搜档网
当前位置:搜档网 › 细胞生物学简答题整理

细胞生物学简答题整理

细胞生物学简答题整理
细胞生物学简答题整理

1、简述G蛋白偶联受体所介导得信号通路得异同

G蛋白偶联受体所介导信号通路分为三类:

①激活离子通道;②激活或抑制腺苷酸环化酶,以cAMP为第二信使;③激活磷脂酶C ,以IP3 与DAG 作为双信使

激活离子通道:

当受体与配体结合被激活后,通过偶联G蛋白得分子开关作用,调控跨膜离子通道得开启与关闭,进而调节靶细胞得活性。

激活或抑制腺苷酸环化酸得cAMP信号通路:

细胞外信号(激素,第一信使)与相应G蛋白偶联得受体结合,导致细胞内第二信使cAMP得水平变化而引起细胞反应得信号通路。腺苷环化酶调节胞内cAMP得水平,cAMP被环腺苷酸磷酸二酯酶降解清除。

cAMP信号通路主要就是通过活化cAMP依赖性蛋白激酶A (PKA) ,激活靶酶开启

基因表达,从而表现出不同得效应. 蛋白激酶A 由2个催化亚基与2个调节亚基组成,cAM P得结合可改变调节亚基得构象,释放催化亚基产生活性。

蛋白激酶A被激活后,一方面通过对底物蛋白得磷酸化,引起细胞对胞外信号得快速反应;另一方面,其催化亚基可进入细胞核,磷酸化cAMP应答元件结合蛋白(CREB)得丝氨酸残基.磷酸化得CREB蛋白被激活,它作为基因转录得调节蛋白识别并结合到靶细胞得cA MP应答元件(CRE) 启动靶基因得转录,引起细胞缓慢得应答反应。

cAMP信号通路中得缓慢反应过程:激素→G-蛋白偶联受体→G-蛋白→腺苷酸环化酶→cAMP→ cAMP依赖得蛋白激酶A→基因调控蛋白→基因转录。

cAMP就是由腺苷酸环化酶(adenylyl cyclase,AC)催化合成得,腺苷酸环化酶为跨膜12次得糖蛋白,在Mg2+或Mn2+存在下能催化ATP生成cAMP;细胞内得环腺苷酸磷酸二酯酶(PDE)可降解cAMP生成5'-AMP,导致细胞内cAMP水平下降。因此,细胞内cAMP得浓度受控于腺苷酸环化酶与PDE得共同作用).

cAMP信号调控系统由质膜上得5种成分组成:刺激型激素受体(Rs)、抑制型激素受体(Ri)、刺激型G蛋白(Gs)、抑制型G蛋白(Gi)、腺苷酸环化酶(E).Gs与Gi得β、γ亚基相同,而α亚基不同决定了对激素对腺苷酸环化酶得作用不同。

Gs得调节作用:当细胞没有受到激素刺激时,Gs处于非活化状态,G蛋白得亚基与GDP结合,此时

腺苷酸环化酶没有活性;当激素配体与Rs受体结合后,导致受体构象改变,暴露出与Gs结合得位点,配体-受体复合物与Gs结合,Gs得亚基构象改变,排斥GDP结合GTP,使G蛋白三聚体解离,暴露出得亚基与腺苷酸环化酶结合,使酶活化,催化ATP环化为cAMP。随着GTP水解使亚基恢复原来得构象并导致与腺苷酸环化酶解离,终止腺苷酸环化酶得活化作用。α亚基与βγ亚基重新组合,使细胞回复到静止状态。

Gi得调节作用:Gi对腺苷酸环化酶得抑制作用可通过两个途径:当Gi与GTP结合,Gi得α亚基与

βγ亚基解离后,一就是通过与腺苷酸环化酶结合,直接抑制酶得活性;二就是通过βγ亚基复合物与游离得Gsα亚基结合,阻断Gs得α亚基对腺苷酸环化酶得活化。

磷脂酰肌醇双信使信号通路:

胞外信号分子与细胞表面G蛋白偶联受体结合,通过G蛋白(Gq)激活质膜上得磷脂

酶C-β(PLC-β),使质膜上4,5-二磷酸磷脂酰肌醇(PIP2)水解为1,4,5-三磷酸肌醇(IP3)与二酰基甘油(DAG)两个第二信使,使细胞外信号转换为胞内信号。IP3通过动员细胞内源钙到细胞质基质中,使胞质中游离Ca2+浓度升高;DAG激活蛋白激酶C (PKC),活化得PKC使底物蛋白磷酸引起细胞反应。因此该途径又称为“双信使系统”。

IP3-Ca2+信号通路

IP3就是一种水溶性小分子,通过与内质网膜上IP3控制得Ca2+释放通道相结合,将Ca2+释放到细胞质基质中,Ca2+可活化各种Ca2+结合蛋白引起细胞反应。胞质中高浓度得游离Ca2+由质膜与内质网膜上得钙泵转移到细胞外或内质网中。

DAG-PKC信号通路

二酰基甘油(DAG)可活化与质膜结合得蛋白激酶C(PKC)。PKC有两个功能区,一个就是亲水得催化活性中心,另一个就是疏水得膜结合区.在未受到刺激得细胞中,PKC 主要分布在细胞溶质中,呈非活性构象。细胞受到刺激时,PIP2水解,质膜上DAG积累,细胞溶质中Ca2+浓度升高,使细胞溶质中PKC转位到质膜内表面,在质膜上PKC受Ca2+、DAG 与磷脂酰丝氨酸(PS)共同作用而激活,磷酸化底物蛋白得Ser/Thr。

PKC可通过至少两条通路增强基因得转录:一就是PKC活化一条蛋白激酶得级联反应,导致与DNA特异序列结合得基因调控蛋白得磷酸化与激活,进而增强特殊基因得转录;

二就是PKC磷酸化与基因调节蛋白结合得抑制蛋白,使细胞质中得基因调节蛋白从抑制状态下释放出来,进入细胞核,刺激特定基因转录。

2、胞质中动力蛋白、驱动蛋白在结构与功能上得异同

驱动蛋白(kinesins):

结构:驱动蛋白就是由两条相同得重链与两条相同得轻链构成得四聚体;有一对球形得头,与微管结合并具有水解ATP为驱动蛋白移动提供能量;有一个扇形得尾,就是货物结合部位;头部通过颈部、螺旋状得α螺旋杆部与扇形尾部相连。

功能:大多数驱动蛋白得马达结构域位于N端,驱动物质沿微管从微管(—)端向微管(+)端运行;细胞中负责GC→PM得膜泡运输;神经细胞中负责向神经轴突末梢得正向运输;部分驱动蛋白得马达结构域位于重链得C端,驱动物质从微管(+) 端向(—)端运行,如

ER→GC ;每一步长度大约为8nm,正好就是一个αβ微管二聚体得长度;移动得速度与ATP 得浓度有关,速度高时,可达到每秒900nm.

动力蛋白(dyneins):

结构:含2条或3条重链构成得球形头部(含有马达结构域),多条轻链构成得尾部,还有一些中间链介于重链与轻链间。动力蛋白得马达结构域位于重链得C端,轴丝动力蛋白具有3个头部马达结构域,胞质动力蛋白具有2个头部马达结构域。与胞质动力蛋白相结合得动力蛋白激活复合体,介导胞质动力蛋白与“货物"间得结合。

功能:动力蛋白沿微管从微管(+)端向微管(—)端运行;运输小泡与膜结合细胞器向细胞中心运输(PM →GC,ER →GC);与染色体着丝点上动粒与有丝分裂纺锤体得共定位密切相关,也就是细胞分裂后期染色体分离动力得来源.

两种马达蛋白都就是单方向运输物质,驱动蛋白:从(—)端向(+)端得运输,动力蛋白:从(+)端向(—)端运输;运输方式为逐步行进,驱动力就是ATP,每消耗一分子ATP行进一步。

3、试述caspase在细胞凋亡中外源途径及内源途径得异同

Caspase依赖性得细胞凋亡主要通过两条途径引发:细胞表面死亡受体起始得外源途径与线粒体起始得内源途径。

细胞表面死亡受体介导得外源性细胞凋亡:

死亡受体介导得细胞凋亡起始于死亡配体与受体得结合。死亡配体主要就是肿瘤坏死因子(TNF)超家族成员;死亡受体为跨膜蛋白,TNF—R1与Fas(Apo—1,CD95)就是死亡受体家族得代表成员,其胞外具有半胱氨酸富集得重复区,胞内具有死亡结构域(death domain,DD)。

配体与受体结合,受体构象改变发生聚合,聚合得Fas受体通过胞内死亡结构域(DD)招募同样具有死亡结构域得接头蛋白FADD与Caspase-8酶原,形成死亡诱导信号复合物DISC(death inducing signalingplex)。Caspase—8酶原在复合物中通过自身切割而被激活,进而切割执行者Caspase—3酶原,产生有活性得Caspase—3,导致细胞凋亡.

Caspase—8还通过切割Bcl—2家族成员Bid将凋亡信号传递给线粒体,引发凋亡得内源途径,使凋亡信号进一步扩大。

线粒体起始得内源性细胞凋亡:

当细胞受到内部或外部得死亡信号刺激时,细胞色素c从线粒体释放到胞质作为通路得起始,释放得细胞色素c与胞质中得Apaf-1(apoptosisproteaseactivating factor)结合。

Apaf—1得N端具有Caspase募集结构域(CARD),它与细胞色素c结合后发生自身聚合,并进一步通过CARD结构域招募细胞质中得Caspase-9酶原,形成大得凋亡复合体(apoptosome)。Caspase-9酶原在凋亡复合体中发生自身切割而活化,活化得Caspa

se-9再进一步激活执行者Caspase-3与Caspase—7酶原,引起细胞凋亡。

线粒体外膜释放通透性得改变主要受到Bcl-2(B—cell lymphoma gene 2)家族得调控.Bcl—2家族成员可分为3个亚族:Bcl-2亚族,包括bcl-2、bcl-xl、Bcl—w等可通过抑制线粒体释放Cytc,进而抑制细胞凋亡;Bax亚族,包括Bax、Bak等通过改变线粒体膜透性促使Cyt c得释放,促进细胞凋亡;BH3亚族,包括Bad、Bid、Bik等充当细胞内凋亡信号得“感受器",促进细胞凋亡.

细胞接受凋亡信号后,促凋亡因子Bax与Bak发生寡聚化,从细胞质中转移到线粒体外膜上,并与膜上得电压依赖性阴离子通道相互作用,促进cyt c释放从而引起细胞凋亡。凋亡抑制因子Bcl-2与Bcl-xl 能与Bax/Bak形成异二聚体,通过抑制Bax与Bak得寡聚化来抑制线粒体膜通道得开启.

4、溶酶体得发生

初级溶酶体就是在高尔基体得反面以出芽得形式形成,形成过程如下:

rER合成溶酶体蛋白→进入内质网腔进行N—连接得糖基化修饰→进入高尔基体顺面膜

囊→磷酸转移酶识别溶酶体水解酶得信号斑→ 在N-乙酰葡糖胺磷酸转移酶与N—乙酰葡糖胺磷酸糖苷酶作用下溶酶体水解酶形成M6P→与反面膜囊上得M6P受体结合→通过网格蛋白包装成有被囊泡出芽→脱去网格蛋白后与晚期胞内体融合→胞内体pH降低使水解酶与M6P受体脱离并去磷酸后形成转运泡,经成熟后形成成熟得溶酶体。

溶酶体得形成可能存在多条途径。

依赖于M6P得分选途径得效率不高,部分溶酶体酶通过运输小泡直接分泌到细胞外.在细胞质膜上也存在依赖钙离子得M6P受体,同样可与胞外得溶酶体酶结合,通过受体介导得内吞作用,将酶送至前溶酶体中,M6P受体返回细胞质膜,反复使用。还存在不依赖于M6P得分选途径(如酸性磷酸酶、分泌溶酶体得perforin与granzyme)。

5、举例说明CDK激酶在细胞周期就是如何实现调控得

在细胞周期得后期逐渐合成、至周期得中间阶段突然消失得周期性存在蛋白,成为细胞周期蛋白。细胞周期蛋白可分为3类:S期周期蛋白,M期周期蛋白,G1期周期蛋白.S期周期蛋白为cyclinA,在S期开始表达,到中期时开始消失;M期周期蛋白为cyclinB,在S期开始表达,在G2/M期到达峰值,中期到后期转换时消失。G1期周期蛋白在脊椎动物中位cyclin C、D、E,在酵母中为Cln1、Cln2、Cln3,她们在G1期开始表达,进入S期后消失。

能与细胞周期蛋白结合并将周期蛋白作为其调节亚单位、进而表现出蛋白激酶活性得蛋白统称为细胞周期蛋白依赖性蛋白激酶,简称为CDK激酶.

细胞由G1期向S期转化主要受G1期CDK激酶控制.哺乳动物细胞中,与G1期细胞周期蛋白结合得CDK激酶主要包括CDK2、CDK4与CDK6。cyclinD主要与CDK4与

CDK6结合并调节后者活性;cyclin A常被划分为M期周期蛋白,但它也可与CDK2结合使后者表现激酶活性,说明cyclinA可能参与调控G1/S期转化过程。cyclin E在G1/S 期与CDK2结合,呈现CDK2得激酶活性促进细胞进入S期.

G2/M期主要受CDK1激酶调控,CDK1激酶即MPF,或P34cdc2蛋白与细胞周期蛋白cyclinB组成。CDK1蛋白本身不具有蛋白激酶得活性。当cyclinA/B含量积累到一定值时,两者相互结合成复合体,结合cyclin得CDK1被Wee1将Thr14与Tyr15磷酸化,并被CDK激活激酶将Thr161磷酸化。在M期,Wee1得活性下降,cdc25使CDK1得Thr14与Tyr15去磷酸化,其激酶活性才能表现出来。在G2/M期,cyclin A、cyclin B与CDK1结合,CDK1使底物蛋白磷酸化,如将组蛋白H1磷酸化导致染色体凝缩,核纤层蛋白磷酸化使核膜解体。

在M期,当MPF活性达到最高时,激活后期促进因子APC,将泛素连接在cycli A与cyclinB 上,通过多泛素化作用,使它们被蛋白酶体降解,完成一个细胞周期。

以MPF为例阐述:MPF就是一种使多种底物磷酸化得蛋白激酶,即CDK1激酶,由p34蛋白与周期蛋白B结合而成。CDK1激酶活性首先依赖于周期蛋白B含量得积累。周期蛋白B一般在G1期得晚期开始合成,通过S期,其含量不断增加,达到G2期,其含量达到最大值,CDK1激酶得活性随着周期蛋白B浓度变化而变化。CDK1激酶得活化还受到激酶与磷酸酶得调节。活化得CDK1激酶可使更多得CDK1激酶活化。随着周期蛋白B含量达到一定程度,CDK1激酶活性开始出现,到G2晚期阶段,CDK1激酶活性达到最大值并一直维持到M期得中期阶段。活化得CDK1激酶促使分裂期细胞在分裂前期执行下列生化事件:(1)染色质开始浓缩形成有丝分裂染色体;(2)细胞骨架解聚,有丝分裂纺锤体开始组装;(3)高尔基复合体、内质网等细胞器解体,形成小得膜泡。

在有丝分裂得后期,活化得后期促进因子APC主要介导两类蛋白降解:后期抑制因子与有死分裂周期蛋白。前者维持姐妹染色单体粘连,抑制后期启动;后者得降解意味着CDK1激酶失去活性,有死分裂即将结束,即染色体开始去凝集,核膜重建。

6、EGF通过受体酪氨酸激酶进行信号传导过程

表皮生长因子与其受体-表皮生长因子受体结合后可引发一系列细胞内变化,最终使细胞发生分化或增殖.表皮生长因子受体就是一种受体酪氨酸蛋白激酶,而受体酪氨酸蛋白激酶→Ras→MAPK级联途径就是表皮生长因子刺激信号传递到细胞核内得最主要途径。它由以下成员组成:表皮生长因子受体→含有SH2结构域得接头蛋白(如Grb2)→鸟嘌呤核苷酸

释放因子(如SOS)→Ras蛋白→M APKKK(如Raf1)→MAPKK→MAPK→转录因子等

EGF受体介导得信号转导过程

1、受体酪氨酸激酶得激活

在静息状态RTK 活性很低,当配体与受体结合时引起受体二聚化后,激活受体得蛋白酪氨酸激酶活性,进而在二聚体内彼此交叉磷酸化,引发受体自磷酸化。激活得RTK 内得磷酸酪氨酸残基可被含SH2结构域得胞内信号蛋白所识别,启动信号传导。

2、RTK信号得传递

RTK结合蛋白都具有高度保守得结构域-—SH结构域(Src homolog region,包括SH2与SH3).含有SH2得蛋白可直接与活化得酪氨酸蛋白激酶受体结合并被磷酸化;SH3结构域结合富含脯氨酸得基序,不能直接与受体酪氨酸残基结合,它需通过细胞内得接头蛋白将信号向下传递。

被磷酸化得胞内蛋白包括两类:一类就是信号通路中有关得酶,如:GTP酶活化蛋白(GAP)、磷脂酶C-γ(PLC—γ)、3—磷酯酰肌醇激酶(PI3K)、酪氨酸磷酸酶(SyP)以及Src类得非受体酪氨酸蛋白激酶等。另一类就是接头蛋白,如生长因子受体结合蛋白—2 (GRB-2),其作用就是偶联活化受体与其她信号分子,参与构成信号转导复合物,但它本身没有酶活性,也不传递信号。

3、Ras蛋白得激活及Ras-MAPK通路

生长因子受体结合蛋白GRB2,具有SH2 结构域,可直接与活化受体特异性磷酸酪氨酸残基结合,GRB2还具有两个SH3结构域,能结合并激活另一种胞质蛋白Sos (Sonof sevenless).Sos 蛋白具有鸟苷酸交换因子活性,它与Ras 结合导致构象改变,使非活性得Ras-GDP 转换成有活性得Ras-GTP。

Ras-MAPK通路:

(1)、活化得Ras蛋白将作为MAP激酶激酶得激酶(MAPKKK)得Raf蛋白得Ser/Thr 残基磷酸化,使Raf蛋白活化,将短寿命Ras—GTP信号事件转变为长寿命得信号事件; (2)、Raf 蛋白使MAP激酶得激酶(MAPKK)(MEK)发生磷酸化而激活; (3)、MAPKK就是一种双重特异性得蛋白激酶,只能催化其唯一底物MAPK得Thr与Tyr 同时被磷酸化。

(4)、活化得MAPK进入细胞核,可使许多底物蛋白得Ser/Thr残基磷酸化,包括调节细

胞周期与细胞分化得特异性蛋白表达得转录因子,从而改变它们得活性。

概述:

表皮生长因子与受体结合后,可以使受体发生二聚体化,从而改变了受体得构象,使其中得蛋白酪氨酸激酶活性增强,受体自身得酪氨酸残基发生磷酸化,磷酸化得受体便形成了与含SH2结构域得蛋白分子Grb2结合得位点,导致Grb2与受体得结合.Grb2中有两个SH3结构域,该部位与一种称为SOS得鸟苷酸交换因子结合,使之活性改变,SOS则进一步活化Ras,激活得Ras作用于MAPK激活系统,导致ERK得激活。最后ERK转移到细胞核内,导致某些转录因子得活性改变从而改变基因得表达状态及细胞得增殖与分化过程。

7、信号肽假说

分泌蛋白在N端含有一信号肽,它指导分泌性蛋白到ER膜上合成,然后在信号肽引导下蛋白质边合成边通过ER膜上得通道进入ER腔,在蛋白质合成结束之前信号肽被切除.信号肽指导蛋白质得共翻译转运途径。

信号肽位于蛋白质得N端,通常为16~26个氨基酸残基,包括疏水核心区、C端与N端三个区域构成。通常指导分泌蛋白进入内质网腔,在完成蛋白质合成后被信号肽酶切除.血清白蛋白与HIV-1型病毒得gp160信号肽两者得N端区长度明显不同。

蛋白质首先在细胞质基质游离核糖体上起始合成(①),合成约80个多肽暴露出信号肽时,SRP识别并结合信号肽,翻译停止(②) ,直到接触到rER膜,核糖体附着于E R上得SRP受体(停靠蛋白)(③)。随后,信号肽结合到转移器(移位子)上,转移器打开通道到ER腔,SRP从其受体上释放,多肽链通过通道(④)。这些过程中需要结合与水解GT P提供能量。新生多肽链进入ER腔后,信号肽被信号肽酶切除(⑤),蛋白质继续合成并折叠为成熟蛋白,转运器关闭(⑥⑦)。

8、质子泵类型

利用ATP水解提供得能量驱动离子或小分子逆浓度梯度或电化学梯度进行跨膜主动运输,类似于“泵”得作用,故也称为ATPase。当运输得物质为离子时常称为离子泵(Ion pum p)。这种主动运输方式直接利用水解ATP提供能量,所以又称为初级主动运输。

1、P-型离子泵

所有得P-型离子泵都有2个独立得α催化亚基,具有ATP结合位点;绝大多数还具有2个起调节作用得小得亚基.在转运离子过程中,至少一个α亚基发生磷酸化与去磷酸化反应。主要类型:A、Na+-K+ 泵;B、Ca2+ 泵;C、P—型质子泵

A、Na+-K+ 泵

结构:由2个α与2个β亚基组成得四聚体。α为多次跨膜得大亚基,具有Na+、K+与ATP结合位点;β为单次跨膜得小亚基,协助α亚基折叠。

工作原理:细胞内侧α亚基与Na+结合激活了ATP酶活性,使ATP水解,α亚基得Asp残基被磷酸化,引起α亚基构象改变,将Na+泵出细胞;同时,细胞外K+与α亚基得另一个位点结合,使其去磷酸化,α亚基构象再度发生改变,将K+泵入细胞,完成整个循环.每次循环消耗1个ATP,泵出3个Na+ ,泵入2个K+

B、Ca2+泵

结构:就是由1000个氨基酸残基组成得多肽构成得跨膜蛋白,每一泵单位中有10个跨膜螺旋,内侧有两个大得环状结构.

工作原理:就是Ca2+—ATP酶,工作原理与Na+-K+泵类似,每循环1次消耗1个ATP,将2个Ca 2+泵出细胞质基质到细胞外或肌质网。

C、P-型质子泵

结构:P型H+ 泵得结构与Na+-K+ 泵结构类似。

工作原理:P型H+ 泵得工作原理与Na+-K+泵得工作原理相同,在得运输过程中涉及亚基得磷酸化与去磷酸化,利用水解ATP所释放得能量将H+泵出细胞质基质.

2、V型质子泵与F型质子泵

结构与工作原理与ATP合酶类似。

F型H+泵存在于线粒体内膜、植物类囊体膜与细菌质膜上,主要用于合成ATP(ATP合酶).

3、ABC超家族

所有ABC转运蛋白都共享一种由4个“核心”结构域组成:2个跨膜结构域(T),形成运输分子得跨膜通道;2个胞质侧ATP结合域(A)。ABC转运蛋白得每个T结构域由6个跨膜螺旋组成,形成跨膜转运通道并决定每个ABC转运蛋白底物得特异性。

9、核孔复合体结构与功能

胞质环(cytoplasmic ring):又称外环,核孔边缘胞质面一侧环上有8个细胞质颗粒与8条纤维伸向胞质;

核质环(nuclear ring):又称内环,核孔边缘核质面上8条纤维伸向核内,且在纤维末端形成一个小环,使核质环形成类似“捕鱼笼”得核篮结构。

辐(spoke):由核孔边缘伸向核孔中央,呈辐射状八对称,连接内外环。由以下三部分组成:柱状亚单位(column subunit):连接胞质环与核质环

腔内亚单位(luminalsubunit):伸向核周腔

环带亚单位(annularsubunit):伸向中央栓

中央栓(centralplug):位于核孔中央,在核质交换中起作用,也称为中央颗粒或转运器(transporter)。

核孔复合体就是核质与胞质间分子及颗粒物质得双向性、双功能性物质交换通道.双向性体现在既可以入核,也可介导物质出核;双功能性体现在既可进行被动扩散,也可进行主动运输。

10、有丝分裂染色体整列与染色体分向两极得机制

染色体整列:

细胞分裂前期与前中期,Mad蛋白与Bub蛋白在染色体得动粒上聚集。由纺锤体极体发出得微管与动粒联结后,Mad蛋白与Bub蛋白消失,某些染色体滞后,未与微管联结得动粒依然含有Mad蛋白与Bub蛋白。当所有得染色体得动粒均与微管联结,Mad蛋白与Bub蛋白消失,染色体列队到赤道板上。与染色体整列到赤道面上相关得主要流行两种学说,即牵拉学说与外推学说。牵拉学说认为,染色体向赤道面方向运动,就是由于动力微管牵拉得结果。动粒微管越长,拉力越大,当来自两极得动粒微管得拉力相等时,染色体即被稳定

在赤道面上。外推学说认为,染色体向赤道方向移动,就是由于星体得排斥力将染色体外推得结果。染色体距离中心体越近,星体对染色体得外推力越强,当来自于两极得推力达到平衡时,染色体即被稳定在赤道面上。这两种假说也许并不互相排斥,有可能同时发挥作用,或有其她机制得共同参与。

染色体分向两极:

后期A:动粒微管在正端不断去装配变短,染色体产生两极运动;后期B:极微管在正端装配使长度增加,并产生彼此间得滑动,使两极之间得距离逐渐拉长,染色体向极运动;

染色体分离与向两极运动分为两期,后期A与后期B。后期A指染色体向两极移动得过程,这就是因为染色体着丝点微管在着丝点处去组装而缩短,在分子马达蛋白得作用下染色体向两极移动,体外实验证明即使在不存在ATP得情况下,染色体着丝点也有连接到正在组装得微管上得能力,使染色体发生移动。后期B指两极之间距离拉大得过程,这就是因为一方面极体微管延长,结合在极体微管重叠部分得马达蛋白提供动力,推动两极分离,另一方面星体微管去组装而缩短,结合在星体微管正极得马达蛋白牵引两极距离增大,可见染色体分离就是在微管与马达蛋白得共同作用下实现得。

细胞生物学期末复习简答题及答案

细胞生物学期末复习简答题及答案 五、简答题 1、细胞学说的主要容是什么?有何重要意义? 答:细胞学说的主要容包括:一切生物都是由细胞构成的,细胞是组成生物体的基本结构单位;细胞通过细胞分裂繁殖后代。细胞学说的创立参当时生物学的发展起了巨大的促进和指导作用。 其意义在于:明确了整个自然界在结构上的统一性,即动、植物的各种细胞具有共同的基本构造、基本特性,按共同规律发育,有共同的生命过程;推进了人类对整个自然界的认识;有力地促进了自然科学与哲学的进步。 2、细胞生物学的发展可分为哪几个阶段? 答:细胞生物学的发展大致可分为五个时期:细胞质的发现、细胞学说的建立、细胞学的经典时期、实验细胞学时期、细胞生物学时期。 3、为什么说19世纪最后25年是细胞学发展的经典时期? 答:因为在19世纪的最后25年主要完成了如下的工作: ⑴原生质理论的提出;⑵细胞分裂的研究;⑶重要细胞器的发现。这些工作大推动了细胞生物学的发展。 1、病毒的基本特征是什么? 答:⑴病毒是“不完全”的生命体。病毒不具备细胞的形态结构,但却具备生命的基本特征(复制与遗传),其主要的生命活动必需在细胞才能表现。⑵病毒是彻底的寄生物。病毒没有独立的代和能量系统,必需利用宿主的生物合成机构进行病毒蛋白质和病毒核酸的合成。⑶病毒只含有一种核酸。⑷病毒的繁殖方式特殊称为复制。 2、为什么说支原体是目前发现的最小、最简单的能独立生活的细胞生物? 答:支原体的的结构和机能极为简单:细胞膜、遗传信息载体DNA与RNA、进行蛋白质合成的一定数量的核糖体以及催化主要酶促反应所需要的酶。这些结构及其功能活动所需空间不可能小于100nm。因此作为比支原体更小、更简单的细胞,又要维持细胞生命活动的基本要求,似乎是不可能存在的,所以说支原体是最小、最简单的细胞。 1、超薄切片的样品制片过程包括哪些步骤? 答案要点:固定,包埋,切片,染色。 2、荧光显微镜在细胞生物学研究中有什么应用? 答案要点:荧光显微镜是以紫外线为光源,照射被检物体发出荧光,在显微镜下观察形状及所在位置,图像清晰,色彩逼真。 荧光显微镜可以观察细胞天然物质经紫外线照射后发荧光的物质(如叶绿体中的叶绿素能发出血红色荧光);也可观察诱发荧光物质(如用丫啶橙染色后,细胞中RNA发红色荧光,DNA发绿色荧光),根据发光部位,可以定位研究某些物质在细胞的变化情况。 3、比较差速离心与密度梯度离心的异同。 答案要点:二者都是依靠离心力对细胞匀浆悬浮液中的颗粒进行分离的技术。差速离心是一种较为简便的分离法,常用于细胞核和细胞器的分离。因为在密度均一的介质中,颗粒越大沉降越快,反之则沉降较慢。这种离心方法只能将那些大小有显著差异的组分分开,而且所获得的分离组分往往不很纯;而密度梯度离心则是较为精细的分离手段,这种方法的关键是先在离心管中制备出蔗糖或氯化铯等介质的浓度梯度并将细胞匀浆装在最上层,密度梯度的介质可以稳定沉淀成分,防止对流混合,在此条件下离心,细胞不同组分将以不同速率沉降并形成不同沉降带。 4、为什么电子显微镜不能完全替代光学显微镜? 答案要点:电子显微镜用电子束代替了光束,大大提高了分辨率,电子显微镜相对光学显微镜是个飞跃。

(完整版)医学细胞生物学常用简答题详细答案.docx

细胞生物学复习-简答题 第三章真核细胞的基本结构 膜的流动性和不对称性极其生理意义 流动性:膜蛋白和膜脂处于不断运动的状态。主要由膜脂双层的动态变化引起,质膜的流动性由膜脂和蛋白质的分子运动两个方面组成。 膜质分子的运动:侧向移动、旋转、翻转运动、左右摆动 膜蛋白的运动:侧向移动、旋转 生理意义: 1、质膜的流动性是保证其正常功能的必要条件。如物质跨膜运输、细胞信息传递、细胞识别、细胞免疫、细胞 分化以及激素的作用等等都与膜的流动性密切相关。 2、当膜的流动性低于一定的阈值时,许多酶的活动和跨膜运输将停止。 不对称性:质膜的内外两层的组分和功能有明显的差异,称为膜的不对称性。 膜脂、膜蛋白和糖在膜上均呈不对称分布,导致膜功能的不对称性和方向性,即膜内外两层的流动性不同,使物 质传递有一定方向,信号的接受和传递也有一定方向 生理意义: 1、保证了生命活动有序进行 2、保证了膜功能的方向性 影响膜流动性的因素 1、胆固醇:相变温度以上,会降低膜的流动性;相变温度以下,则阻碍晶态形成。 2、脂肪酸链的饱和度:不饱和脂肪酸链越多,膜流动性越强。 3、脂肪酸链的长度:长链脂肪酸使膜流动性降低。 4 、卵磷脂 / 鞘磷脂:比例越高则膜流动性越增加(鞘磷脂粘度高于卵磷脂)。 5、膜蛋白:镶嵌蛋白越多流动性越小 6、其他因素:温度、酸碱度、离子强度等 细胞外被作用 1、保护、润滑作用:如消化道、呼吸道和生殖道的上皮细胞的糖萼 2、决定抗原 3、许多膜受体是糖蛋白或糖脂蛋白,参与细胞识别、应答、信号传递 RER和 SER的区别 存在细胞形状结构功能 RER在蛋白质合成囊状或扁平膜上含有特殊的参与蛋白质合成和修 旺盛的细胞中囊状,核糖核糖体连接蛋饰加工(糖基化,酰 发达。体和 ER 无白,可与核糖体基化,二硫键形成, 论在结构上60S 大亚基上的氨基酸的羟化,以及 还是功能上糖蛋白连接新生多肽链折叠成三 都不可分割级结构) SER在特化的细胞泡样网状结脂类和类固醇激素合 中发达构,无核糖成场所。 体附着肝细胞 SER解毒

细胞生物学简答题整理

1.简述G蛋白偶联受体所介导的信号通路的异同G蛋白偶联受体所介导信号通路分为三类: ①激活离子通道;②激活或抑制腺苷酸环化酶,以cAMP 为第二信使;③激活磷脂酶C ,以IP3 和DAG 作为双信使 激活离子通道: 当受体与配体结合被激活后,通过偶联G蛋白的分子开关作用,调控跨膜离子通道的开启和关闭,进而调节靶细胞的活性。 激活或抑制腺苷酸环化酸的cAMP信号通路: 细胞外信号(激素,第一信使)与相应G蛋白偶联的受体结合,导致细胞内第二信使cAMP的水平变化而引起细胞反应的信号通路。腺苷环化酶调节胞内cAMP的水平,cAMP被环腺苷酸磷酸二酯酶降解清除。 cAMP信号通路主要是通过活化cAMP依赖性蛋白激酶A (PKA) ,激活靶酶开启基因表达,从而表现出不同的效应。蛋白激酶A 由2个催化亚基和2个调节亚基组成,cAMP的结合可改变调节亚基的构象,释放催化亚基产生活性。 蛋白激酶A被激活后,一方面通过对底物蛋白的磷酸化,引起细胞对胞外信号的快速反应;另一方面,其催化亚基可进入细胞核,磷酸化cAMP应答元件结合蛋白 (CREB) 的丝氨酸残基。磷酸化的CREB蛋白被激活,它作为基因转录的调节蛋白识别并结合到靶细胞的cAMP应答元件 (CRE) 启动靶基因的转录,引起细胞缓慢的应答反应。 cAMP信号通路中的缓慢反应过程:激素→G-蛋白偶联受体→G-蛋白→腺苷酸环化酶→ cAMP→ cAMP依赖的蛋白激酶A→基因调控蛋白→基因转录。 cAMP是由腺苷酸环化酶 (adenylyl cyclase,AC) 催化合成的,腺苷酸环化酶为跨膜12次的糖蛋白,在Mg2+或Mn2+存在下能催化ATP生成cAMP;细胞内的环腺苷酸磷酸二酯酶 (PDE) 可降解cAMP生成5’-AMP,导致细胞内cAMP水平

医学细胞生物学试题及答案(六)

细胞生物学试题题库第五部分 简答题 1. 根据光镜与电镜的特点,观察下列结构采用那种显微镜最好?如果用光镜(暗视野、相差、免疫荧显微镜) 那种最有效?为什么? 2. 细胞是生命活动的基本单位,而病毒是非细胞形态的生命体,如何理解二者之间的关系? 3. 为什么说支原体是最小、最简单的细胞? 4. 原核细胞与真核细胞差别是后者有细胞器,细胞器结构的出现有什么优点?(至少2点) 5. 简述动物细胞与植物细胞之间的主要区别。 6. 简述动物细胞、植物细胞、原生动物应付低渗膨胀的主要方式? 7. 简述单克隆抗体的主要技术路线。 8. 简述钠钾泵的工作原理及其生物学意义。 9. 受体的主要类型。 10. 细胞的信号传递是高度复杂的可调控过程,请简述其基本特征。 11. 简述胞饮作用和吞噬作用的主要区别。 12. 细胞通过分泌化学信号进行通讯主要有哪几种方式? 13. 简要说明G蛋白偶联受体介导的信号通路的主要特点。 14. 信号肽假说的主要内容。 15. 简述含信号肽的蛋白在细胞质合成后到内质网的主要过程。 16. 简述蛋白质糖基化修饰中N-连接与O-连接之间的主要区别。 17. 溶酶体膜有何特点与其自身相适应? 18. 简述A.TP合成酶的作用机制。 19. 化学渗透假说的主要内容。 20. 内共生学说的主要内容。 21. 线粒体与叶绿体基本结构上的异同点。 22. 细胞周期中核被膜的崩解和装配过程。 23. 核孔复合体的结构模型。 24. 染色质的多级螺线管模型。 25. 染色体的放射环模型。 26. 细胞内以多聚核糖体的形式合成蛋白质,其生物学意义是什么? 27. 肌肉收缩的机制。 28. 纤毛的运动机制。 29. 中心体周期。 30. 简述C.D.K1(MPF)激酶的活化过程。 31. 泛素化途径对周期蛋白的降解过程。 32. 人基因组大约能编码5万个基因,而淋巴细胞却能产生约107-109个不同抗体分子,为什么? 33. 细胞学说的主要内容。 34. 溶酶体膜有何与其自身功能相适应的特点? 35. 何为信号肽假说的? 36. 核孔复合体的结构模型。 37. 胞饮作用和吞噬作用的区别。 38. 为什么说线粒体和叶绿体是半自主性细胞器? 39. 简述核被膜的主要功能 40. 简述减数分裂的意义

(完整版)细胞生物学知识点整理

细胞生物学:研究细胞基本生命活动规律的科学,它从不同层次(显微、亚显微和分子水平)上研究细胞结构与功能,细胞增殖、分化、衰老与凋亡,细胞信号转导,细胞基因表达与调控,细胞起源与分化等。 细胞分化:其本质是细胞内基因选择性表达功能蛋白质的过程。 细胞质膜 ( plasma membrane ):又称细胞膜,指围绕在细胞最外层,由脂质和蛋白质组成的生物膜。 内膜:形成各种细胞器的膜。 生物膜( biomembrane ):质膜和内膜的总称。 细胞外被:也叫糖萼,由质膜表面寡糖链形成。 膜骨架:质膜下起支撑作用的网络结构。 细胞表面:由细胞外被、质膜和表层胞质溶胶构成。 脂筏模型(lipid rafts model) :即在生物膜上胆固醇等富集而形成有序脂相,如同脂筏一样载着各种蛋白。脂筏是质膜上富含胆固 醇和鞘磷脂的微结构域。 被动运输指通过简单扩散或协助扩散实现物质由高浓度到低浓度方向的跨膜运输。 水孔蛋白(aquporins ;AQPs) :或称水分子通道,是一类具有选择性、高效转运水分的膜通道蛋白。不具有“水泵”功能,通过减小水分跨膜运动的阻力而使细胞间的水分迁移速度加快。 协助扩散:也称促进扩散( facilitated diffusion ):各种极性分子和无机离子顺着浓度梯度或电化学梯度的跨膜运输。 通道蛋白:跨膜亲水性通道,允许特定离子顺浓度梯度通过,又称离子通道。 配体门通道:受体与细胞外的配体结合,引起通道构象改变,“门”打开,又称离子通道型受体。 协同运输:靠间接提供能量完成主动运输,所需能量来自膜两侧离子的浓度梯度。动物细胞中常常利用膜两侧Na+ 浓度梯度来驱动。植物细胞和细菌常利用H+ 浓度梯度来驱动。分为:同向协同和反向协同。 膜泡运输:真核细胞通过胞吞作用( endocytosis )和胞吐作用( exocytosis )完成大分子与颗粒性物质的跨膜运输。 胞吐作用:包含内容物的囊泡移至细胞表面,与质膜融,将物质排出细胞之外底物水平的磷酸化:由相关酶将底物分子上的磷酸基团直接转移到ADP 分子生成ATP 的过程。氧化磷酸化:在呼吸链上与电子传递相耦联,ADP 被磷酸化生成ATP 的过程。 半自主性细胞器:自身含有遗传表达系统,但编码的遗传信息十分有限,其RNA 转录、蛋白质翻译、自身构建和功能发挥等必须依赖核基因组编码的遗传信息。 细胞内膜系统:是指细胞内在结构、功能及发生上相关的、由膜包被的细胞器或细胞结构。包括内质网、高尔基体、溶酶体和分泌泡等。 粗面内质网:多为扁囊状,在ER 膜的外表面附有大量的核糖体,普遍存在于分泌蛋白质的细胞中。 光面内质网:ER 膜上无颗粒(核糖体) ,ER 的成分不是扁囊,而常为小管小囊,它们连接成网,广泛存在于能合成类固醇的细胞中。 次级溶酶体:是正在进行或完成消化作用的溶酶体,分为自噬溶酶体和异噬溶酶体。 残体:又称后溶酶体( post-lysosome ),已失去酶活性,仅留未消化的残渣,可排出细胞,也可能留在细胞内逐年增多,如表皮细胞的老年斑,肝细胞的脂褐质。 细胞内蛋白质分选:除线粒体和植物叶绿体中能合成少量蛋白质外,绝大多数的蛋白质均在细胞质基质中的核糖体上开始合成然后运至细胞的特定部位,这一过程称蛋白质的定向转运或蛋白质分选。 信号序列:引导蛋白质定向转移的线性序列,通常15-60 个氨基酸残基,对所引导的蛋白质没有特异性要求。 信号斑:存在于完成折叠的蛋白质中,构成信号斑的信号序列之间可以不相邻,折叠在一起构成蛋白质分选的信号。翻译后转运:在细胞质基质游离核糖体上完成多肽链的合成,然后转运至膜围绕的细胞器或成为基质可溶性驻留蛋白和支架蛋白。共翻译转运:蛋白质合成在游离核糖体上起始后,由信号肽引导转移至糙面内质网,然后新生肽链边合成边转入糙面内质网,经高尔基体加工包装转运溶酶体、细胞质膜或分泌到细胞外。 分子伴侣:细胞中的某些蛋白质分子,可以识别正在合成的多肽或部分折叠的多肽,并与多肽的某些部位结合,从而帮助这些多肽转运、折叠、或装配。这类分子本身并不参与最终产物的形成。 细胞信号转导:指细胞外因子通过与受体(膜受体或核受体)结合,引发细胞内的一系列生物化学反应以及蛋白间相互作用,直至细胞生理反应所需基因开始表达、各种生物学效应形成的过程。 双信使系统:在磷脂酰肌醇信号通路中胞外信号分子与细胞表面G 蛋白耦联型受体结合,激活质膜上的磷脂酶C( PLC-

细胞生物学名词解释和简答题版

第四章P16提要第一段;细胞生物学概念,研究的主要内容 研究细胞基本生命活动规律的科学称为细胞生物学。它是以细胞为研究对象,从细胞的显微水平、亚显微水平、分子水平等三个层次,主要研究细胞和细胞器的结构和功能、细胞增殖、分化、衰老与凋亡,细胞信号转导、细胞基因表达与调控,细胞起源与进化等。二、细胞生物学的主要研究内容1 细胞核、染色体以及基因表达的研究2生物膜与细胞器的研究3生物膜与细胞器的研究4 细胞增殖及其调控5 细胞分化及其调控6 细胞的衰老与凋亡7细胞的起源与进化8 细胞工程P46提要真核结构:1生物膜体系以及生物膜为基础构建的各种独立的细胞器2.遗传信息表达的结构体系3细胞骨架体系 P80提要,普通光学显微镜结构和性能参数 1、光学显微镜的组成主要分为光学放大系统,为两组玻璃透镜:目镜和物镜;照明系统:光源、折光镜、聚光镜;机械和支架系统,主要保证光学系统的准确配置和灵活调控。光学显微镜的分辨率是最重要的性能参数,它由光源的波长、物镜的镜口角和介质折射率三个因素决定。 2、荧光显微镜是以紫外光为光源,电子显微镜则是以电子束为光源。 3、倒置显微镜与普通光学显微镜的不同在于物镜和照明系统的位置颠倒。

一、名词解释 外在膜蛋白:外在膜蛋白为水溶性蛋白质,靠离子键或其他较弱的键与膜表面的膜蛋白分子或膜脂分子结合,因此只要改变溶液的离子强度甚至提高温度就可以从膜上分离下来,但膜结构并不被破坏。 内在膜蛋白:内在膜蛋白是通过与之共价相连的脂分子插入膜的脂双分子中,从而锚定在细胞质膜上。与脂肪酸结合的内在膜蛋白多分布在质膜内侧,与糖脂相结合的内在膜蛋白多分布在质膜外侧。 生物膜:镶嵌有蛋白质和糖类(统称糖蛋白)的磷脂双分子层,起着划分和分隔细胞和细胞器作用生物膜,也是与许多能量转化和细胞内通讯有关的重要部位,同时,生物膜上还有大量的酶结合位点。细胞、细胞器和其环境接界的所有膜结构的总称。 二、简答题 1、生物膜的结构和功能,影响生物膜流动性的因素 生物膜的基本结构与作用 (1)具有极性头部和非极性尾部的磷脂分子在水相中具有自发形成封闭的膜系统的性质,以疏水性非极性尾部相对,极性头部朝向水相的磷脂双分子层是组成生物膜的基本结构成分,尚未发现在生物膜结构中起组织作用的蛋白。 (2)蛋白分子以不同的方式镶嵌在脂双分子中或结合在其表面,蛋白的类型,蛋白分布的不对称性及其与脂分子的协同作用赋予生物膜具有各自的特性与功能。

医学细胞生物学试题及答案大全03

医学细胞生物学试题及答案 第一章细胞生物学与医学 一、名词解释 1. 细胞生物学(cell biology: 2. 医学细胞生物学(medical cell biology: 二、问答题 1. 简述细胞生物学的主要研究内容。 2. 如何理解细胞的“时空”特性? 3. 细胞学说是怎样形成的? (eukaryotic cell:拟核(nucleoid:质粒 细胞体积守恒定律 二、问答题2. 比较真核细胞的显微结构和亚显微结构。3. 细胞的生命现象表现在哪些方面? 第五章细胞膜及其表面 一、名词解释

1. 生物膜(biological membrane 2. 脂质体(liposome 3. 糖脂(glycolipid 和糖蛋白(glycoprotein 4. 内在蛋白质(integral protein 和周边蛋白质(peripheral protein 6. 细胞表面(cell surface 8. 糖萼(glycocalyx 9. 细胞连接(cell junction 11. 穿膜运输(transmembrane transport 和膜泡运输(transport by vesicle formation 12. 胞吞作用(endocytosis 、胞饮作用(pinocytosis 和胞吐作用(exocytosis 13. 低密度脂蛋白(low density lipoprotein, LDL 14. 受体(receptor 和配体(ligand 1 5. 细胞识别(cell recognition 1 6. G 蛋白受体(G receptor和G 蛋白(G protein 1 7. 信号转导(signal transduction 1 8. 二、问答题 1. 组成细胞膜的化学物质主要有哪些? 2. 3. 5. 细胞膜的理化特性有哪些? 12. 细胞是如何识别的?细胞的识别有何生物学意义? 13. 简述G 蛋白的结构和作用机制。 14.cAMP 、IP3、DAG 和Ca 2+等第二信使分属于哪些信号传导通路?是如何产生的?有何生物学功能? 第六章细胞质和细胞器 一、名词解释

细胞生物学复习重点修订稿

细胞生物学复习重点内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

第四章细胞膜和细胞表面 1.组成细胞膜的组要化学成分是什么这些分子是如何排列的 2. 膜脂、膜蛋白、膜糖类。膜脂排列成双分子层,极性头部朝向内外两侧,非极性尾部相对排列位于膜的内部;整合膜蛋白镶嵌于脂质双分子层中,外在膜蛋白主要分布于膜的内表面;膜糖类是分布与细胞膜外表面的一层寡糖侧链。 3.生物膜的两个显着性特征是什么? ①流动性:膜脂和膜蛋白都是可运动的。②不对称性:膜的内外两层的膜脂种类、分布不同;整合膜蛋白不对称镶嵌,外在膜蛋白在内表面;膜糖类分布在外表面。 3.小分子物质跨膜运输有哪几种各有什么特点 4. (1)被动运输其转运方向为顺浓度梯度,不消化代谢能。 (2)主动运输需要消化细胞的代谢能,但可以逆浓度梯度转运;包括离子泵和协同运输。①离子泵本身具有ATPase活性,在分解ATP放能的同时实现离子的逆浓度梯度转运;②协同运输在动物细胞是借助顺浓度转运Na+,即消耗Na+梯度的同时实现溶质的逆浓度转运,是间接地消耗ATP。 5.以钠钾泵为例,简述细胞膜的主动运输过程 ①在胞质侧结合3个钠离子;②水解ATP,本身磷酸化;③构象变化,钠离子转移到胞外侧,释放钠离子;④结合胞外2个钾离子;⑤去磷酸化;⑥构象变化,钾离子转移到胞质侧,释放钾离子。 6.以低密度脂蛋白(LDL)为例,简述受体介导的内吞作用的主要过程

①膜外侧LDL受体与LDL结合;②膜内陷形成有被小凹;③内陷进一步形成有被小泡;④有被小泡脱衣被,与内体融合;⑤内体酸性环境下受体与LDL分离,返回膜上。、 第五章细胞信号传导 1.cAMP信号通路和磷脂酰肌醇信号通路有哪些区别和联系? 是G蛋白偶联受体介导的主要2条信号转导通路。信号通路的前半段是相同的:G 蛋白偶联受体识别结合胞外信号分子,导致G蛋白三聚体解离,并发生GDP与GTP 交换,游离的Gα-GTP处于活化状态,导致结合并激活效应器蛋白。但两条通路的效应器并不相同,因此通路后半段组成及产生的细胞效应存在差别:(1)cAMP 信号通路:第一个效应器是腺苷酸环化酶(AC),活化后产生第二信使cAMP,进而活化蛋白激酶A(PKA),导致靶蛋白磷酸化及一系列级联反应;(2)磷脂酰肌醇信号通路:第一个效应器是磷脂酶C(PLC),活化后产生第二信使IP3和DAG,DAG锚定于质膜内侧,IP3扩散至内质网,刺激内质网释放Ca2+,至胞质Ca2+浓度升高,DAG和Ca2+活化蛋白激酶C(PKC),并进一步使底物蛋白磷酸化。 2.试述细胞内Ca2+浓度的调控机制 细胞膜和内质网膜上均有Ca2+泵和Ca2+通道,①Ca2+泵以主动运输方式将胞质中的Ca2+转运至胞外或内质网腔,使静息状态下胞质Ca2+浓度极低(10-7摩尔浓度);②当信号分子与Ca2+通道蛋白特异结合(如内质网上的Ca2+通道蛋白与IP3结合、突触后膜上的Ca2+通道蛋白与乙酰胆碱结合),会引起Ca2+通道瞬间开放,使胞质Ca2+浓度迅速升高,产生细胞效应。 3.总结细胞信号转导途径的组成与基本特征 组成:①配体即胞外信号分子;②受体:细胞表面受体和细胞内受体;③第二信

新乡医学院医学细胞生物学简答题

新乡医学院医学细胞生物 学简答题 The following text is amended on 12 November 2020.

供基础医学院临床17、20班参考使用医学细胞生物学简答题集锦 第一章绪论 1.简述细胞生物学形成与发展经历的阶段(1)细胞的发现与细胞学说的建立:最早发现细胞并命名为cell,施莱登和施旺建立细胞学说。 (2)细胞学的经典时期:细胞学说的建立掀起了对多种细胞广泛的观察和描述的热潮,主要的细胞器和细胞分裂活动相继被发现。 (3)实验细胞学时期:人们广泛的应用实验的手段研究细胞的特性、形态结构和功能。 (4)分子生物学的兴起和细胞生物学的诞生:各个学科相互渗透,人们对细胞结构与功能的研究达到了新的高度。 第二章细胞的统一性与多样性 1.比较原核细胞和真核细胞的差别 第三章细胞膜与细胞表面 1.细胞膜的流动性有什么特点,膜脂有哪些 运动方式,影响膜脂流动性的因素有哪些 (1)膜脂既具有分子排列的有序性,又有 液体的流动性;温度对膜的流动性有明显的 影响,温度过低,膜脂转变为晶态,膜脂分 子运动受到影响,温度升高,膜恢复到液晶 态,此过程称为相变。(2)膜脂的运动方 式有:侧向扩散、旋转运动、摆动运动、翻 转运动,其中翻转运动很少发生,侧向扩散 是主要运动方式。(3)影响流动性的因 素:脂肪酸链的长短和饱和程度,胆固醇的 双重调节作用,卵磷脂/鞘磷脂比值越大膜 脂流动性越大,膜蛋白与周围脂质分子作用 也会降低膜流动性。此为环境因素(如温 度)也会影响膜的流动性,温度在一定范围 内升高,流动性增强。 2.简述膜蛋白的种类及其各自特点,并叙述 膜的不对称性有哪些体现 (1)膜蛋白分为膜外在蛋白、膜内在蛋白、 脂锚定蛋白。 膜外在蛋白属于水溶性蛋白,分布在膜的 两侧,与膜的结合松散,一般占20%-30%; 膜内在蛋白属于双亲性分子,嵌入、穿 膜,是膜功能的主要承担者,与膜结合紧 密,占70%-80%。 脂锚定蛋白通过共价键与脂分子结合,分 布在膜两侧,含量较低。

医学细胞生物学知识点归纳汇总

线粒体: 1.呼吸链(电子传递链)Respiratory chain一系列能够可逆地接受和释放H+和e-的化学物质所组成的酶体系在线粒体内膜上有序地排列成互相关联的链状。 2.化学渗透假说(氧化磷酸化偶联机制):线粒体内膜上的呼吸链起质子泵的作用,利用高 能电子传递过程中释放的能量将H+泵出内膜外,造成内膜内外的一个H+梯度(严格地讲是离子的电化学梯度),ATP合酶再利用这个电化学梯度来合成ATP。 3.电子载体:在电子传递过程中与释放的电子结合并将电子传递下去的物质称为电子载体。 参与传递的电子载体有四种∶黄素蛋白、细胞色素、铁硫蛋白和辅酶Q,在这四类电子载体中,除了辅酶Q以外,接受和提供电子的氧化还原中心都是与蛋白相连的辅基。 4.阈值效应:突变所产生的效应取决于该细胞中野生型和突变型线粒体DNA的比例,只有突变型DNA达到一定数量(阈值)才足以引起细胞的功能障碍,这种现象称为阈值效应。 5.导向序列:将游离核糖体上合成的蛋白质的N-端信号称为导向信号,或导向序列,由于 这一段序列是氨基酸组成的肽,所以又称为转运肽。 6.信号序列:将膜结合核糖体上合成的蛋白质的N-端的序列称为信号序列,将组成该序列 的肽称为信号肽。 7.共翻译转运:膜结合核糖体上合成的蛋白质通过定位信号,一边翻译,一边进入内质网, 由于这种转运定位是在蛋白质翻译的同时进行的,故称为共翻译转运。 8.蛋白质分选:在膜结合核糖体上合成的蛋白质通过信号肽,经过连续的膜系统转运分选才 能到达最终的目的地,这一过程又称为蛋白质分选。 核糖体: 1.原核生物mRNA中与核糖体16S rRNA结合的序列称为SD序列(SD sequence) 。 2.核酶:将具有酶功能的RNA称为核酶。 3.N-端规则(N-end rule): 每一种蛋白质都有寿命特征,称为半衰期(half-life)。研究发现多肽链N-端特异的氨基酸与半衰期相关,称为N-端规则。 4.泛素介导途径:蛋白酶体对蛋白质的降解通过泛素(ubiquitin)介导,故称为泛素降解途径。 蛋白酶体对蛋白质的降解作用分为两个过程:一是对被降解的蛋白质进行标记,由泛素完成;二是蛋白酶解作用,由蛋白酶体催化。 细胞核: 1.核内膜:有特有的蛋白成份(如核纤层蛋白B受体),膜的内表面有一层网络状纤维蛋白质,即核纤层(nuclear lamina),可支持核膜。 核外膜:靠向细胞质的一层,是内质网的一部分,胞质面附有核糖体 核周隙:内、外膜之间有宽20~40nm的腔隙,与粗面内质网腔相通 核孔复合体:内、外膜融合处,物质运输的通道 核纤层:内核膜内表面的纤维网络,支持核膜,并与染色质、核骨架相连。 2.核孔复合体:是细胞核内外膜融合形成的小孔,直径约为70 nm,是细胞核与细胞质间物 质交换的通道。 3.核孔蛋白:参与构成核孔的蛋白质,可能在经核孔的主动运输中发挥作用。 核运输受体:参与物质通过核孔的主动运输。 核周蛋白: 是一类与核孔选择性运输有关的蛋白家族,相当于受体蛋白。 5.输入蛋白:核定位信号的受体蛋白, 存在于胞质溶胶中, 可与核定位信号结合, 帮助核蛋白进入细胞核。 输出蛋白:存在于细胞核中识别并与输出信号结合的蛋白质, 帮助核内物质通过核孔复合

细胞生物学简答题整理

1.简述G蛋白偶联受体所介导的信号通路的异同 G蛋白偶联受体所介导信号通路分为三类: ①激活离子通道;②激活或抑制腺苷酸环化酶,以cAMP 为第二信使;③激活磷脂酶C ,以IP3 和DAG 作为双信使 激活离子通道: 当受体与配体结合被激活后,通过偶联G蛋白的分子开关作用,调控跨膜离子通道的开启和关闭,进而调节靶细胞的活性。

激活或抑制腺苷酸环化酸的cAMP信号通路: 细胞外信号(激素,第一信使)与相应G蛋白偶联的受体结合,导致细胞内第二信使cAMP的水平变化而引起细胞反应的信号通路。腺苷环化酶调节胞内cAMP的水平,cAMP被环腺苷酸磷酸二酯酶降解清除。 cAMP信号通路主要是通过活化cAMP依赖性蛋白激酶A (PKA) ,激活靶酶开启基因表达,从而表现出不同的效应。蛋白激酶A 由2个催化亚基和2个调节亚基组成,cAMP的结合可改变调节亚基的构象,释放催化亚基产生活性。 蛋白激酶A被激活后,一方面通过对底物蛋白的磷酸化,引起细胞对胞外信号的快速反应;另一方面,其催化亚基可进入细胞核,磷酸化cAMP应答元件结合蛋白(CREB) 的丝氨酸残基。磷酸化的CREB 蛋白被激活,它作为基因转录的调节蛋白识别并结合到靶细胞的cAMP应答元件(CRE) 启动靶基因的转录,引起细胞缓慢的应答反应。 cAMP信号通路中的缓慢反应过程:激素→G-蛋白偶联受体→G-蛋白→腺苷酸环化酶→ cAMP→ cAMP依赖的蛋白激酶A→基因调控蛋白→基因转录。

cAMP是由腺苷酸环化酶 (adenylyl cyclase,AC) 催化合成的,腺苷酸环化酶为跨膜12次的糖蛋白,在Mg2+或Mn2+存在下能催化ATP生成cAMP;细胞内的环腺苷酸磷酸二酯酶 (PDE) 可降解cAMP生成5’-AMP,导致细胞内cAMP水平下降。因此,细胞内cAMP的浓度受控于腺苷酸环化酶和PDE的共同作用)。 cAMP信号调控系统由质膜上的5种成分组成:刺激型激素受体(Rs)、抑制型激素受体(Ri)、刺激型G蛋白(Gs)、抑制型G蛋白(Gi)、腺苷酸环化酶(E)。Gs和Gi的β、γ亚基相同,而α亚基不同决定了对激素对腺苷酸环化酶的作用不同。 Gs的调节作用:当细胞没有受到激素刺激时,Gs处于非活化状态,G蛋白的亚基与GDP结合,此时腺苷酸环化酶没有活性;当激素配体与Rs受体结合后,导致受体构象改变,暴露出与Gs结合的位点,配体-受体复合物与Gs结合,Gs的亚基构象改变,排斥GDP 结合GTP,使G蛋白三聚体解离,暴露出的亚基与腺苷酸环化酶结合,使酶活化,催化ATP环化为cAMP。随着GTP水解使亚基恢复原来的构象并导致与腺苷酸环化酶解离,终止腺苷酸环化酶的活化作

新乡医学院医学细胞生物学简答题

供基础医学院临床17、20 班参考使用医学细胞生物 学简答题集锦 第一章绪论 1.简述细胞生物 学形成与发展 经历的阶段 (1)细胞的发现与细胞学说的建立:R.Hook最早发现细胞并命名为cell,施莱登和施旺建立 细胞学说。 (2)细胞学的经典 时期:细胞学说的 建立掀起了对多种 细胞广泛的观察和 描述的热潮,主要 的细胞器和细胞分 裂活动相继被发现。 (3)实验细胞学时期:人们广泛的应 用实验的手段研究 细胞的特性、形态 结构和功能。 (4)分子生物学的 兴起和细胞生物学 的诞生:各个学科 相互渗透,人们对 细胞结构与功能的 研究达到了新的高度。 第二章细胞的统 一性与多样性 1.比较原核细胞和 细胞表面 1.细胞膜的流动性 有什么特点,膜脂 有哪些运动方式, 影响膜脂流动性的 因素有哪些? (1)膜脂既具有分 子排列的有序性, 又有液体的流动性; 温度对膜的流动性 有明显的影响,温 度过低,膜脂转变 为晶态,膜脂分子 运动受到影响,温 度升高,膜恢复到 液晶态,此过程称 为相变。(2)膜脂 的运动方式有:侧 向扩散、旋转运动、 摆动运动、翻转运 动,其中翻转运动 很少发生,侧向扩 散是主要运动方式。 (3)影响流动性的 因素:脂肪酸链的 长短和饱和程度, 胆固醇的双重调节 作用,卵磷脂/鞘磷 脂比值越大膜脂流 动性越大,膜蛋白 与周围脂质分子作 用也会降低膜流动 性。此为环境因素 (如温度)也会影 响膜的流动性,温 度在一定范围内升 高,流动性增强。 2.简述膜蛋白的种 类及其各自特点, 并叙述膜的不对称 性有哪些体现 (1)膜蛋白分为膜 外在蛋白、膜内在 蛋白、脂锚定蛋白。 膜外在蛋白属于 水溶性蛋白,分布 在膜的两侧,与膜 的结合松散,一般 占20%-30%; 膜内在蛋白属于 双亲性分子,嵌入、 穿膜,是膜功能的 主要承担者,与膜 结合紧密,占 70%-80%。 脂锚定蛋白通过 共价键与脂分子结 合,分布在膜两侧, 含量较低。 (2)膜的内外两侧 结构和功能有很大 差异,称为膜的不 对称性,这种不对 称决定了膜功能的 方向性。 膜脂:磷脂和胆 固醇数目分布不均 匀,糖脂仅分布于 脂双层的非胞质面。 膜蛋白:各种膜蛋 白在质膜中都有一 定的位置。膜糖类: 糖链只分布于质膜 外表面。 3.比较说明单位膜 模型与液态镶嵌模 型有哪些不同点 单位膜是细胞膜 和胞内膜等生物膜 在电镜下呈现的三 夹板式结构,内外 两层为电子密度较 高的暗层,中间是 电子密度低的明层, “两暗夹一明”的

细胞生物学复习要点整理

春2周细胞膜 1.细胞膜的化学组成及其特性:膜脂;膜蛋白;膜糖。 2.细胞膜的分子结构模型:流动镶嵌模型,脂筏模型。 3.细胞膜的生物学特性:不对称性;流动性(膜流动性的影响因素)。 1.脂质体(liposome):当脂质分子被水环境包围时,自发聚集,疏水尾在内, 亲水头在外,出现两种存在形式:球状分子团、形成双分子层,为防止两端尾部与水接触,游离端自动闭合,形成充满液体的球状小泡称为脂质体。 2.细胞外被(cell coat)或糖萼(glycocalyx):质膜中的糖蛋白和糖脂向外表面 延伸出的寡糖链构成的糖类物质。 3.脂筏(lipid raft):膜双层内含有特殊脂质和蛋白质组成的微区,微区中富含胆 固醇和鞘脂,其中聚集一些的特定种类的膜蛋白。由于鞘脂的脂肪酸尾部比较长,这一区域比膜的其他部分厚,更有秩序且较少流动,称脂筏。 1.细胞膜的基本结构特征与生理功能? 1)脂类:包括磷脂、胆固醇、糖脂,构成细胞膜主体,与膜流动性有关。 2)蛋白质:可分为内在蛋白和外在蛋白,是膜功能的主要体现者,如物质运输、 信号转导等。 3)糖类:包括糖脂和糖蛋白,对细胞有保护作用,在细胞识别起作用。 2.影响膜脂流动性的因素? 1)脂肪酸链的饱和程度(不饱和流动性大)。 2)脂肪酸链的长短(短链流动性大)。 3)胆固醇的双重调节(相变温度以上降低,相变温度以下提高)。 4)卵磷脂和鞘磷脂的比值(比值高的流动性大)。 5)膜蛋白的影响(膜蛋白越多,流动性越差)。 6)极性基团、环境温度、pH、离子强度。 春3、4周细胞内膜系统、囊泡转运 1.细胞内膜系统的概念、组成。 2.粗面内质网功能:蛋白质的合成;蛋白质的折叠装配;蛋白质的糖基化;蛋白 质的胞内运输。 3.滑面内质网的功能:参与脂质物质的合成运输;参与糖原代谢;参与解毒;参 与储存和调节Ca2+;参与胃酸、胆汁的合成分泌(内质网以葡萄糖-6-磷酸酶为标志酶)。 4.信号肽假说:新生肽链N端有独特序列称为信号肽,细胞基质中存在SRP能 识别并结合信号肽,SRP另一端与核糖体结合,形成复合结构,然后向内质网膜移动,与内质网膜上SRP-R识别结合,并附着于移位子上,然后SRP解离,肽链延伸。当肽链进入内质网腔时,信号肽序列会被内质网腔信号肽酶切除,肽链继续延伸至终止。 5.高尔基体是高度动态、具有极性的细胞器,以糖基转移酶为标志酶,主要功能 有:糖蛋白合成;参与脂质代谢;是大分子转运枢纽;加工成熟蛋白。 6.溶酶体酶的形成:①在内质网中合成、折叠和N-连接糖基化修饰,形成N-连 接的甘露糖糖蛋白,运送至高尔基体;②溶酶体酶蛋白在高尔基体中加工时甘露糖残基磷酸化为甘露糖-6-磷酸(M-6-P),为分选重要信号;③溶酶体酶分选并以出芽方式转运到前溶酶体。 7.溶酶体以酸性磷酸酶为标志酶,主要功能为:细胞内的消化作用;细胞营养功 能;机体防御和保护;激素分泌的调控;个体发生和发育的调控。 8.过氧化物酶体(peroxisome)又称微体,特点:①内有尿酸氧化酶结晶,称作 类核体;②模内表面界面可见一条称为边缘板的高电子致密度条带状结构。以过氧化物酶为标志酶。主要功能:清除细胞代谢所产生的H2O2及其他毒物; 对细胞氧张力的调节作用;参与脂肪酸等高能分子物质的代谢。 9.三种了解最多的囊泡:①网格蛋白有被囊泡:来源于反面高尔基体网状结构和 细胞膜,介导蛋白质从反面高尔基网状结构向胞内体、溶酶体和细胞膜运输; 在受体介导的胞吞作用过程中,介导物质从细胞膜向细胞质或从胞内体向从溶酶体运输;②COP Ⅰ有被囊泡:主要产生于高尔基体顺面膜囊,主要负责回收、转运内质网逃逸蛋白返回内质网及高尔基体膜内蛋白的逆向运输;③COP Ⅱ有被囊泡:产生于粗面内质网,主要介导从内质网到高尔基体的物质转运。

细胞生物学试题完整版

细胞生物学试题完整版 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

细胞生物学试题 一、选择题:单项18题(每题1分,共18分) 1.最小最简单的细胞是: (B) A.病毒; B。支原体;C。细菌 D。红细胞 2.下列不属于微丝作用的是( C )。 A、肌肉收缩 B、参与细胞质运动及细胞移动 C、形成有丝分裂器 D、维持微绒毛的形状 E、形成胞质分裂环 3.动物细胞膜中的脂双层结构具有流动性与下列哪一种物质关系最密切? ( B) A、磷脂 B、胆固醇 C、糖脂 D、膜蛋白 4.形成细胞骨架的是( C )。 A、微管蛋白、木质素和驱动蛋白 B、微管、肌球蛋白和微丝 C、微丝、中间纤维和微管 D、肌动蛋白、肌球蛋白和中间丝 5.使用哪种显微镜可获得三维图像( A )。 A、扫描电子显微镜 B、透射电子显微镜 C、荧光显微镜 D、光学显微镜 6.动物细胞在细胞膜外缺少坚硬的细胞壁,但许多细胞仍然保持细胞的非球体状态,其原因是 ( B ) A 细胞膜上的蛋白质分子可以流动 B 微管起着支持作用 C 基质充满细胞维持着形态 D 磷脂双分子层的骨架作用 7.物质能逆着它的浓度梯度转运穿过膜是因为 ( A )

A 某些膜蛋白是依赖于ATP的载体分子 B 某些膜蛋白起通道作用,经过通道特异分子能进入细胞 C 脂类双分子层可透入许多小分子 D 脂类双分子层是疏水的 8.建立分泌单克隆抗体的杂交瘤细胞是通过下列技术构建的: (A) A 细胞融合; B 核移植; C 病毒转化; D 基因转移 9.下列细胞膜的构造,哪一项无法协助不易通透细胞膜的小分子进入细胞内?( D ) A 离子通道 B 载体蛋白 C 离子泵 D 受体 10.下列哪一项不是Na+—K+离子泵作用的结果( B )。 A、细胞中Na+浓度降低 B、氨基酸通过协助扩散的方式进入细胞 C、质子浓度梯度的形成 D、K+在细胞中的浓度提高 11.通过选择法或克隆形式从原代培养物或细胞系中获得的具有特殊性质或标志的细胞群体称作(B ) A、细胞系 B、细胞株 C、细胞库 D、其它 12.所有膜蛋白都具有方向性,其方向性在什么部位中确定: (C) A.细胞质基质;B 高尔基体;C 内质网;D质膜 13.微管蛋白在一定条件下,能装配成微管,其管壁由几根原纤维构成: (C) A.9; B 11; C 13; D 15; 14.膜蛋白高度糖基化的细胞器是: (A) A.溶酶体;B 高尔基休;C 过氧化物酶体; D 线粒体

新乡医学院 医学细胞生物学 简答题

供基础医学院临床17、20班参考使用 医学细胞生物学简答题集锦 第一章绪论 1.简述细胞生物学形成与发展经历的阶段 (1)细胞的发现与细胞学说的建立:R、Hook最早发现细胞并命名为cell,施莱登与施旺建立细胞学说。 (2)细胞学的经典时期:细胞学说的建立掀起了对多种细胞广泛的观察与描述的热潮,主要的细胞器与细胞分裂活动相继被发现。 (3)实验细胞学时期:人们广泛的应用实验的手段研究细胞的特性、形态结构与功能。 (4)分子生物学的兴起与细胞生物学的诞生:各个学科相互渗透,人们对细胞结构与功能的研究达到了新的高度。 第二章细胞的统一性与多样性 1、比较原核细胞与真核细胞的差别 1、细胞膜的流动性有什么特点,膜脂有哪些运动方式,影响膜脂流动性的因素有哪些? (1)膜脂既具有分子排列的有序性,又有液体的流动性;温度对膜的流动性有明显的影响,温度过低,膜脂转变为晶态,膜脂分子运动受到影响,温度升高,膜恢复到液晶态,此过程称为相变。(2)膜脂的运动方式有:侧向扩散、旋转运动、摆动运动、翻转运动,其中翻转运动很少发生,侧向扩散就是主要运动方式。(3)影响流动性的因素:脂肪酸链的长短与饱与程度,胆固醇的双重调节作用,卵磷脂/鞘磷脂比值越大膜脂流动性越大,膜蛋白与周围脂质分子作用也会降低膜流动性。此为环境因素(如温度)也会影响膜的流动性,温度在一定范围内升高,流动性增强。 2、简述膜蛋白的种类及其各自特点,并叙述膜的不对称性有哪些体现 (1)膜蛋白分为膜外在蛋白、膜内在蛋白、脂锚定蛋白。 膜外在蛋白属于水溶性蛋白,分布在膜的两侧,与膜的结合松散,一般占20%-30%; 膜内在蛋白属于双亲性分子,嵌入、穿膜,就是膜功能的 主要承担者,与膜结合紧密,占70%-80%。 脂锚定蛋白通过共价键与脂分子结合,分布在膜两侧,含 量较低。 (2)膜的内外两侧结构与功能有很大差异,称为膜的不对称 性,这种不对称决定了膜功能的方向性。 膜脂:磷脂与胆固醇数目分布不均匀,糖脂仅分布于脂双 层的非胞质面。膜蛋白:各种膜蛋白在质膜中都有一定的位 置。膜糖类:糖链只分布于质膜外表面。 3、比较说明单位膜模型与液态镶嵌模型有哪些不同点 单位膜就是细胞膜与胞内膜等生物膜在电镜下呈现的三 夹板式结构,内外两层为电子密度较高的暗层,中间就是电 子密度低的明层,“两暗夹一明”的结构叫做单位膜,单位 膜仅能部分反映生物膜的结构特点。 流动镶嵌模型强调膜的流动性与膜蛋白分布的不对称性 以及蛋白质与脂双层的镶嵌关系。认为膜蛋白与膜脂均能 产生侧向运动,膜蛋白有的在膜表面、有的嵌入或横跨脂双 分子层。该模型能解释膜的多种性质,但不能说明具有流动 性的细胞膜在变化过程中如何维持膜的相对完整。 第四章细胞连接、细胞黏附与细胞外基质 1、什么就是细胞连接,细胞连接有哪些类型 细胞表面可与其它细胞或细胞外基质结合的特化区称为 细胞连接。分为紧密连接、黏着链接与通讯连接。 紧密连接的特点就是细胞膜之间连接紧密无空隙,一般 位于上皮细胞间。 黏着链接中,与肌动蛋白纤维相关的有黏着带:分布于上 皮细胞,黏着斑:分布于上皮细胞基部;与中间丝有关的有 桥粒:分布于心肌与上皮,半桥粒:分布于上皮细胞基底部。 通讯连接分为缝隙连接与突触,缝隙连接几乎存在于所 有类型的细胞之间,突触仅存在于可兴奋细胞之间用来传 到兴奋。 2.什么就是细胞外基质,叙述细胞外基质的组成 细胞外基质就是指由细胞分泌到细胞外间充质中的蛋 白质与多糖类大分子所构成的网络结构。 (1)纤维成分:如胶原、弹性蛋白。胶原就是细胞外基质最 基本成分之一,就是动物体内含量最丰富的蛋白,刚性及抗 张力强度最大。 (2)糖胺聚糖与蛋白聚糖:透明质酸就是唯一不发生硫酸化 的糖胺聚糖,就是增殖细胞与迁移细胞的细胞外基质的主 要成分,透明质酸向外膨胀产生压力,使结缔组织具有抗压 的能力;蛋白聚糖见于所有结缔组织与细胞外基质及许多 细胞的表面,可与多种生长因子结合,可视为细胞外的激素 富集与储存库,有利于激素分子进一步与细胞表面受体结 合,完成信号转导。 (3)层粘连蛋白与纤连蛋白:层粘连蛋白就是个体细胞外基 质中出现最早的蛋白,对基膜的组装起到关键作用。纤连蛋 白主要介导细胞黏着,也能促进巨噬细胞与其它免疫细胞 迁移到受损部位。 3、叙述黏着带与黏着斑的区别 粘着带就是细胞与细胞间的粘着连接,而粘着斑就是 细胞与细胞外基质相连。 ①参与粘着带连接的膜整合蛋白就是钙粘着蛋白,而 参与粘着斑连接的就是整联蛋白,即细胞外基质受体蛋白; ②粘着带连接实际上就是两个相邻细胞膜上的钙粘着 蛋白与钙粘着蛋白的连接,而粘着斑连接就是整联蛋白与 细胞外基质中的粘连蛋白的连接,因整联蛋白就是纤粘连 蛋白的受体,所以粘着斑连接就是通过受体与配体的结合; 第五章小分子物质的跨膜运输 1、以Na+-K+泵为例说明细胞膜的主动转运过程 Na+-K+泵又称Na+-K+ATP酶,由α与β两个亚基组成,均为 穿膜蛋白。在α亚基的外侧(朝向胞外)有两个K+的结合位 点,内测有3个Na+的结合位点与一个催化ATP水解的位点。 工作中,细胞内的Na+与大亚基上的Na+位点相结合,同时 ATP分子被催化水解,大亚基改变空间构象,使3个Na+排除 胞外,同时K+与α亚基外侧面相应位点结合,α亚基空间结 构恢复原状,将2个K+输入细胞,完成循环,每次循环消耗 一个ATP分子,3个Na+出胞,2个K+入胞。 第六章胞质溶胶、蛋白酶体与核糖体 1、核糖体有几种,合成的蛋白质在功能上有什么不同 核糖体分为游离核糖体与附着核糖体。 分布于细胞质基质中的核糖体就是游离核糖体,主要合 成细胞本身所需的结构蛋白。附着在内质网膜与核膜表面 的就是附着核糖体,主要合成外输性蛋白质。 第七章内膜系统与囊泡运输 1、内质网有哪些类型,在细胞中的作用就是什么 内质网主要由脂类与蛋白质组成,就是单层膜结构,分为 粗面内质网与光面内质网。 粗面内质网主要呈囊状,表面有核糖体附着,主要功能就 是合成、加工修饰、分选转运一些蛋白质,提供核糖体附着 的支架。 光面内质网不合成蛋白质,就是脂类合成与转运的场所, 并参与糖原的代谢,就是细胞解毒的场所(肝细胞),SER特 化成肌质网可作为肌细胞储存钙离子的场所。 2、叙述高尔基体的组成,及主要功能 高尔基体就是一种膜性囊泡复合体,由扁平囊泡、小囊 泡、大囊泡组成。 高尔基体就是细胞内蛋白质运输分泌的中转站,就是胞 内物质加工合成的主要场所,参与糖蛋白的加工合成、蛋白 质的水解加工、胞内蛋白质分选与膜泡定向运输的枢纽。 3、简述分泌蛋白的运输过程 ①核糖体阶段:合成并转运分泌蛋白;②内质网阶段:运 输并粗加工分泌蛋白;③细胞质基质运输阶段:分泌蛋白以 小泡的形式脱离粗面内质网并移向高尔基复合体与其结合; ④高尔基体加工修饰:分泌蛋白进一步在高尔基复合体内 进行加工,并以囊泡的形式释放到细胞质基质;⑤储存与释 放:释放时,囊泡浓缩发育为分泌泡,与质膜融合,释放到体 外。 4、以肝细胞吸收LDL为例,说明受体介导的胞吞作用的过 程 肝细胞需要利用胆固醇合成生物膜时,细胞合成LDL受 体并分散嵌入细胞膜,当LDL与受体结合后,细胞膜向内凹 陷形成有被小窝。LDL受体集中在有被小窝内不断内陷,进 入细胞,脱离细胞膜形成有被小泡。 有被小泡脱去网格蛋白被摸与其它囊泡融合形成内体, 内体内LDL与受体分离,受体返回细胞膜,LDL被溶酶体酶 降解。如果游离胆固醇过多,LDL受体与胆固醇就会暂停合 成,这就是一个反馈调节的过程。 5、叙述信号肽假说的内容 新合成的蛋白质分子N端含有一段信号肽,该信号肽一 经合成可被胞质中的信号识别颗粒(SRP)识别并结合,通过 信号肽的疏水性引导新生肽跨脂双分子层进入内质网腔或 直接整合在内质网膜中。 信号肽具有决定蛋白质在胞内去向或定位的作用。 第八章线粒体 1、为什么说线粒体就是一个半自主性的细胞器? 线粒体有自己的DNA(即mtDNA),存在线粒体核糖体,通 过自己的蛋白质合成系统可以进行mtDNA的复制转录翻 译。 然而mtDNA的信息量少,只能合成近10%的线粒体蛋白, 绝大多数线粒体蛋白质仍依靠核基因组进行编码,再转运 进线粒体中;构成线粒体的蛋白质合成系统的许多酶仍依 靠核基因编码合成。 故线粒体就是一种半自主性细胞器。 2、线粒体的半自主性有哪些体现 线粒体有自己的mtDNA,就是动物细胞质中唯一含有DNA 的细胞器。有自己的核糖体与蛋白质合成系统,供mtDNA 复制转录翻译。遗传密码相较其它细胞有差异。有自己的 物质转运系统,指导线粒体蛋白运输进线粒体,不与细胞质 交换DNA与RNA,也不输出蛋白质。 3、画图显示线粒体的结构,并表明各部分名称(答案略) 4、说明线粒体基粒的结构组成与功能 基粒又称ATP酶复合体,由头部、柄部、基部组成; 头部又称偶联因子F1,具有酶的活性,能催化ADP磷酸化 生成ATP;柄部就是一种对寡霉素敏感的蛋白质,能抑制 ATP的合成;基部又称偶联因子F0,起到连接F1与内膜的作 用。 5、叙述化学渗透假说的内容 线粒体内膜就是完整的、封闭的,内膜中的电子传递链就 是一个主动转移氢离子的体系,电子传递过程像一个质子 泵,将氢离子从内膜基质泵至膜间隙,由于膜对氢离子不通 透,形成膜两侧的浓度差,质子顺浓度梯度回流并释放出能 量,驱动结合在内膜上的ATP合酶,催化ADP磷酸化合成 ATP。 第九章细胞骨架 1、何谓细胞骨架?细胞骨架有哪些类型与功能? 细胞骨架就是指真核细胞质中的蛋白质纤维网架体系, 细胞骨架的多功能性依赖于三种蛋白质纤维,分别为微管、

相关主题