搜档网
当前位置:搜档网 › 对称密钥密码系统

对称密钥密码系统

对称密钥密码系统
对称密钥密码系统

对称密钥密码系统

2000多年以前,罗马国王Julius Caesar使用过现今被称为“凯撒密码”的加密算法。此加密算法其实是“移位密码”算法的一个特例。由于移位密码安全性不高,使用穷举爆力技术很容易将其破解,于是人们发明了“代换密码”。而移位密码其实是代换密码的一个子集。虽然代换密码安全性有所提高,使用穷举爆力技术较难破解,然而使用统计密码分析技术却可以很容易地破解代换密码。

到了几百年前,有人发明了“置换密码”有时也叫“换位密码”,之后现代密码技术开始出现。很多人把Claude Shannon誉为现代密码学之父,他提出了“扩散”和“混淆”来构造密码体制的基本要素。这种加密技术可以有效的挫败使用统计分析技术来破解密码。

1973年,Horst Feistel公开了他的“Feistel密码”,这是第一个体现密码之父Shannon思想的密码系统。目前,几乎所有的对称密码系统都使用了Feistel密码的设计特征。

1973年,(美)国家标准局(NBS),即现在的(美)国家标准技术研究所(NIST)公布了征求国家密码标准的提案,人们建议了许多的密码系统。

1977年7月,NBS经过对众多的密码系统进行评估后,采纳了IBM在20世纪60年代(1960s)研制出来的一个密码系统作为数据加密标准(DES),此系统是由Horst Feistel领导的一个研究组研制出来的。这个密码系统基于一个称为LUCIFER[Fic73]的密码系统。LUCIFER密码系统本质上是Feistel密码的一个推广。

1983年、1988年和1993年,DES再度被认定为(美)国家标准。

1997年,RSA实验室发布了一个以10000美元作为酬金的挑战:寻找一个前面带有一个已知明文块的密文的DES密钥。由Roche Verse牵头的一个工程小组动用了70000多台通过因特网连接起来的计算机系统,使用穷举爆力攻击程序大约花费96天的时间找到了正确的DES密钥。意识到DES已经快完成它的历史使命,NIST于1997年1月宣布了一项选择一个用作高级加密标准(AES)的候选算法的计划:这个新的标准的将取代DES。

1998年7月,电子前沿基金会(EFF)花费了250000美元制造了一台机器,用它在不到3天的时间里就攻破了DES。为了响应NIST征求AES的提议,有关各方在1998年上半年提交了15个密码算法。

1999年8月9日,NIST宣布已经选出5个最终候选算法来参加第二轮的角逐成为AES。这个5个算法是“MARS”,由IBM的一个研究小组研发出来;“RC6”,由Ronold Rivest和来自RSA实验室的一个小组开发出来;“Rijndael”,由比利时的Joan Daemen和Vincent Rijmen设计得出;“Serpent”,由英国剑桥大学的Ross Anderson和以色列海法市Technion的Eli Bibam以及热挪威卑尔根大学的Lars Knudsen共同研究出来;“Twofish”,由Bruce Schneier、John Kelsey、Doug Whiting、David Wagner、Chris Hall和Niels Ferguson设计出来。

1999年10月25日,NIST在还没有找到合适的AES期间,采纳了三重DES (一个更安全的DES变形)作为国家标准。

2000年10月2日,NIST在5个候选算法中的Rijndael算法定为AES的最终候选算法。

密码学对称加密算法

对称加密算法 一、网络安全 1.网络安全 (1) 网络的安全问题:有以下四个方面 A. 端-端的安全问题,主要指用户(包括代理)之间的加密、鉴别和数据完整性维护。 B. 端系统的安全问题,主要涉及防火墙技术 C. 安全服务质量问题,主要指如何保护合法用户的带宽,防止用户非法占用带宽。 D. 安全的网络基础设施,主要涉及路由器、DNS服务器,以及网络控制信息和管理信息的安全问题。 (2)网络的安全服务:有以下五个方面 A.身份认证:这是考虑到在网络的应用环境下,验证身份的双方一般是通过网络而非直接交互,所以传统的验证手段如根据对方的指纹等方法就无法应用。同时大量的黑客随时都可能尝试向网络渗透,截获合法用户的口令并冒充顶替,以合法身份入网。所以应该提供一种安全可靠的身份认证的手段。 B.授权控制:授权控制是控制不同用户对信息资源的访问权限。授权控制是以身份认证为基础的。通过给不同用户的提供严格的不同层次和不同程度的权限,同时结合可靠的身份认机制,可以从很大程度上减少非法入侵事件发生的机会。 C.数据加密:数据加密技术顾名思义。在互联网上应用加密技术来保证信息交换的可靠性已经的到了人们普遍的认可,已经进入了应用阶段。目前的加密技术主要有两大类:一类是基于对称密钥加密的算法,另一类是基于非对称密钥加密的算法。它们都已经达到了一个很高的强度,同时加密算法在理论上也已经相当的成熟,形成了一门独立的学科。而从应用方式上,一般分成软件加密和硬件加密。前者成本低而且实用灵活,更换也方便;而后者加密效率高,本身安全性高。在应用中,可以根据不同的需要来进行选择。 D.数据完整性:数据完整性是指通过网上传输的数据应该防止被修改、删除、插入、替换或重发,以保证合法用户接收和使用该数据的真实性。 E.防止否认:在网上传输数据时,网络应提供两种防止否认的机制:一是防止发送方否认自己发送过的信息,而谎称对方收到的信息是别人冒名或篡改过的;二是防止接收方否认自己收到过信息。利用非对称加密技术可以很好的实现第一个否认机制。 二、加密技术 (1) 加密技术的产生和发展 A. 古代,目前记录的比较早的是一个在公元前2世纪,由一个希腊人提出来的,26个字母放在一个5×5的表格里,这样所有的源文都可以行列号来表示。 B. 近代,在第二次世界大战里,密码机(如紫罗兰)得到了比较广泛的已经技术,同时破译密码的技术也得到了发展,出现了一次性密码技术。同时密码技术也促进了计算机的发展。 C. 现代,由于计算机和计算机网络的出现,对密码技术提出了更高的需求。密码学的论文和会议不断的增加,以密码技术为主的商业公司开始出现,密码算法层出不穷,并开始走向国际标准化的道路,出现了DES,AES等国家(美国的)标准。同时各个国家和政府对密码技术也越来越重视,都加密技术的出口和进口都作了相当严格的规定。 (2) 加密技术的分类 A.对称加密技术 a. 描述 对称算法(symmetric algorithm),有时又叫传统密码算法,就是加密密钥能够从解密密钥中推算出来,同时解密密钥也可以从加密密钥中推算出来。而在大多数的对称算法中,加密密钥和解密密钥是相同的。所以也称这种加密算法为秘密密钥算法或单密钥算法。它要求发送方和接收方在安全通信之前,商定一个密钥。对称算法的安全性依赖于密钥,泄漏密钥就意味着任何人都可以对他们发送或接收的消息解密,所以密钥的保密性对通信性

非对称密钥加密

<2> 非对称密钥加密又叫作公开密钥加密算法。在非对称加密体系中,密钥被分解为一对(即一把公开密钥或加密密钥和一把私有密钥或解密密钥)。这对密钥中的任何一把都可作为公开密钥(加密密钥)通过非保密方式向他人公开,而另一把则作为私有密钥(解密密钥)加以保存。公开密钥用于对机密性信息的加密,私有密钥则用于对加密信息的解密。私有密钥只能由生成密钥对的用户掌握,公开密钥可广泛发布,但它只对应于生成该密钥的用户。公开密钥加密技术解决了密钥的发布和管理问题,是目前商业密码的核心。使用公开密钥技术,数据通信的双方可以安全的确认对方的身份和公开密钥。非对称密钥加密算法主要有RSA、PGP等。 ----数据加密技术可以分为三类,即对称型加密、不对称型加密和不可逆加密。 ----对称型加密使用单个密钥对数据进行加密或解密,其特点是计算量小、加密效率高。但是此类算法在分布式系统上使用较为困难,主要是密钥管理困难,使用成本较高,保安性能也不易保证。这类算法的代表是在计算机专网系统中广泛使用的DES(Digital Encryption Standard)算法。 ----不对称型加密算法也称公用密钥算法,其特点是有二个密钥(即公用密钥和私有密钥),只有二者搭配使用才能完成加密和解密的全过程。由于不对称算法拥有两个密钥,它特别适用于分布式系统中的数据加密,在Internet中得到了广泛应用。其中公用密钥在网上公布,为数据源对数据加密使用,而用于解密的相应私有密钥则由数据的收信方妥善保管。 ----不对称加密的另一用法称为“数字签名(Digital signature)”,即数据源使用其密钥对数据的校验和(Check Sum)或其他与数据内容有关的变量进行加密,而数据接收方则用相应的公用密钥解读“数字签名”,并将解读结果用于对数据完整性的检验。在网络系统中得到应用的不对称加密算法有RSA算法和美国国家标准局提出的DSA算法(Digital Signature Algorithm)。不对称加密法在分布式系统中应用时需注意的问题是如何管理和确认公用密钥的合法性。 2、对称性加密和非对称性加密 根据密钥技术的不同,可分为对称加密和非对称加密两种方法;对称加密是指用单一的密钥对明文进行加密,同时必须用该密钥对密文进行解密,加密和解密双方必须知道该密钥。非对称加密技术又称公共密钥技术,密钥成对存在,分别称为私有密钥(private key)和公共密钥(public key);在加密过程采用公共密钥,在解密过程采用私有密钥。 由此可以看出,非对称性加密技术使密钥更加安全,一般用于对密钥进行管理;但是非对称加密技术速度很慢,在数据传输过程中的加密一般采用对称加密算法。 对于VPN网关产品来说,因为非对称加密算法太慢,所以一般采用对称加密算法进行数据传输加密。 3、数据加密强度和加密算法

非对称密码体制的认证与对称密码体制的加密

非对称密码体制的认证和对称密码体制的加密 仵惠婷 22620139407 摘要:本文主要介绍在安全网络通信过程中:用非对称密码体制即公钥密码来进行通信双方的身份认证,以确保发送方是真的发送方,接收方是真的接收方;用对称密码体制对通信双方交互的通信数据进行加密的安全网络通信方案。非对称密码体制方案较对称密码体制方案处理速度慢,因此,通常把非对称密钥与对称密钥技术结合起来实现最佳性能。即用非对称密钥技术在通信双方之间传送会话密钥,而用会话密钥来对实际传输的数据加密解密。另外,非对称加密也用来对对称密钥进行加密。 关键词:非对称密码体制;认证;对称密码体制;加密; 1.引言 在要求安全的网络环境下通信双方首先要确认对方的身份是否属实,以防止伪造身份的恶意程序向正常服务发起服务请求,以防止恶意程序截获交付给正常客户程序的正常服务。然后要在整个通信过程中对通信双方交互的通信数据进行加密,以防止即使数据被泄露或者截获也不易被恶意程序篡改或伪造等。在现有密码技术条件下,应用非对称密码体制对通信双方进行身份认证,应用对称密码体制对通信数据进行加密的方案可谓设计精妙。 2.非对称密码体制的认证 非对称密码体制可以对信息发送与接收人的真实身份的验证、对所发出/接收信息在事后的不可抵赖以及保障数据的完整性是现代密码学主题的另一方面。 首先要介绍的是证书和CA。其中证书是将公钥和公钥主人名字放在一起被CA权威机构的私钥签名,所以大家都认可这个证书,而且知道了公钥的主人。而CA就是这个权威机构,也拥有一个证书,也有私钥,所以它有签字的能力。网上的公众用户通过验证CA的签字从而信任CA,任何人都应该可以得到CA的证书,用以验证它所签发的证书。如果一个用户想鉴别另一

对称密码体制

云南大学数学与统计学实验教学中心实验报告 一、实验目的: 通过实验掌握AES加密实验的构造算法,以及其重要思想。 二、实验内容: 查阅资料,实现AES密码体制的编码算法、译码算法、子密钥生成算法 三、实验环境 Win7、Eclipse 四、实验过程(请学生认真填写): 实验过程、结果以及相应的解释: 1. 预备知识 密码学中的高级加密标准(Advanced Encryption Standard,AES),是一种对称加密的方法。 本实验使用Java平台来编写的,虽然在java中已经很好的实现了AES等安全机制,但是为了了解如何实现,还是写了一个AES加密的java程序。 2. 实验过程 A、原理分析: 大多数AES计算是在一个特别的有限域完成的。 AES加密过程是在一个4×4的字节矩阵上运作,这个矩阵又称为“体(state)”,其初值就 是一个明文区块(矩阵中一个元素大小就是明文区块中的一个Byte)。(Rijndael加密法因支 持更大的区块,其矩阵行数可视情况增加)加密时,各轮AES加密循环(除最后一轮外)均 包含4个步骤: AddRoundKey —矩阵中的每一个字节都与该次回合金钥(round key)做XOR运算;每个子 密钥由密钥生成方案产生。 SubBytes —通过一个非线性的替换函数,用查找表的方式把每个字节替换成对应的字节。 ShiftRows —将矩阵中的每个横列进行循环式移位。 MixColumns —为了充分混合矩阵中各个直行的操作。这个步骤使用线性转换来混合每列的 四个字节。 最后一个加密循环中省略MixColumns步骤,而以另一个AddRoundKey取代。 B、具体代码如下: //如6.2,若是将每一行看做是一个对象的话 //具体实现的整体结构思想如此下图

第三章 对称密码体制

第三章对称密码体制 计算机科学与技术学院 对称密码体制 §1、对称密码体制简介 §2、典型的对称密码算法 §3、数据加密标准DES §4、高级数据加密标准AES §5、密码分析 §6、分组密码的工作模式 §7、流密码简介 2

3 §对称密码体制(私钥):加密密钥和解密密钥相同,且都需要保密。 ?优点:加密算法比较简便、高效、密钥简短,对方破译极其困难,且经受住时间的检验和攻击;?缺点:密钥必须通过安全的途径传送。 ?系统的机密性主要取决于密钥的安全性。 ?加密的方式: §按字符逐位加密(流密码) §将明文消息分组(分组密码) ?常用算法:DES ?适用范围:数据加密、消息认证1、对称密钥体制简介

2、典型的对称加密算法 1、DES加密算法 §定义:DES 全称为Data Encryption Standard即数据加密算法,它是IBM公司于1975年研究成功并公开发表的,1977年,美国把DES用于国家非保密机关。 §DES是一种采用传统加密方法的分组密码。它的算法是对称的,既可用于加密又可用于解密。 §基本思想:DES对64比特二进制数据加密,产生64比特等长的密文数据。使用的密钥为64比特,实际密钥长度为56比特(有8比特用于奇偶校验)。 5 典型的对称加密算法 §2、IDEA算法 ?IDEA(International Data Encryptdri Algorithm), 即“国际数据加密算法”。 ?IDEA采用基于“相异代数群上的混合运算”的设计思想,其算法的明、密文组位长度为64位,密钥长度为128位。 §3、FEAL-8密码 ?FEAL密码算法家族是日本NTT(日本电报电话公司 )设计的。密钥组位长度为64比特,明、密文组位长度 为64比特。作为一种分组密码,与DES相比,其增加了 每一轮迭代的算法强度,因此可以通过减少迭代次数而 提高运算速度。 6

对称密钥与非对称密钥的区别

对称密钥与非对称密钥的区别 一、对称加密(Symmetric Cryptography) 对称密钥加密,又称私钥加密,即信息的发送方和接收方用同一个密钥去加密和解密 数据。它的最大优势是加/解密速度快,适合于对大数据量进行加密,对称加密的一大缺点是密钥的管理与分配,换句话说,如何把密钥发送到需要解密你的消息的人的手里是一个 问题。在发送密钥的过程中,密钥有很大的风险会被黑客们拦截。现实中通常的做法是将对称加密的密钥进行非对称加密,然后传送给需要它的人。 对称加密通常使用的是相对较小的密钥,一般小于256 bit。因为密钥越大,加密越强,但加密与解密的过程越慢。如果你只用1 bit来做这个密钥,那黑客们可以先试着用0来解密,不行的话就再用1解;但如果你的密钥有1 MB大,黑客们可能永远也无法破解,但加密和解密的过程要花费很长的时间。密钥的大小既要照顾到安全性,也要照顾到效率,是一个trade-off。 二、非对称加密(Asymmetric Cryptography) 非对称密钥加密系统,又称公钥密钥加密。非对称加密为数据的加密与解密提供了一 个非常安全的方法,它使用了一对密钥,公钥(public key)和私钥(private key)。私钥只能由一方安全保管,不能外泄,而公钥则可以发给任何请求它的人。非对称加密使用 这对密钥中的一个进行加密,而解密则需要另一个密钥。比如,你向银行请求公钥,银行将公钥发给你,你使用公钥对消息加密,那么只有私钥的持有人--银行才能对你的消息解密。与对称加密不同的是,银行不需要将私钥通过网络发送出去,因此安全性大大提高。

目前最常用的非对称加密算法是RSA算法。公钥机制灵活,但加密和解密速度却比对称密钥加密慢得多。 虽然非对称加密很安全,但是和对称加密比起来,它非常的慢,所以我们还是要用对称加密来传送消息,但对称加密所使用的密钥我们可以通过非对称加密的方式发送出去。为了解释这个过程,请看下面的例子: (1) Alice需要在银行的网站做一笔交易,她的浏览器首先生成了一个随机数作为对称密钥。 (2) Alice的浏览器向银行的网站请求公钥。 (3)银行将公钥发送给Alice。 (4) Alice的浏览器使用银行的公钥将自己的对称密钥加密。 (5) Alice的浏览器将加密后的对称密钥发送给银行。 (6)银行使用私钥解密得到Alice浏览器的对称密钥。 (7) Alice与银行可以使用对称密钥来对沟通的内容进行加密与解密了。 三、总结 (1)对称密钥加密与解密使用的是同样的密钥,所以速度快,但由于需要将密钥在

RSA非对称密码算法

RSA非对称密码算法 1、RSA非对称密码算法简介 非对称加密算法需要两个密钥:公开密钥(publickey)和私有密钥(privatekey)。公开密钥与私有密钥是一对,如果用公开密钥对数据进行加密,只有用对应的私有密钥才能解密;如果用私有密钥对数据进行加密,那么只有用对应的公开密钥才能解密。因为加密和解密使用的是两个不同的密钥,所以这种算法叫作非对称加密算法。非对称加密算法实现机密信息交换的基本过程是:甲方生成一对密钥并将其中的一把作为公用密钥向其它方公开;得到该公用密钥的乙方使用该密钥对机密信息进行加密后再发送给甲方;甲方再用自己保存的另一把专用密钥对加密后的信息进行解密。另一方面,甲方可以使用乙方的公钥对机密信息进行签名后再发送给乙方;乙方再用自己的私匙对数据进行验签。甲方只能用其专用密钥解密由其公用密钥加密后的任何信息。非对称加密算法的保密性比较好,它消除了最终用户交换密钥的需要。 非对称密码体制的特点:算法强度复杂、安全性依赖于算法与密钥但是由于其算法复杂,而使得加密解密速度没有对称加密解密的速度快。对称密码体制中只有一种密钥,并且是非公开的,如果要解密就得让对方知道密钥。所以保证其安全性就是保证密钥的安全,而非对称密钥体制有两种密钥,其中一个是公开的,这样就可以不需要像对称密码那样传输对方的密钥了。这样安全性就大了很多。 2、工作原理 1.A要向B发送信息,A和B都要产生一对用于加密和解密的公钥和私钥。 2.A的私钥保密,A的公钥告诉B;B的私钥保密,B的公钥告诉A。 3.A要给B发送信息时,A用B的公钥加密信息,因为A知道B的公钥。 4.A将这个消息发给B(已经用B的公钥加密消息)。 5.B收到这个消息后,B用自己的私钥解密A的消息。其他所有收到这个报文的人都无法解密,因为只有B才有B的私钥。 3、主要功能 非对称加密体系不要求通信双方事先传递密钥或有任何约定就能完成保密通信,并且密钥管理方便,可实现防止假冒和抵赖,因此,更适合网络通信中的保密通信要求。

AES加密算法原理(图文)

AES加密算法原理(图文) 随着对称密码的发展,DES数据加密标准算法由于密钥长度较小(56位),已经不适应当今分布式开放网络对数据加密安全性的要求,因此1997年NIST公开征集新的数据加密标准,即AES[1]。经过三轮的筛选,比利时Joan Daeman和Vincent Rijmen提交的Rijndael算法被提议为AES的最终算法。此算法将成为美国新的数据加密标准而被广泛应用在各个领域中。尽管人们对AES还有不同的看法,但总体来说,AES作为新一代的数据加密标准汇聚了强安全性、高性能、高效率、易用和灵活等优点。AES设计有三个密钥长度:128,192,256位,相对而言,AES的128密钥比DES的56密钥强1021倍[2]。AES算法主要包括三个方面:轮变化、圈数和密钥扩展。 AES 是一个新的可以用于保护电子数据的加密算法。明确地说,AES 是一个迭代的、对称密钥分组的密码,它可以使用128、192 和256 位密钥,并且用128 位(16字节)分组加密和解密数据。与公共密钥密码使用密钥对不同,对称密钥密码使用相同的密钥加密和解密数据。通过分组密码返回的加密数据的位数与输入数据相同。迭代加密使用一个循环结构,在该循环中重复置换(permutations )和替换(substitutions)输入数据。Figure 1 显示了AES 用192位密钥对一个16位字节数据块进行加密和解密的情形。

Figure 1 部分数据 AES算法概述 AES 算法是基于置换和代替的。置换是数据的重新排列,而代替是用一个单元数据替换另一个。AES 使用了几种不同的技术来实现置换和替换。为了阐明这些技术,让我们用Figure 1 所示的数据讨论一个具体的AES 加密例子。下面是你要加密的128位值以及它们对应的索引数组: 00 11 22 33 44 55 66 77 88 99 aa bb cc dd ee ff0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 192位密钥的值是: 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 14 15 16 170 1 2 3 4 5 6 7 8 9 10 1112 13 14 15 16 17 18 19 20 21 22 23

非对称加密算法的描述

一.非对称加密算法的描述 非对称加密算法: 非对称加密算法(asymmetric cryptographic algorithm)又名“公开密钥加密算法”,非对称加密算法需要两个密钥:公开密钥(publickey)和私有密钥(privatekey)。 算法介绍: asymmetric encoding algorithm 非对称加密算法需要两个密钥:公开密钥(publickey)和私有密钥(privatekey)。公开密钥与私有密钥是一对,如果用公开密钥对数据进行加密,只有用对应的私有密钥才能解密;如果用私有密钥对数据进行加密,那么只有用对应的公开密钥才能解密。因为加密和解密使用的是两个不同的密钥,所以这种算法叫作非对称加密算法。非对称加密算法实现机密信息交换的基本过程是:甲方生成一对密钥并将其中的一把作为公用密钥向其它方公开;得到该公用密钥的乙方使用该密钥对机密信息进行加密后再发送给甲方;甲方再用自己保存的另一把专用密钥对加密后的信息进行解密。 [非对称加密算法] 非对称加密算法: 另一方面,甲方可以使用自己的私密钥对机密信息进行加密后再发送给乙方;乙方再用甲方的公钥对加密后的信息进行解密。[1] 甲方只能用其专用密钥解密由其公用密钥加密后的任何信息。非对称加密算法的保密性比较好,它消除了最终用户交换密钥的需要。 非对称密码体制的特点:算法强度复杂、安全性依赖于算法与密钥但是由于其算法复杂,而使得加密解密速度没有对称加密解密的速度快。对称密码体制中只有一种密钥,并且是非公开的,如果要解密就得让对方知道密钥。所以保证其安全性就是保证密钥的安全,而非对称密钥体制有两种密钥,其中一个是公开的,这样就可以不需要像对称密码那样传输对方的密钥了。这样安全性就大了很多。 算法起源: W.Diffie和M.Hellman 1976年在IEEE Trans.on Information刊物上发表了“ New Direction in Cryptography”文章,提出了“非对称密码体制即公开密钥密码体制”的概念,开创了密码学研究的新方向。 工作原理: 1.A要向B发送信息,A和B都要产生一对用于加密和解密的公钥和私钥。 2.A的私钥保密,A的公钥告诉B;B的私钥保密,B的公钥告诉A。 3.A要给B发送信息时,A用B的公钥加密信息,因为A知道B的公钥。 4.A将这个消息发给B(已经用B的公钥加密消息)。

对称密钥密码系统

对称密钥密码系统 2000多年以前,罗马国王Julius Caesar使用过现今被称为“凯撒密码”的加密算法。此加密算法其实是“移位密码”算法的一个特例。由于移位密码安全性不高,使用穷举爆力技术很容易将其破解,于是人们发明了“代换密码”。而移位密码其实是代换密码的一个子集。虽然代换密码安全性有所提高,使用穷举爆力技术较难破解,然而使用统计密码分析技术却可以很容易地破解代换密码。 到了几百年前,有人发明了“置换密码”有时也叫“换位密码”,之后现代密码技术开始出现。很多人把Claude Shannon誉为现代密码学之父,他提出了“扩散”和“混淆”来构造密码体制的基本要素。这种加密技术可以有效的挫败使用统计分析技术来破解密码。 1973年,Horst Feistel公开了他的“Feistel密码”,这是第一个体现密码之父Shannon思想的密码系统。目前,几乎所有的对称密码系统都使用了Feistel密码的设计特征。 1973年,(美)国家标准局(NBS),即现在的(美)国家标准技术研究所(NIST)公布了征求国家密码标准的提案,人们建议了许多的密码系统。 1977年7月,NBS经过对众多的密码系统进行评估后,采纳了IBM在20世纪60年代(1960s)研制出来的一个密码系统作为数据加密标准(DES),此系统是由Horst Feistel领导的一个研究组研制出来的。这个密码系统基于一个称为LUCIFER[Fic73]的密码系统。LUCIFER密码系统本质上是Feistel密码的一个推广。 1983年、1988年和1993年,DES再度被认定为(美)国家标准。 1997年,RSA实验室发布了一个以10000美元作为酬金的挑战:寻找一个前面带有一个已知明文块的密文的DES密钥。由Roche Verse牵头的一个工程小组动用了70000多台通过因特网连接起来的计算机系统,使用穷举爆力攻击程序大约花费96天的时间找到了正确的DES密钥。意识到DES已经快完成它的历史使命,NIST于1997年1月宣布了一项选择一个用作高级加密标准(AES)的候选算法的计划:这个新的标准的将取代DES。

非对称加密算法有什么特点

非对称加密算法有什么特点 什么非对称加密算法非对称加密算法是一种密钥的保密方法。 非对称加密算法需要两个密钥:公开密钥(publickey)和私有密钥(privatekey)。公开密钥与私有密钥是一对,如果用公开密钥对数据进行加密,只有用对应的私有密钥才能解密;如果用私有密钥对数据进行加密,那么只有用对应的公开密钥才能解密。因为加密和解密使用的是两个不同的密钥,所以这种算法叫作非对称加密算法。非对称加密算法实现机密信息交换的基本过程是:甲方生成一对密钥并将其中的一把作为公用密钥向其它方公开;得到该公用密钥的乙方使用该密钥对机密信息进行加密后再发送给甲方;甲方再用自己保存的另一把专用密钥对加密后的信息进行解密。 另一方面,甲方可以使用乙方的公钥对机密信息进行签名后再发送给乙方;乙方再用自己的私匙对数据进行验签。 甲方只能用其专用密钥解密由其公用密钥加密后的任何信息。非对称加密算法的保密性比较好,它消除了最终用户交换密钥的需要。 非对称密码体制的特点:算法强度复杂、安全性依赖于算法与密钥但是由于其算法复杂,而使得加密解密速度没有对称加密解密的速度快。对称密码体制中只有一种密钥,并且是非公开的,如果要解密就得让对方知道密钥。所以保证其安全性就是保证密钥的安全,而非对称密钥体制有两种密钥,其中一个是公开的,这样就可以不需要像对称密码那样传输对方的密钥了。这样安全性就大了很多。 工作原理1.A要向B发送信息,A和B都要产生一对用于加密和解密的公钥和私钥。 2.A的私钥保密,A的公钥告诉B;B的私钥保密,B的公钥告诉A。 3.A要给B发送信息时,A用B的公钥加密信息,因为A知道B的公钥。 4.A将这个消息发给B(已经用B的公钥加密消息)。 5.B收到这个消息后,B用自己的私钥解密A的消息。其他所有收到这个报文的人都无法解密,因为只有B才有B的私钥。

对称密钥密码

1引言 计算机的发展给人类带来了前所未有的便利,以计算机信息技术为手段的企业信息化建设,已成为企业必不可少的部分。计算机CAD技术高速度、高精度和高效等的优点,已经逐步取代手工设计,广泛应用于产品设计工作中。CAD图纸,在任何时候,都是一个企业的命脉。在使用SolidWorks等软件绘制图纸的过程中,作为企业是否经常会考虑:我们厂刚刚设计出来的新产品,怎么市场上别的牌子的产品也已经上市啦?技术人员的流动,是否会同时有图纸的流动?我们花了几十万买的图纸,怎么隔壁的那个厂子图纸和我们的一样呢?我们的光驱、软驱、U盘接口都封掉了,可是图纸怎么还是传出去啦?解决这些问题的一种有效方法就是使用现代密码技术,加密技术是保障信息安全的最基本的、最核心的技术措施。对CAD图纸进行加密应该是一种比较合适的安全保密措施 2密码技术 2.1基本概念 密码学是研究编制密码和破译密码的技术科学。密码在早期仅对文字或数码进行加、脱密变换,随着通信技术的发展,对语音、图像、数据等都可实施加、脱密变换。随着先进科学技术的应用,密码学已成为一门综合性的尖端技术科学。它与语言学、数学、电子学、声学、信息论、计算机科学等有着广泛而密切的联系。密码就是一组含有参数K的变换E。设已知信息M,通过变换E得到密文C。即C=EK(M)这个过程称之为加密,参数K称为密钥。

2.1.1传统密码学 自从有了人类社会就有了信息交流,特别是出现了战争,为了信息交流的安全,就出现了密码技术。从古代到16世纪末由于这个时期生产力低下,产生的许多密码体制都是可用纸笔或者简单的器械实现加密/解密的,这个时期的密码体制主要有两大类:一类是换位密码体制,另一类是代替密码体制。从二十世纪初到20世纪50年代末,为了适应密码通信的需要,密码设计者设计出了一些采用复杂的机械和电动机械设备实现信息加密/解密操作,他们代替了繁重的手工作业方式,在战争中发挥了重要的作用。转轮密码机是这一时期的杰出代表。 2.1.2现代密码学 对称密钥密码体制又称为单密钥密码体制或秘密密钥密码体制。这种密码体制的加密密钥和解密密钥相同,或者虽然不相同,但可由其中的任意一个可以和容易地推导出另一个。传统的密码学都是属于对称密钥密码体制。现在,在传统密码学地基础上对称密码体制也有了新地发展,像序列密码,分组密码,还有对称密钥密码体制的典型代表:数据加密标准DES和高级数据加密标准AES。非对称密钥密码体制又称为双密钥密码体制或公开密钥密码体制。这种密码体制的加密/解密操作分别使用两个不同地密钥,并且不可能由加密密钥推导出解密密钥。采用非对称密钥密码体制的每个用户都有一对相互关联而又彼此不同地密钥,使用其中的一个密钥加密的数据,不能使用该密钥自身进行解密,而只能使用对应的另一个密钥进行解密。在这一对密钥中,其中一个密钥称为公钥,它可以公开并通过公开的信道发给任何一位想与自己通信的另

用非对称密码RSA算法加密文件

大连民族学院计算机学院 《网络安全》实验报告 学院:计算机科学与工程 题目:用非对称密码RSA算法加密文件 专业:网络工程 姓名:熊秋蕾 学号:2009083124 指导老师:姜楠

1、实验类型:设计型 2、实验目的 通过实际编程了解非对称密码算法RSA的加密和解密过程,加深对非对称密码算法的认识。 3、实验内容 (1)RSA算法分析。 (2)RSA算法编程。 4、实验原理 RSA密码体制描述: 1.密钥的生成 选择p,q,p,q为两个大的互异素数,计算n=p*q, ?(n)=(p-1)(q-1), 选择整数e使gcd(?(n),e)=1,(1

(3)实验结束后进行角色互换,再重复(1)中的实验,直到每个人都轮流当过三种角色。 7、实验步骤及注意事项 (1)利用奇数生成器,生成密钥对和私钥、公钥 java提供了密钥的生成器函数KeyPairGenerator;公钥保存在Skey_public.dat文件中,私钥保存在Skey_privat.dat package newpackge1; import java.io.*; import java.security.*; public class Skey_RSA{ public static void main(String args[]) throws Exception{ //创建密钥对生成器,指定加密和解密算法为RSA KeyPairGenerator kpg=KeyPairGenerator.getInstance("RSA"); //指定密钥的长度,初始化密钥对生成器 kpg.initialize(1024); //生成密钥对 KeyPair kp=kpg.genKeyPair(); //获取公钥 PublicKey pbkey=kp.getPublic(); //获取私钥 PrivateKey prkey=kp.getPrivate(); //保存公钥到文件 FileOutputStream f1=new FileOutputStream("Skey_public.dat"); ObjectOutputStream b1=new ObjectOutputStream(f1); b1.writeObject(pbkey); //保存私钥到文件 FileOutputStream f2=new FileOutputStream("Skey_privat.dat"); ObjectOutputStream b2=new ObjectOutputStream(f2); b2.writeObject(prkey); }} (2)加密过程,提取公钥,对字符串进行加密,将密文以字符串形式保存在文件中package newpackge1; import java.security.interfaces.*; import java.math.*;

非对称密码算法

实验1-3 非对称密码算法 RSA 一.实验目的 通过实际编程了解非对称密码算法RSA的加密和解密过程,加深对非对称密码算法的认识。 二.实验原理 前面讲的对称密码算法要求通信双方通过交换密钥实现使用同一个密钥,这在密钥管理、发布和安全性方面存在很多问题,而非对称密码算法解决了这个问题。 非对称密码算法是指一个加密系统的加密密钥和解密密钥是不相同,或者说不能从其中一个推导出另一个。在非对称密码算法的两个密钥中,一个是用于加密的密钥,它是可以公开的称为公钥;另一个是用于解密的密钥,是保密的,称为私钥。非对称密码算法解决了对称密码体制中密钥管理的难题,并提供了对信息发送人的身份进行验证的手段,是现代密码学的最重要的发明和进展。 RSA密码体制是目前为止最为成功的非对称密码算法,是在1977年由Rivest、Shamir 和Adleman提出的第一个比较完善的非对称密码算法。它的安全性是建立在“大数分解和素性检测”这个数论难题的基础上,即将两个大素数相乘在计算上容易实现,而将该乘积分解为两个大素数因子的计算量相当大。虽然的安全性还未能得到理论证明,但经过20多年的密码分析和攻击,迄今仍然被实践证明是安全的。 RSA算法描述如下: 1. 公钥 选择两个互异的大素数p和q,n是二者的乘积,即n = pq,使Φ(n)=(p-1)(q-1),Φ(n)为欧拉函数。随机选取正整数e,使其满足gcd(e, Φ(n))=1,即e和Φ(n)互质,则将(n,e)作为公钥。 2. 私钥 求出正数d,使其满足e×d=1 modΦ(n),则将(n,d)作为私钥。 3. 加密算法 对于明文M,由C=M e mod n ,得到密文C。 4.解密算法 对于密文C,由M=C d mod n,得到明文M。 如果窃密者获得了n,e和密文C,为了破解密文他必须计算出私钥d,为此需要先分解n为p和q。为了提高破解难度,达到更高的安全性,一般商业应用要求n的长度不小于1024bit,更重要的场合不小于2048bit。 三.实验环境 运行windows或linux操作系统的PC机,具有gcc(linux)、VC(windows)等C语言编译环境。 四.实验内容和步骤 1.为了加深对RSA算法,根据已知参数:p=3,q=11,M=2,手工计算公私钥,并对明文进行加密,然后对密文进行解密。 2.光盘中给出了一个可以进行RSA加密和解密的对话框程序RSATool,运行这个程序加密一段文字,了解RSA算法原理。尝试着加密一大段文字,记录程序的运行时间。使用DES算法加密相同的文字,比较两种算法加密的速度。 五.实验报告要求 e e mod n,记录程序 1.编写一个程序,随机选择三个较大的数x,,n然后计算x n 运行时间。实际中应用的素数为512bit,也就为1024bit。这样的大数在计算机上如何表示,如何进行运算,查阅资料给出简单说明。

实验2 对称加密算法:DES

实验1-2 对称密码算法DES 一.实验原理 信息加密根据采用的密钥类型可以划分为对称密码算法和非对称密码算法。对称密码算法是指加密系统的加密密钥和解密密钥相同,或者虽然不同,但是可以从其中任意一个推导出另一个,更形象的说就是用同一把钥匙开锁和解锁。在对称密码算法的发展历史中曾出现过多种优秀的算法,包括DES、3DES、AES等。下面我们以DES算法为例介绍对称密码算法的实现机制。 DES算法是有美国IBM公司在20世纪70年代提出,并被美国政府、美国国家标准局和美国国家标准协会采纳和承认的一种标准加密算法。它属于分组加密算法,即明文加密和密文解密过程中,信息都是按照固定长度分组后进行处理的。混淆和扩散是它采用的两个最重要的安全特性,混淆是指通过密码算法使明文和密文以及密钥的关系非常复杂,无法从数学上描述或者统计。扩散是指明文和密钥中每一位信息的变动,都会影响到密文中许多位信息的变动,从而隐藏统计上的特性,增加密码安全。 DES将明文分成64比特位大小的众多数据块,即分组长度为64位。同时用56位密钥对64位明文信息加密,最终形成64位的密文。如果明文长度不足64位,则将其扩展为64位(例如补零等方法)。具体加密过程首先是将输入的数据进行初始换位(IP),即将明文M 中数据的排列顺序按一定的规则重新排列,生成新的数据序列,以打乱原来的次序。然后将变换后的数据平分成左右两部分,左边记为L0,右边记为R0,然后对R0施行在子密钥(由加密密钥产生)控制下的变换f,结果记为f(R0 ,K1),再与L0做逐位异或运算,其结果记为R1,R0则作为下一轮的L1。如此循环16轮,最后得到L16、R16,再对L16、R16施行逆初始置换IP-1,即可得到加密数据。解密过程与此类似,不同之处仅在于子密钥的使用顺序正好相反。 DES全部16轮的加密过程如图1-1所示。 DES的加密算法包括3个基本函数: 1.初始换位(IP) 它的作用是把输入的64位数据块的排列顺序打乱,每位数据按照下面换位规则重新组合。即将第58位换到第1位,第50位换到第2位,…,依次类推。重组后的64位输出分为L0、R0(左、右)两部分,每部分分别为32位。 58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4 62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8 57, 49, 41, 33, 25, 17, 9, 1 59, 51, 43, 35, 27, 19, 11, 3 61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7 R0和K1经过f(R0,K1)变换后的输出结果,再和L0进行异或运算,输出结果做为R1。R0则赋给L1。L1和R1同样再做类似运算生成L2和R2,…,经过16次运算后生成L16和R16。 2.f函数 f函数是多个置换函数和替代函数的组合函数,它将32位比特的输入变换为32位的输出,如图1-2。R i经过扩展运算E变换后扩展为48比特的E(R i),与K i+1进行异或运算后输出的结果分成8组,每组6比特的并联B,B=B1B2B3B4B5B6B7B8,再经过8个S盒的选择压缩运算转换为4比特,8个4比特合并为32比特后再经过P变换输出为32比特的f(R i-1,K i)。其中,扩展运算E与置换P主要作用是增加算法的扩散效果。

非对称密钥加密技术

1.1 非对称密钥加密技术 1.1.1 实训目的 通过使用PGP软件实现数据加密和数字签名,理解非对称密钥加密的原理,学会对文件内容、电子邮件进行加密和数字签名,保障信息安全。 1.1.2 实训任务 客户公司的业务大部分都是靠电子邮件与合作伙伴进行交流的,但是发生过这样一起事故,当公司按照一个合作伙伴电子邮件的要求发了一批商品到对方,而对方却说商品型号发错了,经调查,公司确实是按电子邮件的要求发的货,而对方却不承认电子邮件中的商品型号。现在需要设置一个安全的电子邮件交流手段,不仅能对数据进行加密,还要能够防止数据被篡改,防止发送者抵赖。 1.1.3 背景知识 1. 非对称密钥加密 加密算法有两大类:对称密钥加密和非对称密钥加密。在对称密钥加密技术中,加密和解密使用的是同一个密钥,由于难于通过常规的渠道进行安全的密钥传递,例如不能通过电子邮件安全地传递密钥,因此在电子商务等领域对称密钥加密技术受到了很大的限制。 非对称密钥加密也叫公开密钥加密(Public Key Encryption),在加密和解密时使用不同的密钥,加密时使用的密钥和解密时使用的密钥形成一个密钥对,用其中的一个密钥加密的密文只能用另一个密钥解密,而不能由其它密钥(包括加密用的密钥)解密。通常一个密钥指定为“公钥”,可以对外公布,另一个则指定为“私钥”,只能由密钥持有人保管。 公开密钥加密技术解决了密钥的发布和管理问题,是目前商业加密通信的核心。使用公开密钥技术,进行数据通信的双方可以安全地确认对方身份和公开密钥,提供通信的可鉴别性。因此,公开密钥体制的建设是开展电子商务的前提。非对称密钥加密算法主要有RSA、DSA、DiffieHellman、PKCS、PGP等。 使用非对称密钥加密技术,可以实现下述目的: ?保密性:信息除发送方和接受方外不被其他人窃取; ?完整性:信息在传输过程中不被篡改; ?身份认证:接收方能够通过数字证书来确认发送方的身份; ?不可否认性:发送方对于自己发送的信息不能抵赖。 2. 消息摘要算法 消息摘要算法(Message Digest Algorithms)是采用单向Hash算法将消息进行处理,产生的具有固定长度的摘要值,无论消息的长度是多少,所产生的摘要的长度是相同的。产生摘要的过程不需要密钥,算法本身决定了摘要的产生。摘要算法必须满足下述三个条件:①无法从摘要反推出消息的内容;②无法控制消息的摘要等于某个特定的值;③无法找到具有同样摘要的消息。著名的摘要算法有MD5和SHA1。 3. 数据加密和数字签名 使用非对称密钥加密技术进行数据加密的原理是,发件人将待加密的报文(明文)用收件人的公钥进行加密,将加密后的报文(密文)发送给收件人,收件人用自己的私钥进行解密,从而得到明文,即原始的报文内容。收件人的私钥必须保管好,因为只有用收件人的私钥才能解密。 数字签名技术的原理是用发件人的私钥对明文进行加密,将密文发送给收件人,收件人用发件人的公钥进行解密,如果能够成功解密,则说明该报文确实是由公钥的原始持有人发送的,即证明是由该人签名认可的。但是在实际操作中,出于加解密运行效率等原因,并不

简述对称加密算法有哪些优点

1.简述对称加密算法有哪些优点。 A.对称密码术的优点在于效率高(加/解密速度能达到数十兆/秒或更多) B.算法简单 C.系统开销小 D.适合加密大量数据 2. 结合实验描述一下使用RSA工具加密数据的一般流程。 主机A选择“文件->载入任意待加密文件(字节流)”,指定明文文件hello.txt。主机A 选择“操作->公钥加密载入的字节流”,生成密文文件hello1.hextxt。主机A查看密文文件hello1.hextxt的内容。由此可以分析出:经RSA公钥加密了明文文件hello.txt。 3.常用的加密技术通常都有很多实际的应用,请列举几例。 例如办公文件证书的加密,公司内部文件报表加密,以及一些机关重要文件加密等。 4.通过本实验,请设计一个文件安全传输的方法流程 通过“OUTLOOK EXPRESS”客户端,在系统托盘的PGP图标上单击鼠标,在弹出的快捷菜单上选择“Current Window->Encrypt”菜单项,弹出“PGPtray - Key Selection Dialog”对话框,将接收方的邮件地址拖到“Recipients”列表中,将发件人的邮件地址拖到“Drag users from this list to the Recipients”列表中,单击“OK”按钮,则要发送的邮件内容被加密了。 5. 应用数字签名有哪些好处? 数字签名可以用来验证文档的真实性和完整性,数字签名使用强大的加密技术和公钥基础结构,以更好地保证文档的真实性、完整性和受认可性。该流程非常安全,一些政府已经立法赋予数字签名法律效力。 6.如何防止网络传输的文件遭到非法篡改? 可以利用数字签名技术进行保护: 使用加密系统(对称性与非对称性加密)防止他人篡改或窃取。 以散列方式防止文件完整性遭到破坏。 使用数字签名方式核实发送方的确切身份。 使用数字签名防止发送者否认。 7.数字时间戳服务主要的作用是什么? 对于成功的电子商务应用,要求参与交易各方不能否认其行为。这其中需要在经过数字签名的交易上打上一个可信赖的时间戳,从而解决一系列的实际问题和法律问题。由于用户桌面时间很容易改变,由该时间产生的时间戳不可信赖,因此需要一个权威第三方来提供可信赖的且不可抵赖的时间戳服务。 在各种政务和商务文件中,时间是十分重要的信息。在书面合同中,文件签署的日期和签名一样均是十分重要的防止文件被伪造和篡改的关键性内容。 在电子文件中,同样需对文件的日期和时间信息采取安全措施,而数字时间戳服务(DTS:digital time-stamp service)就能提供电子文件发表时间的安全保护。

相关主题