搜档网
当前位置:搜档网 › (完整版)第六章线性空间练习题参考答案

(完整版)第六章线性空间练习题参考答案

(完整版)第六章线性空间练习题参考答案
(完整版)第六章线性空间练习题参考答案

第六章 线性空间练习题参考答案

一、填空题

1.已知0000,,00V a b

c a b c R c b ?????? ?

=+∈?? ??? ?+????

是33R ?的一个子空间,则维(V ) = 3 , V 的一组基是000000000100,100,010*********??????

? ? ?

? ? ? ? ? ???????

.

2.在P 4中,若1234(1,2,0,1),(1,1,1,1),(1,,1,1),(0,1,,1)k k αααα===-=线性无关,则k 的取值范围是3k ≠(以1234,,,αααα为行或者列构成的行列式不为零). 3.已知a 是数域P 中的一个固定的数,而1{(,,,),1,2,,}n i W a x x x P i n =∈=L L 是P n+1的一个子空间,则a = 0 ,而维(W)=n 4.维数公式为12dim dim V V +=1212dim()dim()V V V V ++I .

5.设123,,εεε是线性空间V 的一组基,112233x x x αεεε=++,则由基123

,,εεε到基231,,εεε的过渡矩阵T =001100010??

?

? ???,而α在基321,,εεε下的坐标是

321(,,)x x x 由基123,,εεε到基233112,,εεεεεε+++的过渡矩阵为T =011101110??

?

? ???

.

6.数域P 上n 级对称矩阵全体构成数域P 上

(1)

2

n n +维线性空间,数域P 上n 级反对称矩阵全体构成数域P 上

(1)

2

n n -维线性空间,数域P 上n 级上三角矩

阵全体构成数域P 上

(1)

2

n n +维线性空间,数域P 上n 级对交矩阵全体构成数域P 上n 维线性空间,数域P 上n 级数量矩阵全体构成数域P 上 1 维线性空间.

二、判断题

1.设n n V P ?=,则{,0}n n W A A P A ?=∈=是V 的子空间.

错.行列式为零的两个方阵的和的行列式未必为零,因此W 中矩阵关于矩阵的加法运算不封闭,不能成为子空间.)

2.已知{(,),,,}V a bi c di a b c d R =++∈为R 上的线性空间,且维(V )=2. 错.是子空间,但是是4维的,其基为(1,0),(,0),(0,1),(0,)i i .

3.设,n n A B P ?∈,V 是0A X B ??

= ???的解空间,V 1是AX =0的解空间,V 2是

(A +B)X =0的解空间,则12V V V =I .

正确. 12V V I 中的向量既满足AX =0,又满足(A +B)X =0,因此也满足

BX =0,即满足0A X B ??

= ???,即为V 中的向量.反之,V 中的向量既在1V 中,又

在2V 中,即为12V V I 中的向量.因此12V V V =I .

4.设线性空间V 的子空间W 中每个向量可由W 中的线性无关的向量组

12,,,s αααL 线性表出,则维(W)=s.

正确.根据定理1.

5.设W 是线性空间V 的子空间,如果,,V αβ∈但,W W αβ??且则必有

.W αβ+?

错误.可能.W αβ+∈如取,αβ为一对互为负向量,则0.W αβ=+∈ 6. }0|),,{(33321=∈=x R x x x W 是3R 的子空间.

正确. 基为(1,0,0),(0,1,0),维数为2. 7.}1|),,{(23321=∈=x R x x x W 是3R 的子空间. 错误.不包含零向量.

8.}|),,{(3213321x x x R x x x W ==∈= 是3R 的子空间. 正确.基为(1,1,1),维数为1.

9.}|),,{(3213321x x x R x x x W -=∈= 是3R 的子空间. 正确. 基为(1,1,0),(1,0,-1),维数为2. 三、计算题

1.求所有与A 可交换的矩阵组成的n

n P ?的子空间()C A 的维数与一组基,其

100020003A ??

?= ? ???

.

解:设矩阵33()ij B b ?=与A 可交换,即有AB BA =.即

1112

131112

132122232122

233132

33313233100100020020003003b b b b b b b b b b b b b b b b b b ????????

???

???= ??? ??? ??? ???????????.

11

121311121321222321

222331

32

3331

32

33232222333323b b b b b b b b b b b b b b b b b b ????

? ?= ? ? ? ?????

. 所以有,()0,,1,2,3.ij ij ij ib b j i j b i j =-==当i j ≠时,0ij b =,因此

1122

330

0()00

00b C A b b ??

????

?=?? ??? ??

??? 维数为3,基为112233,,E E E .

2.在线性空间P 4中,求由基1234,,,αααα到基1234,,,ββββ的过渡矩阵,并求(1,4,2,3)α=在基1234,,,αααα下的坐标,其中

1234(1,0,0,0),(4,1,0,0),(3,2,1,0),(2,3,2,1)αααα===-=- 1234(1,1,8,3),(0,3,7,2),(1,1,6,2),(1,4,1,1).ββββ====--- 解:令过渡矩阵为T ,则有

10111

43213140

12387610

0123

2210

001T --????

?

?

- ? ?

=

? ?

- ?

?

-????

因此

1

1

43210112379801231314633100128761232100

132213221T ------??????

? ? ?

--

? ? ?

==

? ? ?- ? ? ?

--??

????

. 令

123411432401232001230

1x x x x -?????? ? ? ?- ?

? ?= ? ? ? ? ? ???????

1

1234143211411361101012340127421001220012240

0013000133x x x x -----????????????

? ? ? ??? ?

-- ? ? ? ??? ?

===

? ? ? ??? ?-- ? ? ? ??? ?

??????????

?? (1,4,2,3)α=在基1234,,,αααα下的坐标为(-101,21,-4,3) 四、证明题

1.V 为定义在实数域上的函数构成的线性空间,令

12{()(),()()},{()(),()()}

W f x f x V f x f x W f x f x V f x f x =∈=-=∈=--

证明:W 1、W 2皆为V 的子空间,且12.V W W =⊕

证明:W 1、W 2 分别为偶函数全体及奇函数全体构成的集合,显然W 1、W 2均为非空的.由奇偶函数的性质可得W 1、W 2皆为V 的子空间.

()()()()

(),()22

f x f x f x f x f x V f x +---?∈=+

. 而12()()()(),22f x f x f x f x W W +---∈∈,因此12.V W W =+又12{0}.W W =I 所

以12.V W W =⊕

2.设W 是P n 的一个非零子空间,若对于W 的每一个向量12(,,,)n a a a L 来说,或者120n a a a ====L ,或者每一个i α都不等于零,证明:维(W)=1.

证明:由W 是P n 的一个非零子空间,可得W 中含有非零向量设

1212(,,,),(,,,)n n a a a b b b αβ==L L

是W 中的任二个非零向量,由题意可得每一个,i i a b 都不等于零.考虑向量

11112112121211(,,,)(,,,)(0,,,)n n n n b a b a a a a b b b b a a b b a a b W αβ-=-=--∈L L L .

由题设条件有1212110n n b a a b b a a b -==-=L ,即有12

12n n

a a a

b b b ===L .即W 中的

任二个非零向量均成比例,因此维(W)=1.

相关主题