叶片损坏、螺 栓松动、机壳和风道损坏等故障,严重危及风机的安全运行。风机轴承振动超标 的原因较多, 如能针对不同的现象分析原因采取恰当的处理办法,往往能起到事 半功倍的效果。 1.1 叶片非工作面积灰引起风机振动 这类缺陷常见现象主要表现为风机在运行中振动突然上升。 这是因为当气体 进入叶轮时,与旋转的叶片工作面存在一定的角度,根据流体力学原理,气体在 叶片的非工作面一定有旋涡产生, 于是气体中的灰粒由于旋涡作用会慢慢地沉积 在非工作面上。 机翼型的叶片最易积灰。当积灰达到一定的重量时由于叶轮旋转 离心力的作用将一部分大块的积灰甩出叶轮。 由于各叶片上的积灰不可能完全均 匀一致, 聚集或可甩走的灰块时间不一定同步,结果因为叶片的积灰不均匀导致 叶轮质量分布不平衡,从而使风机振动增大。 在这种情况下,通常只需把叶片上的积灰铲除,叶轮又将重新达到平衡,从 而减少风机的振动。 在实际工作中,通常的处理方法是临时停机后打开风机叶轮 外壳,检修人员进入机壳内清除叶轮上的积灰。 1.2 叶片磨损引起风机振动 磨损是风机中最常见的现象,风机在运行中振动缓慢上升,一般是由于叶片 磨损, 平衡破坏后造成的。 此时处理风机振动的问题一般是在停机后做动平衡校 正。 1.3 风道系统振动导致引风机的振动 烟、 风道的振动通常会引起风机的受迫振动。这是生产中容易出现而又容易 忽视的情况。风机出口扩散筒随负荷的增大,进、出风量增大,振动也会随之改 变,而一般扩散筒的下部只有 4 个支点,如图 2 所示,另一边的接头石棉帆布是 软接头,这样一来整个扩散筒的 60%重量是悬吊受力。从图中可以看出轴承座 的振动直接与扩散筒有关,故负荷越大,轴承产生振动越大。针对这种状况,在 扩散筒出口端下面增加一个活支点(如图 3),可升可降可移动。当机组负荷变 化时,只需微调该支点,即可消除振动。经过现场实践效果非常显著。该种情况 在风道较短的情况下更容易出现。

发动机振动特性分析与试验

发动机振动特性分析与试验 作者:长安汽车工程研究院来源:AI汽车制造业 完善的项目前期工作预示着更少的项目后期风险,这也是CAE工作的重要意义之一。在整机开发的前期(概念设计和布置设计阶段),由于没有成熟样机进行NVH试验,很难通过试验的方法预测产品的NVH水平。因此,通过仿真的方法对整机NVH性能进行分析甚至优化显得十分重要。 众所周知,发动机NVH是个复杂的概念,包括发动机的振动、噪声以及个体对振动和噪声的主观评价等。客观地说,噪声与振动也相互联系,因为发动机一部分噪声由结构表面振动直接辐射,另一部分由发动机燃烧和进排气通过空气传播。除此之外,发动机附件(如风扇)也存在噪声贡献。本文仅考虑发动机结构振动问题,即在主轴承载荷、燃烧爆发压力和运动件惯性力的作用下,对发动机结构振动进行分析以及与试验的对比。发动机结构噪声的激励源主要包括燃烧爆发压力、气门冲击、活塞敲击、主轴承冲击、前端齿轮/链驱动和变速器激励等,这些结构振动又通过缸盖罩、缸盖、缸体和油底壳等传出噪声。 发动机结构振动分析方法简介 图1 发动机结构振动分析方法 如图1所示,发动机结构噪声分析方法包括以下几个步骤: 1. 动力总成FE建模及模态校核 建立完整的短发动机和变速器装配的有限元模型;对该有限元模型进行模态分析,通过分析结果判断各零件间连接是否完好;通过分析结果判断动力总成整体模态所在频率范围是否合理,零部件的局部模态频率是否合理,若存在整体或局部模态不合理的情况,需要对结构进行初步更改或优化。

2. 动力总成模态压缩 缩减有限元模型,得到动力总成的刚度、质量、几何以及自由度信息,用于多体动力学分析。 3. 运动件简化模型建立 发动机中的部分动件不用进行有限元建模,可作简化处理,形成梁-质量点模型,用于多体动力学分析。其中包括:活塞组、连杆组和曲轴及其前后端。 4. 动力总成多体动力学分析 在定义了动力总成各零部件间连接并且已知各种载荷的情况下,对动力总成进行时域下的多体动力学分析,并对得到的发动机时域和频域下的动态特性进行评判,同时,其输出用于结构振动分析。 5. 动力总成结构振动分析 基于多体动力学分析结果,对整个动力总成有限元模型进行强迫振动分析,得到发动机本体、变速器以及各种外围件的表面振动特性,进行评判和结构优化。 实例分析 1. 分析对象 以一款成熟的直列四缸1.5L发动机为平台,针对其结构振动问题,对其进行结构振动CAE 分析,并与其台架试验结果相比较。发动机的部分参数如下:缸径75mm,冲程85mm,缸间距84mm,最大缸压6MPa。 2. 坐标定义 为了便于以后叙述,对动力总成进行了坐标定义(见图2)。

涡轮增压器的合理使用与维护

编号:AQ-JS-07653 ( 安全技术) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 涡轮增压器的合理使用与维护 Reasonable use and maintenance of turbocharger

涡轮增压器的合理使用与维护 使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。 1、合理使用 (1)柴油机的启动与加速 柴油机启动后,涡轮增压器即开始运转。务必先低速运行 3-5min,待机油温度上升、流动性能好转,涡轮增压器得到充分润滑后,再提高转速并带负荷作业,以确保在高转速下增压器涡轮转子轴及轴承的润滑,避免柴油机负荷加大时增压器转子轴及轴承出现无油干磨擦或烧卡现象。 停机时间较长的柴油机,应做好预润滑,用机油壶往增压器的进油口注入一定量的机油,并用手转动叶轮,以保证涡轮转子轴与浮动轴承有承载油膜保护,发动机熄火前,要逐渐减少负荷,怠速运转3-5min后再停机,以防止发生结焦和轴承损坏;另外,柴油机不可长时间怠速运转,这样会增加油耗、加剧机件磨损,增压器也会因润滑压力过低而润滑不良,导致早期损坏。为此,怠速运转的

时间一般不应超过10min。 (2)空负荷运转 防止长时间低速空转,怠速运转时间过长,排气侧正压力过低,涡轮端密封环的两侧气压不平衡,机油就会渗漏到涡轮壳。如果泄漏很轻微,会在负荷下烧尽而不致发生故障,但会污染涡轮叶片。因此,不要让涡轮增压柴油机在怠速下运转超过10min。 (3)停机 高温、高速运转的柴油机不可突然停机,以免润滑油中断,造成增压器转轴与轴套之间“咬死”。一旦停机,通信增压器的润滑油也停止流动。如果此时排气岐管的温度很高,其热量会传到增压器壳体,将停留在那里的润滑油熬成积炭。当这种积炭越积越多时就会阻塞进油口,导致轴套缺油,加速转轴与轴套之间的磨损,甚至会发生“咬死”的严重后果。因此,柴油机停机前一定要先卸荷,使其空转,待机温下降后再熄火。 停机后,机油泵不工作,机油压力迅速降至零,然而,增压器只要还在旋转,就需要机油润滑和冷却,一旦断油,残存在增压器

振动分析仪作业指导书

AWA6256B型环境振动分析仪 作业指导书 一、操作规程 1.开/关机 1.1将LR6(AA)电池装入电池仓,或接入5V外部电源,按下仪器的红色“开机/复位”键后放开,大约1s后LCD显示屏上显示“环境振动分析”并自检。按“△”、“▽”键可以改变LCD显示器的对比度(共30级);按“确定”键,进入主菜单,如果用户5秒以上不按任何键,则自动进入主菜单。主菜单共有三个子菜单,它们分别是①振动测量:并行(同时)测量2种频率计权和1种平直频率响应、4种时间计权的振级或加速度级,统计振动等。②数据管理:查看仪器内已经保存的测量结果。③参数设置:设定测点名、测量时间等参数。 1.2显示屏右上角“”图标后的数字表示还可以保存数据组数。 1.3按“←”、“→”键可以移动光标,按下“确定”键5秒以上不按任何键进入子菜单。 1.4开机后,任何时刻按下“开机/复位”键,仪器马上中断一切操作和测量,执行上述开机/复位操作。 1.5仪器使用完毕,按下“关机”键可将电源关闭,仪器内部的日历时钟子内部后备电池的支持下继续走动,当后备电池充满电时可

供仪器内部的日历时钟继续走动3个月以上。测量结果保存在FLASH 中,没有外部电源的情况下,数据也不会丢失。 2参数设置,在开始测量前,应首先进行参数设置。 参数设置菜单,在主菜单,将光标移动到“参数设置”上,按下“确定”键,依次设定“测点名”、“测定名选择”、“启动前提示用户先设定参数”、“统计用频率计权”、“传感器灵敏度”、“积分测量时间”、“时钟”等参数。 3振动测量 3.1用延伸电缆连接加速度传感器和仪器,将传感器稳定地放置于测点处,传感器上的箭头方向与测量的主轴方向一致。按“开机/复位”键开机,进入“参数设置”子菜单,检查电源电压、测点名、统计用频率计权、传感器灵敏度、积分测量时间、时钟等是否正确,确认后退出“参数设置”子菜单,进入“振动测量”子菜单,选择量程、工作方式,按下“启动”键,仪器开始积分测量和统计分析。 3.2当需要暂停测量时,按一下“启动/暂停”键,仪器暂停测量,再按一下“启动/暂停”键仪器继续测量。 3.3当测量中需要保存测量数据时,先将光标移到屏幕右下角“贮存”项,再按下“确定”键,仪器暂停测量并保存当前测量数据,待存完数据后,按“启动”键继续测量。 3.4当需要人为结束测量并保存测量结果时,先按一下“启动/暂停”键暂停测量,再按下“删除”键,仪器清除当前测量数据并结束测量。

振动分析基础知识讲课教案

旋转机械振动分析基础 汽轮机、发电机、燃气轮机、压缩机、风机、泵等都属于旋转机械,是电力、石化和冶金等行业的关键设备。这些设备出现故障后,大多会带来严重的经济损失。 振动在设备故障中占了很大比重,是影响设备安全、稳定运行的重要因素。振动又是设备的“体温计”,直接反映了设备健康状况,是设备安全评估的重要指标。一台机组正常运行时,其振动值和振动变化值都应该比较小。一旦机组振动值变大,或振动变得不稳定,都说明设备出现了一定程度的故障。振动对机组安全、稳定运行的危害主要表现在: (1)振动过大将会导致轴承乌金疲劳损坏。 (2)过大振动将会造成通流部分磨损,严重时将会导致大轴弯曲。统计数据表明,汽轮发电机组60%以上的大轴弯曲事故就是由于摩擦引起的。 (3)振动过大还将使部件承受大幅交变应力,容易造成转子、联结螺栓、管道、地基等的损坏。 正因为振动对设备安全运行相当重要,人们对振动问题都很重视。目前大型机组上普遍安装了振动监测系统,并将振动信号投了保护。振动超标时,保护动作,机组自动停机,从而保证设备的绝对安全。

一、振动分析基本概念 振动是一个动态量。图所示是一种简单的振动形式-简谐振动,即振动量按余弦(或正弦)函数规律周期性地变化,幅值反映了振动大小;频率反映了振动量动态变化的快慢程度;相位反映了信号在t=0时刻的初始状态。 可见,为了完全描述一个振动信号,必须同时知道幅值、频率和相位这三个参数,人们称之为振动分析的三要素。 振动是一个动态变化量。为了突出反映交变量的影响,振动监测时常取波形中正、负峰值的差值作为振动幅值,又称为峰峰值。 简谐振动是一种简单的振动形式,实际机组上发生的振动比简谐振动要复杂得多。不管振动多么复杂,由信号分析理论可知,都可以将其分解为若干具有不同频率、幅值和相位的简谐分量的合成。 旋转机械振动分析离不开转速,为了方便和直观起见,

火电厂风机喘振及失速分析

火电厂风机失速及喘振分析 【摘要】风机是电厂锅炉的主要辅助设备之一,是火力发电厂不可缺少的一部分,其所消耗的电量约占电厂总发电量的2~3%。随着用电量的不断增长和能源问题的出现,电厂风机运行的安全性越来越为人们所重视,其运行状况的好坏直接危及到整个机组的安全运行,严重影响火力发电厂的经济效益。本文重点针对电厂风机的喘振失速问题进行机理分析,并提出了运行处理及防范措施。 【关键词】风机失速喘振不稳定工作区运行处理预防 1.风机简述 1.1离心式风机和轴流式风机比较 风机主要有离心式和轴流式两种。离心式风机具有结构简单、运行可靠、效率较高、制造成本较低、噪音小等优点。但离心风机的容量受到叶轮材料强度的限制,不能随锅炉容量的增加而相应增大;而轴流式风机具有容量大,且结构紧凑、体积小、重量轻、耗电低、低负荷时效率高等优点,但轴流风机结构复杂,制造精度要求高。 鉴于轴流式风机的优点,大容量机组均选用轴流式风机。 1.2轴流式风机的运行调节 轴流式风机的运行调节有四种方式:动叶调节、节流调节、变速调节和入口静叶调节。动叶调节是通过改变风机叶片的角度,使风机的曲线发生改变,来实现改变风机的运行工作点和调节风量。这种调节经济性和安全性较好,每一个叶片角度对应一条曲线,且叶片角度的变化几乎和风量成线性关系。 节流调节的经济性很差,所以轴流式风机不采用这种调节方式。 变速调节是最经济的调节方式,但需要配置电机变频装置或液力偶和器。 进口静叶调节时系统阻力不变,风量随风机特性曲线的改变而改变,风机的工作点易进入不稳定工况区域。 2.风机失速与喘振机理 2.1失速机理 轴流式风机其工作原理是基于叶翼型理论(如图a):当气流以某一冲角α进入叶轮时,由于沿气流流动方向的两侧不对称,使得翼型上部区域的流线变密,流速增加,翼型下部区域的流线变稀,流速减小;因此,流体作用在翼型下部表面上的压力将大于流体作用在翼型上部表面的压力,结果在翼背上产生一个升力,同时在翼腹上产生一个大小相等方向相反的作用力,使气体排出叶轮呈螺旋形沿轴向向前运动。与此同时,风机进口处由于压差的作用,使气体不断地被吸入。 a、风机正常工况时的气体流动状况 b、风机脱流工况时的气体流动状况 动叶可调轴流风机,冲角α越大,翼背的周界越大,则升力越大,风机的压差越大,风量越小。当叶片冲角α达到临界值时,气流会在叶背尾端产生涡流区,即所谓的脱流工况(失

AWA6256B 型环境振动分析仪

AWA6256B+型环境振动分析仪 一、产品概述: AWA6256B+环境振动分析仪由环境振动加速度计、主机、环境振动测量分析软件组成,主要用于环境振动测量。环境振动可同时符合 ISO8041:1990及GB/T 23716-2009(ISO8041:2005)标准;符合现行GB10070-1988标准中对仪器的要求,也可满足修订中环境振动测量仪器的要求。 AWA6256B+环境振动分析仪安装人体振动测量软件(S6291-01107),符合GB/T13441和ISO8041:2005标准,软件可以对0.5 Hz~100 Hz的全身振动进行7种频率计权、4种时间计权测量及统计分析,配置相应的座垫式加速度计用于全身振动测量;配置相应的手传振动加速度计可对5 Hz~1600 Hz的手传振动进行测量。安装低频1/3 OCT分析软件(S6291-03110) ,满足GB /T 50355-2005 标准对仪器的要求,对中心频率0.5 Hz~200 Hz.低频振动进行实时1/3 OCT分析。 二、主要技术性能: 配置1:环境振动;配置2:环境振动+人体振动;配置3:环境振动+人体振动+低频1/3 OCT; 注:手传振动因使用的传感器不同,需要单独配置。 环境振动测量人体振动测量低频振动测量(新产品) 软件配置人体振动分析软件包 (S 6291-01107) 人体振动分析软件包 (S 6291-01107) 低频1/3 OCT分析软 件包(S 6291- 01310 ) 符合标准ISO 8041: 1990 (JJG921-1996) 可升级符合 GB/T 23716-2009 (ISO 8041:2005) GB/T 23716-2009 (ISO 8041:2005) 全身振动测量符合 GB/T13441 (ISO 2631)标准, 手传振动符合 GB/T 14790.1 (ISO 5349-1), GBZ/T 189.9 GB/T 50355-2005 JGJ/T 170-2009 GB/T 3241-2010 传感器AWA14400型压电加速 度计,灵敏 度: 40 mV/ m·s- 2,质量:550 g 全身振动:AWA84410 型三轴向座垫加速度 计,灵敏度: 约 3 pC/ m·s-2,质 量:250 g 手传振动:AWA84181 传感器,灵敏度: 1 pC m·s-2,质 量:14 g AWA14400型压电加速 度计,灵敏 度: 40 mV/ m·s- 2,质量:550 g

浅析离心鼓风机喘振现象及处理方法

浅析离心鼓风机喘振现象及处理方法 李保川 光大水务(德州)有限公司 摘要:以光大水务(德州)有限公司南运河污水处理厂鼓风机为研究对象,结合其实际运行情况,对鼓风机运行过程中产生喘振的原因进行分析研究并制定出应对对策以及验证其可行性。 关键词:污水处理厂;离心式鼓风机;喘振; 光大水务(德州)有限公司南运河污水处理厂处理规模15万m3/d,一期工程处理规模为7.5万m3/d,二期工程处理规模为7.5万m3/d,采用的污水处理工艺为A/A/O工艺。生物池为一座两池,设计流量:Q=0.868m3/s,平面尺寸:109.90m×60.30m,分厌氧区、缺氧区、好氧区。曝气方式采用盘式微孔曝气,鼓风机采用上海华鼓鼓风机有限公司生产的多级低速离心式鼓风机,三用一备。配套驱动电机为西门子电机(中国)有限公司贝德牌电机。 多级低速离心式鼓风机型号为C110-1.7,进口压力101kpa,进口流量110m3/min,出口压力0.07Mpa,额定功率200Kw,转速2970r/min。配套驱动电机型号为BM315L2-2,功率200KW,转速2975r/min。曝气系统是整个污水处理工艺流程最为核心的部分之一,而鼓风机又是曝气系统的核心设备,所以,鼓风机运行质量的好坏对污水处理后是否符合标准起着决定性的作用。因此,鼓风机一旦出现故障,对污水处理厂将会是致命的打击。多级离心式鼓风机常见的故障以喘振为代表现象。

1.什么是喘振以及危害 “喘振”是离心鼓风机性能反常的一种不稳定的运行状态,在运行过程中,当负荷减小,负载流量下降到某一定值时出现工作不稳定,管道中的气体压力大于出口的气体压力,这时管道中的气体就会倒流回鼓风机,直到管道中的压力下降至低于出口处的压力才会停止,鼓风机会产生剧烈震动,同时会伴有如喘息一般“呼啦”“呼啦”的强烈噪音。喘振现象出现时,鼓风机的强烈震动会使机壳、轴承也出现强烈振动,并发出强烈、周期性的气流声。轴承液体润滑条件会遭到破坏,轴瓦会烧坏,转子与定子会产生摩擦、碰撞,密封元件也将严重破坏,更甚至会发生轴扭断。同时,对A/A/O池中的DO量影响严重,关系到出水达标问题。 2.鼓风机产生喘振的原因 压力/Mpa Q/(m3/h) 图1 转速恒定状态下进口空气流量与出口压力的特性曲线图离心鼓风机在转速恒定的状态下,其进口空气流量Q与出口的压力的特性如图1所示。A点与B点是鼓风机正常稳定运行状态的两个临界点,也就是说只有在A点与B点这个稳定区间内鼓风机才是正常运行状态。当鼓风机的输出流量超过B点时则为不稳定区域,处于不

喘振与失速区别

谁知道风机失速、喘振、抢风都什么意思,三者有什么关系?我在网上查过,但都没看太明白,望不吝赐教。 失速是风机本身特性引起的 喘振是风压由于管道压力的滞后导致与风机出口压力周期性变化,就来来回倒腾 抢风如这个词,两台风机不是你出力大就是我大,搞的最后两败俱伤。 我的理解 轴流风机的喘振与失速是不同的情况可以简单概括如下: 喘振一般发生在性能曲线带驼峰的轴流风机低负荷运行时; 失速一般发生在动叶可调轴流风机的高负荷区。主要是动叶指令太大导致,叶片进风冲角过大引起叶片尾部脱流产生风机失速带驼峰 抢风是当并联轴流风机中的一台发生喘振或失速时人们的一般性叫法。 喘振是指当风机处于不稳定工作区运行,可能会出现流量、全压的大幅度波动,引起风机及管路系统周期性的剧烈波动,并伴随着强烈的噪声。 避免喘振主要采用合适的调节方式 抢风是指风机并联运行中有时会出现一台风机流量大,另一台流量特别小,稍加调节情况相反 避免抢风主要有: 1。不采用不稳定性能风机 2.同时在低负荷运行时可以单台运行 3.采取动叶调节 4.开启旁路风

一、风机失速 图1:风机失速 轴流风机叶片通常都是流线型的,设计工况下运行时,气流冲角(即进口气流相对速度w 的方向与叶片安装角之差)约为零,气流阻力小,风机效率高。当风机流量减小时,w的方向角改变,气流冲角增大。当冲角增大到某一临界值时,叶背尾端产生涡流区,即所谓的脱流工况(失速),阻力急剧增加,而升力(压力)迅速降低;冲角再增大,脱流现象更为严重,甚至会出现部分叶道阻塞的情况。 由于风机各叶片存在安装误差,安装角不完全一致,气流流场不均匀相等。因此,失速现象并不是所有叶片同时发生,而是首先在一个或几个叶片出现。若在叶道2中出现脱流,叶道由于受脱流区的排挤变窄,流量减小,则气流分别进入相邻的1、3叶道,使1、3叶道的气流方向改变。结果使流入叶道1的气流冲角减小,叶道1保持正常流动;叶道3的冲角增大,加剧了脱流和阻塞。叶道3的阻塞同理又影响相邻叶道2和4的气流,使叶道2消除脱硫,同时引发叶道4出现脱流。也就是说,脱流区是旋转的,其旋转方向与叶轮旋转方向相反。这种现象称为旋转失速。 与喘振不同,旋转失速时风机可以继续运行,但它引起叶片振动和叶轮前压力的大幅度脉动,往往是造成叶片疲劳损坏的重要原因。从风机的特性曲线来看,旋转失速区与喘振区一样都位于马鞍型峰值点左边的低风量区。为了避免风机落入失速区工作,在锅炉点火及低负荷期间,可采用单台风机运行,以提高风机流量 二、风机喘振: 图1:风机喘振 图2:风机喘振报警线

风机喘振分析和防止风机喘振保护原理

轴流式吸风机喘振分析 轴流式吸风机在大型发电厂中应用比较普遍。轴流式风机在运行中调节不当会出现喘振现象。因此就大唐盘山电厂吸风机出现的喘振进行分析,得出结论:及早发现,正确处理。 主题词:轴流吸风机喘振现象处理 轴流式吸风机由于其本身的特性决定了它在运行中存在着发生 喘振的可能性,这一点从理论和实践中都可以得到证明。 大唐盘山电厂应用两台轴流式吸风机并联运行的方式。运行实际中轴流风机喘振发生在增加出力的过程中,并联运行的轴流风机只是发生在单台风机喘振,未发生过两台风机同时喘振。 下面就大唐盘山电厂发生的风机喘振现象加以叙述和分析: 第一次喘振现象:当时AGC投入,负荷500MW升至550MW。A、B、 C、D、E磨运行。炉膛压力异常报警。 处理: 运行人员切换画面到吸风机时,#1吸风机跳闸(原因:液压油压力低),联跳#1送风机。RB保护动作,E磨跳闸,10秒后,D磨跳闸,炉膛压力低保护动作,MFT动作,锅炉灭火. 经过现场检查发现液压油管断开,造成油位下降,油泵不打油。液压油压力低,#1吸风机跳闸。通过追忆,确认风机跳闸前两台风机动叶全开,#1吸 风机流量"0",发生喘振。 第二次喘振现象:当时AGC投入,负荷500MW升至530MW。

A、B、C、D、E磨运行。炉膛压力异常报警,运行人员切换画面到吸风机时,#1吸风机流量"0",电流83A,#2吸风机电流480A。(风机额定电流260A)两台风机动叶全开。确认#1吸风机喘振。 处理:关小#2吸风机动叶。处理过程中,#1吸风机跳闸(原因液压油压力低),当时#1吸风机#1运行中液压油站跳闸,#2字自启后跳闸。联跳#1送风机。RB保护动作,E磨跳闸,10秒后,D 磨跳闸,炉膛压力低保护动作,MFT动作,锅炉灭火。 第三次现象:当时AGC投入,负荷500MW升至520MW。A、B、C、D、E磨运行。炉膛压力异常报警,运行人员切换画面到吸风机时,炉膛负压正400pa,#1吸风机流量"0",电流141A,#2吸风机电流285A。两台风机动叶开度75%。确认#1吸风机喘振。 处理: 两台吸风机解自动,手动关#1吸风机动叶至50%时,#1吸风机开始打风,炉膛负压至负700 pa,开始关#2吸风机动叶至65%,同时,开#1吸风机动叶至55%。当两台风机动叶开度62%/58%时,电流为160A/160A,负压稳定后,两台吸风机头自动。 分析: 1. 三次吸风机喘振均发生在升负荷过程中,且处于80%负荷以上。由于在高负荷时,烟气量较大,烟气侧阻力较大。#1吸风机在两台风机并联运行中流量偏小,且由于调节系统的原因,#1吸风机动叶先动作,造成#1吸风机进入喘振区,发生喘振。 针对这种现象,要求运行人员在负荷高于450MW,升负荷过程中,

振动基础知识分析

基本概念和基础知识 一、常见的工程物理量 力、压力、应力、应变、位移、速度、加速度、转速等 (一)力:力是物体间的相互作用,是一个广义的概念。物体承受的力可以有加载力,也可以有动态力,我们常测试的力主要是动态力,即给结构施加力,激发结构的某些特性,便于测试了解其结构特性,如模态试验用的力锤。 (二)应力应变:材料或构件在单位截面上所承受的垂直作用力称为应力。在外力作用下,单位长度材料的伸长量或缩短量,称为应变量。在一定的应力范围(弹性形变)内,材料的应力与应变量成正比,它们的比例常数称为弹性模量或弹性系数。 (三)振动位移:位移就是质量块运动的总的距离,也就是说当质量块振动时,位移就是质量块上、下运动有多远。位移的单位可以用μm 表示。进一步可以从振动位移的时间波形推出振动的速度和加速度值。

可以是静态位移,可以是动态位移。通常我们测试的都是动态位移量。有角位移、线位移等。 (四)振动速度:质量块在振荡过程中运动快慢的度量。质量块在运动波形的上部和下部极限位置时,其速度为0,这是因为质量块在这两点处,在它改变运动方向之前,必须停下来。质量块的振动速度在平衡位置处达到最大值,在此点处质量块已经加速到最大值,在此点以后质量块开始减速运动。振动速度的单位是用mm/s来表示。 (五)振动加速度:被定义为振动速度的变化率,其单位是用有多少个m/s2 或g来表示。由下图可见加速度最大值处是速度值最小值的地方,在这些点处质量块由减速到停止然后再开始加速。 (六)转速:旋转机械的转动速度 (七)简谐振动及振动三要素 振动是一种运动形式――往复运动

d=Dsin(2πt/T+Φ) D――振动的最大值,称为振幅 T――振动周期,完成一次全振动所需要的时间 f――单位时间内振动的次数,即周期的倒数为振动频率, f =1/T (Hz)(1) 频率f 又可用角频率来表示,即 ω=2π/T (rad/s) ω和f的关系为 ω=2πf (rad/s)(2) f =ω/2π(Hz)(3) 将式(1)、(2)、(3)代入式可得 d =D sin(ωt+Φ)=Dsin(2πft+Φ) 可以用正玄或余玄函数描述的振动过程称之为简谐振动

涡轮增压器损坏的原因

涡轮增压器损坏的原因 Kmp中国服务中心 1.润滑油不足或供油滞后 (1)当涡轮增压器的转速和柴油机负荷增加时,涡轮增压器润滑油的供油量也必须增加,因为柴油机高负荷运转、涡轮增压器转速很高时,即使只有短暂的几秒钟对涡轮增压器轴承供油不足也将造成轴承损坏。 (2)在更换机油和机油滤清器时,用清洁的机油预先注满滤清器,换完后第一次启动柴油机时,应在柴油机启动后保持足够长时间的怠速运转直到机油压力稳定后再加速,否则涡轮增压器的轴承就可能因启动期间缺乏润滑而损坏。 (3)当柴油机处于倾斜状态下工作(部分负荷或全负荷运转)时,如果机油油面太低或吸入空气,就会造成机油压力降低,即使时间再短也有可能使增压器因缺乏润滑油而损坏。 2.外部杂物或泥沙进入润滑系统 喊有赃物或泥沙的机油对涡轮增压器轴承的磨损和损坏比对柴油机轴承的损坏要严重得多,因为涡轮增压器的转速远远高于柴油机的转速。如果涡轮增压器发生这种损坏,应找出产生机油赃物的原因并排除,否则即使换上了新增压器也会发生损坏,发展下去还可能损坏柴油机。当混在机油中的赃物颗粒较大、足以堵塞涡轮增压器内部的油道时,增压器则会因缺乏润滑油而造成损坏。 在更换机油和机油滤清器时,在有条件的情况下可提取柴油机内的机油油样来进行分析,这将有助于防止出现上述损坏;应按照使用说明书上所规定的更换期限更换机油滤清器,决不能随意延长。 3.润滑油氧化或变质 柴油机机油氧化或变质后会形成油泥沉积下来,油泥将影响涡轮增压器的性能和寿命; 当机油的油泥状态严重时还会影响柴油机的寿命。即涡轮增压器轴的旋转运动会将机油甩到壳体内壁上,油泥即附着并沉积在壳体内壁,当油泥沉积过多而影响涡轮端轴承颈的回油时,沉积在涡轮端轴承内的油泥会由于废气传来的高温而被烘烤成坚硬的结焦,当结焦剥落后就会使涡轮端轴承和轴颈磨损,且在磨损之前油封还会发生漏油现象。 若发现涡轮增压器涡轮端有机油泄漏时,必须检查增压器的回油管和柴油机通风管是否阻塞,只有将这些故障排除后增压器才能工作。 形成油泥沉积是由于柴油机机油氧化和变质所致,而造成机油氧化和变质的根本原因则是柴油机过热、从活塞与气缸壁之间通过的燃气过多、机油中混入柴油、冷却水漏入机油、机油选用不当以及未按规定的期限更换机油等。 4.外部异物进入柴油机的进气或排气系统 涡轮增压器的涡轮和压气机叶轮都是以极高的转速转动的,一旦有外部异物进入柴油机的进、排气系统都将损坏叶轮;小的物体(如泥沙)会侵蚀叶轮使其叶片的导风角发生变化;大而硬的物体则会造成叶片破裂;柔软的物体(如棉纱)会迎着叶轮旋转方向卷在叶片上。

相关主题