搜档网
当前位置:搜档网 › (完整版)完全平方公式经典习题

(完整版)完全平方公式经典习题

(完整版)完全平方公式经典习题
(完整版)完全平方公式经典习题

完全平方公式一

1.(a +2b )2=a 2+_______+4b 2; (3a -5)2=9a 2+25-_______.

2.(2x -_____)2=____-4xy +y 2; (3m 2+_____)2=______+12m 2n +______.

3.x 2-xy +______=(x -______)2; 49a 2-______+81b 2=(______+9b )2.

4.(-2m -3n )2=_________; (41s +3

1t 2)2=_________.

5.4a 2+4a +3=(2a +1)2+_______. (a -b )2=(a +b )2-________.

6.a 2+b 2=(a +b )2-______=(a -b )2-__________.

7.(a -b +c )2=________________________.

8.(a 2-1)2-(a 2+1)2=[(a 2-1)+(a 2+1)][(a 2-1)-(______)]=__________. 9.代数式xy -x 2-41y 2等于……………………( )

(A )(x -21y )2 (B )(-x -21y )2 (C )(21y -x )2 (D )-(x -21y )2

10.已知x 2(x 2-16)+a =(x 2-8)2,则a 的值是…………………………( )

(A )8 (B )16 (C )32 (D )64

11.如果4a 2-N ·ab +81b 2是一个完全平方式,则N 等于……………………… ( )

(A )18 (B )±18 (C )±36 (D )±64

12.若(a +b )2=5,(a -b )2=3,则a 2+b 2与ab 的值分别是………………( )

(A )8与21

(B )4与21

(C )1与4 (D )4与1

13.计算:(1)(-2a +5b )2; (2)(-21

ab 2-32c )2;

(3)(x -3y -2)(x +3y -2); (4)(x -2y )(x 2-4y 2)(x +2y );

(5)(2a+3)2+(3a-2)2;(6)(a-2b+3c-1)(a+2b-3c-1);(7)(s-2t)(-s-2t)-(s-2t)2;(8)(t-3)2(t+3)2(t 2+9)2.14. 用简便方法计算:(1)972;(2)992-98×100;

15.求值:(1)已知a+b=7,ab=10,求a2+b2,(a-b)2的值.

3,求4a2+b2-1的值.

(2)已知2a-b=5,ab=

2

(3)已知(a+b)2=9,(a-b)2=5,求a2+b2,ab的值.

完全平方公式二

1.已知 2()16,4,a b ab +==求223

a b +与2()a b -的值。

2.已知()5,3a b ab -==求2

()a b +与223()a b +的值。

3.已知6,4a b a b +=-=求ab 与22a b +的值。

4.已知224,4a b a b +=+=求22a b 与2()a b -的值。

5.已知6,4a b ab +==,求22223a b a b ab ++的值。

6. 已知22

2450x y x y +--+=,求21(1)2x xy --的值。

7.试说明不论x,y 取何值,代数式226415x y x y ++-+的值总是正数。

特殊的平行四边形的性质观课报告

“学生是学习的主人,把课堂还给学生,课堂是学生交流知识、获得能力,体验情感的摇篮。”这节课的亮点:“从学生思维的起点,兴趣的契入点开始,让学生一气呵成,从而学会学习。本堂课的设计主要是从学生的角度出发,思路为:设置情景复习引入——激发学习欲望,自主探索——鼓励学生动手、观察、猜想—归纳总结——分层过关应用——鼓励学生大胆发表自己的想法——小结,有效地完成了本节课的教学目标。

1、引出问题很恰当,操作性强,具有启发性

2、学案设计好,容量大,难度适中,循序渐进,效果好。

3、动手更能使学生直观理解平行四边形的性质,“设计思路流畅,能给学生探索新知提供一种学习方法,注重从习题中渗透勇于思考的情感与转化的数学思想。”在课堂实施过程中能够创设情景,课件辅助教学。同学们带着实际问题,迫不急待猜想结论,师生合作论证,学生认真练习,给学生创设上台发言的机会,分析出错的原因,同学们不仅能学到知识,锻炼表达能力,更能锻炼胆量,“绝大多数同学能达到设计的目标,不同层次的学生都有发展。从反馈中发现学生错点,犯错的原因,一是:学生未能认真审题不会从条件和结论两头分析。有的学生不会转化为三角形的边角,未能正确完成。针对以上不足,平时教学中通过习题精讲,必重视培养学生的审题习惯,学会抓关键图形,并用合适的记号标出来,能用流利的语言表述几何证明过程,鼓励学生从错题中寻找原因,并及时修正,从而提高学生的推理能力。绝大多数学生能认真地倾听老师的讲课,注意力集中,优等学生能坚持到15分钟,有95%的学生能倾听同学的发言,30%多的学生有记笔记的习惯,大部分的学生停留在“听”的程度上,

学困生表现为无所事事,不吭声不积极,没有参与到整个学习过程,教师应关注到这层面学生的学习情况。

我觉得应该注意以下几点问题:

1应注意给学生留下足够的思维空间。如及时的总结平行四边形的边,角,对角线的性质。

2教师的提问不仅能培养学生回答别人提出的问题,而且能使学生自己组织问题并求得答案,还要关注其能否根据具体的教学情境和学生的反应灵活生成,同时要关注教学时生成性方面的内容,使学生的主体地位得到体现。

本节课的一点建议:个别学生的重复参与度较高占用了较多的表现机会;另外班级中有几位同学可能因为知识面和学习能力的限制,没有主动参与进来,需要教师多激励这部分学生的学习积极性和问题参与热情。

完全平方公式 典型应用

完全平方公式的典型应用 题型一、完全平方公式的应用 例1、计算(1)(- 21ab 2-3 2c )2; (2)(x -3y -2)(x +3y -2); 练习1、(1)(x -2y )(x 2-4y 2)(x +2y ); (2)、(a -2b +3c -1)(a +2b -3c -1); 题型二、配完全平方式 1、若k x x ++22是完全平方式,则k = 2、.若x 2-7xy +M 是一个完全平方式,那么M 是 3、如果4a 2-N ·ab +81b 2是一个完全平方式,则N = 4、如果224925y kxy x +-是一个完全平方式,那么k = 题型三、公式的逆用 1.(2x -______)2=____-4xy +y 2. 2.(3m 2+_______)2=_______+12m 2n +________. 3.x 2-xy +________=(x -______)2. 4.49a 2-________+81b 2=(________+9b )2. 5.代数式xy -x 2- 41y 2等于-( )2 题型四、配方思想 1、若a 2+b 2-2a +2b +2=0,则a 2004+b 2005=_____. 2、已知0136422=+-++y x y x ,求y x =_______. 3、已知222450x y x y +--+=,求 21(1)2x xy --=_______. 4、已知x 、y 满足x 2十y 2十45=2x 十y ,求代数式y x xy +=_______. 5.已知014642222=+-+-++z y x z y x ,则z y x ++= . 6、已知三角形ABC 的三边长分别为a,b,c 且a,b,c 满足等式22223()()a b c a b c ++=++,请说明该三角

完全平方公式经典题型 (1)

完全平方(和、差)公式: 1. 公式:()2222a b a ab b ±=±+ 逆用:()2 222a ab b a b ±+=± 文字叙述:两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍. 口诀:首平方加尾平方,乘积二倍在中央。 其中,a b 可以是数字、单项式和多项式。其中22,a b 称为二次项,均为正项;2ab 为中间项,符号由括号里的符号确定。 扩展:()222222ax by a x abxy b y ±=±+ a,b 为x 、y 系数,那么展开式的中间项系数为2ab 。 例:1.229124a ab b -+= 2. 2244a ab b -+= 3. 2(23)x -= 4. 221()32x y -= 4. 2102= 6. 299= 题型解析: 一、添括号运用乘法公式计算: (1)2)(b a -- (2)2)(c b a ++ (4) ()()22 225x 4y 5x 4y --+ (5)2)12(-+b a (6)2)12(--y x 二、展开式系数的判断:公式逆用 1、要使k x x +-62是完全平方式,则k=________ 2、要使42++my y 成为完全平方式,那么m=________ 3、将多项式92+x 加上一个整式,使它成为完全平方式,这个整式可以是_______________ 4、多项式()2249a ab b -+是完全平方差公式,则括号里应填 。 5、将下列式子补充完整: (1)24x - xy +216y =( ) 2 (2)225a +10ab + =( )2 (3) -4ab + =(a - )2 (4)216a + + =( +)22b (5)2916x - + =( 223y ?-?? 三、利用公式加减变形 例.已知5=+b a 3ab =,求22b a +和 2)(b a -的值 1. 若a+b=0,ab=11,求a 2﹣ab+b 2的值。 2.已知 x + y = 8,xy = 12,求 x 2 + y 2 的值 3. 已知,(x+y )2=16,(x ﹣y )2=8,那么xy 的值是多少? 4. 如果,求和1a-a 的值。 5. 已知x 2+y 2=13,xy=6,则x+y 的值是多少?

最新完全平方公式变形公式专题

半期复习(3)—— 完全平方公式变形公式及常见题型 一.公式拓展: 拓展一:ab b a b a 2)(222-+=+ ab b a b a 2)(222+-=+ 2)1(1222-+=+a a a a 2)1(1222+-=+a a a a 拓展二:a b b a b a 4)()(22=--+ ()()22 2222a b a b a b ++-=+ ab b a b a 4)()(22+-=+ ab b a b a 4)()(22-+=- 拓展三:bc ac ab c b a c b a 222)(2222---++=++ 拓展四:杨辉三角形 3223333)(b ab b a a b a +++=+ 4322344464)(b ab b a b a a b a ++++=+ 拓展五: 立方和与立方差 ))((2233b ab a b a b a +-+=+ ))((2233b ab a b a b a ++-=- 二.常见题型: (一)公式倍比 例题:已知b a +=4,求ab b a ++2 2 2。 (1)1=+y x ,则222 121y xy x ++= (2)已知xy 2y x ,y x x x -+-=---2 222)()1(则= (二)公式变形 (1)设(5a +3b )2=(5a -3b )2+A ,则A= (2)若()()x y x y a -=++22,则a 为 (3)如果2 2)()(y x M y x +=+-,那么M 等于 (4)已知(a+b)2=m ,(a —b)2=n ,则ab 等于 (5)若N b a b a ++=-22)32()32(,则N 的代数式是

完全平方公式经典习题

完全平方公式一 1.(a +2b )2=a 2+_______+4b 2;(3a -5)2=9a 2+25-_______. 2.(2x -_____)2=____-4xy +y 2;(3m 2+_____)2=______+12m 2n +______. 3.x 2-xy +______=(x -______)2;49a 2-______+81b 2=(______+9b )2. 4.(-2m -3n )2=_________;(41s +3 1t 2)2=_________. 5.4a 2+4a +3=(2a +1)2+_______. (a -b )2=(a +b )2-________. 6.a 2+b 2=(a +b )2-______=(a -b )2-__________. 7.(a -b +c )2=________________________. 8.(a 2-1)2-(a 2+1)2=[(a 2-1)+(a 2+1)][(a 2-1)-(______)]=__________. 9.代数式xy -x 2-41y 2等于……………………( ) (A )(x -21y )2(B )(-x -21y )2(C )(21y -x )2(D )-(x -21y )2 10.已知x 2(x 2-16)+a =(x 2-8)2,则a 的值是…………………………( ) (A )8(B )16(C )32(D )64 11.如果4a 2-N ·ab +81b 2是一个完全平方式,则N 等于……………………… ( ) (A )18(B )±18(C )±36(D )±64 12.若(a +b )2=5,(a -b )2=3,则a 2+b 2与ab 的值分别是………………( ) (A )8与21(B )4与21(C )1与4 (D )4与1 13.计算:(1)(-2a +5b )2; (2)(-21ab 2-3 2c )2; (3)(x -3y -2)(x +3y -2);(4)(x -2y )(x 2-4y 2)(x +2y ); (5)(2a +3)2+(3a -2)2; (6)(a -2b +3c -1)(a +2b -3c -1); (7)(s -2t )(-s -2t )-(s -2t )2; (8)(t -3)2(t +3)2(t 2+9)2. 14. 用简便方法计算:(1)972; (2)992-98×100; 15.求值:(1)已知a +b =7,ab =10,求a 2+b 2,(a -b )2的值.

完全平方公式常考题型(经典)

完全平方公式典型题型 一、公式及其变形 1、 完全平方公式:222()+2a b a ab b +=+ (1)222()2a b a ab b -=-+ (2) 公式特征:左边是一个二项式的完全平方,右边有三项,其中有两项是左边二项式中每一项的平方,而另一项是左边二项式中两项乘积的2倍。 注意: 222)()]([)(b a b a b a +=+-=-- 222)()]([)(b a b a b a -=--=+- 完全平方公式的口诀:首平方,尾平方,加上首尾乘积的2倍。 2、公式变形 (1)+(2)得:22 22 ()()2a b a b a b ++-+= (12)-)(得: 22 ()()4 a b a b ab +--= ab b a ab b a b a 2)(2)(2222-+=-+=+,ab b a b a 4)()(22-+=- 3、三项式的完全平方公式:bc ac ab c b a c b a 222)(2222+++++=++ 二、题型 题型一、完全平方公式的应用 例1、计算(1)(- 21ab 2-3 2c )2; (2)(x -3y -2)(x +3y -2); 练习1、(1)(x -2y )(x 2-4y 2)(x +2y );(2)、(a -2b +3c -1)(a +2b -3c -1); 题型二、配完全平方式 1、若k x x ++22是完全平方式,则k = 2、.若x 2-7xy +M 是一个完全平方式,那么M 是 3、如果4a 2-N ·ab +81b 2 是一个完全平方式,则N = 4、如果224925y kxy x +-是一个完全平方式,那么k = 题型三、公式的逆用 1.(2x -______)2=____-4xy +y 2. 2.(3m 2+_______)2=_______+12m 2n +________.

完全平方公式变形的应用

乘法公式的拓展及常见题型整理 一.公式拓展: 拓展一:ab b a b a 2)(222-+=+ ab b a b a 2)(222+-=+ 2)1(1222-+=+a a a a 2)1(1222+-=+a a a a 拓展二:a b b a b a 4)()(22=--+ ()()222222a b a b a b ++-=+ ab b a b a 4)()(22+-=+ ab b a b a 4)()(22-+=- 拓展三:bc ac ab c b a c b a 222)(2222---++=++ 拓展四:辉三角形 3223333)(b ab b a a b a +++=+ 4322344464)(b ab b a b a a b a ++++=+ 拓展五: 立方和与立方差 ))((2233b ab a b a b a +-+=+ ))((2233b ab a b a b a ++-=- 二.常见题型: (一)公式倍比 例题:已知b a +=4,求ab b a ++2 2 2。 ⑴如果1,3=-=-c a b a ,那么()()()2 22a c c b b a -+-+-的值是 ⑵1=+y x ,则222 121y xy x ++= ⑶已知xy 2y x ,y x x x -+-=---2222)()1(则 = (二)公式组合 例题:已知(a+b)2=7,(a-b)2=3, 求值: (1)a 2+b 2 (2)ab

⑴若()()a b a b -=+=22 713,,则a b 22+=____________,a b =_________ ⑵设(5a +3b )2=(5a -3b )2+A ,则A= ⑶若()()x y x y a -=++22,则a 为 ⑷如果2 2)()(y x M y x +=+-,那么M 等于 ⑸已知(a+b)2=m ,(a —b)2=n ,则ab 等于 ⑹若N b a b a ++=-22)32()32(,则N 的代数式是 ⑺已知,3)(,7)(22=-=+b a b a 求ab b a ++22的值为 。 ⑻已知实数a,b,c,d 满足53=-=+bc ,ad bd ac ,求) )((2222d c b a ++ (三)整体代入 例1:2422=-y x ,6=+y x ,求代数式y x 35+的值。 例2:已知a= 201x +20,b=201x +19,c=20 1x +21,求a 2+b 2+c 2-ab -bc -ac 的值 ⑴若499,7322=-=-y x y x ,则y x 3+= ⑵若2=+b a ,则b b a 422+-= 若65=+b a ,则b ab a 3052++= ⑶已知a 2+b 2=6ab 且a >b >0,求 b a b a -+的值为 ⑷已知20042005+=x a ,20062005+=x b ,20082005+=x c ,则代数式ca bc ab c b a ---++222的值是 .

初中数学完全平方公式题型总结

一、简单型 1、计算472﹣94×27+272. 2、1.23452+0.76552+2.469×0.7655=_________。 3、已知x2-2(m-3)x+9是一个多项式的平方,则m=_______。 二、x+y= xy= (x2+y2=)型(等式两边平方型) 1、已知x+y=3,xy=2,求x2+y2的值. 2、已知a+b=3,ab=2,求a2+b2,(a﹣b)2的值. 3、已知x2+y2=25,x+y=7,且x>y,则x-y=________。 4、设a﹣b=﹣2,求的值.

三、观察特点,找出隐含条件。 1、已知a-b=b-c=53,a 2+b 2+c 2=1,则ab+bc+ca=___________。 2、已知x= b a b a -+,y=b a b a +- (b a ±≠),且19x 2+143xy+19y 2=2005,则x+y=_____。 3、若n 满足(n-2004)2+(2005-n )2=1,则(2005-n )×(n-2004)= ( ) 4、已知a= 201x+20,b=201x+19,c=201x+21,则代数式a 2+b 2+c 2-ab-bc-ac 的值是( ) 四、先变形再代入型 1、若x+y=2,且(x+2)(y+2)=5,求x 2+xy+y 2的值 2、已知ax+by=3,a y -bx=5,则(a 2+b 2)(x 2+y 2)=________。 3、已知实数a 、b 满足(a+b )2=1,(a ﹣b )2=25,求a 2+b 2+ab 的值. 4、已知a 2+a -1=0,求a 3+2a 2+2016的值

完全平方公式之恒等变形

§1.6 完全平方公式(2) 班级: 姓名: 【学习重点、难点】 重点: 1、弄清完全平方公式的结构特点; 2、会进行完全平方公式恒等变形的推导. 难点:会用完全平方公式的恒等变形进行运算. 【学习过程】 ● 环节一:复习填空 ()2_____________a b += ()2_____________a b -= ● 环节二: 师生共同推导完全平方公式的恒等变形 ①()222_______a b a b +=+- ②()222_______a b a b +=-+ ③()()22_______a b a b ++-= ④()()22_______a b a b +--= ● 典型例题及练习 例1、已知8a b +=,12ab =,求22a b +的值 变式训练1:已知5a b -=,22=13a b +,求ab 的值 变式训练2:已知6ab =-,22=37a b +,求a b +与a b -的值 方法小结:

提高练习1:已知+3a b =,22+30a b ab =-,求22a b +的值 提高练习2:已知210a b -=,5ab =-,求224a b +的值 例2、若()2=40a b +,()2=60a b -,求22a b +与ab 的值 小结: 课堂练习 1、(1)已知4x y +=,2xy =,则2)(y x -= (2)已知2()7a b +=,()23a b -=,求=+22b a ________,=ab ________ (3)()()2222________a b a b +=-+ 2、(1)已知3a b +=,4a b -=,求ab 与22a b +的值 (2)已知5,3a b ab -==求2()a b +与223()a b +的值。 (3)已知224,4a b a b +=+=,求22a b 与2()a b -的值。

完全平方公式变形公式专题

半期复习(3)——完全平方公式变形公式及常见题型一.公式拓展: 2a2b2(a b)22ab 22 拓展一:a b(a b)2ab 11211 2 2 2 a(a)2a(a)2 22 a a a a 2a b2a b22a22b2 2 拓展二:(a b)(a b)4ab 22(a b)2(a b)24ab (a b)(a b)4ab 2222 拓展三:a b c(a b c)2ab2ac2bc 拓展四:杨辉三角形 33232 33 (a b)a a b ab b

444362243 4 (a b) a a b a b ab b 拓展五:立方和与立方差 3b a b a ab b 3223b3a b a ab b 22 a()()a()() 第1页(共5页)

二.常见题型: (一)公式倍比 。 2 2 a b 例题:已知 a b =4,求ab 2 1 1 (1) x y 1,则 2 2 x xy y = 2 2 2 2 x y 2 ) 2 (2) 已知x x x y ,xy ( 1) ( 则= 2 ( 二)公式变形 (1) 设(5a+3b)2=(5a-3b)2+A,则A= 2 2 (2) 若( x y) ( x y) a ,则a 为 (3) 如果 2 ( ) 2 (x y) M x y ,那么M等于(4) 已知(a+b) 2=m,(a —b) 2=n,则ab 等于 2 (2 3 ) 2 ( ,则N的代数式是(5) 若2a b a b N 3 ) (三)“知二求一” 1.已知x﹣y=1,x 2+y2=25,求xy 的值. 2.若x+y=3 ,且(x+2)(y+2)=12. (1)求xy 的值; 2+3xy+y 2 的值. (2)求x

完全平方公式练习50题

完全平方公式专项练习 知识点: 姓名: 完全平方公式:(a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2 两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。 1、完全平方公式也可以逆用,即a 2+2ab+b 2=(a+b)2 a 2-2ab+b 2=(a-b)2 2、能否运用完全平方式的判定: ① 两数和(或差)的平方 即:(a+b)2或 (a-b)2或 (-a-b)2或 (-a+b)2 ② 两数平方,加上(或减去)它们的积的2倍,且两数平方的符号相同。 即:a 2+2ab+b 2或a 2-2ab+b 2 -a 2-2ab-b 2或 -a 2+2ab-b 2 专项练习: 1.(a +2b )2 2.(3a -5)2 3..(-2m -3n )2 4. (a 2-1)2-(a 2+1)2 5.(-2a +5b )2 6.(-21ab 2-3 2c )2 7.(x -2y )(x 2-4y 2)(x +2y ) 8.(2a +3)2+(3a -2)2 9.(a -2b +3c -1)(a +2b -3c -1); 10.(s -2t )(-s -2t )-(s -2t )2; 11.(t -3)2(t +3)2(t 2+9)2. 12. 972; 13. 20022; 14. 992-98×100; 15. 49×51-2499; 16.(x -2y )(x +2y )-(x +2y )2 17.(a +b +c )(a +b -c ) 18. (a+b+c+d)2 19.(2a +1)2-(1-2a )2 20.(3x -y )2-(2x +y )2+5x (y -x )

完全平方公式经典习题

完全平方公式练习题 一、点击公式 1、2 a b = ,2 a b = ,a b b a = . 2、222a b a b + =2a b + . 3、22a b a b = . 二、公式运用 1、计算化简 (1)2222x y x y x y (2)2)())((y x y x y x (3)2 )21(1x (4)z y x z y x 3232(5)2121 a b a b 2、简便计算: (1)(-69.9)2 (2)472-94×27+272 3、公式变形应用: 在公式(a ±b )2=a 2±2ab+b 2中,如果我们把a+b ,a-b ,a 2+b 2,ab 分别看做一个整体,那么只要知道其中两项的值,就可以求出第三项的值. (1)已知a+b =2,代数式a 2-b 2+2a+8b+5的值为,已知11 25 ,,7522x y 代数式 (x+y )2-(x-y )2的值为,已知2x-y-3=0,求代数式12x 2-12xy+3y 2的值是,已知x=y +4,求代数式2x 2-4xy+2y 2-25的值是. (2)已知3b a ,1ab ,则22b a =,44a b = ;若5a b ,4ab ,则2 2b a 的值为______;28a b ,2 2a b ,则ab=_______. (3)已知:x+y =-6,xy=2,求代数式(x-y )2的值.

(4)已知x+y =-4,x-y=8,求代数式x 2-y 2的值.(5已知a+b =3,a 2+b 2 =5,求ab 的值. (6)若222315x x ,求23x x 的值. (7)已知x-y=8,xy=-15,求的值. (8)已知:a 2+b 2=2,ab=-2,求:(a-b )2 的值.4、配方法(整式乘法的完全平方公式的反用) (1)如果 522x x y ,当x 为任意的有理数,则y 的值为()A 、有理数 B 、可能是正数,也可能是负数 C 、正数 D 、负数(2)多项式192x 加上一个单项式后成为一个整式的完全平方,那么加上的这个单项式是 .(填上所有你认为是正确的答案)(3)试证明:不论 x 取何值,代数x 2+4x+92的值总大于0.(4)若2x 2-8x+14=k ,求k 的最小值.

八年级数学上册 完全平方公式的综合应用(习题及答案)

完全平方公式的综合应用(习题) 例题示范 例1:已知12x x - =,求221x x +,441x x +的值. 【思路分析】 ① 观察题目特征(已知两数之差和两数之积11x x ? =,所求为两数的平方和),判断此类题目为“知二求二”问题; ② “x ”即为公式中的a ,“ 1x ”即为公式中的b ,根据他们之间的关系可得:2221112x x x x x x ??+=-+? ???; ③ 将12x x -=,11x x ?=代入求解即可; ④ 同理,24224221112x x x x x x ??+=+-? ???,将所求的221x x +的值及2211x x ?=代入即可求解. 【过程书写】 例2:若2226100x x y y -+++=,则x =_______,y =________. 【思路分析】 此题考查完全平方公式的结构,“首平方,尾平方,二倍乘积放中央”. 观察等式左边,22x x -以及26y y +均符合完全平方式结构,只需补全即可,根据“由两边定中间,由中间凑两边”可配成完全平方式,得到22(1)(3)0x y -++=. 根据平方的非负性可知:2(1)0x -=且2(3)0y +=,从而得到1x =,3y =-. 巩固练习 1. 若2(2)5a b -=,1ab =,则224a b +=____,2(2)a b +=____. 2. 已知3x y +=,2xy =,求22x y +,44x y +的值.

3. 已知2310a a -+=,求221a a +,44 1a a +的值. 4. (1)若229x mxy y ++是完全平方式,则m =________. (2)若22916x kxy y -+是完全平方式,则k =_______. 5. 多项式244x +加上一个单项式后,能使它成为一个整式的平方,则可以加上 的单项式共有_______个,分别是__________ ______________________________. 6. 若22464100a b a b +--+=,则a b -=______. 7. 当a 为何值时,2814a a -+取得最小值,最小值为多少? 8. 求224448x y x y +-++的最值. 思考小结 1. 两个整数a ,b (a ≠b )的“平均数的平方”与他们“平方数的平均数”相等 吗?若不相等,相差多少? 2. 阅读理解题:

完全平方公式所有题型分类超全

板块一:配方思想 【例1】 填空:222_____4(2)x y x y ++=+; 【例2】 填空:2229_____121(3___)a b a -+=-; 【例3】 填空:2244____(2___)m mn m ++=+; 【例4】 填空:2_____6______(3)xy x y ++=+. 【例5】 如果多项式219 x kx ++是一个完全平方式,那么k 的值为 【例6】 如果2249x axy y ++是完全平方式,试求a 的值. 【例7】 若243(2)25x a x --+是完全平方式,求a 的值. 【例8】 甲、乙两个公司用相同的价格购粮,他们各购两次,已知两次的价格不同,甲公司每次购粮1 万千克,乙公司每次用1万元购粮,则两次平均价格较低的是 公司. 例题精讲 配方思想及竞赛中简单公式的应用

【例10】 若a ,b 为有理数,且2222480a ab b a -+++=,则ab = . 【例11】 求224243a b a b +--+的最值. 【例12】 求下列式子的最值:当x 为何值时,2615x x -+-有最大值. 【例13】 设225P a b =+,224Q ab a a =--,若P Q >,则实数a ,b 满足的条件是 . 板块二:立方公式 立方和公式:2233()()a b a ab b a b +-+=+; 立方差公式:2233()()a b a ab b a b -++=-; 和的完全立方公式:33223()33a b a a b ab b +=+++; 差的完全立方公式:33223()33a b a a b ab c -=-+-. 【例14】 计算:2224(2)(42)m n m mn n +-+ 【例15】 计算:2422(32)(964)x y x x y y -++; 【例16】 计算:22()()m n m mn n x x x x x +-+; 【例17】 计算:2222(2)(24)x y x xy y +?-+;

初中数学完全平方公式的变形与应用

完全平方公式的变形与应用 提高培优完全平方公式 222222()2,()2a b a a b b a b a a b b 在使用时常作如下变形: (1) 222222()2,()2a b a b a b a b a b a b (2) 2222()()4,()()4a b a b a b a b a b a b (3) 2222 ()()2()a b a b a b (4) 2222 1 [()()]2a b a b a b (5) 22 1 [()()]2a b a b a b (6) 222222 1 [()()()]2a b c a b b c ca a b b c c a 例1 已知长方形的周长为 40,面积为75,求分别以长方形的长和宽为边长的正方形面积之和是多少? 解设长方形的长为α,宽为b ,则α+b=20,αb=75. 由公式(1),有: α2+b 2=(α+b)2-2αb=202-2×75=250. (答略,下同) 例2 已知长方形两边之差 为4,面积为12,求以长方形的长与宽之和为边长的正方形面积. 解设长方形长为 α,宽为b ,则α-b=4,αb=12.由公式(2),有:(α+b)2=(α-b)2+4αb=42+4×12=64. 例3 若一个整数可以表示为两个整数的平方和, 证明:这个整数的2倍也可以表示为两个整数的平方和 . 证明设整数为x ,则x=α2+b 2(α、b 都是整数).

由公式(3),有2x=2(α2+b 2)=(α+b)2+(α-b)2.得证 例4 将长为64cm 的绳分为两段,各自围成一个小正方形,怎样分法使得两个正方形面积之和最小? 解设绳被分成的两部分为x 、y ,则x+y=64. 设两正方形的面积之和为 S ,则由公式(4),有:S=(x 4)2+(y 4)2=116 (x 2+y 2) =132 [(x+y)2+(x-y)2] =132 [642+(x-y)2]. ∵(x-y)2 ≥0,∴当x=y 即(x-y)2=0时,S 最小,其最小值为 64232=128(cm 2). 例5 已知两数的和为 10,平方和为52,求这两数的积. 解设这两数分别为α、b ,则α+b =10,α2+b 2 =52. 由公式(5),有: αb=12 [(α+b)2-(α2+b 2)] =12 (102-52)=24. 例6 已知α=x+1,b=x+2,c=x+3. 求:α2+b 2+c 2-αb-bc-c α的值. 解由公式(6)有: α2+b 2+c 2-αb-bc-αc =12 [(α-b)2+(b-c )2+(c-α)2] =12 [(-1)2+(-1)2+22] =12×(1+1+4)=3.

《完全平方公式》典型例题.

(1) (2 - 3x )2 ;(2) (2ab + 4a )2 ;(3) ( am - 2b ) 2 . (1) ( x - 3) 2 - x 2 ;(2) (2a - b - )(2a - b + ) ;(3) ( x + y )2 - ( x - y )2 . 例 6 利用完全平方公式进行计算:(1) 201 2 ; (2) 99 2 ; (3) (30 ) 2 《完全平方公式》典型例题 例 1 利用完全平方公式计算: 1 2 例 2 计算: (1) (3a - 1)2 ;(2) (-2 x + 3 y )2 ;(3) (-3x - y )2 . 例 3 用完全平方公式计算: (1) (-3 y + 2 3 x ) 2 ; (2) (-a - b )2 ; (3) (3a + 4b - 5c )2 . 例 4 运用乘法公式计算: (1) ( x - a )( x + a )( x 2 - a 2 ) ; (2) (a + b - c )(a - b - c ) ; (3) ( x + 1)2 ( x - 1)2 ( x 2 + 1)2 . 例 5 计算: 1 1 1 1 2 4 2 2 1 3 例 7 已知 a + b = 3, ab = -12 ,求下列各式的值. (1) a 2 + b 2 ;(2) a 2 - ab + b 2 ;(3) (a - b )2 . 例 8 若 3(a 2 + b 2 + c 2 ) = (a + b + c )2 ,求证: a = b = c .

(3) ( am - 2b )2 = a 2m 2 - 2amb + 4b 2 . 参考答案 例 1 分析:这几个题都符合完全平方公式的特征,可以直接应用该公式进 行计算. 解:(1) (2 - 3x )2 = 22 - 2 ? 2 ? 3x + (3x )2 = 4 - 12x + 9 x 2 ; (2) (2ab + 4a )2 = (2ab )2 + 2 ? 2ab ? 4a + (4a )2 = 4a 2b 2 + 16a 2b + 16a 2 ; 1 1 2 4 说明:(1)必须注意观察式子的特征,必须符合完全平方公式,才能应用该 公式;(2)在进行两数和或两数差的平方时,应注意将两数分别平方,避免出现 (2 - 3x )2 = 4 - 12x + 3x 2 的错误. 例 2 分析:(2)题可看成 [(-2 x ) + 3 y ]2 ,也可看成 (3 y - 2 x )2 ; (3)题可看 成 [-(3x + y )]2 ,也可以看成 [(-3x ) - y ]2 ,变形后都符合完全平方公式. 解:(1) (3a - 1)2 = (3a )2 - 2 ? 3a ?1 + 12 = 9a 2 - 6a + 1 (2)原式 = (-2 x )2 + 2 ? (-2 x ) ? 3 y + (3 y )2 = 4 x 2 - 12xy + 9 y 2 或原式 (3 y - 2 x )2 = (3 y )2 - 2 ? 3 y ? 2 x + (2 x )2 = 9 y 2 - 12xy + 4 x 2 (3)原式 = [-(3x + y )]2 = (3x + y )2 = (3x )2 + 2 ? 3x ? y + y 2 = 9 x 2 + 6 x y + y 2 或原式 = (-3x )2 - 2 ? (-3x ) ? y + y 2

完全平方公式经典习题.doc

2 213.计算:(1) (―2。+5。)2; ⑵(十2_§)2; (3)(工一3y —2)(尤+3y —2); (4) (x~2y) (x 2—4>,2)(尤+2y); 完全平方公式一 1. (。+2人)2 =决+ ______ +4人2; (3Q —5) 2=9Q 2+25— _______ 2. (2尤— ___ ) 2= ________ —Axy-^y 1; (3m 2+ ______ .)2 = ______ +12冰〃+ ___ 3. JC —xv+ = (x~ - )2; 49a 2- + 81^2= ( +%) 2 4. ( ~2m —3n) 2 = ; (£+圮)2 = ? 4 3 5. 4决+4。+3= (2Q +1) 2+ ? (。——人) 2= (Q +Z?) 2— 6.疽 +》2= (Q + 人)2_ =(a~b) 2 — _____ ■ 7. (。—b+c) 2 =. 8. (a 2— 1 ) 2— (Q 2+1)2=[(Q 2— 1)+ (Q 2+])][( Q 2— 1)—() ]= 9. 代数式xy-x 2--y 2等于 .................. ( ) 4 (A) (x~-y) 2 (B) (—x —-y) 2 (C) (-y —x) 2 (D) — (x~-y) 2 2 2 2 2 10. 已知 j (x 2— 16) +。= (X 2—8) 2,则 Q 的值是.................... ( ) (A) 8 (B) 16 (C) 32 (D) 64 11. 如果4Q 2—N 泌+8场2是一个完全平方式,则N 等于 ..................... ( ) (A) 18 (B) ±18 (C) ±36 (D) ±64 12. 若(a+b) 2=5, (a-b) 2=3,则 a 2+b 2与沥的值分别是 ...................... ( ) (A) 8 与上 (B) 4-^- (C) 1 与4 (。)4与1

完全平方公式变形

完全平方公式变形 1.已知 ,求下列各式的值: (1) ; (2) . (3)4 41x x 2.已知x+y=7,xy=2,求 (1)2x 2+2y 2; (2)(x ﹣y )2.。 (3)x 2+y 2-3xy 3.已知有理数m ,n 满足(m+n )2=9,(m ﹣n )2=1.求下列各式的值. (1)mn ; (2)m 2+n 2

平方差公式的应用 1.(a+b﹣c)(a﹣b+c)=a2﹣()2. 2.()﹣64m2n2=(a+)(﹣8mn) 3.已知x2﹣y2=12,x﹣y=4,则x+y=. 4.(x﹣y)(x+y)(x2+y2)(x4+y4)…(x2n+y2n)=. 5..(﹣3x+2y)()=﹣9x2+4y2. 6.记x=(1+2)(1+22)(1+24)(1+28)…(1+2n),且x+1=2128,则n=. 7.计算:=. 8.已知a﹣b=1,a2﹣b2=﹣1,则a4﹣b4=. 9.一个三角形的底边长为(2a+4)厘米,高为(2a﹣4)厘米,则这个三角形的面积为. 10观察下列等式19×21=202﹣1,28×32=302﹣22,37×43=402﹣32,…,已知m,n 为实数,仿照上述的表示方法可得:mn=. 11.正方形Ⅰ的周长比正方形Ⅱ的周长长96cm,它们的面积相差960cm2,求这两个正方形的边长 12如图,第一个图中两个正方形如图所示放置,将第一个图改变位置后得到第二个图,两图阴影部分的面积相等,则该图可验证的一个初中数学公式 为. 以下为提高题(请班级前20名学生会做) 13.如果一个正整数能表示为两个连续偶数的平方差,那么称这个这个正整数为“神秘数”,如:4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20这三个数都是“神秘数”.若60是一个“神秘数”,则60可以写成两个连续偶数的平方差为:60=. 14.20082﹣20072+20062﹣20052+…+22﹣12=. 15.(32+1)(34+1)(38+1)…(364+1)×8+1=. 16.(3a+3b+1)(3a+3b﹣1)=899,则a+b=. 17.化简式子,其结果是.

平方差和完全平方公式经典例题复习过程

典例剖析 专题一:平方差公式 例1:计算下列各整式乘法。 ①位置变化(73)(37)x y y x +- ②符号变化(27)(27)m n m n --- ③数字变化98102? ④系数变化(4)(2)24n n m m +- ⑤项数变化(32)(32)x y z x y z ++-+ ⑥公式变化2(2)(2)(4)m m m +-+ ◆变式拓展训练◆ 【变式1】2244()()()() y x x y x y x y ---+++ 【变式2】22 (2)(4)33b b a a --- 【变式3】22222210099989721-+-++-…

专题二:平方差公式的应用 例2:计算 22004200420052003 -?的值为多少? ◆变式拓展训练◆ 【变式1】22()()x y z x y z -+-+- 【变式2】2301(3021)(3021)?+?+ 【变式3】(25)(25)x y z x y z +-+-++ 【变式4】已知a 、b 为自然数,且40a b +=, (1)求22a b +的最大值;(2)求ab 的最大值。

专题三:完全平方公式 例3:计算下列各整式乘法。 ①位置变化:22()()x y y x --+ ②符号变化:2(32)a b -- ③数字变化:2197 ④方向变化:2(32)a -+ ⑤项数变化:2(1)x y +- ⑥公式变化22(23)(46)(23)(23)x y x y x y x y -+-+++ ◆变式拓展训练◆ 【变式1】224,2a b a ab b +=++则的值为( ) A.8 B.16 C.2 D.4 【变式2】已知221() 4.,()_____2 a b ab a b -==+=则 【变式3】已知225.6,x y xy x y +=-=+则的值为( ) A.1 B.13 C.17 D.25 【变式4】已知222(1)()32x x x y x y xy ---=-+-,求的值

完全平方公式和平方差公式法习题(内含答案)

完全平方公式和平方差公式法习题(内含答案)二次根式的运算知识点 知识点一:二次根式的乘法法则:,即两个二次根式相乘, 根指数不变,只把被开方数相乘. 要点诠释:在运用二次根式的乘法法则进行运算时,一定要注意:公式中a 、b 都必须是非 负数;(在本章中,如果没有特别说明,所有字母都表示非负数) (1)该法则可以推广到多个二次根式相乘的运算: (3)若二次根式相乘的结果能写成的形式,则应化简,如. ,即积的算术平方根知识点二、积的算术平方根的性质 等于积中各因式的算术平方根的积. 要点诠释: (1)在这个性质中,a 、b 可以是数,也可以是代数式,无论是数,还是代数式,都必须满足才能用此式进行计算或化简,如果不满足这个条件,等式右边就没有意义,等式也就不能成立了; (2)二次根式的化简关键是将被开方数分解因数,把含有形式的a 移到根号外面. (3)作用:积的算术平方根的性质对二次根式化简 (4)步骤:①对被开方数分解因数或分解因式,结果写成平方因式乘以非平方因式②利用积的算术平方根的性质 ③利用(一个数的平方的算术平方根等于这个数的绝对值)即被开方数中的一些因式 移到根号外 ④被开方数中每个因数指数都要小雨2 (5)被开方数是整数或整式可用积的算术平方根的性质对二次根式化简 知识点三、 二次根式的除法法则: 把被开方数相除.

要点诠释:,即两个二次根式相除,根指数不变, (1)在进行二次根式的除法运算时,对于公式中被开方数a 、b 的取值范围应特别注意,其中 ,因为b 在分母上,故b 不能为0. (2)运用二次根式的除法法则,可将分母中的根号去掉,二次根式的运算结果要尽量化简,最后结果中分母不能带根号. 知识点四、商的算术平方根的性质 ,即商的算术平方根等于被除式的算术平方根除以除式的算术平方根. 要点诠释:(1)利用:运用次性质也可以进行二次根式的化简,运用时仍要注意符号问题. (2)步骤①利用商的算术平方根的性质 ② a ,b 利用积的算术平方根的性质化简③分母不能有根号,如果分母有根号要分母有理化 (3)被开方数是分数或分式可用商的算术平方根的性质对二次根式化简 知识点五:最简二次根式 1. 定义:当二次根式满足以下两条: (1)被开方数不含分母; (2)被开方数中不含能开得尽方的因数或因式. 把符合这两个条件的二次根式,叫做最简二次根式. 在二次根式的运算中,最后的结果必须化为最简二次根式或有理式. 要点诠释: (1)最简二次根式中被开方数不含分母; (2)最简二次根式被开方数中每一个因数或因式的次数都小于根指数2,即每个因数或因式从次数只能 为1次. 2. 把二次根式化成最简二次根式的一般步骤:

相关主题