搜档网
当前位置:搜档网 › (完整)北航惯性导航作业二.

(完整)北航惯性导航作业二.

(完整)北航惯性导航作业二.
(完整)北航惯性导航作业二.

(完整)北航惯性导航作业二.

编辑整理:

尊敬的读者朋友们:

这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)北航惯性导航作业二.)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)北航惯性导航作业二.的全部内容。

惯性导航作业

一、数据说明:

1:惯导系统为指北方位的捷连系统.初始经度为116。344695283度、纬度为

39.975172度,高度h为30米。初速度v0=[—9。993908270;0.000000000;

0.348994967]。

2:jlfw中为600秒的数据,陀螺仪和加速度计采样周期分别为为1/100秒和1/100秒。

3:初始姿态角为[2 1 90](俯仰,横滚,航向,单位为度),jlfw。mat中保存的

为比力信息f_INSc(单位m/s^2)、陀螺仪角速率信息wib_INSc(单位rad/s),排列

顺序为一~三行分别为X、Y、Z向信息.

4:航向角以逆时针为正.

5:地球椭球长半径re=6378245;地球自转角速度wie=7。292115147e-5;重力加速度

g=g0*(1+gk1*c33^2)*(1-2*h/re)/sqrt(1—gk2*c33^2);g0=9.7803267714;

gk1=0。00193185138639;gk2=0。00669437999013;c33=sin(lat纬度);

二、作业要求:

1:可使用 MATLAB语言编程,用MATLAB编程时可使用如下形式的语句读取数据:

load D:\..。文件路径。。.\jlfw,便可得到比力信息和陀螺仪角速率信息。用角增

量法。

2:(1) 以系统经度为横轴,纬度为纵轴(单位均要转换为:度)做出系统位置曲线图;

(2)做出系统东向速度和北向速度随时间变化曲线图(速度单位:m/s,时间单位:s);

(3) 分别做出系统姿态角随时间变化曲线图(俯仰,横滚,航向,单位转换为:度,时间单位:s);

以上结果均要附在作业报告中.

3:在作业报告中要写出“程序流程图、现阶段学习小结”,写明联系方式。

(注意程序流程图不是课本上的惯导解算流程,而是你程序分为哪几个模块、是

怎样一步步执行的,什么位置循环等,让别人根据该流程图能够编出相应程序)

(学习小结按条写,不用写套话) 4:作业以纸质报告形式提交,附源程序。

三、基本原理和公式

1、初始姿态矩阵的确定:

根据初始姿态角求四元数:

再根据四元数求方向余弦矩阵的初始矩阵:

2、指北方位系统的运动解算:

“平台"指令角速度为:

加速度计获得的比力信息为载体坐标系中各个轴向的比力,而我们需要的比力为地理坐标系中各个轴向的比力,它们之间应用矩阵做变换:

根据比力信息可以求出各个方向上的加速度:

0123cos

cos cos sin sin sin 222222cos sin cos sin cos sin

222222cos cos sin sin sin cos

222222cos sin sin sin cos cos

222222

ab ab ab ab ab ab ab ab q q q q ψψθγθγ

ψψθγθγψψθγθγψψθγθγ=-=-=+=+()()()()()()2222

012312031302

2222

1203012323012222130223010123222222b t q q q q q q q q q q q q C q q q q q q q q q q q q q q q q q q q q q q q q ??+--+-??=--+-+??

??+---+??

()()co s sin tan ()t

y yt t

t x

it ie xt t

x ie xt V R V L R V L L R ωωω??-????

????=+?

?????

+????

b

ib f t

it

f t

b C ()()

1t t b

it b ib

T t b b b

t

t

f C f C C C -=?==

因此可以求得速度为:

载体所在位置的地理纬度L 、经度可由下列方程求得:

3、四元数姿态矩阵的更新:

式中,为陀螺所测得的角速度.

用毕卡逼近法更新的值,T 为采样时间

4、姿态角的求解:

姿态角与姿态矩阵的关系:

()()()()(2s in ta n ())(2c o s )(2s in ta n ())(2c o s )t t t t t t x x

x ib x

ie y ie z

x t x t t t

y t t

t t x

y ib y

ie x z

x t y t

t t

y t t

t t x

z

ib z

ie x y x t y t

V V V f L L V L V R R V V V f L L V V R R V V V f L V V g

R R ωωωω?

??=++-+=-++=+++-0

t t t t x

x x t t

t t y y y V V dt V V V dt V ??=+=

+??

λ0

000

)sec(λλ+=

+=

??dt L R V L dt R

V L t

xt xt

t

yt

yt

b b b t t b i b t i t C ωωω=-b

ib ωb

t C b

i b T θω?=?[]0000x y z x z y y z x z y x θθθθθθθθθθθθθ-?-????????-??

??=???-??????-?????2222

0x y z θθθθ?=?+?+?()()()()[]()242

000

1118384248q n I q n θθθθ???????????+=-++-? ? ??? ? ?????????

(完整)北航惯性导航作业二.

式中,,分别为俯仰角,滚转角和偏航角,以逆时针为正方向,而

课本上是以顺时针为正,因此需要对课本上的公式进行修改,将代入原公式可得现公式。如果记

则由以上两式即可解算出姿态角:

四、程序流程图

c o s c o s s i n s i n s i n c o s s i n s i n s i n c o s s i n c o s c o s s i n c o s c o s s i n s i n c o s c o s s i n s i n s i n s i n c o s s i n c o s c o s c o s a b a b a b a b b t a b a b a b a b a b a b C γψγθψγψγθψγθ

θψθψθγψγθψγψγθψγθ

-+-

????=-??

??+--??θ

γ

ab ψab ψ-111213212223313233b t T T T C T T T T T T ??

??=??

????

()1231133312122s i n t a n t a n T T T T T θγ?---=??=- ?

????= ???

五、结果

六、小结

这次作业是捷联惯导的解算,是利用上次作业的结果对数据进行处理。和上次不同,这次遇到了较多的问题。首先,对捷联惯导的基本原理理解的不够深刻,比如坐标系的转换,四元数微分方程的求解.其次,由于课本的姿态角是以顺时针为正,而原始数据是以逆时针为正,因此需要对书上的公式进行修改,在这个过程中就出现了许多问题,比如正负号问题.总之,这次作业弥补了学习上的不足,使我对基本原理理解更为深刻,也初步了解惯导的基本操作.

七、程序

clc

clear

a=load(’C:\Users\Administrator\Documents\MATLAB/jlfw.dat');

Wib_INSc=a(:,2:4)’;f_INSc=a(:,5:7)';

%第一列:数据包序号第二至四列:分别为东、北、天向陀螺仪角速率信息

wib_INSc(单位:rad/s)

%第五至七列:分别为东、北、天向比力信息f_INSc(单位:m/s^2)。

L(1,:)=zeros(1,60001);

Lambda(1,:)=zeros(1,60001);

Vx(1,:)=zeros(1,60001);

Vy(1,:)=zeros(1,60001);

Vz(1,:)=zeros(1,60001);

Rx(1,:)=zeros(1,60001);%定义存放卯酉圈曲率半径数据的矩阵

Ry(1,:)=zeros(1,60001);%定义存放子午圈曲率半径数据的矩阵

psi(1,:)=zeros(1,60001);%定义存放偏航角数据的矩阵

theta(1,:)=zeros(1,60001);%定义存放俯仰角数据的矩阵

gamma(1,:)=zeros(1,60001);%定义存放滚转角数据的矩阵

I=eye(4);%定义四阶矩阵

L(1,1)=39.975172/180*pi;%纬度初始值单位:弧度

Lambda(1,1)=116.344695283/180*pi;%经度初始值单位:弧度

Vx(1,1)=-9.993908270;%初始速度x方向分量

Vy(1,1)=0;%初始速度y方向分量

Vz(1,1)=0。348994967;%初始速度z方向分量

Wibx(1,:)=a(:,2); %提取陀螺正东方向角速率并定义

Wiby(1,:)=a(:,3);%提取陀螺正北方向角速率并定义

Wibz(1,:)=a(:,4); %提取陀螺天向角速率并定义

fibbx(1,:)=a(:,5);%x方向的比力数据

fibby(1,:)=a(:,6);%y方向的比力数据

fibbz(1,:)=a(:,7);%z方向的比力数据

g0=9.7803267714;

Wie=7。292115147e—5;%地球自转角速度

Re=6378245;%长半径

e=1/298。3;%椭圆度

t=0。01;%采样时间

psi(1,1)=90/180*pi;%偏航角初始值单位:弧度

theta(1,1)=2/180*pi;%俯仰角初始值单位:弧度

gamma(1,1)=1/180*pi;%滚转角初始值单位:弧度

gk1=0。00193185138639;

gk2=0。00669437999013;

H=30;%高度

%求解四元数系数q0,q1,q2,q3的初值

q(1,1)=cos(psi(1,1)/2)*cos(theta(1,1)/2)*cos(gamma(1,1)/2)—sin(psi(1,1)/2)*sin(theta(1,1)/2)*sin(gamma(1,1)/2); %q0

q(2,1)=cos(psi(1,1)/2)*sin(theta(1,1)/2)*cos(gamma(1,1)/2)-sin(psi(1,1)/2)*cos(theta(1,1)/2)*sin(gamma(1,1)/2); %q1

q(3,1)=cos(psi(1,1)/2)*cos(theta(1,1)/2)*sin(gamma(1,1)/2)

+sin(psi(1,1)/2)*sin(theta(1,1)/2)*cos(gamma(1,1)/2);%q2

q(4,1)=cos(psi(1,1)/2)*sin(theta(1,1)/2)*sin(gamma(1,1)/2)

+sin(psi(1,1)/2)*cos(theta(1,1)/2)*cos(gamma(1,1)/2);%q3

for i=1:60000

g=g0*(1+gk1*sin(L(i)^2)*(1-2*H/Re)/sqrt(1—gk2*sin(L(i)^2)));%计算重力加速度

Rx(i)=Re/(1-e*(sin(L(i)))^2);%根据纬度计算卯酉圈曲率半径

Ry(i)=Re/(1+2*e—3*e*(sin(L(i)))^2);%根据纬度计算子午圈曲率半径

%求解四元数姿态矩阵

q0=q(1,i);q1=q(2,i);q2=q(3,i);q3=q(4,i);

Ctb=[q0^2+q1^2—q2^2-q3^2,2*(q1*q2+q0*q3),2*(q1*q3-q0*q2);

2*(q1*q2—q0*q3),q2^2-q3^2+q0^2—q1^2,2*(q2*q3+q0*q1);

2*(q1*q3+q0*q2),2*(q2*q3-q0*q1),q3^2-q2^2—q1^2+q0^2;];

Cbt=Ctb’;

fibt=Cbt*[fibbx(i);fibby(i);fibbz(i)];%比力数据

fibtx(i)=fibt(1,1);fibty(i)=fibt(2,1);fibtz(i)=fibt(3,1);

Vx(1,i+1)=(fibtx(i)+(2*Wie*sin(L(i))+Vx(i)*tan(L(i))/Rx(i))

*Vy(i)-(2*Wie*cos(L(i))+Vx(i)/Rx(i))*Vz(i))*t+Vx(i);%计算速度x方向分量

Vy(1,i+1)=(fibty(i)—(2*Wie*sin(L(i))+Vx(i)*tan(L(i))/Rx(i))*Vx(i)+Vy(i)*Vz(i)/Ry(i))*t+Vy(i);%计算速度y方向分量

Vz(1,i+1)=(fibtz(i)+(2*Wie*cos(L(i)+Vx(i))/Rx(i))*Vx(i)+Vy(i)

*Vy(i)/Ry(i)-g)*t+Vz(i);%计算速度z方向分量

Witt=[—Vy(i)/Ry(i);

Wie*cos(L(i))+Vx(i)/Rx(i);

Wie*sin(L(i))+Vx(i)*tan(L(i))/Rx(i)];%求出平台指令角速度值

Wibb=[Wibx(i);Wiby(i);Wibz(i)];

Wtbb=Wibb-Ctb*Witt;%将指令角速度转换到平台坐标系,并求解Wtbb

L(1,i+1)=t*Vy(i)/Ry(i)+L(i);

Lambda(1,i+1)=t*Vx(i)/(Rx(i)*cos(L(i)))+ Lambda(i);

x=Wtbb(1,1)*t;y=Wtbb(2,1)*t;z=Wtbb(3,1)*t; %求取迭代矩阵中的各Δtheta

A=[0 -x -y —z;x 0 z —y;y —z 0 x;z y —x 0];%求取迭代矩阵[Δtheta] T=x^2+y^2+z^2; %计算[Δtheta]^2的

q(:,i+1)=((1—T/8+T^2/384)*I+(1/2-T/48)*A)*q(:,i);%求q0

theta(i+1)=asin(Ctb(2,3));

if(Ctb(2,2)>=0)

psi(i+1)=atan(-Ctb(2,1)/Ctb(2,2));

elseif(Ctb(2,1)〉0)

psi(i+1)=atan(-Ctb(2,1)/Ctb(2,2))+pi;

else

psi(i+1)=atan(—Ctb(2,1)/Ctb(2,2))—pi;

end

if(Ctb(3,3)>0)

gamma(i+1)=atan(-Ctb(1,3)/Ctb(3,3));

elseif(Ctb(1,3)<0)

gamma(i+1)=atan(—Ctb(1,3)/Ctb(3,3))+pi;

else

gamma(i+1)=atan(—Ctb(1,3)/Ctb(3,3))-pi;

end

end

figure(1)

plot(L*180/pi,Lambda*180/pi);title(’经纬度位置曲线’);xlabel('经度/°');ylabel('纬度/°’);grid on

t=0:0。01:600;

figure(2)plot(t,Vx);title(’东西方向速度’);xlabel(’时间/s’);ylabel(’速度/m/s');grid on

figure(3)plot(t,Vy);title('南北方向速度’);xlabel('时间/s’);ylabel('速度/m/s');grid on

figure(4)plot(t,theta*180/pi);title('俯仰角');xlabel(’时间

/s’);ylabel('度’);grid on

figure(5)plot(t,gamma*180/pi);title('滚转角’);xlabel(’时间

/s');ylabel('度');grid on

figure(6)plot(t,psi*180/pi);title('偏航角’);xlabel('时间/s');ylabel(’度');grid on

惯性导航作业

惯性导航作业

一、数据说明: 1:惯导系统为指北方位的捷连系统。初始经度为116.344695283度、纬度为39.975172度,高度h为30米。初速度 v0=[-9.993908270;0.000000000;0.348994967]。 2:jlfw中为600秒的数据,陀螺仪和加速度计采样周期分别为为1/100秒和1/100秒。 3:初始姿态角为[2 1 90](俯仰,横滚,航向,单位为度),jlfw.mat中保存的为比力信息f_INSc(单位m/s^2)、陀螺仪角速率信息wib_INSc(单位rad/s),排列顺序为一~三行分别为X、Y、Z向信息. 4: 航向角以逆时针为正。 5:地球椭球长半径re=6378245;地球自转角速度wie=7.292115147e-5;重力加速度g=g0*(1+gk1*c33^2)*(1-2*h/re)/sqrt(1-gk2*c33^2); g0=9.7803267714;gk1=0.00193185138639;gk2=0.00669437999013;c33=sin(lat纬度); 二、作业要求: 1:可使用MATLAB语言编程,用MATLAB编程时可使用如下形式的语句读取数据:load D:\...文件路径...\jlfw,便可得到比力信息和陀螺仪角速率信息。用角增量法。 2:(1) 以系统经度为横轴,纬度为纵轴(单位均要转换为:度)做出系统位置曲线图; (2) 做出系统东向速度和北向速度随时间变化曲线图(速度单位:m/s,时间单位:s); (3) 分别做出系统姿态角随时间变化曲线图(俯仰,横滚,航向,单位转换为:度,时间单位:s); 以上结果均要附在作业报告中。 3:在作业报告中要写出“程序流程图、现阶段学习小结”,写明联系方式。

北航惯性导航综合实验五实验报告

惯性导航技术综合实验 实验五惯性基组合导航及应用技术实验

惯性/卫星组合导航系统车载实验 一、实验目的 ①掌握捷联惯导/GPS组合导航系统的构成和基本工作原理; ②掌握采用卡尔曼滤波方法进行捷联惯导/GPS组合的基本原理; ③掌握捷联惯导 /GPS组合导航系统静态性能; ④掌握动态情况下捷联惯导 /GPS组合导航系统的性能。 二、实验内容 ①复习卡尔曼滤波的基本原理(参考《卡尔曼滤波与组合导航原理》第二、五章); ②复习捷联惯导/GPS组合导航系统的基本工作原理(参考以光衢编著的《惯性导航原理》第七章); 三、实验系统组成 ①捷联惯导/GPS组合导航实验系统一套; ②监控计算机一台。 ③差分 GPS接收机一套; ④实验车一辆; ⑤车载大理石平台; ⑥车载电源系统。 四、实验内容 1)实验准备 ①将IMU紧固在车载大理石减振平台上,确认IMU的安装基准面紧靠实验平台; ②将IMU与导航计算机、导航计算机与车载电源、导航计算机与监控计算

机、GPS 接收机与导航计算机、GPS 天线与GPS 接收机、GPS 接收机与GPS 电池之间的连接线正确连接; ③ 打开GPS 接收机电源,确认可以接收到4颗以上卫星; ④ 打开电源,启动实验系统。 2) 捷联惯导/GPS 组合导航实验 ① 进入捷联惯导初始对准状态,记录IMU 的原始输出,注意5分钟内严禁移动实验车和IMU ; ② 实验系统经过5分钟初始对准之后,进入导航状态; ③ 移动实验车,按设计实验路线行驶; ④ 利用监控计算机中的导航软件进行导航解算,并显示导航结果。 五、 实验结果及分析 (一) 理论推导捷联惯导短时段(1分钟)位置误差,并用1分钟惯导实验数据验证。 1、一分钟惯导位置误差理论推导: 短时段内(t<5min ),忽略地球自转0ie ω=,运动轨迹近似为平面1/0R =,此时的位置误差分析可简化为: (1) 加速度计零偏?引起的位置误差:2 10.88022t x δ?==m (2) 失准角0φ引起的误差:2 02 0.92182g t x φδ==m (3) 陀螺漂移ε引起的误差:3 30.01376 g t x εδ==m 可得1min 后的位置误差值123 1.8157m x x x x δδδδ=++= 2、一分钟惯导实验数据验证结果: (1)纯惯导解算1min 的位置及位置误差图:

北航惯性导航大作业

惯性导航基础课程大作业报告(一)光纤陀螺误差建模与分析 班级:111514 姓名: 学号 2014年5月26日

一.系统误差原理图 二.系统误差的分析 (一)漂移引起的系统误差 1. εx ,εy ,εz 对东向速度误差δVx 的影响 clc;clear all; t=1:0.01:25; g=9.8; L=pi/180*39; Ws=2*pi/84.4*60; Wie=2*pi/24; R=g/(Ws)^2; e=0.1*180/pi; mcVx1=e*g*sin(L)/(Ws^2-Wie^2)*(sin(Wie*t)-Wie*sin(Ws*t)/Ws); mcVx2=e*((Ws^2-(Wie^2)*((cos(L))^2))/(Ws^2-Wie^2)*cos(Ws*t)-(Ws^2)*((sin(L))^2)*cos(Wi e*t)/(Ws^2-Wie^2)-(cos(L))^2); mcVx3=(sin(L))*(cos(L))*R*e*((Ws^2)*cos(Wie*t)/(Ws^2-Wie^2)-(Wie^2)*cos(Ws*t)/(Ws^2-Wi e^2)-1); plot(t,[mcVx1',mcVx2',mcVx3']); title('Ex,Ey,Ez 对Vx 的影响'); xlabel('时间t'); ylabel('Vx(t)'); 0,δλδL ,v v δδ

legend('Ex-mcVx1','Ey-mcVx2','Ez-mcVx3'); grid; axis square; 分析:εx,εy,εz对东向速度误差δVx均有地球自转周期的影响,εx,εy还会有舒勒周期分量的影响,其中,εy对δVx的影响较大。 2.εx,εy,εz对东向速度误差δVy的影响 clc;clear all; t=1:0.01:25; g=9.8; L=pi/180*39; Ws=2*pi/84.4*60; Wie=2*pi/24; R=g/(Ws)^2; e=0.1*180/pi; mcVy1=e*g*(cos(Wie*t)-cos(Ws*t))/(Ws^2-Wie^2); mcVy2=g*sin(L)*e/(Ws^2-Wie^2)*(sin(Wie*t)-Wie/Ws*sin(Ws*t)); mcVy3=g*cos(L)*e/(Ws^2-Wie^2)*(sin(Wie*t)-Wie/Ws*sin(Ws*t)); plot(t,[mcVy1',mcVy2',mcVy3']); title('Ex,Ey,Ez对Vy的影响'); xlabel('时间t'); ylabel('Vy(t)'); legend('Ex-mcVy1','Ey-mcVy2','Ez-mcVy3'); grid; axis square;

车辆大作业2

系统组成如下: (1)动力系统(蓄电池组、直流无刷电机); (2)传动系统(轮边减速器): (3)行走系统(轮胎、前车架、后车架、摆动架): (4)转向系统(电动推杆,铰接体): (5)通信系统(车载无线AP、网络交换机、遥控装置接收器); (6)信息采集系统(激光雷达、里程计、惯性导航模块、转角传感器):(7)控制系统(主控制器、信号采集控制器、DSP电机驱动控制器): (8)遥控系统(工业遥控器)动力系统由蓄电池组构成(24V蓄电池组2组,48V蓄电池组1组),作为整车的动力源以及控制电源。四轮独立驱动,动力分别由四个轮边电机经过轮边减速器传递到车轮。 行走系统由前后两个车架组成,车架由槽钢焊接,前后车架通过较接体与摆动架相连,可以实现车体的转向和摆动。 转向系统采用电动推杆(带有减速机构的直流无刷电机)代替转向油缸实现转向。 信息采集系统的构成与实车相同,包括激光雷达、里程计、转角传感器、惯性导航模块等,同样为了实现信息采集从而获取地面信息以及车体位姿信息。 通信系统的构成与实车相同,包括车载无线AP、网络交换机、遥控装置接收器,采用CAN总线和以太网通信,同样为了实现各个系统之间的数据交控制系统采用工控机以及信号采集控制器、DSP电机驱动控制器来实现模型样机的遥控操作以及无人驾驶。跟实车有所不同的是采用DSP电机驱动控制器取代了实车的执行控制器PLC,原因是DSP在对行驶驱动电机和转向电动推杆的控制上比执行控制器PLC更为方便。 1动力系统 地下铰接式自卸车实车采用柴油机作为动力源,而模型样机则采用蓄电池组作为动力源。 本文的研究目的是验证路径跟踪以及速度决策算法,作为研究对象的实车和模型样机均采用铰接转向与电传动结构,在运动关系上相同,所以动力源的不

北航惯性导航综合实验四实验报告

基于运动规划的惯性导航系统动态实验 二零一三年六月十日

实验4.1 惯性导航系统运动轨迹规划与设计实验 一、实验目的 为进行动态下简化惯性导航算法的实验研究,进行路径和运动状态规划,以验证不同运动状态下惯导系统的性能。通过实验掌握步进电机控制方法,并产生不同运动路径和运动状态。 二、实验内容 学习利用6045B 控制板对步进电机进行控制的方法,并控制电机使运动滑轨产生定长运动和不同加速度下的定长运动。 三、实验系统组成 USB_PCL6045B 控制板(评估板)、运动滑轨和控制计算机组成。 四、实验原理 IMU安装误差系数的计算方法 USB_PCL6045B 控制板采用了USB 串行总线接口通信方式,不必拆卸计算机箱就可以在台式机或笔记本电脑上进行运动控制芯片PCL6045B 的学习和评估。 USB_PCL6045B 评估板采用USB 串行总线方式实现评估板同计算机的数据交换,由评估板的FIFO 控制回路完成步进电机以及伺服电机的高速脉冲控制,任意2 轴的圆弧插补,2-4 轴的直线插补等运动控制功能。USB_PCL6045B 评估板上配置了全部PCL6045B 芯片的外部信号接口和增量编码器信号输入接口。由 USB_PCL6045B 评估测试软件可以进行PCL6045B 芯片的主要功能的评估测试。

图4-1-1USB_PCL6045B 评估板原理框图 如图4-1-1 所示,CN11 接口主要用于外部电源连接,可以选择DC5V 单一电源或DC5V/24V 电源。CN12 接口是USB 信号接口,用于USB_PCL6045B 评估板同计算机的数据交换。 USB_PCL6045B 评估板已经完成对PCL6045B 芯片的底层程序开发和硬件资源与端口的驱动,并封装成156 个API 接口函数。用户可直接在VC 环境下利用API 接口函数进行编程。 五、实验内容 1、操作步骤 1)检查电机驱动电源(24V) 2)检查USB_PCL6045B 控制板与上位机及电机驱动器间的连接电缆 3)启动USB_PCL6045B 控制板评估测试系统检查系统是否正常工作。 4)运行编写的定长运动程序,并比较实际位移与设定位移。

北航航空工程大型通用软件应用大作业样本

航空科学与工程学院 《航空工程大型通用软件应用》大作业 机翼结构设计与分析 组号第3组 小组成员11051090 赵雅甜 11051093 廉佳 11051100 王守财 11051108 刘哲 11051135 张雄健 11051136 姜南 6月

目录 一 CATIA部分....................................... 错误!未定义书签。( 一) 作业要求..................................... 错误!未定义书签。( 二) 作业报告..................................... 错误!未定义书签。 1、三维模型图................................... 错误!未定义书签。 2、工程图....................................... 错误!未定义书签。 二 FLUENT部分...................................... 错误!未定义书签。( 一) 作业要求..................................... 错误!未定义书签。( 二) 作业报告..................................... 错误!未定义书签。 1、计算方法和流程............................... 错误!未定义书签。 2、网格分布图................................... 错误!未定义书签。 3、气动力系数................................... 错误!未定义书签。 4、翼型表面压力曲线............................. 错误!未定义书签。 5、翼型周围压力云图............................. 错误!未定义书签。 6、翼型周围x方向速度云图....................... 错误!未定义书签。 7、翼型周围y方向速度云图....................... 错误!未定义书签。 8、翼型周围x方向速度矢量图..................... 错误!未定义书签。 9、翼型周围y方向速度矢量图..................... 错误!未定义书签。 10、流线图...................................... 错误!未定义书签。 三 ANSYS部分....................................... 错误!未定义书签。( 一) 作业要求..................................... 错误!未定义书签。( 二) 作业报告..................................... 错误!未定义书签。 1、机翼按第一强度理论计算的应力云图............. 错误!未定义书签。 2、机翼按第二强度理论计算的应力云图............. 错误!未定义书签。 3、机翼按第三强度理论计算的应力云图............. 错误!未定义书签。 4、机翼按第四强度理论计算的应力云图............. 错误!未定义书签。

北航卡尔曼滤波课程-捷联惯导静基座初始对准实验

卡尔曼滤波实验报告 捷联惯导静基座初始对准实验 一、实验目的 ①掌握捷联惯导的构成和基本工作原理; ②掌握捷联惯导静基座对准的基本工作原理; ③了解捷联惯导静基座对准时的每个系统状态的可观测性; ④了解双位置对准时系统状态的可观测性的变化。 二、实验原理 选取状态变量为:[]T E N E N U x y x y z X V V δδεεε=ψψψ??,其

中导航坐标系选为东北天坐标系,E V δ为东向速度误差,N V δ为北向速度误差,E ψ为东向姿态误差角,N ψ为北向姿态误差角,U ψ为天向姿态误差角,x ?为东向加速度偏置,y ?为北向加速度偏置,x ε为东向陀螺漂移,y ε为北向陀螺漂移,z ε为天向陀螺漂移。则系统的状态模型为: X AX W =+ (1) 其中, 1112212211 12 1321222331323302sin 000002sin 000000000sin cos 0000sin 000000cos 0000000000000000000000000000000000000000000000000000 0L g C C L g C C L L C C C L C C C L C C C A Ω-? ? ??-Ω????Ω-Ω? ?-Ω????Ω=? ?????? ?????????? ? [00000]E N E N U T V V W W W W W W δδψψψ=,E D V W W δψ 为零均值高斯 白噪声,分别为加速度计误差和陀螺漂移的噪声成分,Ω为地球自转角速度,ij C 为姿态矩 阵n b C 中的元素,L 为当地纬度。 量测量选取两个水平速度误差:[ ]T E N Z V V δδ=,则量测方程为: 10000000000100000000E E N N V X V δηδη???? ??=+???????????? (2) 即Z HX η=+ 其中,H 为量测矩阵,[]T E N ηηη=为量测方程的随机噪声状态矢量,为零均值高 斯白噪声。 要利用基本卡尔曼滤波方程进行状态估计,需要将状态方程和量测方程进行离散化。 系统转移矩阵为: 2323/1111102!3!! n n k k k k k k n T T T I TA A A A n ∞ -----=Φ=++++=∑ (3)

北航涡轮泵大作业

学号姓名成绩 《冲击式涡轮和反力式涡轮的设计计算》 总结:对冲击式涡轮和反力式涡轮进行设计计算,得到计算结果,具体见表1 和表2。 表1 反力式涡轮的计算结果 表2 冲击式涡轮的计算结果

根据计算结果,我们对比可以得到冲击式涡轮和反力式涡轮的相同点 是: 冲击式涡轮和反力式涡轮在计算功率时,均由泵的功率决定,由 T P N N =∑ 计算。 不同点具体见表3. 表3 反力式涡轮和冲击式涡轮的比较 1. 冲击式涡轮出口压力值取决于涡轮排气是直接排入周围环境还是导入辅助喷管,但两种情况下出口压强和反力式相比均很小。而反力式涡轮通常用于补燃式的液体火箭发动机中的涡轮泵中,所

以在不记喷注器压降的条件下,涡轮的出口压力等于燃烧室的压力。 2.在计算反力式涡轮的参数时,由于反力度容易确定,在分析过程 中广泛采用热力反力度。

反力式涡轮的设计计算 一.反力式涡轮参数的选择 在具有冲击式涡轮的供应系统(无补燃发动机系统)中,由燃气发生器产生的富燃燃气驱动涡轮,涡轮不冷却,富燃燃气的温度在1000~1200K 的范围内,比富氧燃气的允许温度(600~800K)高得多。另外,富燃燃气的气体常数比富氧燃气的气体常数大一些,这些都有利于减小需通过涡轮的燃气流量。 涡轮流量m t q 是具有冲击式涡轮的供应系统的主要参数之一。m t q 值越小,发动机的比冲就越高。涡轮流量m t q 可由泵和涡轮的功率平衡: T Pf Po N N N =+ 泵的需用功率降低,可减小通过涡轮的燃气流量,因此应尽量提高泵的效率。选定泵的结构并确定其效率后,可根据功率平衡求出所需的涡轮燃气流量,由此确定涡轮的效率。 涡轮入口压力(燃气发生器压力)取决于氧化剂泵的出口压力。当用燃料冷却推力室时,燃料泵出口压力比氧化剂泵的出口压力高。 涡轮出口压力之值取决于涡轮排气是直接排入周围环境还是导入辅助喷管。 冲击式涡轮计算的原始数据为: (1)涡轮的设计功率:涡轮功率T N 由泵所需的功率决定,由涡轮泵装置设计任务给定: 其中,T N —涡轮的设计功率,又称涡轮的轴功率; Pf N —燃料泵的轴功率; Pf N —氧化剂泵的轴功率。 (2)涡轮的设计角速度:涡轮的设计转速ω由泵不发生汽蚀时允许的最大角速度确定; (3)涡轮工质的物理常数和温度:涡轮进口总压*0P 、进口总温*0T 、和出口静压2P ;涡轮工质的绝热指数k 和气体常数R 。 二.反力式涡轮参数的选择

波音737-800建模大作业

波音737—800飞机飞行模型建立实验 学院:航空自动化 专业:导航制导与控制

1 实验目的 根据飞机所提供的QAR数据,把飞机的飞行过程分为几个阶段,通过受力分析计算得出飞机在各阶段的各个时刻的地速以及飞机当时所处的地球经纬度。这之后,再把计算出来的这些数据与QAR里面的相对应的数据进行比较,得出数据误差。使我们对飞机各阶段的机体受力分析得到验证,最后确定飞机的整个飞行过程的模型。 2 实验内容 分析所得的QAR数据,根据QAR数据对飞机的飞行过程进行分阶段处理。然后查找相关资料,对飞机在飞行各阶段过程中进行受力分析。进而用MATLAB软件编写程序,计算出飞机各个阶段的地速和地球经纬度。最后把计算出来的数据和QAR里相应的数据作比较,用MA TLAB画出比较曲线图,得出计算误差,建立起飞机的飞行过程模型。在整个实验过程中要修学的课程有:《大气数据应用分析》、《导航原理与系统》、《飞机的飞行性能》、《惯性导航原理》、《MATLAB应用与编程》等等。

3 实验步骤 3.1 QAR数据分析 QAR数据分析 数据英文数据意义和用途所用仪表备注 1 东经Present Position Longitude 由0°本初子午线向东、西递增到180°导航仪 2 北纬Present Position Latitude 赤道向北递增到90°导航仪 3 磁航向Heading Magnetic 飞机纵轴在地平面上的投影,与磁子午线的 夹角(磁北顺时针转的夹角)。磁偏角:地 球表面任一点的磁子午圈同地理子午圈的夹 角。 磁罗盘上 有罗差修 正器,已经 抵消罗差, 所以磁罗 盘测的基 本就是磁 航向。 4 标准气压高度ALTITUDE 飞机到标准气压平面的垂直距离气压式高度表 5 左无线电高度RADIO HEIGHT Left 飞机到地面的垂直距离 无线电高 度表 6 机场标高AIR/GROUND 机场与海平面的垂直高度 7 左主起落架Left main gear air/end 起落架用于在地面停放及滑行时支撑飞机并 使飞机在地面上灵活运动,并吸收飞机运动 时产生的撞击载荷。主要用来判断飞机是否 起飞。 8 右主起落架Right main gear air/end 9 真空速Computed airspeed 飞机相对于空气的运动速度,根据空速可计 算地速,从而确定已飞距离和待飞时间。 空速表0.5~1.0 10 马赫数MACH 真空速与飞机所在高度的音速之比,当飞机 的M数超过临界M数时,飞机的空气动力特 马赫数表0.5~1.0

最优估计大作业1.

最优估计大作业 姓名:李海宝 学号:S314040186 导师:刘胜 专业:控制科学与工程

模糊逻辑卡尔曼滤波器在智能AUV导航系统中的自适应调 整 摘要 本论文基于全球定位系统(GPS)和几个惯性导航系统(INS)传感器描述了对于自主水下航行器(AUV)应用的一种智能导航系统的执行过程。本论文建议将简单卡尔曼滤波器(SKF)和扩展卡尔曼滤波器(EKF)一前一后地用于融合INS 传感器的数据并将它们与GPS数据结合到一起。传感器噪声特性里潜在的变化会引起SKF和EKF的初始统计假定的调整,本论文针对这一问题着重突出了模糊逻辑方法的使用。当这种算法包含实际传感器噪特性的时候,SKF和EKF只能维持他们的稳定性和性能,因此我们认为这种自适应机制同SKF与EKF一样有必要。此外,在提高导航系统的可靠性融合过程期间,故障检测和信号恢复算法也需在此要讨论。本论文建议的这种算法用于使真实的实验数据生效,这些数据都是从Plymouth大学和Cranfield大学所做的一系列AUV实验(运行低成本的锤头式AUV)中获得的。 关键词:自主水下航行器;导航;传感器融合;卡尔曼滤波器;扩展卡尔曼滤波器;模糊逻辑 1.引言 对于以科学、军事、商业为目的应用,如海洋勘察、搜索未爆弹药和电缆跟踪检查,AUV的发展需要相应导航系统的发展。这样的系统提供航行器位置和姿态的数据是很有必要的。在这样的系统中对精度的要求是最重要的:错误的位置和姿态数据会导致收集数据的一个毫无意义的解释,或者甚至AUV的一个灾难性故障。 越来越多来自整个世界的研究团队正利用INS和GPS来研发组合导航系统。然而,他们的工作中几乎都没有明确几个INS传感器融合的本质要求,这些传感器用于确保用户保持精度或甚至用来防止在与GPS融合之前导航系统这部分的完全失败。例如,金赛和惠特科姆(2003)使用一个切换机制来防止INS的完全失败。虽然这个方法简单易行,但是可能不适合用于维持一个确定的精度等级。 出于多传感器数据融合和集成的目的,几种估计方法在过去就已经被使用过。为此,SKF/EKF和它们的变形在过去就已经是流行的方法,并且一直到现在都对开发算法感兴趣。然而,在设计SKF/EKF过程中,一个显著的困难经常会被

北航惯性导航综合实验四实验报告

基于运动规划的惯性导航系统动态实验 GAGGAGAGGAFFFFAFAF

二零一三年六月十日 实验4.1 惯性导航系统运动轨迹规划与设计实验一、实验目的 为进行动态下简化惯性导航算法的实验研究,进行路径和运动状态规划,以验证不同运动状态下惯导系统的性能。通过实验掌握步进电机控制方法,并产生不同运动路径和运动状态。 二、实验内容 学习利用6045B 控制板对步进电机进行控制的方法,并控制电机使运动滑轨产生定长运动和不同加速度下的定长运动。 三、实验系统组成 USB_PCL6045B 控制板(评估板)、运动滑轨和控制计算机组成。 四、实验原理 IMU安装误差系数的计算方法 GAGGAGAGGAFFFFAFAF

USB_PCL6045B 控制板采用了USB 串行总线接口通信方式,不必拆卸计算机箱就可以在台式机或笔记本电脑上进行运动控制芯片PCL6045B 的学习和评估。 USB_PCL6045B 评估板采用USB 串行总线方式实现评估板同计算机的数据交换,由评估板的FIFO 控制回路完成步进电机以及伺服电机的高速脉冲控制,任意 2 轴的圆弧插补,2-4 轴的直线插补等运动控制功能。USB_PCL6045B 评估板上配置了全部PCL6045B 芯片的外部信号接口和增量编码器信号输入接口。由 USB_PCL6045B 评估测试软件可以进行PCL6045B 芯片的主要功能的评估测试。 GAGGAGAGGAFFFFAFAF

图4-1-1USB_PCL6045B 评估板原理框图如图4-1-1 所示,CN11 接口主要用于外部电源连接,可以选择DC5V 单一电源或DC5V/24V 电源。CN12 接口是USB 信号接口,用于USB_PCL6045B 评估板同计算机的数据交换。 USB_PCL6045B 评估板已经完成对PCL6045B 芯片的底层程序开发和硬件资源与端口的驱动,并封装成156 个API 接口函数。用户可直接在VC 环境下利用API 接口函数进行编程。 五、实验内容 GAGGAGAGGAFFFFAFAF

北航_现代控制理论结课大作业

1. 控制系统任务的物理描述 为了满足飞机品质的要求,飞机的纵向运动和横侧向运动都需要有能够连续工作的阻尼器,以用来调整飞机的飞行姿态,避免其出现不必要的俯仰和倾斜。维持飞机纵向运动的阻尼器称为俯仰阻尼器,维持飞机横侧向运动的阻尼器称为偏航阻尼器。本次课程大作业旨在通过运用Matlab 的经典控制系统设计工具对某型飞机偏航阻尼器进行控制系统的设计。 2. 控制系统对象的数学模型 巡航状态下,某型飞机侧向运动的状态空间模型为: 111 12131411122212223242122131 3233343132234142434441424()1()()()()2()()()3()()4t x t a a a a b b t x t a a a a b b u t a a a a b b u t x t t a a a a b b x t t x x x x ??????????????????????????????????=+???????????????????????? ?????????? 111121314122122 2324234()()()()()()x t c c c c y t x t c c c c y t x t x t ??????????=?????????????? 式中: 1()x t :侧滑角(单位为rad ) 2()x t :偏航角速度(单位为/rad s ) 3()x t :滚转角速度(单位为/rad s ) 4()x t :倾斜角(单位为rad ) 输入向量及输出向量分别为: 1()u t :方向舵偏角(单位为rad ) 2()u t :副翼偏角(单位为rad )

导航系统大作业

导航系统

1.简述捷联惯性系统中地理系到机体系的姿态阵b g C 其含义及其功能。 答:含义:导航坐标系g g g O x y z -到机体坐标系b b b O x y z -的一组欧拉角为,,θγψ,导航坐 标系经过3次转动到机体坐标系。g g g x y z 依次沿g O z -、' b O x -、'' b O y -旋转角度-ψ、θ、γ后到b b b x y z 。姿态矩阵中包含了机体的姿态角方位角ψ、俯仰角θ和横滚角γ。 功能:机体陀螺仪输出的角速度信息经过补偿后,积分得到机体坐标系与导航坐标系的姿态信 息和姿态转移矩阵。捷联惯导系统中,加速度计与载体固连,利用姿态阵完成加速度计输出信息从机体坐标到导航坐标的转换。转换后的加速度计信息经过积分可得到机体在导航坐标系下的速度和位置。 2.画出并用式表达速度三角形(地速、控速、风速)及航迹角、航向角与偏流角之间的关系。 答:风速:空气相对于地面的运动速度;空速:飞机相对于空气运动的速度;地速:飞机相对 于地面的运动速度。=+v v v 风地空 航向角:机头在水平面投影与真北方向的夹角?;偏流角:空速矢量和地速矢量之间的夹角,用 δ表示;航迹角:飞机速度矢量在水平面投影与真北方向的夹角。航向角?加上偏流角δ等于地 速v 地的方位角α。 3.简述惯性导航系统、卫星导航系统、多普勒导航、塔康、VOR/DME 、天文导航其各自的基本工作原理、特点及误差特性。 答:一、惯性导航系统 (1)工作原理 以牛顿力学定律为基础,以陀螺仪和加速度计为敏感器件进行导航参数解算。系统根据陀螺

仪的输出建立导航坐标系,根据加速度计输出解算出运载体的速度和位置,从而实现姿态和航向解算。 (2)特点 惯性导航系统不需要任何外来信息,也不会向外辐射任何信息,仅依靠惯性器件就能全天候,全球性的自主三维定位和三维定向,同时具备自主性、隐蔽性和信息的完备性。 (3)误差特性 误差随时间积累,短时间导航精度较高。 二、卫星导航系统 (1)工作原理 以卫星和用户接收机天线之间的距离观测量为基准,根据已知的卫星的瞬时坐标(轨道根数),来确定用户观测点的经纬度和高程信息。 (2)特点 卫星导航系统具有全天候、高精度、自动化、高效益、性能好,应用广的特点,是一种被动式的导航系统。但需要地面站支持,电波易受干扰。 (3)误差特性 在卫星导航系统中,影响测量结果的误差因素有与卫星有关的误差,与观测有关的误差,和与观测站有关的误差。包括卫星时钟、星历误差,也受电离层、对流层和周围环境事物遮挡等影响。长时间导航精度较高。 三、多普勒导航系统 (1)工作原理 多普勒导航系统是一种自助式推算导航系统。机载多普勒雷达向地面发射电波和接收地面的回波,通过测量地面回波的多普勒频移,通过定位解算,即可得到飞行器的位置信息。 (2)特点 多普勒导航系统不需要有地面或卫星发射台,发射的波束窄,角度陡,难以被监测,自主性强,测速精度高,不需要初始对准。 (3)误差特性 影响多普勒导航系统的误差有测速误差和飞机的角度敏感误差。系统的定位误差发散,随时间推移而增大。 四、塔康导航系统 (1)工作原理 塔康导航系统是由塔康地面设备(塔康信标)和机载设备组成。其采用极坐标体制定位,飞机定时向地面台发送和接收信号,机载设备与塔康信标配合连续解算出飞机所在点相对于信标的方位角和距离。 (2)特点

哈工大导航原理大作业

哈工大导航原理大作业-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

《导航原理》作业 (惯性导航部分)

一、题目要求 A fighter equipped with SINS is initially at the position of ?35 NL and ?122 EL,stationary on a motionless carrier. Three gyros X G ,Y G ,Z G ,and three accelerometers, X A ,Y A ,Z A are installed along the axes b X ,b Y ,b Z of the body frame respectively. Case 1:stationary onboard test The body frame of the fighter initially coincides with the geographical frame, as shown in the figure, with its pitching axis b X pointing to the east,rolling axis b Y to the north, and azimuth axis b Z upward. Then the body of the fighter is made to rotate step by step relative to the geographical frame. (1) ?10around b X (2) ?30around b Y (3) ?50-around b Z After that, the body of the fighter stops rotating. You are required to compute the final output of the three accelerometers on the fighter, using both DCM and quaternion respectively,and ignoring the device errors. It is known that the magnitude of gravity acceleration is 2/8.9g s m =. Case 2:flight navigation Initially, the fighter is stationary on the motionless carrier with its board 25m above the sea level. Its pitching and rolling axes are both in the local horizon, and its rolling axis is ?45on the north by east, parallel with the runway onboard. Then the fighter accelerate along the runway and take off from the carrier. The output of the gyros and accelerometers are both pulse numbers,Each gyro pulse is an angular increment of sec arc 1.0-,and each accelerometer pulse is g 6e 1-,with 2/8.9g s m =.The gyro output frequency is 10 Hz,and the accelerometer ’s is 1Hz. The output of gyros and accelerometers within 5400s are stored in MATLAB data files named gout.mat and aout.mat, containing matrices gm of 35400? and am of 35400? respectively. The format of data as shown in the tables, with 10 rows of each matrix selected. Each row represents the out of the type of sensors at each sample time.

北航惯性导航综合实验一实验报告

实 验一 陀螺仪关键参数测试与分析实验 加速度计关键参数测试与分析实验 二零一三年五月十二日 实验一陀螺仪关键参数测试与分析实验 一、实验目得 通过在速率转台上得测试实验,增强动手能力与对惯性测试设备得感性认识;通过对陀螺仪测试数据得分析,对陀螺漂移等参数得物理意义有清晰得认识,同时为在实际工程中应用陀螺仪与对陀螺仪进行误差建模与补偿奠定基础。 二、实验内容 利用单轴速率转台,进行陀螺仪标度因数测试、零偏测试、零偏重复性测试、零漂测试实验与陀螺仪标度因数与零偏建模、误差补偿实验。 三、实验系统组成 单轴速率转台、MEMS 陀螺仪(或光纤陀螺仪)、稳压电源、数据采集系统与分析系统。

四、实验原理 1.陀螺仪原理 陀螺仪就是角速率传感器,用来测量载体相对惯性空间得角速度,通常输出与角速率对应得电压信号。也有得陀螺输出频率信号(如激光陀螺)与数字信号(把模拟电压数字化)。以电压表示得陀螺输出信号可表示为: (1-1)式中就是与比力有关得陀螺输出误差项,反映了陀螺输出受比力得影响,本实验不考虑此项误差。因此,式(1-1)简化为 (1-2)由(1-2)式得陀螺输出值所对应得角速度测量值: (1-3) 对于数字输出得陀螺仪,传感器内部已经利用标度因数对陀螺仪模拟输出进行了量化,直接输出角速度值,即: (1-4)就是就是陀螺仪得零偏,物理意义就是输入角速度为零时,陀螺仪输出值所对应得角速度。且 (1-5) 精度受陀螺仪标度因数、随机漂移、陀螺输出信号得检测精度与得影响。通常与表现为有规律性,可通过建模与补偿方法消除,表现为随机特性,可通过信号滤波方法抵制。因此,准确标定与就是实现角速度准确测量得基础。 五、陀螺仪测试实验步骤 1)标度因数与零偏测试实验 a、接通电源,预热一定时间; b、陀螺工作稳定后,测量静止情况下陀螺输出并保存数据;

结构优化设计大作业(北航)

《结构优化设计》 大作业报告 实验名称: 拓扑优化计算与分析 1、引言 大型的复杂结构诸如飞机、汽车中的复杂部件及桥梁等大型工程的设计问题,依靠传统的经验和模拟实验的优化设计方法已难以胜任,拓扑优化方法成为解决该问题的关键手段。近年来拓扑优化的研究的热点集中在其工程应用上,如: 用拓扑优化方法进行微型柔性机构的设计,车门设计,飞机加强框设计,机翼前缘肋设计,卫星结构设计等。在其具体的操作实现上有两种方法,一是采用计算机语言编程计算,该方法的优点是能最大限度的控制优化过程,改善优化过程中出现的诸如棋盘格现象等数值不稳定现象,得到较理想的优化结果,其缺点是计算规模过于庞大,计算效率太低;二是借助于商用有限元软件平台。本文基于matlab软件编程研究了不同边界条件平面薄板结构的在各种受力情况下拓扑优化,给出了几种典型结构的算例,并探讨了在实际优化中优化效果随各参数的变化,有助于初学者初涉拓扑优化的读者对拓扑优化有个基础的认识。

2、拓扑优化研究现状 结构拓扑优化是近20年来从结构优化研究中派生出来的新分支,它在计算结构力学中已经被认为是最富挑战性的一类研究工作。目前有关结构拓扑优化的工程应用研究还很不成熟,在国外处在发展的初期,尤其在国内尚属于起步阶段。1904 年Michell在桁架理论中首次提出了拓扑优化的概念。自1964 年Dorn等人提出基结构法,将数值方法引入拓扑优化领域,拓扑优化研究开始活跃。20 世纪80 年代初,程耿东和N. Olhoff在弹性板的最优厚度分布研究中首次将最优拓扑问题转化为尺寸优化问题,他们开创性的工作引起了众多学者的研究兴趣。1988年Bendsoe和Kikuchi发表的基于均匀化理论的结构拓扑优化设计,开创了连续体结构拓扑优化设计研究的新局面。1993年Xie.Y.M和Steven.G.P 提出了渐进结构优化法。1999年Bendsoe和Sigmund证实了变密度法物理意义的存在性。2002 年罗鹰等提出三角网格进化法,该方法在优化过程中实现了退化和进化的统一,提高了优化效率。目前常使用的拓扑优化设计方法可以分为两大类:退化法和进化法。结构拓扑优化设计研究,已被广泛应用于建筑、航天航空、机械、海洋工程、生物医学及船舶制造等领域。 3、拓扑优化建模(SIMP) 结构拓扑优化目前的主要研究对象是连续体结构。优化的基本方法是将设计区域划分为有限单元,依据一定的算法删除部分区域,形成带孔的连续体,实现连续体的拓扑优化。连续体结构拓扑优化方法目前比较成熟的是均匀化方法、变密度方法和渐进结构优化方法。 变密度法以连续变量的密度函数形式显式地表达单元相对密度与材料弹性模量之间的对应关系,这种方法基于各向同性材料,不需要引入微结构和附加的均匀化过程,它以每个单元的相对密度作为设计变量,人为假定相对密度和材料弹性模量之间的某种对应关系,程序实现简单,计算效率高。变密度法中常用的插值模型主要有:固体各向同性惩罚微结构模型(solidisotropic microstructures with penalization,简称SIMP)和材料属性的合理近似模型(rational approximation ofmaterial properties,简称RAMP)。而本文所用即为SIMP插值模型。

(完整)北航惯性导航作业二.

(完整)北航惯性导航作业二. 编辑整理: 尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)北航惯性导航作业二.)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)北航惯性导航作业二.的全部内容。

惯性导航作业

一、数据说明: 1:惯导系统为指北方位的捷连系统.初始经度为116。344695283度、纬度为 39.975172度,高度h为30米。初速度v0=[—9。993908270;0.000000000; 0.348994967]。 2:jlfw中为600秒的数据,陀螺仪和加速度计采样周期分别为为1/100秒和1/100秒。 3:初始姿态角为[2 1 90](俯仰,横滚,航向,单位为度),jlfw。mat中保存的 为比力信息f_INSc(单位m/s^2)、陀螺仪角速率信息wib_INSc(单位rad/s),排列 顺序为一~三行分别为X、Y、Z向信息. 4:航向角以逆时针为正. 5:地球椭球长半径re=6378245;地球自转角速度wie=7。292115147e-5;重力加速度 g=g0*(1+gk1*c33^2)*(1-2*h/re)/sqrt(1—gk2*c33^2);g0=9.7803267714; gk1=0。00193185138639;gk2=0。00669437999013;c33=sin(lat纬度); 二、作业要求: 1:可使用 MATLAB语言编程,用MATLAB编程时可使用如下形式的语句读取数据: load D:\..。文件路径。。.\jlfw,便可得到比力信息和陀螺仪角速率信息。用角增 量法。 2:(1) 以系统经度为横轴,纬度为纵轴(单位均要转换为:度)做出系统位置曲线图; (2)做出系统东向速度和北向速度随时间变化曲线图(速度单位:m/s,时间单位:s); (3) 分别做出系统姿态角随时间变化曲线图(俯仰,横滚,航向,单位转换为:度,时间单位:s); 以上结果均要附在作业报告中. 3:在作业报告中要写出“程序流程图、现阶段学习小结”,写明联系方式。 (注意程序流程图不是课本上的惯导解算流程,而是你程序分为哪几个模块、是 怎样一步步执行的,什么位置循环等,让别人根据该流程图能够编出相应程序)

相关主题