搜档网
当前位置:搜档网 › 超导材料应用与制备概况

超导材料应用与制备概况

超导材料应用与制备概况
超导材料应用与制备概况

摘要:新型超导材料一直是人类追求的目标。本文主要从超导材料的性质,制

备,应用等方面探索超导材料科学的发展概况。随着高温超导材料制备方法的不断成熟,超导材料将越来越多的应用于尖端技术中去,超导材料的应用将给电工技术带来质的飞跃,因此,超导材料技术有着重大的应用发展潜力,可解决未来能源,交通,医疗和国防事业中的重要问题。

关键词:超导材料强电应用弱电应用超导制备

1. 引言

1911年荷兰科学家onnes发现纯水银在附近电阻突然消失,接着发现其他一些金属也有这样的现象,随着人们在Pb和其它材料中也发现这种性质:在满足临界条件(临界温度Tc,临界电流Ic,临界磁场Hc)时物质的电阻突然消失,这种现象称为超导电性的零电阻现象。只是直流电情况下才有零电阻现象,这一现象的发现开拓了一个崭新的物理领域。

超导材料具有1)零电阻性2)完全抗磁效应3)Josephson效应。这些性质的研究与应用使得超导材料的性能不断优化,实现超导临界温度也越来越高。一旦室温超导达到实用化、工业化,将对现代科学技术产生深远的影响。

2. 超导材料主要制备技术

控制和操纵有序结晶需要充分了解原子尺度的超导相性能。有序、高质量晶体的超导转变温度较高 ,晶体质量往往强烈依赖于合成技术和条件。目前,常用作制备超导材料的技术主要有:

2.1.1单晶生长技术

新超导化合物单晶样品有多种生长方法。溶液生长和气相传输生长法是制备从金属间氧化物到有机物各类超导体的强有力工具。溶液生长的优点就是其多功能性和生长速度 ,可制备出高纯净度和镶嵌式样品。但是 ,它并不能生产出固定中子散射实验所需的立方厘米大小的样品。浮动熔区法常用来制备大尺寸的样品 ,但局限于已知的材料。这种技术是近几年出现的一些超导氧化物单晶生长的

主要技术。这种技术使La

2 - x Sr

x

CuO

4

晶体生长得到改善 ,允许对从未掺杂到高度

掺杂各种情况下的细微结构和磁性性能进行细致研究。在T

1Ba

2

Ca

2

Cu

3

O

9+d

Bi

2Sr

2

CaCu

2

O

8

中 ,有可能削弱无序的影响从而提高临界转变温度。最近汞基化合

物在晶体生长尺寸上取得的进展 ,使晶体尺寸较先前的纪录高出了几个数量级。但应该指出的是即使是高 Tc的化合物 ,利用溶液生长技术也可制备出高纯度的YBCO等单晶。

2.1.2高质量薄膜技术

目前 ,薄膜超导体技术包括活性分子束外延(MBE ) 、溅射、化学气相沉积和脉冲激光沉积等。MBE能制造出足以与单个晶体性能相媲美的外延超导薄膜。在晶格匹配的单晶衬底上生长的外延高温超导薄膜 ,已经被广泛应用于这些材料物理性质的基础研究中。在许多实验中薄膜的几何性质拥有它的优势 ,如可用光刻技术在薄膜上刻画细微的特征;具备合成定制的多层结构或超晶格的潜能。

在过去的 20年里 ,多种高温超导薄膜生长技术快速发展。有些技术已经适用于其它超导体的制备。目前所使用主要方法有溅射和激光烧蚀(脉冲激光沉积)。类似分子束外延这种先进薄膜生长技术也已经发展得很好。臭氧或氧原

子用来实现超高真空条件下的充分氧化。这使得生长的单晶薄膜的性能已接近乃至超过块状晶体。如 LSCO单晶薄膜的 T =51. 5 K,比块状晶体(Tc <40 K )要高 ,外延应力是产生这种强化现象的部分原因。

3. 超导材料制备的新探索

发现新型超导体最直接的方法是研究相空间并实施一系列系统探索来发现新的化合物 ,可通过鉴别成分空间中有希望的区域和快速检测该区域尽可能多的化合物的方法来实现。通过这样的研究,在 20世纪50到 60年代产出了很多金属间超导体 ,这些超导体还需要在三相或更高相空间中再继续研究。此外 ,继续寻找异常形态的超导材料也是很重要的。

先进合成与掺杂技术

3.1.1极端条件下的合成技术

经验上讲 ,超导性常常表现得和结构上的相转变联系紧密;事实上 ,有许多超导体是亚稳态 ,需要在高温高压下合成。此外 ,合成新化合物所需的许多元素具有非常高的挥发性活性和难熔性如 Li、B、C、Mg、P、S、Se、Te ,而且要在非常特殊的环境下才能成功合成。大尺寸单晶生长技术 ,特别是用于固定中子散射实验的关键材料的合成技术应进一步发展。

3.1.2合成与表征组合技术

对新型超导化合物的系统性组合探索可基于薄膜沉积技术。一种方法是利用掩膜技术制备微小均质区域。利用连续相涂敷法(Continuousphase spread method) 以及使用多种源或靶材在衬底上形成不同的薄膜成分。磁场调制光谱(Magnetic Field Modulated Spectroscopy),MFMS ,是一种非常敏感而快速的超导检测技术 ,可用于高产量的表征方法。合成与表征组合技术需要进一步完善,以在更大范围内应用来寻求具有理想性能的新型超导体。

3.1.3原子层工程、人造超晶格技术

薄膜沉积技术的迅速发展为化学和材料科学突破体相平衡的限制提供了机遇。拓展相界、获得新亚稳态和微结构、创造多层结构、施加大的面内应力以及获得不同排列体系间的平滑界面都因此成为可能。单晶多层结构使材料具有不同的界面性能 ,不会受到污染物的干扰。在界面处各种电荷移动和自旋态的相互影响会产生新电子结构。与界面原子层工程一样 ,改变相邻绝缘体的组成和结构 ,为利用外延应力和稳定性来调整界面结构的超导性提供了多种可能。

3.1.4场效应掺杂和光掺杂技术

化学掺杂是在铜酸盐等化合物超导体中实现金属和超导态所必需的 ,但它的缺点是会同时产生无序状态。这种无序状态不仅使人难以区分内在和外在特性 ,而且实际上还削弱了超导性能。此外 ,在多数情况下化学掺杂量是不可调的 ,每种组成都需要一个单独的样品。场效应掺杂和光掺杂通过外加强电场或强光照射引入电荷载体 ,从而避免了这些弊端。使用这两种掺杂 ,可连续地调节单个样品的掺杂量而不会诱发化学无序状态。这一方法在从配合物中寻找新的超导体方面有很大的潜力。

纳米尺度超导材料

新型超导体的设计和研究面临挑战是难以控制的化学合成工艺参数。最有希望发展的就是可控制的纳米新型高温超导材料。开发新的纳米尺度的高温超导体 ,可增进机械稳定性、耐化学腐蚀性等。虽然这些性能已单独得到证明 ,但把它们全部合成至单一的材料器件或系统中仍是一个巨大的挑战。在高温超导材料

中 ,很多基本长度尺寸是处于纳米量级的(如单晶畴)大小、相干长度等 ,因此关于纳米尺寸结构的实验性研究对帮助人们了解微观机制具有相当的重要性。

超导材料制备相关问题

块体样品、单晶方面的关键性公开问题包括:提高各种有机超导、重费密子超导等非常规超导体样品的纯度;了解和消除样品的依赖性;了解和控制缺陷、杂

和 Tc以及大尺寸单晶生长质及无序对样品的影响; 改进各类材料的 Jc 、Hc

2

问题。要处理好这些问题 ,要改进现有的晶体生长技术并创造新的技术。新的助熔剂、输运剂以及新的温度、温度梯度、成核控制方法将提高人们对样品的大小、品质和可重复性的控制能力。对于各类超导薄膜 ,最基本的问题是衬底表面的制备以及对薄膜生长的影响 ,对这些问题的深入了解将使薄膜沉积条件具有更好的可重复性 ,对薄膜的合成控制更加优良。随着越来越多的超导化合物被引入薄膜材料的范畴 ,人们需要进一步改进薄膜的合成和表征技术。在薄膜的成核、生长和界面方面 ,应实现原子级的控制 ,最终目标是在如绝缘 -超导这种多层异质结构中制造出洁净的界面。

4.超导材料的应用

强电应用

4.1.1 超导输电电缆

我国电力资源和负荷分布不均,因此长距离、低损耗的输电技术显得十分迫切。超导材料由于其零电阻特性以及比常规导体高得多的载流能力,可以输送极大的电流和功率而没有电功率损耗。超导输电可以达到单回路输送GVA级巨大容量的电力,在短距离、大容量、重负载的传输时,超导输电具有更大的优势。低温超导材料应用时需要液氦作为冷却剂,液氦的价格很高,这就使低温超导电缆丧失了工业化应用的可行性。若使用高温超导材料作为导电线芯制造成超导电缆,就可以在液氮的冷却下无电阻地传送电能。高温超导电缆的出现使超导技术在电力电缆方面的工业应用成为可能。目前,市场上可以得到并可用来制造高温超导电缆的材料主要是银包套铋系多芯高温超导带材,其临界工程电流密度大于

10kA/cm2。高温超导电缆以其尺寸较小、损耗低、传输容量大的优势,可用于地下电缆工程改造,以高温超导电缆取代现有的常导电缆,可增加传输容量。高温超导电缆另一重要应用场合是可在比常导电缆较低的运行电压下将巨大的电能传输进入城市负荷中心。由于交流损耗的缘故,利用高温超导材料制备直流电缆比制备交流电缆更具优势。利用超导技术,通过设计实用的直流传输电缆和有效的匹配系统,从而实现高效节能低压大容量直流电力输系统。

图1 CD高温超导电缆示意图

美国是最早发展高温超导电缆技术的国家。1999年底,美国outhwire公司、橡树岭国家试验室、美国能源部和IGC公司联合开发研制了长度为30m、三相、的冷绝缘高温超导电缆,并于2000年在电网试运行,向高温超导技术实用化迈出了坚实的一步。目前,世界上报道的能制备百米量级长度的超导电缆仅有日本和美国。在欧洲如法国、瑞典的电力公司有十米量级的超导电缆计划。

4.1.2超导变压器

超导变压器一般都采用与常规变压器一样的铁芯结构,仅高、低压绕组采用超导绕组。超导绕组置于非金属低温容器中,以减少涡流损耗。变压器铁芯一般仍处在室温条件下。超导变压器具有损耗低、体积小,效率高(可达99%以上)、极限单机容量大、长时过载能力强(可达到额定功率的2倍左右)等优点。同时由于采用高阻值的基底材料,因此具有一定的限制故障电流作用。一般而言,超导变压器的重量(铁芯和导线)仅为常规变压器的40%甚至更小,特别是当变压器的容量超过300MVA时,这种优越性将更为明显。图2为美国Waukesha公司在1997

年就研制了1MVA的超导变压器结构示意图。

图2超导变压器结构示意图

4.1.3超导储能

人类对电力网总输出功率的要求是不平衡的。即使一天之内 ,也不均匀。利用超导体 ,可制成高效储能设备。由于超导体可以达到非常高的能量密度 ,可以无损耗贮存巨大的电能。这种装置把输电网络中用电低峰时多余的电力储存起来 ,在用电高峰时释放出来 ,解决用电不平衡的矛盾。美国已设计出一种大型超导储能系统 ,可储存5000 兆瓦小时的巨大电能 ,充放电功率为 1000 兆瓦 ,转换时间为几分之一秒 ,效率达 98 %,它可直接与电力网相连接 ,根据电力供应和用电负荷情况从线圈内输出,不必经过能量转换过程。

图3 超导储能器一次系统简图

4.1.4超导电机

在大型发电机或电动机中 ,一旦由超导体取代铜材则可望实现电阻损耗极小的大功率传输。在高强度磁场下 ,超导体的电流密度超过铜的电流密度 ,这表明超导电机单机输出功率可以大大增加。在同样的电机输出功率下 ,电机重量可以大大下降。美国率先制成 3000 马力的超导电机 ,我国科学家在20 世纪 80 年代末已经制成了超导发电机的模型实验机。

图4 两种发电机尺寸的比较

4.1.5超导故障限流器

超导故障电流限制器(简称SFCL)主要是利用超导体在一定条件下发生的超

导态/正常态转变,快速而有效地限制电力系统中短路故障电流的一种电力设备。该设想是在上世纪70年代提出的,到1983年法国阿尔斯通公司研制出交流金属系超导线后,各研究机构才开始着手开发SFCL产品。现已有中压级样品挂网运行,国外乐观估计可望在10年或更长的时间内开始投入市场。

图5感应屏蔽型超导故障电流限制器原理图

用超导材料制成的限流器有许多优点:1)它的动作时间快,大约几十微妙;2)减少故障电流,可将故障电流限制在系统额定电流两倍左右,比常规断路器开断电流小一个数量级;3)低的额定损耗; 4)可靠性高 ,它是一类“永久的超保险丝”; 5)结构简单 ,价格低廉。

弱电应用

4.2.1无损检测

无损检测是一种应用范围很广的探测技术 ,其工作方式有;超声探测、X光探测及涡流检测技术等。SQUID 无损检测技术在此基础上

发展起来。SQUID 磁强计的磁场灵敏度已优于100ft ,完全可以用于无损检测。由于 SQUID 能在大的均匀场中探测到场的微小变化 ,增加了探测的深度 ,提高了分辨率 ,能对多层合金导体材料的内部缺陷和腐蚀进行探测和确定 ,这是其他探测手段所无法办到的。工业上用于探测导体材料的缺陷、内部的腐蚀等 ,军事上可能于水雷和水下潜艇等的探测。

4.2.2超导微波器件在移动通信中的应用

移动通信业蓬勃发展的同时 ,也带来了严重的信号干扰 ,频率资源紧张 ,系统容量不足 ,数据传输速率受限制等诸多难题。高温超导移动通信子系统在这一背景下应运而生 ,它由高温超导滤波器、低噪声前置放大器以及微型制冷机组成。高温超导子系统给移动通信系统带来的好处可以归纳为以下几个方面: 1)提高了基站接收机的抗干扰的能力; 2)可以充分利用频率资源 ,扩大基站能量; 3)减少了输入信号的损耗 ,提高了基站系统的灵敏度 ,从而扩大了基站的覆盖面积; 4 )改善通话质量 ,提高数据传输速度; 5 )超导基站子系统带来了绿色的通信网络。

4.2.3超导探测器

用超导体检测红外辐射 ,已设计制造了各种样式的高 TC超导红外探测器。

超导探测器在大于 20微米的长波探测中将为与传统的半导体探测比较 ,高 T

C

优良的接受器件 ,填充了电磁波谱中远红外至毫来波段的空白。此外 ,它还具高集成密度、低功率、高成品率、低价格等优点。这一技术将在天文探测、光谱研究、远红外激光接收和军事光学等领域有广泛应用。

4.2.4超导计算机

超导器件在计算机中运用 ,将具有许多明显的优点: 1)器件的开关速度快; 2)低功率; 3)输出电压在毫伏数量级 ,而输出电流大于控制线内的电流 ,信号检测方便。同时 ,体积更小 ,成本更低;另外,信号准确无畸变。

5.超导磁体

由于能无电损耗地提供大体积的稳定强磁场 ,超导磁体成为低温超导应用的主要方向 ,经过四十年的持续努力 ,按照实际需求设计、研制、建造 15 万高斯以内 ,不同磁场形态与各种体积的低温超导磁体技术已经成熟 ,有关导线与磁体的产业已经形成。低温超导磁体应用的一个重大障碍在于要创造与维持液氦温度(118~412K)的工作环境 ,需要有相应的低温制冷装备与运行维护工作。

图6 制冷装备相对投资与运行温度的关系曲线

高临界温度超导体的出现使人们看到了提高运行温度的可能性 ,从而激发了发展高临界温度超导磁体的积极性。发展高临界温度超导磁体的主要问题在于迄今已能生产的铋系实用导线的强磁场下的性能在高运行温度下还难于与低温超导线相比及价格高 ,图 7示出了铋系实用导线在不同温度与磁场下的临界电流性能曲线 , 77K、0 T 时临界电流密度I ≈50kA/cm2。由图6可见 ,在 77K 时 ,最高仅能产生10- 1特斯拉的超导磁场 ,当要求磁场高于 1 特斯拉时 ,运行温度需低于20~50K,从图 6所示制冷装备投资看仍有着重要意义 ,前述的超导同步电机激磁绕组就属于此范围。值得注意的还有 ,若运行温度仍保持在,Bi-2223 导线在近40T强场下仍能保持约100kA/cm2的临界电流密度 ,从而

可用于产生更高的超导强磁场。

图7 Bi-2223实用导线的临界电流性能 (B∥带面)

超导悬浮列车

由于超导体具有完全抗磁性,在车厢底部装备的超导线圈,路轨上沿途安放金属环,就构成悬浮列车。当列车启动时,由于金属环切割磁力线,将产生与超导磁场方向相反的感生磁场。根据同性相斥原理,列车受到向上推力而悬浮。超导悬浮列车具有许多的优点:由于它是悬浮于轨道上行驶,导轨与机车间不存在任何实际接触,没有摩擦,时速可达几百公里;磁悬浮列车可靠性大,维修简便,成本低,能源消耗仅是汽车的一半、飞机的四分之一;噪声小,时速达300公里/小时,噪声只有65分贝;以电为动力,沿线不排放废气,无污染,是一种绿色环保的交通工具。

图8 日本研制的磁浮列车用高温超导磁体系统

磁悬浮轴承

高速转动的部位 ,由于摩擦的限制 ,转速无法进一步提高。利用超导体的完全抗磁性可制成悬浮轴承。磁悬浮轴承是采用磁场力将转轴悬浮。由于无接触 ,因而避免了机械磨损 ,降低了能耗 ,减小了噪声 ,具有免维护、高转速、高精度和动力学特性好的优点。磁悬浮轴承可适用于高速离心机、飞轮储能、航空陀螺仪等高速旋转系统。

电子束磁透镜

在通常的电子显微镜中 ,磁透镜的线圈是用铜导线制成的 ,场强不大 ,磁场梯度也不高 ,且时间稳定性较差 ,使得分辨率难以进一步提高。运用超导磁透镜后 ,以上缺点得到了克服目前超导电子显微镜的分辨已达到 3 埃 ,可以直接观察晶格结构和遗传物质的结构 ,已成为科学和生产部门强有力的工具。

6展望与建议

自从超导材料制备技术不断成熟并逐步产业化生产以来 ,近十年来高临界温度超导应用得到了良好的发展 ,在超导电缆、超导限流器与超导变压器等电力应用方面 ,研制成功多台样机,人类在 21 世纪前期将迅速进入超导应用的新时代。从超导材料的发展历程来看,新的更高转变温度材料的发现及室温超导的实现都有可能。单晶生长及薄膜制造工艺技术也会取得重大突破,但超导材料的基础研究还面临一些挑战。目前超导材料正从研究阶段向产业化发展阶段。随着高温超导材料的开发成功,超导材料将越来越多地应用于尖端技术中,因此超导材料技术有着重大的应用发展潜力,可解决未来能源、交通、医疗和国防事业中的重要问题。

参考资料:

[1]严仲明,董亮.超导技术在电工领域的应用[J ].电工材料,2007,(2):23-27.

[2]严陆光.高临界温度超导应用的进展与展望[J ]. 电工电能新技术,2006,25(1).

[3]宗曦华,张喜泽. 超导材料在电力系统中的应用[J ].电线电缆,2006,20(2):98-101.

[4]冯瑞华,姜山.超导材料的发展与研究现状[J].低温与超导,2007,35(6):520-526.

[5 ]钱廷欣,周雅伟.新型超导材料的研究进展[J ]. 材料导报,2006,20(2):98-101.

[6]张颖,陈浩乾.超导电性及其材料的应用与进展[J].广东化工,2008,35(12):74-77.

[7]杨天信 ,谢毅立. 我国高温超导技术研究现状[J ]. 中国电子科学研究院学报,2008,3(2):122-127.

[8]杨勇. 超导技术的发展及其在电力系统中的应用[J ]. 电网技术,2001,25(9):48-50.

[9]窦华.超导材料的应用[J].内蒙古电大学刊,2004,(2):55-56.

[10]杨公安,蒲永平. 超导材料研究进展及其应用[J ].陶瓷,2009(7):56-59.

[ 11]姚文新.超导材料与技术国外发展现状与趋势[J ].产业前沿,2003,(121):25-28.

[ 12]K.Inoue, new practical superconductor:rapidly heated and quenched Nb

Ga wire[J ]. Physica C,2003,(384):267-273.

3

纳米材料的制备技术及其特点

纳米材料的制备技术及其特点 一纳米材料的性能 广义地说,纳米材料是指其中任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当小粒子尺寸加入纳米量级时,其本身具有体积效应、表面效应、量子尺寸效应和宏观量子隧道效应等。从而使其具有奇异的力学、电学、光学、热学、化学活性、催化和超导特性,使纳米材料在各种领域具有重要的应用价值。通常材料的性能与其颗粒尺寸的关系极为密切。当晶粒尺寸减小时, 晶界相的相对体积将增加,其占整个晶体的体积比例增大,这时,晶界相对晶体整体性能的影响作用就非常显著。此外,由于界面原子排列的无序状态,界面原子键合的不饱和性能都将引起材料物理性能上的变化。研究证实,当材料晶粒尺寸小到纳米级时,表现出许多与一般材料截然不同的性能,如高硬度、高强度和陶瓷超塑性以及特殊的比热、扩散、光学、电学、磁学、力学、烧结等性能。而这些特性主要是由其表面效应、体积效应、久保效应等引起的。由于纳米粒子有极高的表面能和扩散率,粒子间能充分接近,从而范德华力得以充分发挥,使得纳米粒子之间、纳米粒子与其他粒子之间的相互作用异常激烈,这种作用提供了一系列特殊的吸附、催化、螯合、烧结等性能。 二纳米材料的制备方法

纳米材料从制备手段来分,一般可归纳为物理方法和化学方法。 1 物理制备方法 物理制备纳米材料的方法有: 粉碎法、高能球磨法[4]、惰性气体蒸发法、溅射法、等离子体法等。 粉碎法是通过机械粉碎或电火花爆炸而得到纳米级颗粒。 高能球磨法是利用球磨机的转动或振动,使硬球对原料进行强烈的撞击,研磨和搅拌,将金属或合金粉碎为纳米级颗粒。高能球磨法可以将相图上几乎不互溶的几种元素制成纳米固溶体,为发展新材料开辟了新途径。 惰性气体凝聚- 蒸发法是在一充满惰性气体的超高真空室中,将蒸发源加热蒸发,产生原子雾,原子雾再与惰性气体原子碰撞失去能量,骤冷后形成纳米颗粒。由于颗粒的形成是在很高的温度下完成的,因此可以得到的颗粒很细(可以小于10nm) ,而且颗粒的团、凝聚等形态特征可以得到良好的控制。 溅射技术是采用高能粒子撞击靶材料表面的原子或分子交换能量或动量,使得靶材表面的原子或分子从靶材表面飞出后沉积到基片上形成纳米材料。常用的有阴极溅射、直流磁控溅射、射频磁控溅射、离子束溅射以及电子回旋共振辅助反应磁控溅射等技术。 等离子体法的基本原理是利用在惰性气氛或反应性气氛中

超导材料论文

超导材料的研究进展 陈志义 2011326690110 应用物理11(1)班 摘要:超导是金属或合金在较低温度下电阻变为零的性质。超导材料是当代材料科学领域一个十分活跃的重要前沿,其发展将推动功能材料科学的深入发展。高温超导材料经过近 20年的研发,已经初步进入了大规模实际应用和产业化。随着超导材料临界温度的提高和材料加工技术的发展,它将会在许多高科技领域获得重要应用。 关键词:超导高温超导体进展超导超导材料临界温度进展 引言:随着社会的进步,工业的发展,人们对能源的需求量越来越大。但是,像石油、煤等能源储备有限且不可再生。故而,如何在有限能源的条件下使社会健康稳步地发展,亦即如何做到可持续发展成了当今人们亟需解决的问题。对于这些问题的解决方法,超导材料表现出了巨大的潜力。长期以来,如何找到一种完全没有电阻,能消除电能损耗的导电材料,一直是物理学家和材料科学工作者梦寐以求的愿望。1911年,荷兰物理学家卡麦林·昂尼斯首次意外地发现了超导现象:将水银冷却到接近绝对零度时,其电阻突然消失。这一现象的发现为解决电路损耗带来了福音。从此,对于超导材料的研究如火如荼。 一、超导材料的概念 超导材料是在低温条件下能出现超导电性的物质。超导材料最独特的性能是电能在输送过程中几乎不会损失。超导材料的发展经历了从低温到高温的过程,经过无数科学家的努力,超导材料的研究已经取得了巨大的发展。近年来,随着材料科学的发展,超导材料的性能不断优化,实现超导的临界温度也越来越高。高温超导材料的制备工艺也得到了长足的发展,一些制备高温超导材料的材料陆续被科学家发现。现在,超导材料的研究主要集中在超导输电线缆,超导变压器等电力系统方面,还有,利用超导材料可以形成强磁场,是超导材料在磁悬浮列车的研究上有了用武之地,另外,超导材料在医学,生物学领域也取得了很大的成就。超导材料的研究未来,超导材料的研究将会努力向实用化发展。一旦室温超导体达到实用化、工业化,将对现代文明社会中的科学技术产生深刻的影响。 二、超导材料的分类 超导材料分为低温超导材料和高温超导材料。 1、低温超导材料 何谓低温超导材料?低温超导材料是具有低临界转变温度(T c<3OK=在液氦温度条件下工作)的超导材料,分为金属、合金和化合物。具有实用价值的低温超导金属是Nb(铌),T c 为9.3K已制成薄膜材料用于弱电领域。合金系低温超导材料是以Nb为基的二元或三元合金组成的β相固溶体,T c在9K以上。低温超导材料一般都需在昂贵的液氦环境下工作,由于液氦制冷的方法昂贵且不方便,故低温超导体的应用长期得不到大规模的发展。低温超导材料的应用分为:强电应用,主要包括超导在强磁场中的应用和大电流输送;弱电应用,主要包括超导电性在微电子学和精密测量等方面的应用。 2、高温超导材料 高温超导体材料(HTS)具有超导电性和抗磁性两个重要特性。要让超导体得到现实的应用,首先要有容易找到的超导材料。即主要研究方向就是寻找能在较高温度下存在的超导体材料。高温超导材料用途非常广泛,大致可分三大类:大电流应用、电子学应用和抗磁性应用。大电流应用是由于超导材具有零电阻和完全的抗磁性,因此只需消耗极少的电能,就可以获得的稳定强磁场。超导体的基本特性之一是当它处于超导态时具有理想的导电性,同时由于其载流能力远远强于常规导体,因此,利用超导体可以传输大电流和产生强磁场,并且没有电阻热损耗。电工设备的基本特点是大电流、强磁场和高电压,因此在电工设备中使用超导材料可以减少电气损耗、提高效率、缩小体积、减轻重量、降低成本,还可以提高装置

电化学在制备纳米材料方面的应用

电化学在制备纳米材料方面的应用 摘要:应用电化学方法制备纳米材料是近年来发展起来的一项新技术。本文对应用电化学技术制备纳米材料的方法进行分类,着重介绍了电化学沉积法、电弧法、超声电化学法和电化学腐蚀法,并对其应用前景做了展望。 关键词:电化学纳米材料电沉积 1 前言 纳米材料和纳米技术被广泛认为是二十一世纪最重要的新型材料和科技领域之一。纳米材料是指任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当材料的粒子尺寸小至纳米级时,材料就具有普通材料所不具备的三大效应:(1)小尺寸效应,指当纳米粒子的尺寸与传统电子的德布罗意波长以及超导体的相干波长等物理尺寸相当或更小时,其周期性的边界条件将被破坏,光吸收、电磁、化学活性、催化等性质发生很大变化的效应;(2)表面效应,指纳米微粒表面原子与总原子数之比。纳米微粒尺寸小,表面能高,位于表面的原子占相当大的比例。随着粒径减小,表面原子数迅速增加。由于表面原子数增加,原子配位不足及高的表面能,使得这些表面原子具有高的活性,极不稳定,使其在催化、吸附等方面具有常规材料无法比拟的优越性;(3)宏观量子隧道效应。微观粒子具有贯穿势垒的能力称为隧道效应。研究发现,一些宏观量,如纳米粒子的磁化强度、量子相干器件中的磁通量也具有隧道效应,称为宏观量子隧道效应。正是由于纳米材料具有上面的三大效应,才使它表现出:(1)高强度和高韧性;(2)高热膨胀系数、高比热容和低熔点;(3)异常的导电率和磁化率;(4)极强的吸波性;(5)高扩散性等令人难以置信的奇特的宏观物理特性。 自1991年Iijima首次制备了碳纳米管以来,一维纳米材料由于具有许多独特的性质和广阔的应用前景而引起了人们的广泛关注。纳米结构无机材料因具有特殊的电、光、机械和热性质而受到人们越来越多的重视。美国自1991年开始把纳米技术列入“政府关键技术”,我国的自然科学基金等各种项目和研究机构都把纳米材料和纳米技术列为重点研究项目。 由于纳米材料的形貌和尺寸对其性能有着重要的影响,因此,纳米材料形貌和尺寸的控制在纳米材料合成中是非常重要的。 目前制备纳米材料主要采用机械法、气相法、磁控溅射法等物理方法和溶胶—凝胶法、离子液法、溶剂热法、微乳法化学方法。但在这些方法中,机械法、气相法、磁控溅射法的生产设备及条件要求很高,生产成本高;化学方法中的离子液法和微乳法是近几年发展起来的新兴的研究领域,同时离子液离子液作为一种特殊的有机溶剂,具有粘度较大、离子传导性较高、热稳定性高、低毒、流动性好等独特的物理化学性质,但是离子液体用于纳米材料制备的技术还未成熟。 应用电化学技术制备纳米材料由于简单易行、成本低廉等特点被广泛研究与采用。与其他方法相比,电化学制备方法主要具有以下优点:1、适合用于制备的纳米晶金属、合金及复合材料的种类较多;2、电化学制备纳米材料过程中的电位可以人为控制。整个过程容易实现计算机监控,在技术上困难较小、工艺灵活,易于实验室向工业现场转变;3、常温常压操作,避免了高温在材料内部引入的热应力;4、电沉积易使沉积原子在单晶基底上外延生长,可在大面积和复杂形状的零件上获得较好的外延生长层。 电化学方法已在纳米材料的制备研究领域取得了一系列具有开拓性的研究成果。本文综述了应用电化学技术制备纳米材料的主要的几种方法及其制备原理,并对其优劣进行了比较。 2 应用电化学技术制备纳米材料的种类 2.1 电化学沉积法 与传统的纳米晶体材料制备相比,电沉积法具有以下优点:(1)晶粒尺寸在1~100 nm内;(2)

超导材料基础知识介绍

超导材料基础知识介绍 超导材料具有在一定的低温条件下呈现出电阻等于零以及排斥磁力线的性质的材料。现已发现有28种元素和几千种合金和化合物可以成为超导体。 特性超导材料和常规导电材料的性能有很大的不同。主要有以下性能。 ①零电阻性:超导材料处于超导态时电阻为零,能够无损耗地传输电能。如果用磁场在超导环中引发感生电流,这一电流可以毫不衰减地维持下去。这种“持续电流”已多次在实验中观察到。 ②完全抗磁性:超导材料处于超导态时,只要外加磁场不超过一定值,磁力线不能透入,超导材料内的磁场恒为零。 ③约瑟夫森效应:两超导材料之间有一薄绝缘层(厚度约1nm)而形成低电阻连接时,会有电子对穿过绝缘层形成电流,而绝缘层两侧没有电压,即绝缘层也成了超导体。当电流超过一定值后,绝缘层两侧出现电压U(也可加一电压U),同时,直流电流变成高频交流电,并向外辐射电磁波,其频率为,其中h为普朗克常数,e为电子电荷。这些特性构成了超导材料在科学技术领域越来越引人注目的各类应用的依据。 基本临界参量有以下 3个基本临界参量。 ①临界温度:外磁场为零时超导材料由正常态转变为超导态(或相反)的温度,以Tc表示。Tc值因材料不同而异。已测得超导材料的最低Tc是钨,为0.012K。到1987年,临界温度最高值已提高到100K左右。 ②临界磁场:使超导材料的超导态破坏而转变到正常态所需的磁场强度,以Hc表示。Hc与温度T 的关系为Hc=H0[1-(T/Tc)2],式中H0为0K时的临界磁场。 ③临界电流和临界电流密度:通过超导材料的电流达到一定数值时也会使超导态破态而转变为正常态,以Ic表示。Ic一般随温度和外磁场的增加而减少。单位截面积所承载的Ic 称为临界电流密度,以Jc表示。 超导材料的这些参量限定了应用材料的条件,因而寻找高参量的新型超导材料成了人们研究的重要课题。以Tc为例,从1911年荷兰物理学家H.开默林-昂内斯发现超导电性(Hg,Tc=4.2K)起,直到1986年以前,人们发现的最高的 Tc才达到23.2K(Nb3Ge,1973)。1986年瑞士物理学家K.A.米勒和联邦德国物理学家J.G.贝德诺尔茨发现了氧化物陶瓷材料的超导电性,从而将Tc提高到35K。之后仅一年时间,新材料的Tc已提高到100K左右。这种突破为超导材料的应用开辟了广阔的前景,米勒和贝德诺尔茨也因此荣获1987年诺贝尔物理学奖金。 分类超导材料按其化学成分可分为元素材料、合金材料、化合物材料和超导陶

超导材料应用与制备概况

摘要:新型超导材料一直是人类追求的目标。本文主要从超导材料的性质,制 备,应用等方面探索超导材料科学的发展概况。随着高温超导材料制备方法的不断成熟,超导材料将越来越多的应用于尖端技术中去,超导材料的应用将给电工技术带来质的飞跃,因此,超导材料技术有着重大的应用发展潜力,可解决未来能源,交通,医疗和国防事业中的重要问题。 关键词:超导材料强电应用弱电应用超导制备 1. 引言 1911年荷兰科学家onnes发现纯水银在附近电阻突然消失,接着发现其他一些金属也有这样的现象,随着人们在Pb和其它材料中也发现这种性质:在满足临界条件(临界温度Tc,临界电流Ic,临界磁场Hc)时物质的电阻突然消失,这种现象称为超导电性的零电阻现象。只是直流电情况下才有零电阻现象,这一现象的发现开拓了一个崭新的物理领域。 超导材料具有1)零电阻性2)完全抗磁效应3)Josephson效应。这些性质的研究与应用使得超导材料的性能不断优化,实现超导临界温度也越来越高。一旦室温超导达到实用化、工业化,将对现代科学技术产生深远的影响。 2. 超导材料主要制备技术 控制和操纵有序结晶需要充分了解原子尺度的超导相性能。有序、高质量晶体的超导转变温度较高 ,晶体质量往往强烈依赖于合成技术和条件。目前,常用作制备超导材料的技术主要有: 2.1.1单晶生长技术 新超导化合物单晶样品有多种生长方法。溶液生长和气相传输生长法是制备从金属间氧化物到有机物各类超导体的强有力工具。溶液生长的优点就是其多功能性和生长速度 ,可制备出高纯净度和镶嵌式样品。但是 ,它并不能生产出固定中子散射实验所需的立方厘米大小的样品。浮动熔区法常用来制备大尺寸的样品 ,但局限于已知的材料。这种技术是近几年出现的一些超导氧化物单晶生长的 主要技术。这种技术使La 2 - x Sr x CuO 4 晶体生长得到改善 ,允许对从未掺杂到高度 掺杂各种情况下的细微结构和磁性性能进行细致研究。在T 1Ba 2 Ca 2 Cu 3 O 9+d 和 Bi 2Sr 2 CaCu 2 O 8 中 ,有可能削弱无序的影响从而提高临界转变温度。最近汞基化合 物在晶体生长尺寸上取得的进展 ,使晶体尺寸较先前的纪录高出了几个数量级。但应该指出的是即使是高 Tc的化合物 ,利用溶液生长技术也可制备出高纯度的YBCO等单晶。 2.1.2高质量薄膜技术 目前 ,薄膜超导体技术包括活性分子束外延(MBE ) 、溅射、化学气相沉积和脉冲激光沉积等。MBE能制造出足以与单个晶体性能相媲美的外延超导薄膜。在晶格匹配的单晶衬底上生长的外延高温超导薄膜 ,已经被广泛应用于这些材料物理性质的基础研究中。在许多实验中薄膜的几何性质拥有它的优势 ,如可用光刻技术在薄膜上刻画细微的特征;具备合成定制的多层结构或超晶格的潜能。 在过去的 20年里 ,多种高温超导薄膜生长技术快速发展。有些技术已经适用于其它超导体的制备。目前所使用主要方法有溅射和激光烧蚀(脉冲激光沉积)。类似分子束外延这种先进薄膜生长技术也已经发展得很好。臭氧或氧原

超导材料研究现状及其应用

超导材料研究现状及其应用 [摘要]:本文主要介绍了超导现象,超导的应用及我国超导研究现状。 [关键词]:超导现象超导的应用超导研究现状 材料是人类赖以生存和发展的物质基础,某一种新材料的问世及其应用,往往会引起人类社会的重大变革因此使用什么样的材料制造工具往往成为人类文明发达程度的一个重要标志。人们把人类历史分为石器、青铜器和铁器时代。在群居洞穴的猿人旧石器时代,通过简单加工获得石器帮助人类狩猎护身和生存,随着对石器加工制作水平的提高,出现了原始手工业如制陶和纺织,人们称之为新石器时代。青铜时代大约源于4000-5000年前。青铜是铜锡铝等元素组成的合金,与纯铜相比,青铜熔点低,硬度高,比石器易制作且耐用。青铜器大大促进了农业和手工业的出现。铁器时代则被认为是始于2000多年前,春秋战国时代,由铁制作的农具、手工工具及各种兵器,得以广泛应用,大大促进了当时社会的发展。钢铁、水泥等材料的出现和广泛应用,人类社会开始从农业和手工业社会进入了工业社会。本世纪半导体硅、高集成芯片的出现和广泛应用,则把人类由工业社会推向信息和知识经济社会。 超导现象 1911年,荷兰物理学家昂尼斯发现,水银的电阻率并不象预料的那样随温度降低逐渐减小,而是当温度降到4.15K附近时,水银的电阻突然降到零.为了证实这一现象,他用磁铁在水银环路中感应出电流,经过长达一年多的观察发现,只要水银环路保持在4.15K的低温,环路中的电流就不会有能测量到的衰减,电流不断地沿着环路转起来,就像不知疲倦的一匹马一样.当温度降到某一温度时,金属的电阻变为零的现象叫超导现象,能够发生超导现象的物质,叫做超导体.超导体由正常态转变为超导态的温度称为这种物质的转变温度(或临界温度) T C.现已发现大多数金属元素以及数以千计的合金、化合物都在不同条件下显示出超导性.如钨的转变温度为0.012K,锌为0.75K,铝为1.196K,铅为7.193K.而且超导临界温度的纪录不断地被打破,例如,1975年,有人发现铌三锗的超导临界温度为23.2K.1986年,又有人发现钡镧铜氧化物的超导临界温度为30K,这个现象引起了科学家对氧化物高温超导陶瓷的高度重视.1986年12月,中国科学院的赵忠贤研究组获得了起始转变温度为48.6K的锶镧铜氧化物.1987年2月,美籍华裔科学家、美国休斯敦大学的朱经武教授获得了起始转变温度为90K的高温超导陶瓷.1987年3月,中国科学院公布了起始转变温度为93K的8种钡钇铜氧化物.1988年,中国科学院发现了超导临界温度 为120K的钛钡钙铜氧化物.这些成就显示了我国高 温超导材料的研究已经名列世界前茅 超导应用 寻找工业应用永远是推动研究的推动力。从应用角 度看,初期的超导材料很容易被外界磁场所抑制。 实际应用困难较多。被称为I型超导材料。能在强 Fig.4, Hc2 vs Tc [17]

超导材料及应用

超导材料 摘要:简要介绍了超导材料的发展历史、现状,对未来的超导材料的发展作了展望,并对目前超导材料的主要研制方法进行了分析。 关键词:超导体研究进展高温低温应用 一前言 超导材料是在低温条件下能出现超导电性的物质。超导材料最独特的性能是电能在输送过程中几乎不会损失。超导材料的发展经历了从低温到高温的过程,经过无数科学家的努力,超导材料的研究已经取得了巨大的发展。近年来,随着材料科学的发展,超导材料的性能不断优化,实现超导的临界温度也越来越高。高温超导材料的制备工艺也得到了长足的发展,一些制备高温超导材料的材料陆续被科学家发现。现在,超导材料的研究主要集中在超导输电线缆,超导变压器等电力系统方面,还有,利用超导材料可以形成强磁场,是超导材料在磁悬浮列车的研究上有了用武之地,另外,超导材料在医学,生物学领域也取得了很大的成就。超导材料的研究未来,超导材料的研究将会努力向实用化发展。一旦室温超导体达到实用化、工业化,将对现代文明社会中的科学技术产生深刻的影响。 二研究现状 1.超导材料的探索与发展 探索新型超导材料在超导材料研究中始终起着关键的作用,同时也是一项高风险、高投入的研究工作。自1911年荷兰物理学家卡麦林·昂尼斯发现汞在4.2K附近的超导电性以来,人们发现的新超导材料几乎遍布整个元素周期表,从轻元素硼、锂到过渡重金属铀系列等。超导材料的最初研究多集中在元素、合金、过渡金属碳化物和氮化物等方面。至1973 年,发现了一系列A 15型超导体和三元系超导体,如Nb 3 Sn、V 3 Ga、Nb 3 Ge,其中Nb 3 Ge超导 体的临界转变温度(T c)值达到23.2K。以上超导材料要用液氦做致冷剂才能呈现超导态,因而在应用上受到很大限制。1986年,德国科学家柏诺兹和瑞士科学家穆勒发现了新的金属氧化物超导材料即钡镧铜氧化物(La-BaCuO),其T c为35K,第一次实现了液氮温区的高温超导。铜酸盐高温超导体的发现是超导材料研究上的一次重大突破,打开了混合金属氧化物超导体的研究方向。1987年初,中、美科学家各自发现临界温度大于90K的YBacuO超导体,已高于液氮温度(77K),高温超导材料研究获得重大进展。后来法国的米切尔发现了第三类高温超导体BisrCuO,再后来又有人将Ca掺人其中,得到Bis尤aCuO超导体,首次使氧化物超导体的零电阻温度突破100K大关。1988年,美国的荷曼和盛正直等人又发现了T 1 系高温超导体,将超导临界温度提高到当时公认的最高记录125K。瑞士苏黎世的希林等发现在HgBaCaCuO超导体中,临界转变温度大约为133K,使高温超导临界温度取得新的突破。 2.超导材料的研究 2.1低温超导阶段 在梅斯勒发现超导体的抗磁性之后(相继有荷兰物理学家埃伦弗斯特根据有关的超导体在液氦中比热不连续现象(提出热力学中二级相变的概念)柯特和卡西米尔提出超导的二流体模型)德国物理学家F·伦敦和H·伦敦兄弟提出超导电性的电动力学唯相理论(即伦敦

纳米相增强金属材料制备技术的研究进展及应用

纳米相增强金属材料制备技术的研究进展及应用 【摘要】目前纳米技术应用广泛,在高强金属材料应用方面尤为突出。本文针对现有主要几种纳米增强金属材料制备工艺方法进行概述并比较,讨论其优缺点。最后还探讨了纳米相增强制备技术未来的发展趋势和改进方向,并对纳米结构材料应用领域和前景进行展望。 【关键词】纳米增强制备方法优缺点 随着科技进步,各个领域对于相关材料的性能要求日益提高。纳米增强技术是改善材料性能的重要方法之一,其在金属材料领域尤其应用广泛。在电子、汽车、船舶、航天和冶金等行业对高性能复合材料需求迫切,选用最佳制备方法制备出性能更优良的纳米材料是当前复合材料发展的迫切要求。 1 纳米增强技术概述 纳米相增强金属材料是由纳米相分散在金属单质或合金基体中而形成的。由于纳米弥散相具有较大的表面积和强的界面相互作用,纳米相增强金属复合材料在力学、电学、热学、光学和磁学性能方面不同于一般复合材料,其强度、导电性、导热性、耐磨性能等方面均有大幅度的提高[1]。 1.1 机械合金化法 机械合金化法(MA)是一种制备纳米颗粒增强金属复合材料的有效方法。通过长时间在高能球磨机中对不同的金属粉末和纳米弥散颗粒进行球磨,粉末经磨球不断的碰撞、挤压、焊合,最后使原料达到原子级的紧密结合的状态,同时将颗粒增强相嵌入金属颗粒中。由于在球磨过程中引入了大量晶格畸变、位错、晶界等缺陷,互扩散加强,激活能降低,复合过程的热力学和动力学不同于普通的固态过程,能制备出常规条件下难以制备的新型亚稳态复合材料。 1.2 内氧化法 内氧化法(Internal oxidation)是使合金雾化粉末在高温氧化气氛中发生内氧化,使增强颗粒转化为氧化物,之后在高温氢气气氛中将氧化的金属基体还原出来形成金属基与增强颗粒的混合体,最后在一定的压力下烧结成型。因将材料进行内氧化处理,氧化物在增强颗粒处形核、长大,提高增强粒子的体积分数及材料的整体强度,这样可以提高材料的致密化程度,且可以改善相界面的结合程度,使复合材料的综合力学性能得到提高。 1.3 大塑性变形法 大塑性变形法(Severe plastic deformation)是一种独特的纳米粒子金属及金属合金材料制备工艺。较低的温度环境中,大的外部压力作用下,金属材料发

超导材料的特性及应用

浅谈超导材料的超导特性及应用 摘要:作为一种新型材料,超导材料越来越广泛地应用到各个领域,人类对超导电性及其应用将越来越重视。超导材料的应用有着巨大的潜力和发展前景,这是不容置疑的。超导的实用前景似乎既近既远,近者,在人类的生活中已得到了超导电技术带来的好处,如医用的核磁共振成像的超导磁体;同时,在电子器件上的应用,近几年将会在市场上出现。远者,人们会看到例如在微波通讯、计算机器件、储能及平衡电网方面的应用。在总结超导电性的同时,本文将就超导材料的应用作简要的介绍。 关键字:超导、特性、应用、前景 1、超导材料的超导特性 导体在温度下降到某一值时,电阻会突然消失,即零电阻,这一现象称为“超导现象”,将具有超导性的物质,称为超导体,超导体如钛、锌、铊、铅、汞等,在超导状态,当温度降至温度(超导转变温度)时,皆显现出某些共同特征。1.1电阻为零。一个超导体环移去电源之后,还能保持原有的电流。有人做过实 验,发现超导环中的电流持续了二年半而无显著衰减。 1.2完全抗磁性。这一现象是1933年德国物理学家迈斯纳等人在实验中发现的, 只要超导材料的温度低于临界温度而进入超导态以后,该超导材料便把磁力线排斥体外,因此其体内的磁感应强度总是零。这种现象称为“迈斯纳效应”。 2、超导材料的应用 2.1 超导应用的巨大潜力 超导态是物质的一种独特的状态,它的新奇特性,立刻使人想到要将它们应用到技术上。超导体的零电阻效应显示其具有无损耗输运电流的性质。工业、国防、科研上用的大功率发电机、电动机如能实现超导化,将大大降低能耗并使其小型化。利用超导隧道效应,人们可以制造出世界上最灵敏的电磁信号的探测元件和用于高速运行的计算机元件。用这种探测器制造的超导量子干涉磁强计可以测量地球磁场几十亿分之一的变化,也能测量人的脑磁图和心磁图。超导体用于微波器件可以大大改善卫星通讯的质量。 因此,超导体显示了巨大的应用潜力。 2.2 超导材料在强电方面的应用

超导体论文

超导体的电磁性质及其应用 院别:物理与电子工程学院 专业:09级物理学 姓名:王雪梅 完成日期:2014 年6 月3 日 摘要:具有在一定的低温条件下呈现出电阻等于零以及排斥磁力线的性质的材料称为超导材料。从1911年荷兰物理学家翁奈首先发现超导现象以来,现已发现有28种元素和几千种合金和化合物可以成为超导体。超导材料具有优越的物理性质和优越的性能,目前已被广泛接受和认同,具有良好的发展前景。 关键词:超导材料;分类;性质;应用;原理;展望 1、引言 1911年荷兰物理学家翁奈在研究水银低温电阻时首先发现了超导现象。后来又陆续发现了一些金属、合金和化合物在低温时电阻也变为零,即具有超导现象。物质在超低温下,失去电阻的性质称为超导电性;相应的具有这种性质的物质就称这超导体。超导材料具有的优异特性使它从被发现之日起,就向人类展示了诱人的应用前景。目前,超导材料已被应用于很多领域,本文拟就超导材料的分类、性质、应用、原理等方面展开论述,以帮助人们更好的认识超导材料。 2、分类 元素超导体、合金和化合物超导体,有机高分子超导体三类。 3、性质 3.1零电阻性 超导材料处于超导态时电阻为零,能够无损耗地传输电能。如果用磁场在超导环中引发感生电流,这一电流可以毫不衰减地维持下去。这种“持续电流”已多次在实验中观察到。 超导体的零电阻现象与常导体零电阻在实质上截然不同。常导体的零电阻是指在理想的金属晶体中,由于电子运动畅通无阻,因此没有电阻;而超导体零电阻是指当温度降至某一数值Tc或以下时,其电阻突然变为零。 3.2完全抗磁性 1933年迈斯纳和奥尔德首次发现了超导体具有完全抗磁性的特点。把锡单晶球超导体在磁场(H≦Hc)中冷却,在达到临界温度Tc以下时,超导体内的磁通线一下子被排斥出去;或者先把超导体冷却至Tc以下,再通以磁场,这时磁通线也被排斥出动;如图所示。即在超导状态下,超导体内磁感应强度B=0.这就是迈斯纳效应。 3.3约瑟夫森效应 两超导材料之间有一薄绝缘层(厚度约1nm)而形成低电阻连接时,会有电子对穿过绝缘层形成电流,而绝缘层两侧没有电压,即绝缘层也成了超导体。当电流超过一定值后,绝缘层两侧出现电压U(也可加一电压U),同时,直流电流变成高频交流电,并向外辐射电磁波,其频率为,其中h为普朗克常数,e为电子电荷。这些特性构成了超导材料在科学技术领域越来越引人注目的各类应用的依据。 3.4同位素效应 超导体的临界温度Tc与其同位素质量M有关。M越大,Tc越低,这称为同位素效应。例如,原子量为199.55的汞同位素,它的Tc是4.18开,而原子量为203.4的汞同位素,Tc为4.146

超导材料及其应用现状与发展前景培训讲学

超导材料及其应用现状与发展前景

超导材料及其应用现状与发展前景 作者:肖立业刘向宏王秋良马衍伟古宏伟 来源:《中国工业和信息化》2018年第08期 超导体不仅在临界温度下具有零电阻特性,而且在一定的条件下具有常规导体完全不具备的电磁特性,因而在电气与电子工程领域具有广泛的应用价值。我国在超导材料及其应用领域总体上处于国际先进行列,基本掌握了各种实用化超导材料的制备技术,在多个应用方面也取得了良好的发展。我国超导材料及其应用领域将不断探索更高临界温度的超导体,提升超导材料及其应用技术的发展水平。 1911年,荷兰莱登实验室的卡麦林·昂尼斯在测量低温下金属的电导率时发现,当温度下降到4.2K时,汞的电阻完全消失(如图1所示),他把具有这种现象的导体称为超导体。经过近50年的研究,科学家們陆续发现,超导体不仅在一定温度(也称为临界温度,简称Tc)之下具有零电阻特性,而且在一定的条件下具有高密度载流能力、完全抗磁性(迈斯纳效应)、约瑟夫森效应等常规导体完全不具备的电磁特性,因而在电气与电子工程领域具有广泛的应用价值(见表1)。根据应用的具体需求,工程师们可以将超导体制备成各种超导材料,如超导线材、超导带材、超导薄膜、复合超导体等。 经历了100多年的研究,人们已经发现了多达数万种超导体。按照超导体的临界温度,可以将超导体分为低温超导体和高温超导体,临界温度低于25K~30K超导体为低温超导体,临界温度高于25K~30K超导体为高温超导体。目前,基于低温超导材料的应用装置一般工作在液氦温度(4.2K及以下),基于高温超导材料的应用装置一般工作在液氢温度(约20K)至液氮温度(约77K)之间。探索出更高临界温度乃至室温的超导体是人类不断追求的梦想。 超导材料的发展现状与前景 尽管人们已经发现了数万种超导体,但真正具有实用价值的超导体并不多。目前得到应用的低温超导体主要包括NbTi、Nb3Sn、Nb3Al等,具有实用价值的高温超导体主要包括铋系(BSCCO,Tc约90K-110K,也称为第一代高温超导材料,主要包括BSCCO-2212和BSCCO-2223两种,也简称Bi-2212或Bi-2223)、钇系(Tc约90K,YBCO或ReBCO,也称为第二代高温超导材料)。进入21世纪以来,MgB2(Tc为39K)和铁基超导体(Tc最高为55K)相继被发现,成为两种新的具有实际应用潜力的超导体。 低温超导材料发展现状与前景 超导材料主要包括NbTi、Nb3Sn、Nb3Al等。自上世纪60年代以来,其制备技术与工艺已经相当成熟,并推动了如加速器磁体、核聚变工程用超导磁体、核磁共振(MRI和NMR)磁体、通用超导磁体等的发展,并由此形成了具有一定规模的超导产业。目前,美国、欧盟和日本等国家和地区已经有一大批的企业可以生产各种面向不同应用需求的低温超导材料。2006年,我国加入了国际热核聚变实验堆(ITER)计划,从而使我国低温超导材料的发展迎来了前所未有的机遇。作为国内极少的低温超导线材产业化公司,西部超导材料科技有限公司承担了174吨NbTi超导线和35吨Nb3Sn超导线的生产任务,通过自主开发,掌握了成套技术和工艺,并于2017年全部交付预订的产品,得到了国际同行的高度评价,总体上达到了国际先进水平。ITER项目极大推动了我国低温超导材料的发展,也为我国自主开发MRI、加速器和核聚变磁体提供了超导材料供应的保障。

YBCO超导体的制备及研究现状

YBCO超导体的制备及研究现状 摘要:本文简述了YBCO 高温超导体的基本性能,探讨了YBCO 高温超导体的传统制备方法以及目前较为新型的制备方法,根据YBCO 高温超导体材料的基本性能研究了其在磁体和电力方面的广泛应用,同时还对YBCO 高温超导体材料的发展前景进行了简单介绍。 关键词:超导体;制备方法;研究现状; The Preparation Methods and Research of YBCO Dong Mei Abstract:The text introduced the basic characteristics of YBCO, and explored its traditional preparation methods and some newer ones at present.According to its basic characteristics, we reasearched the magnetic and electric application of YBCO. Meanwhile, we gave a simpleintroduction to its prospects for development. Key words:superconductor;preparation methods;research; 引言:超导现象是在19世纪最早出现的[1],随着科学家的不断研究与探索,高温超导体在各个领域里的应用越来越受到人们的重视,对其超导性、制备方法以及应用前景的研究,已经成为科学家们关注的问题之一。现以钇系中的YBCO 高温超导体为一个典型的代表,对YBCO高温超导体的性能、制备方法、应用及发展前景进行研究,从而对高温超导材料有一个更加全面的了解与认识,以此促进高温超导材料在今后的研究,使其在各个领域得到更加广泛的发展与应用。 1YBCO高温超导体的简介及性能研究 超导材料是指具有超导性的材料,该材料在室温下是有电阻的良好导体,但随温度的下降,其电阻降低,当温度达到临界温度T C(超导体从具有一定电阻的正常态转变为电阻为零的超导态时所对应的临界温度[2])以下,它们的电阻会突然消失。YBCO高温超导体属于属于氧化物超导体的一种,根据磁化测试的结果,其属于第二类超导体。 YBCO高温超导体除具有传统超导体的基本性能(完全导电性(零电阻)、完全抗磁性、约瑟夫森效应)外,还具有很高临界温度(90K以上,而一般的超导体T C介于10~40K之间),同时YBCO超导体的晶体结构大于属于畸变的层状钙钛矿结构,具有陶瓷性,且该化合物中的大多数的金属元素在一定范围内可以全部或部分被其他金属元素所替代,而不明显或仍然具有超导性。 2YBCO高温超导体的制备方法研究 自高温超导氧化物发现以来,人们采用多种不同的工艺来制备高临界电流密度的超导体,。对于YBCO高温超导体的制备方法也是越来越多了,下面将列举一些常见的传统制备方法和一些较为新型的制备方法。 2.1烧结法

纳米材料的制备方法与应用要点

纳米材料的制备方法与应用 贾警(11081002) 蒙小飞(11091001) 1引言 自从1984年德国科学家Gleiter等人首次用惰性气体凝聚法成功地制得。铁纳米微粒以来,由于纳米材料有明显不同于体材料和单个分子的独特性质—小尺寸效应、表面与界面效应、量子尺寸效应和宏观量子轨道效应等,以及其在电子学、光学、化工、陶瓷、生物和医药等诸多方面的重要价值。引起了世界各国科学家的浓厚兴趣。几十年来,对纳米材料的制备、性能和应用等各方面的研究取得了丰硕的成果。纳米材料指其基本组成颗粒尺寸为纳米数量级,处于原子簇和宏观物体交接区域的粒子。颗粒直径一般为1~100nm之间。颗粒可以是晶体,亦可以是非晶体。由于纳米材料具有其特殊的物理、机械、电子、磁学、光学和化学特性,可以预见,纳米材料将成为21世纪新一轮产业革命的支柱之一。 2纳米材料的制备方法 纳米材料有很多制备方法,在此只简要介绍其中几种。 2.1溶胶-凝胶法 溶胶-凝胶法是材料制备的是化学方法中的较为重要的一种,它提供一种再常温常压下合成无机陶瓷、玻璃、及纳米材料的新途径。溶胶-凝胶法制备纳米材料的主要步骤为选择要制备的金属化合物,然后将金属化合物在适当的溶剂中溶解,然后经过溶胶-凝胶过程而固化,在经过低温处理而得到纳米粒子。 2.2热合成法 热合成法制备纳米材料是在高温高压下、水溶液中合成,在经过分离和后续处理而得到纳米粒子,水热合成法可以制备包括金属、氧化物和复合氧化物在内的产物。主要集中在陶瓷氧化物材料的制备中。 2.3有机液相合成 有机液相合成主要采用在有机溶剂中能稳定存在金属、有机化合物及某些具有特殊性质的无机化合物为反应原料,在适当的反应条件下合成纳米材料。通常这些反应物都是对水非常敏感,在水溶剂中不能稳定存在的物质。最常用的反应方式就是在有机溶剂中进行回流制备。 2.4惰性气体冷凝法 惰性气体冷凝法是制备清洁界面的纳米粉体的主要方法之一。其主要过程是在真空蒸发室内充入低压惰性气体,然后对蒸发源采用真空蒸发、加热、高频感应等方法使原料气化或形成等离子体。原料气体分子与惰性气体分子碰撞失去能量,凝集形成纳米尺寸的团簇,然后骤冷。该方法制备的纳米材料纯度高,工艺过程中无其它杂质污染,反应速度快,结品组织好,但技术设备要求高。 2.5反相胶束微反应器法

磁性纳米材料的制备及应用前景

磁性纳米材料的制备及应用前景 摘要:磁性纳米材料因其具有独特的性质,在现代社会中有着广泛的应用,并越来越受到人们的关注。本文主要介绍了磁性纳米材料的制备及应用前景,概述了纳米磁性材料的制备方法,如机械球磨法,水热法,微乳,液法,超声波法等,总结了纳米磁性材料在实际中的应用,并对其研究前景进行了展望。 Abstract: magnetic nanomaterials due to their unique properties, in the modern society has a wide range of applications, and people pay more and more attention. This paper mainly introduces the magnetic nanometer material preparation and application prospect of nano magnetic materials, summarized the preparation methods, such as mechanical ball milling method, hydrothermal method, microemulsion, liquid method, ultrasonic method, summarizes the nanometer magnetic materials in practical application, and the research prospect.

前言 纳米材料因其尺寸小而具有普通块状材料所不具有的特殊性质,如表面效应、小尺寸效应、量子效应和宏观量子隧道效应等,从而与普通块状材料相比具有较优异的物理、化学性能。磁性纳米材料由于其在高密度信息存储,分离,催化,靶向药物输送和医学检测等方面有着广泛的应用,已经受到了广泛关注。磁性复合纳米材料是以磁性纳米材料为中心核,通过键合、偶联、吸附等相互作用在其表面修饰一种或几种物质而形成的无机或有机复合材料。由于社会的发展和科学的进步,磁性纳米材料的研究和应用领域有了很大的扩展。磁性材料在信息存储、传感器和磁流体等传统学科领域有着重要的应用。随着纳米材料科学与技术的发展,纳米磁性材料的应用开发日益引起人们的关注,特别是在提高 信息存储密度、微纳米器件和生物医学领域的应用潜力巨大。目前普遍采用化学法制备铁氧体磁性纳米颗粒,具体有溶胶~凝胶法、化学共沉淀法等,而由于生物合成的磁性纳米颗粒表现出更优良的性质。 1.磁性纳米材料的特点 量子尺寸效应:材料的能级间距是和原子数N 成反比的,因此,当颗粒尺度小到一定的程度,颗粒内含有的原子数N 有限,纳米金属费米能级附近的电子能级由准连续变为离散,纳米半导体微粒则存在不连续的最高被占据分子轨道和最低未被占据的分子轨道,能隙变宽。当这能隙间距大于材料物性的热能,磁能,静电能,光子能等等时,就导致纳米粒子特性与宏观材料物性有显著不同。例如,导电的金属在超微颗粒时可以变成绝缘体,磁矩的大小和颗粒中电子是奇数还是偶数有关,比热亦会反常变化,光谱线会产生向短波长方向的移动,这就是量子尺寸效应的宏观表现。 小尺寸效应:当粒子尺度小到可以与光波波长,磁交换长度,磁畴壁宽度,传导电子德布罗意波长,超导态相干长度等物理特征长度相当或更小时,原有晶体周期性边界条件破坏,物性也就表现出新的效应,如从磁有序变成磁无序,磁矫顽力变化,金属熔点下降等。 宏观量子隧道效应:微观粒子具有穿越势垒的能力,称为量子隧道效应。而在马的脾脏铁蛋白纳米颗粒研究中,发现宏观磁学量如磁化强度,磁通量等也具有隧道效应,这就是宏观量子隧道效应。它限定了磁存储信息的时间极限和微电子器件的尺寸极限。 2. 磁性复合纳米材料的制备方法 2.1水热合成法 水热合成法是液相中制备纳米粒子的一种新方法。一般是在100~300摄氏度温度下和高气压环境下使无机或有机化合物与水化合,通过对加速渗透析反应和物理过程的控制,得到改进的无机物,再过滤,洗涤,干燥,从而得到高纯,超细的各类微粒子。研究发现以FeC13为铁源,AOT为表面活性剂,N2H4·H20(50%)为还原剂水热合成 Fe3O4纳米颗粒时,反应温度和时间,表面活性剂和还原剂浓度对最终产物的尺寸形貌、分散性和磁性有明显影响。还有通过调节水热反

超导材料在能源上的应用

超导材料在电力系统和热核聚变上的应用姓名:成双良班级:复材1402 学号:1105140212 摘要:超导技术是21世纪具有重大经济和战略意义的高新技术,在国民经济诸多领域具有广阔的应用前景,在能源方面尤其是电力系统以及热核聚变实验之中尤为突出。实用化超导材料是超导技术发展的基础。目前,国际上发现的实用化超导材料主要有有低温超导线材、铋系高温超导带材、YBCO涂层导体。文章首先介绍了超导材料的发展基础,重点综述了上述几种实用化超导材料制备及加工、性能和应用方面的最新研究进展,并对相关领域存在的问题及今后的发展作出展望。 关键词:超导材料,电力系统,热核聚变,NbTi,Nb3Sn,铋系高温超导带材,YBCO涂层导体 Application of Superconducting Materials in Power System and Thermonuclear Fusion Abstract:Superconducting technology is a high-tech with significant economic and strategic significance in the 21st century. It has wide application prospect in many fields of national economy, especially in energy, especially power system and thermonuclear fusion experiment. Performance improvementin practical superconducting materials is the foundation of application development. The overall picture of superconductors is diverse and developing rapidly. Currently, practical superconducting materials comprise mainly Nb-based low-temperature wires, bismuth-strontium-calcium copper oxide high-temperature superconducting tapes and yttrium barium copper oxide coated conductors. A review is presented here of the fabrication issues, key properties and recentdevelopments of these materials, with an assessment of the challenges and prospects for fixture applications. Keywords: superconducting Materials, power system, thermonuclear fusion, NbTi,Nb3Sn, BSCCO tapes, YBCO coated conductors

相关主题