搜档网
当前位置:搜档网 › 勾股定理评课稿

勾股定理评课稿

勾股定理评课稿
勾股定理评课稿

勾股定理评课稿

本堂课的教学教学目标有如下几点

1。让学生经历从数到形再由形到数的转化过程经历探求正方形面积间的关系转化为三边数量关系的过程。并从过程中让学生体会数形结合思想发展将未知转化为已知由特殊推测一般的合情推理水平。

2、让学生经历拼图实验、计算面积的过程在过程中养成独立思考、合作交流的学习习惯让各类型的学生在这些过程中发挥自己特长通过解决问题增强自信心激发学习数学的兴趣通过老师的介绍感受勾股定理的文化价值。

3、能说出勾股定理并能用勾股定理解决简单问题。本堂课的教学重点勾股定理的探索过程本堂课的教学难点,将边不在格线上的图形转化为边在格线上的图形以便于计算图形面

积邹老师这节课的教学流程是激趣引入——传授新知——习题练习——总结新课。王老师本堂课能根据学生的认知结构采用“观察--猜想--归纳--验证--应用”的教学方法这个流程体现了知识发生、形成和发展的过程让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。在这堂课第一环节——引入中王老师从创设情境、提出问题很巧妙的用故事引入新课采用悬念导入法抓住学生的好奇心理巧设悬念,以疑激学,促使学生在高昂的求知欲望中探求知识引发学生学习知识的兴趣“同学们想知道古人是用什么方法得到的”“你想学吗”。等等一些“挑逗”的语言来激发学生的学习兴趣。为学生对新授知识的学习作了一个很好的铺垫。

第二环节——教学过程王老师能采用探究发现式教学提供适当的问题情境给学生自主探究交流的空间,引导学生有目的地探索,即与本堂课勾股定理相关的三角形的边的关系。同时王老师在授课过程中让学生实践探索猜想归纳直角三角形三边数量关系利用图形探求三角形边

长之间的关系转化为探求正方形面积之间的关系来探索勾股定理的公式。比如画出三角形与正方形的组合图让学生发现其中所包含的知识点。

第三环节习题练习,习题的安排非常合理到位,有针对性,练习的设计有层次有梯度。首先能安排巩固性习题有针对性的单项练习为有效地巩固新知识。其次是开放性习题克服思维的狭隘培养学生思维品质的灵活性和创造性。再就是通过对以上两种习题的练习老师总结方法,当学生有了初步的解题思路后又安排了两个形成性习题,这样学生过通过讲——练——讲自评做法——练的磨合过程对于所学的知识点特别是重点、难点的内容就做到了通体透明。第四个环节——课堂小结邹老师能采用前呼后应的方法对本堂课实行小节,这样能使学生巩固本节课所学内容,加深了学生对本节课内容的理解和记忆,使学生对于本堂课的重点、难点,理清脉络,加深记忆,巩固知识,活跃思维,发展兴趣具有重要作用。

本堂课需改进的地方

1、课堂活跃性有待增强。

2、课堂上要给学生提问和质疑的空间。

3、教师感染学生的水平要增强。

勾股定理经典例题解析版

类型一:勾股定理的直接用法 1、在Rt△ABC中,∠C=90° (1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a. 思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。 解析:(1) 在△ABC中,∠C=90°,a=6,c=10,b= b=9,c=°,a=40,(2) 在△ABC中,∠C=90 (3) 在△ABC中,∠C=90°,c=25,b=15,a= 举一反三 【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少? °ACD=90 【答案】∵∠13, CD=12 = AD 222 ∴AC-=ADCD 22-=1312 =25 =5 ∴AC =3 °且BC又∵∠ABC=90 ∴由勾股定理可得 -222 ACBC AB= 22 =53- =16 = 4 AB∴ 4. 的长是∴AB 类型二:勾股定理的构造应用

. BC的长中,、如图,已知:在,,. 求: 2 ,则有角的直角三角形,为此作于D,想到构造含思路点拨:由条件 的DC的长,进而求出BC,再由勾股定理计算出AD、,. 长 ,则因:作,D于解析 (∴的两个锐角互余) 中,如果一个锐角等于∴(在,

. 那么它所对的直角边等于斜边的一半) 根据勾股定理,在中, . 根据勾股定理,在中, . . ∴ . 求证: . P于,,如图,已知:】1【变式举一反三 解析:连结BM,根据勾股定理,在中, . 中,则根据勾股定理有而在

. ∴ 又∵(已知), ∴. 中,根据勾股定理有在 , ∴. 【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。求:四边形ABCD的面积。 分析:如何构造直角三角形是解本题的关键,可以连结AC,或延长AB、DC交于F,或延长AD、BC交于点E,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单。 解析:延长AD、BC交于E。 ∵∠A=∠60°,∠B=90°,∴∠E=30°。 CE=2CD=4,∴AE=2AB=8, 22222BE==8= -4∴BE。=AE=48-AB,

勾股定理教案

勾股定理(一) 常德市第二中学张美荣 教学目标 2、过程与方法 让学生经历“观察——猜测——证明——应用”的数学探究过程,在动手实践中体会“特殊到一般”和“数形结合”的数学思想方法。 3、情感态度与价值观 通过实验,让学生感受到数学所具有的探索性和创造性,激发学生探究热情,培养学生良好的团队合作意识和创新精神。通过对我国古代数学成就的了解,增强民族自豪感,激发学习热情。 教学重点与难点 教学重点:勾股定理的探索过程与应用 教学难点:勾股定理的证明 教学过程 一、创设情景引入新知 创设校园问题情景 1、观看多媒体照片 照片中,你看到了什么? 2、抽象出数学问题 如图,少数师生为了走“捷径”,在学校求索馆前的长方形草坪内走出一条小路AB。已知两步为1m,你能算出“捷径”省了多少路吗?从计算出的结果,你有怎样的想法? 引导学生分析:要算节省的路程,就要算出AB的长,Rt△AOB中,已经知道AO、BO 的长,如何计算AB呢?即问题转化为:直角三角形中已知两边,如何求第三边? 这就是我们今天要探究的内容:勾股定理 二、测量实验猜测新知 操作一 在方格纸上画一个顶点都在格点上的R t△ABC,∠C=90°,其中a=3,b=4,测量斜边c 的长度。

操作二 分别以R t△ABC三边a、b、c为边长向外作正方形S、T、P,则正方形S、T的面积是多少?正方形P呢,如何计算? 引导学生先画图,由画图过程去体会正方形P的计算方法(割补法),然后请学生来表述。 操作三 P的面积,由此猜测 222 +=,即勾股定理: a b c 直角三角形两直角边a,b的平方和,等于斜边c的平方. 222 += a b c 三、拼图探究验证新知 (一)拼图实验 步骤1剪出四个全等的(如右图)直角三角形,其中c为斜边,且b>a. 步骤2用这四个直角三角形拼出一个正方形(中间可以出现空心). 学生作品展示 运用多媒体工具(备课王)展示学生作品:

中考数学勾股定理知识点-+典型题及解析

中考数学勾股定理知识点-+典型题及解析 一、选择题 1.图中不能证明勾股定理的是( ) A . B . C . D . 2.勾股定理是几何中的一个重要定理,在我国算书《网醉算经》中就有“若勾三,股四,则弦五”的记载.如图1,是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,BC=5,点D ,E ,F ,G ,H ,I 都在矩形KLMJ 的边上,则矩形KLMJ 的面积为( ) A .121 B .110 C .100 D .90 3.如图,在ABC 中,90A ∠=?,6AB =,8AC =,ABC ∠与ACB ∠的平分线交于点O ,过点O 作⊥OD AB 于点D ,若则AD 的长为( )

A .2 B .2 C .3 D .4 4.已知△ABC 是腰长为1的等腰直角三角形,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三个等腰Rt △ADE ,…,依此类推,第n 个等腰直角三角形的面积是( ) A .2n ﹣2 B .2n ﹣1 C .2n D .2n+1 5.如图,正方形ABCD 和正方形CEFG 边长分别为a 和b ,正方形CEFG 绕点C 旋转,给出下列结论:①BE=DG;②BE⊥DG;③DE 2+BG 2=2a 2+2b 2,其中正确结论有( ) A .0个 B .1个 C .2个 D .3个 6.如图是我国数学家赵爽的股弦图,它由四个全等的直角三角形和小正方形拼成的一个大正方形.已知大正方形的面积是l3,小正方形的面积是1,直角三角形的较短直角边长为a ,较长直角边长为b ,那么()2 a b +值为( ) A .25 B .9 C .13 D .169 7.我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知90A ∠=?正方形ADOF 的边长是2,4BD =,则CF 的长为( ) A .6 B .2 C .8 D .10 8.有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上生出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了上图,如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2020次后形成的图形中所有的正方形的面积和是( )

勾股定理教材分析教案

本章教学时间约需8课时,具体安排如下: 18.1 勾股定理 4 课时 18.2 勾股定理的逆定理 3课时 数学活动 小结 1课时 一、教科书内容和课程学习目标 本章知识结构框图: 直角三角形是一种特殊的三角形,它有许多重要的性质,如两个锐角互余,30°的角所对的直角边等于斜边的一半。本章所研究的勾股定理,也是直角三角形的性质,而且是一条非常重要的性质。 勾股定理是几何中几个最重要的定理之一,它揭示了一个直角三角形三条边之间的数量关系,它可以解决许多直角三角形中的计算问题,是解直角三角形的主要依据之一,在生产生活实际中用途很大。它不仅在数学中,而且在其他自然科学中也被广泛地应用。 目前世界上许多科学家正在试图寻找其他星球的“人”,为此向宇宙发出了许多信号,如地球上人类的语言、音乐、各种图形等。据说我国著名数学家华罗庚曾建议,发射一种反映勾股定理的图形,如果宇宙人是“文明人”,那么他们一定会识别这种“语言”的。这个事实可以说明勾股定理的重大意义,发现勾股定理,尤其在2000多年前,是非常了不起的成就。 在第一节中,教科书让学生通过观察计算一些直角三角形两直角边为边长的小正方形的面积与以斜边为边长的正方形的面积的关系,发现两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积,从而发现勾股定理。 勾股定理的证明方法很多,教科书正文中介绍的是一种面积证法。其中的依据是图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变。在教科书中,图-3(1)中的图形经过割补拼接后得到图-3(3)中的图形。由此就证明了勾股定理。通过推理证实命题1的正确性后,教科书顺势指出什么是定理。 由勾股定理可知,已知两条直角边的长a,b,就可以求出斜边c的长。由勾股定理可得或,由此可知,已知斜边与一条直角边的长,就可以求出另一条直角边的长。也就是说,在直角三角形中,已知两条边的长,就可以求出第三条边的长。教科书相应安排了三个探究栏目,让学生运用勾股定理解决问题。 在第二节中,教科书让学生画出一些两边的平方和等于第三边的平方的三角形,可以发现画出的三角形是直角三角形。从而猜想如果三角形的三边满足两边的平方和等于第三边的平方,那么这个三角形是直角三角形。这个猜想可以利用全等三角形证明,得到勾股定理的逆定理。 勾股定理的逆定理给出了判定一个三角形是直角三角形的方法。教科书安排了两个例题,让学生学会运用这种方法。这种方法与前面学过的一些判定方法不同,它通过代数运算“算”出来。实际上利用计算证明几何问题学生已经见过,计算在几何里也是很重要的。从这个意义上讲,勾股定理的逆定理的学习,对开阔学生眼界,进一步体会数学中的各种方法有很大的意义。 几何中有许多互逆的命题,互逆的定理,它们从正反两个方面揭示了图形的特征性质,所以互逆命题和互逆定理是几何中的重要概念。学生已见过一些互逆命题(定理),例如:“两直线平行,内错角相等”与“内错角相等,两直线平行”;“全等三角形的对应边相等”与“对应边相等的三角形是全等三角形”等,都是互逆命题。勾股定理与勾股定理的逆定理

数学数学勾股定理试题及解析

数学数学勾股定理试题及解析 一、选择题 1.△ABC 中,AB=15,AC=13,高AD=12,则△ABC 的周长为( ) A .42 B .32 C .42或32 D .37或33 2.如图,在Rt ABC ?中,90, 5 ,3ACB AB cm AC cm ?∠=== ,动点P 从点B 出发,沿射线BC 以1 /cm s 的速度移动,设运动的时间为t 秒,当?ABP 为等腰三角形时,t 的值不可能为( ) A .5 B .8 C .254 D .258 3.如图,四边形ABCD 中,AC ⊥BD 于O ,AB =3,BC =4,CD =5,则AD 的长为( ) A .1 B .32 C .4 D .23 4.如图,已知直线a ∥b ,且a 与b 之间的距离为4,点A 到直线a 的距离为2,点B 到直线b 的距离为3,AB 230=.试在直线a 上找一点M ,在直线b 上找一点N ,满足MN ⊥a 且AM +MN +NB 的长度和最短,则此时AM +NB =( ) A .6 B .8 C .10 D .12 5.如图,设正方体ABCD-A 1B 1C 1D 1的棱长为1,黑、白两个甲壳虫同时从点A 出发,以相同的速度分别沿棱向前爬行,黑甲壳虫爬行的路线是AA 1→A 1D 1→…,白甲壳虫爬行的路线是AB→BB 1→…,并且都遵循如下规则:所爬行的第n+2与第n 条棱所在的直线必须

既不平行也不相交(其中n 是正整数).那么当黑、白两个甲壳虫各爬行完第2017条棱分别停止在所到的正方体顶点处时,它们之间的距离是( ) A .0 B .1 C .3 D .2 6.我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a 和b ,那么ab 的值为( ) A .49 B .25 C .12 D .10 7.如图所示,有一个高18cm ,底面周长为24cm 的圆柱形玻璃容器,在外侧距下底1cm 的点S 处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口处1cm 的点F 处有一只苍蝇,则急于捕获苍蝇充饥的蜘蛛所走的最短路径的长度是( ) A .16cm B .18cm C .20cm D .24cm 8.下列各组线段能构成直角三角形的一组是( ) A .30,40,60 B .7,12,13 C .6,8,10 D .3,4,6 9.勾股定理是“人类最伟大的十个科学发现之一”.我国对勾股定理的证明是由汉代的赵爽在注解《周髀算经》时给出的,他用来证明勾股定理的图案被称为“赵爽弦图”.2002年在北京召开的国际数学大会选它作为会徽.下列图案中是“赵爽弦图”的是( ) A . B . C . D . 10.为了庆祝国庆,八年级(1)班的同学做了许多拉花装饰教室,小玲抬来一架2.5米长的梯子,准备将梯子架到2.4米高的墙上,则梯脚与墙角的距离是( ) A .0.6米 B .0.7米 C .0.8米 D .0.9米 二、填空题 11.如图,ACB △和ECD 都是等腰直角三角形,CA CB =,CE CD =,ABC 的顶

勾股定理的故事

毕达哥拉斯 Pythagoras “万物皆数”——毕达哥拉斯 【毕达哥拉斯(Pythagoras)简介】 泰勒斯(Thales)在哲学上有个对立面,这个人就是首先提出物质运动应该符合数学规律的古希腊哲学家、数学家、天文学家——毕达哥拉斯(公元前560年~公元前480年)。 【人生简历】 公元前580年,毕达哥拉斯出生在米里都附近的萨摩斯岛(今希腊东部的小岛)——爱奥尼亚群岛的主要岛屿城市之一,此时群岛正处于极盛时期,在经济、文化等各方面都远远领先于希腊本土的各个城邦。 毕达哥拉斯的父亲是一个富商,九岁时被父亲送到提尔,在闪族叙利亚学者那里学习,在这里他接触了东方的宗教和文化。以后他又多次随父亲作商务旅行到小亚细亚。 公元前551年,毕达哥拉斯来到米利都、得洛斯等地,拜访了泰勒斯、阿那克西曼德和菲尔库德斯,并成为了他们的学生。在此之前,他已经在萨摩斯的诗人克莱非洛斯那里学习了诗歌和音乐。 公元前550年,30岁的毕达哥拉斯因宣传理性神学,穿东方人服装,蓄上头发从而引起当地人的反感,从此萨摩斯人一直对毕达哥拉斯有成见,认为他标新立异,鼓吹邪说。毕达哥拉斯被迫于公元前535年离家前往埃及,途中他在腓尼基各沿海城市停留,学习当地神话和宗教,并在提尔一神庙中静修。 抵达埃及后,国王阿马西斯推荐他入神庙学习。从公元前535年到公元前525年这十年中,毕达哥拉斯学习了象形文字和埃及神话历史和宗教,并宣传希腊哲学,受到许多希腊人尊敬,有不少人投到他的门下求学。 毕达哥拉斯在49岁时返回家乡萨摩斯,开始讲学并开办学校,但是没有达到他预期的成效。公元前520年左右,为了摆脱当时君主的暴政,他与母亲和唯一的一个门徒离开萨摩斯,移居西西里岛,后来定居在克罗托内。在那里他广收门徒,建立了一个宗教、政治、学术合一的团体。

中考数学勾股定理知识归纳总结附解析

中考数学勾股定理知识归纳总结附解析 一、选择题 1.在ABC ?中,D 是直线BC 上一点,已知15AB =,12AD =,13AC =,5CD =,则BC 的长为( ) A .4或14 B .10或14 C .14 D .10 2.如图,在△ABC 中,∠BAC =90°,AC =2AB ,点D 是AC 的中点,将一块锐角为45°的直角三角板ADE 如图放置,连接BE ,EC .下列判 断:①△ABE ≌△DCE ;②BE =EC ;③BE ⊥EC ;④EC =3DE .其中正确的有( ) A .1个 B .2个 C .3个 D .4个 3.如图,在等腰三角形ABC 中,AC=BC=5,AB=8,D 为底边上一动点(不与点A ,B 重合),DE ⊥AC ,DF ⊥BC ,垂足分别为E 、F ,则DE+DF= ( ) A .5 B .8 C .13 D .4.8 4.如果正整数a 、b 、c 满足等式222+=a b c ,那么正整数a 、b 、c 叫做勾股数.某同学将自己探究勾股数的过程列成下表,观察表中每列数的规律,可知x y +的值为( ) A .47 B .62 C .79 D .98 5.如图,在△ABC 中,∠A =90°,P 是BC 上一点,且DB =DC ,过BC 上一点P ,作PE ⊥AB 于E ,PF ⊥DC 于F ,已知:AD :DB =1:3,BC =46,则PE+PF 的长是( ) A .6 B .6 C .42 D .26

6.如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD 、正方形EFGH 、正方形MNKT 的面积分别为S 1、S 2、S 3.若S 1+S 2+S 3=15,则S 2的值是( ) A .3 B .154 C .5 D .152 7.如图,已知AB AC =,则数轴上C 点所表示的数为( ) A .3- B .5- C .13- D .15- 8.如图,在Rt △ABC 中,∠A=90°,AB=6,AC=8,现将Rt △ABC 沿BD 进行翻折,使点A 刚好落在BC 上,则CD 的长为( ) A .10 B .5 C .4 D .3 9.如图, 在ABC 中,CE 平分ACB ∠,CF 平分ABC 的外角ACD ∠,且EF //BC 交AC 于M ,若CM 4=,则22CE CF +的值为( ) A .8 B .16 C .32 D .64 10.如图,△ABC 中,AB =AC ,AD 是∠BAC 的平分线.已知AB =5,AD =3,则BC 的长 为( )

《勾股定理教材分析》

《勾股定理》教材分析 一、课标要求: 1、体验勾股定理的探索过程,会运用勾股定理解决简单问题; 2、会运用勾股定理的逆定理判定直角三角形; 3、通过具体的例子,了解定理的含义,了解逆命题、逆定理的概念,知道原命题成立其逆命题不一定成立。 二、中考要求: 1、已知直角三角形的两边长,会求第三边长。 2、会用勾股定理解决简单问题;会用勾股定理逆定理判定三角形是否为直角三角形。 3、了解定义、命题、定理含义;了解逆命题的概念,会识别两个互逆命题,并知道原命题成立,逆命题不一定成立。 三、 本章结构图: 互逆定理 四、 本章的地位和作用 五、本章课时安排: 本章教学时间约需要7课时,具体安排如下: 18.1 勾股定理 3课时 18.2 勾股定理的逆定理 2课时 18.3 小结 2课时

六、本章重要的数学思想和方法 1. 在定理、逆定理探究过程中所体现出来的由特殊到一般的思想 2.数形结合思想:面积法证明数学问题及由数到形、由形到数 3、整体的方法. 4.分类讨论思想 5.方程思想贯穿始终 6.转化思想:化斜为直,化空间为平面,化曲为直 七、教学内容设计 八、数学思想的贯穿 2、数形结合思想 例1、我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成一个大正方形。如果大正方形的面积是13,小正方形的面积是1,直角三角形的两条直角边分别为a,b. 那么( a+b)2的值为_____ 例2 如图,高速公路的同侧有A、B两个村庄,他们到高速公路所在直线MN的距离分别为AA1=2km,BB1=4km,A1B1=8km。现要在高速公路上

第十七章《勾股定理》教材分析及教学建议

第十七章《勾股定理》教材分析及教学建议 本章主要内容是勾股定理及其逆定理。首先让学生通过观察得出直角三角形两条直角边的平方和等于斜边的平方的结论并加以证明,从而得到勾股定理,然后运用勾股定理解决问题。在此基础上,引入勾股定理的逆定理,并结合此项内容介绍逆命题、逆定理的概念。 本章教学时间约需8课时,具体安排如下: 18.1 勾股定理 4 课时 18.2 勾股定理的逆定理 3课时 数学活动 小结 1课时一、教科书内容和课程学习目标 本章知识结构框图: 直角三角形是一种特殊的三角形,它有许多重要的性质,如两个锐角互余,30°的角所对的直角边等于斜边的一半。本章所研究的勾股定理,也是直角三角形的性质,而且是一条非常重要的性质。

勾股定理是几何中几个最重要的定理之一,它揭示了一个直角三角形三条边之间的数量关系,它可以解决许多直角三角形中的计算问题,是解直角三角形的主要依据之一,在生产生活实际中用途很大。它不仅在数学中,而且在其他自然科学中也被广泛地应用。 目前世界上许多科学家正在试图寻找其他星球的“人”,为此向宇宙发出了许多信号,如地球上人类的语言、音乐、各种图形等。据说我国著名数学家华罗庚曾建议,发射一种反映勾股定理的图形,如果宇宙人是“文明人”,那么他们一定会识别这种“语言”的。这个事实可以说明勾股定理的重大意义,发现勾股定理,尤其在2000多年前,是非常了不起的成就。 在第一节中,教科书让学生通过观察计算一些直角三角形两直角边为边长的小正方形的面积与以斜边为边长的正方形的面积的关系,发现两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积,从而发现勾股定理。 勾股定理的证明方法很多,教科书正文中介绍的是一种面积证法。其中的依据是图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变。在教科书中,图-3(1)中的图形经过割补拼接后得到图-3(3)中的图形。由此就证明了勾股定理。通过推理证实命题1的正确性后,教科书顺势指出什么是定理。 由勾股定理可知,已知两条直角边的长a,b,就可以求出斜边c的长。由勾股定理可得或,由此可知,已知斜边与一条直角边的长,就可以求出另一条直角边的长。也就是说,在直角三角形中,已知两条边的长,就可以求出第三条边的长。教科书相应安排了三个探究栏目,让学生运用勾股定理解决问题。 在第二节中,教科书让学生画出一些两边的平方和等于第三边的平方的三角形,可以发现画出的三角形是直角三角形。从而猜想如果三角形的三边满足两边的平方和等于第三边的平方,那么这个三角形是直角三角形。这个猜想可以利用全等三角形证明,得到勾股定理的逆定理。 勾股定理的逆定理给出了判定一个三角形是直角三角形的方法。教科书安排了两个例题,让学生学会运用这种方法。这种方法与前面学过的一些判定方法不同,它通过代数运算“算”出来。实际上利用计算证明几何问题学生已经见过,计算在几何里也是很重要的。从

勾股定理 例题详解

勾股定理经典例题详解 知识点一:勾股定理 如果直角三角形的两直角边长分别为:a,b,斜边长为c,那么a2+b2=c2.即直角三角形中两直角边的平方和等于斜边的平方. 要点诠释:(1)勾股定理揭示的是直角三角形平方关系的定理。 (2)勾股定理只适用于直角三角形,而不适用于锐角三角形和钝角三角。 (3)理解勾股定理的一些变式: c2=a2+b2, a2=c2-b2, b2=c2-a2,c2=(a+b)2-2ab 知识点二:用面积证明勾股定理 方法一:将四个全等的直角三角形拼成如图(1)所示的正方形。 图(1)中,所以。 方法二:将四个全等的直角三角形拼成如图(2)所示的正方形。 图(2)中,所以。 方法三:将四个全等的直角三角形分别拼成如图(3)—1和(3)—2所示的两个形状相同的正方形。

在(3)—1中,甲的面积=(大正方形面积)—(4个直角三角形面积), 在(3)—2中,乙和丙的面积和=(大正方形面积)—(4个直角三角形面积), 所以,甲的面积=乙和丙的面积和,即:. 方法四:如图(4)所示,将两个直角三角形拼成直角梯形。 ,所以。 知识点三:勾股定理的作用 1.已知直角三角形的两条边长求第三边;2.已知直角三角形的一条边,求另两边的关系; 3.用于证明平方关系的问题; 4.利用勾股定理,作出长为 的线段。 2. 在理解的基础上熟悉下列勾股数 满足不定方程x2+y2=z2的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以x,y,z为三边长的三角形一定是直角三角形。 熟悉下列勾股数,对解题是会有帮助的: ①3、4、5②5、12、13;③8、15、17;④7、24、25;⑤10、24、26;⑥9、 40、41.

勾股定理的论文

勾股定理的论文 关于勾股定理 勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若骛,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。 在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。 在国外,尤其在西方,勾股定理通常被称为毕达哥拉斯定理.这是由于,他们认为最早发现直角三角形具有“勾2+股2=弦2”这一性质并且最先给出严格证明的是古希腊的数学家毕达哥拉斯(Pythagoras,约公元前580-公元前500). 实际上,在更早期的人类活动中,人们就已经认识到这一定理的某些特例.除我国在公元前1000多年前发现勾股定理外,据说古埃及人也曾利用“勾三股四弦五”的法则来确定直角.但是,这一传说引起过许多数学史家的怀疑.比如,美国的数学史家M·克莱因教授曾经指出:“我们也不知道埃及人是否认识到毕达哥拉斯定理.我们知道他们有拉绳人(测量员),但所传他们在绳上打结,把全长分成长度为3、4、5的三段,然后用来形成直角三角形之说,则从未在任何文件上得到证实.”不过,考古学家们发现了几块大约完成于公元前2000年左右的古巴比伦的泥版书,据专家们考证,其中一块上面刻有如下问题:“一根长度为30个单位的棍子直立在墙上,当其上端滑下6个单位时,请问其下端离开墙角有多远?”这是一个三边为3:4:5三角形的特殊例子;专家们还发现,在另一块版板上面刻着一个奇特的数表,表中共刻有四列十五行数字,这是一个勾股数表:最右边一列为从1到15的序号,而左边三列则分别是股、勾、弦的数值,一共记载着15组勾股数.这说明,勾股定理实际上早已进入了人类知识的宝库. 证明方法: 先拿四个一样的直角三角形。拼入一个(a+b)的正方形中,中央米色正方形的面积:c2 。图(1)再改变三角形的位置就会看到两个米色的正方形,面积是(a2 ,b2)。图(2)四个三角形面积不变,所以结论是:a2 + b2 = c2 图(1)图(2) 勾股定理的历史: 商高是公元前十一世纪的中国人.当时中国的朝代是西周,是奴隶社会时期.在中国古代大约是战国时期 西汉的数学著作《周髀算经》中记录着商高同周公的一段对话.商高说:"…故折矩,勾广三,股修四,经隅五."商高那段话的意思就是说:当直角三角形的两条直角边分别为3(短边)和4(长边)时,径隅(就是弦)则为5.以后人们就简单地把这个事实说成"勾三股四弦五".这就是著名的勾股定理. 关于勾股定理的发现,《周髀算经》上说:"故禹之所以治天下者,此数之所由生也.""此数"指的是"勾三股四弦五",这句话的意思就是说:勾三股四弦五这种关系是在大禹治水时发现的. 赵爽: ?东汉末至三国时代吴国人 ?为《周髀算经》作注,并著有《勾股圆方图说》.

勾股定理知识归纳总结及解析

勾股定理知识归纳总结及解析 一、选择题 1.如图,已知ABC 中,4AB AC ==,6BC =,在BC 边上取一点P (点P 不与点B 、C 重合),使得ABP △成为等腰三角形,则这样的点P 共有( ). A .1个 B .2个 C .3个 D .4个 2.如图,在矩形纸片ABCD 中,AD =9,AB =3,将其折叠,使点D 与点B 重合,折痕为EF ,那么折痕EF 的长为( ) A .3 B .6 C .10 D .9 3.如图,已知ABC 中,10,86,AB AC BC AB ===,的垂直平分线分别交,AC AB 于 ,,D E 连接BD ,则CD 的长为( ) A .1 B . 54 C . 74 D .254 4.如图,在ABC 中,90A ∠=?,6AB =,8AC =,ABC ∠与ACB ∠的平分线交于点O ,过点O 作⊥OD AB 于点D ,若则AD 的长为( ) A 2 B .2 C 3 D .4 5.如图,设正方体ABCD-A 1B 1C 1D 1的棱长为1,黑、白两个甲壳虫同时从点A 出发,以相同的速度分别沿棱向前爬行,黑甲壳虫爬行的路线是AA 1→A 1D 1→…,白甲壳虫爬行的路线是AB→BB 1→…,并且都遵循如下规则:所爬行的第n+2与第n 条棱所在的直线必须

既不平行也不相交(其中n 是正整数).那么当黑、白两个甲壳虫各爬行完第2017条棱分别停止在所到的正方体顶点处时,它们之间的距离是( ) A .0 B .1 C .3 D .2 6.如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD 、正方形EFGH 、正方形MNKT 的面积分别为S 1、S 2、S 3.若S 1+S 2+S 3=15,则S 2的值是( ) A .3 B . 154 C .5 D . 152 7.下列四组数中不能构成直角三角形的一组是( ) A .1,2,6 B .3,5,4 C .5,12,13 D .3,2,13 8.下列长度的三条线段能组成直角三角形的是( ) A .9,7,12 B .2,3,4 C .1,2,3 D .5,11,12 9.在直角三角形ABC 中,90C ∠=?,两直角边长及斜边上的高分别为,,a b h ,则下列关系式成立的是( ) A . 222221a b h += B . 222111 a b h += C .2h ab = D .222h a b =+ 10.如图,在△ABC ,∠C =90°,AD 平分∠BAC 交CB 于点D ,过点D 作DE ⊥AB ,垂足恰好是边AB 的中点E ,若AD =3cm ,则BE 的长为( )

勾股定理(基础)知识讲解

勾股定理(基础) 撰稿:吴婷婷 责编:常春芳 【学习目标】 1.掌握勾股定理的内容,了解勾股定理的多种证明方法,体验数形结合的思想; 2.能够运用勾股定理求解三角形中相关的边长(只限于常用的数); 3.通过对勾股定理的探索解决简单的实际问题,进一步运用方程思想解决问题. 【要点梳理】 【高清课堂 勾股定理 知识要点】 要点一、勾股定理 直角三角形两条直角边的平方和等于斜边的平方.如果直角三角形的两直角边长分别为a b ,,斜边长为c ,那么2 2 2 a b c +=. 要点诠释:(1)勾股定理揭示了一个直角三角形三边之间的数量关系. (2)利用勾股定理,当设定一条直角边长为未知数后,根据题目已知的线段长 可以建立方程求解,这样就将数与形有机地结合起来,达到了解决问题的目的. (3)理解勾股定理的一些变式: 222a c b =-,222b c a =-, ()2 22c a b ab =+-. 要点二、勾股定理的证明 方法一:将四个全等的直角三角形拼成如图(1)所示的正方形. 图(1)中 ,所以 . 方法二:将四个全等的直角三角形拼成如图(2)所示的正方形. 图(2)中 ,所以 . 方法三:如图(3)所示,将两个直角三角形拼成直角梯形.

,所以. 要点三、勾股定理的作用 1. 已知直角三角形的任意两条边长,求第三边; 2. 用于解决带有平方关系的证明问题; 3. 与勾股定理有关的面积计算; 4.勾股定理在实际生活中的应用. 【典型例题】 类型一、勾股定理的直接应用 1、在△ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c . (1)若a =5,b =12,求c ; (2)若c =26,b =24,求a . 【思路点拨】利用勾股定理2 2 2 a b c +=来求未知边长. 【答案与解析】 解:(1)因为△ABC 中,∠C =90°,2 2 2 a b c +=,a =5,b =12, 所以2 2 2 2 2 51225144169c a b =+=+=+=.所以c =13. (2)因为△ABC 中,∠C =90°,2 2 2 a b c +=,c =26,b =24, 所以2 2 2 2 2 2624676576100a c b =-=-=-=.所以a =10. 【总结升华】已知直角三角形的两边长,求第三边长,关键是先弄清楚所求边是直角边还是斜边,再决定用勾股原式还是变式. 举一反三: 【变式】在△ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c . (1)已知b =6,c =10,求a ; (2)已知:3:5a c =,b =32,求a 、c . 【答案】 解:(1)∵ ∠C =90°,b =6,c =10, ∴ 2 2 2 2 2 10664a c b =-=-=, ∴ a =8. (2)设3a k =,5c k =, ∵ ∠C =90°,b =32, ∴ 2 2 2 a b c +=. 即2 2 2 (3)32(5)k k +=. 解得k =8. ∴ 33824a k ==?=,55840c k ==?=. 类型二、与勾股定理有关的证明

勾股定理教材分析文档

一、教材分析 勾股定理是直角三角形的一条非常重要的性质,也是几何中最重要的定理之一。它揭示了三角形三条边之间的数量关系,主要用于解决直角三角形中的计算问题,是解直角三角形的主要根据之一,同时在实际生活中具有广泛的用途,“数学源于生活,又用与生活”是这章书所体现的主要思想。教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际操作,使学生获得较为直观的印象;通过联系比较、探索、归纳,帮助学生理解勾股定理,以利于进行正确的应用。 2、教学目标 <1> 通过对几种常见的勾股定理验证方法,进行分析和欣赏。理解数学知识之间的内在联系,体会数形结合的思想方法,进一步感悟勾股定理的文化价值。 <2> 通过拼图活动,尝试验证勾股定理,培养学生的动手实践和创新能力。 <3>让学生经历查询资料、自主探究、合作交流、观察比较、计算推理、动手操作等过程,获得一些研究问题的方法,取得成功和克服困难的经验,培养学生良好的思维品质,增进他们数学学习的信心。 <4> 掌握勾股定理及其逆定理,并能运用这两个定理解决实际问题. 重点: <1> 分析和欣赏几种常见的验证勾股定理的方法。 <2>勾股定理和逆定理的探索和应用。 难点: <1> “数形结合”思想方法的理解和应用。 <2> 通过拼图,探求验证勾股定理的新方法。 4、教法和学法: 在整个教学过程中,本课的教法和学法体现如下特点: 1、以学生自我探索、合作交流为主,充分发挥教师的主导作用,运用各种手段激发学生学习欲望和兴趣,组织学生活动,让学生主动参与学习全过程。 2、切实体现学生的主体地位,让学生通过观察、分析、讨论、操作、归纳,理解定理,提高学生动手操作能力,以及分析问题和解决问题的能力。 3、通过学生自己得到获得新知的成功感受,从而激发学生钻研新知的欲望。 二、学情分析: 八年级的学生虽然缺乏七年级学生那种强烈的新奇感,但他们已具备了一定的动手能力,分析归纳能力,而且勾股定理是在学生已经掌握了直角三角形的有关性质的基础上学习的,所以只要教师能通过各种教学手段调动学生的学习积极性,并进行适当的引导,他们能够就勾股定理这一主题展开探索,在探索中理解并掌握勾股定理。 三、课程设计 1.课时安排 勾股定理2课时 直角三角形的判定1课时 勾股定理的运用2课时 复习2课时 勾股定理的“无字证明”2课时 共9课时 四、注意事项

1 勾股定理文化背景及其对现代教学的影响

1 勾股定理文化背景及其对现代教学的影响 勾股定理是中国几何的根源。中华数学的精髓,诸如开方术、方程术、天元术等技艺的诞生与发展,寻根探源,都与勾股定理有着密切关系。勾股形与比率算法相结合,经推演变化已构成各种各样的测量法(如刘徽的“重差术”)。古代数学家常以勾股形代替一般三角形进行研究,从而可以避开角的性质的研讨和不触及平行的烦琐理论,使几何体系简洁明了,问题的解法更加精致。从中国勾股定理的诞生与发展来看,中国古代数学文化传统明显有重视应用、注重理论联系实际、数形结合,以算为主、善于把问题分门别类建立一套套算法体系的特征。然而中国的传统文化注重“经世致用”,思维方式具有“重实际而黜玄想”的务实精神,以及述而不作的研究方法,使得勾股定理从诞生开始一直没有超越直观经验和具体运算,而发展成一套完整的演绎推理,它始终作为一种技艺在传播与应用,走的是为了解决实际问题的模式化发展道路。这种技艺应用的价值取向至今仍影响着我们对数学的认识,影响着我们的数学教学。 在西方,从毕达哥拉斯学派发现了“与有理数不可通约的无理数”开始,勾股定理作为欧氏空间的度量标尺,经过演绎推理,为几何公理体系的完善和发展写下了新的篇章。欧几里得在证明勾股定理同时,结合图形分析,以演绎推理的方法获得了一系列的定理和推论。此后,西方数学家从数的角度将勾股定理推广到求不定方程的正整数解,引出了著名的费马猜想、鲍恩猜想、埃斯柯特猜想;从形的角度又把它推广到平面图形面积关系、立体图形的表面积关系的探讨。如此无穷延伸,在追求严谨的逻辑体系和数学美的过程中推动了现代数学的发展.这种崇尚理性、注重演绎推理的数学传统有着深厚的文化背景,从西方的基督教文化来看,它认为上帝是按数学来构造世界。这一观点足以表明数学教育在西方文化中的宗教和哲学价值取向的理性地位,这对我们今天学习数学,理解现代数学体系结构的形成有着重要的启示作用。 2 现代勾股定理教学设计 中、西方在不同的文化背景下所诞生的勾股定理及其发展道路,给我们的启发是在继承传统文化精髓的同时必须改变传统数学价值观,才能学好西方数学公理化体系,走上数学教育现代化的道路。为此,我们必须设计出符合自身文化传统习惯的课堂教学模式。以勾股定理教学为例,笔者认为可以从以下几个环节进行教学设计。 2.1 从文化传统习惯入手,利用现代化教学手段进行数学实验 请学生自己画出几个直角三角形,利用直尺测量三条边长,并记录数据,计算边长的平方值,分析它们的关系,引导学生通过计算发现勾股定理。测量和计算是我们民族文化传统的特长,是古人发现问题、解决问题常用的思路,也是我们学生很熟悉的学习方法。从几个学生构造的特殊例子出发,利用测量工具进行估算,寻找规律,提出猜想,符合我们的文化传统习惯,符合从特殊到一般的思维规律,容易发挥学生的主体积极性。 利用几何画板软件设计任一直角三角形,自动测量三边边长,验证学生的发现与猜想(图1)。几何画板软件就其本身设计来说,是一种模式化的算法体系,用它来精确测量三角形的边长,

勾股定理案例分析

勾股定理案例分析 我仅从四个方面,借助教学案例分析的形式,向老师们汇报一下我个人数学教学的体会,这四个方面是: 1.在多样化学习活动中实现三维目标的整合; 2.课堂教学过程中的预设和生成的动态调整; 3.对数学习题课的思考; 4.对课堂提问的思考。 首先,结合《勾股定理》一课的教学为例,谈谈如何在多样化学习活动中实现三维目标的整合 案例1:《勾股定理》一课的课堂教学 第一个环节:探索勾股定理的教学 师(出示4幅图形和表格):观察、计算各图中正方形A、B、C的面积,完成表格,你有什么发现? 生:从表中可以看出A、B两个正方形的面积之和等于正方形C 的面积。并且,从图中可以看出正方形A、B的边就是直角三角形的两条直角边,正方形C的边就是直角三角形的斜边,根据上面的结

果,可以得出结论:直角三角形的两条直角边的平方和等于斜边的平方。 这里,教师设计问题情境,让学生探索发现“数”与“形”的密切关联,形成猜想,主动探索结论,训练了学生的归纳推理的能力,数形结合的思想自然得到运用和渗透,“面积法”也为后面定理的证明做好了铺垫,双基教学寓于学习情境之中。 第二个环节:证明勾股定理的教学 教师给各小组奋发制作好的直角三角形和正方形纸片,先分组拼图探究,在交流、展示,让学生在实践探究活动中形成新的能力(试图发现拼图和证明的规律:同一个图形面积用不同的方法表示)。 学生展示略 通过小组探究、展示证明方法,让学生把已有的面积计算知识与要证明的代数式联系起来,并试图通过几何意义的理解构造图形,让学生在探求证明方法的过程中深刻理解数学思想方法,提升创新思维能力。 第三个环节:运用勾股定理的教学 师(出示右图):右图是由两个正方形 组成的图形,能否剪拼为一个面积不变的新 的正方形,若能,看谁剪的次数最少。 生(出示右图):可以剪拼成一个面积 不变的新的正方形,设原来的两个正方形的 边长分别是a、b,那么它们的面积和就是

勾股定理的历史与证明

安溪六中校本课程之数学探秘 勾股定理史话 一、勾股定理的历史 勾股定理是“人类最伟大的十个科学发现之一”,是初等几何中的一个基本定理。那么大家知道多少勾股定理的别称呢?我可以告诉大家,有:毕达哥拉斯定理,商高定理,百牛定理,驴桥定理和埃及三角形等。所谓勾股定理,就是指“在直角三角形中,两条直角边的平方和等于斜边的平方。”这个定理有十分悠久的历史,几乎所有文明古国(希腊、中国、埃及、巴比伦、印度等)对此定理都有所研究。 勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯(Pythagoras,公元前572?~公元前497?)于公元前550年首先发现的。但毕达哥拉斯对勾股定理的证明方法已经失传。著名的希腊数学家欧几里得(Euclid,公元前330~公元前275)在巨著《几何原本》(第Ⅰ卷,命题47)中给出一个很好的证明。(下图为欧几里得和他的证明图) 中国古代对这一数学定理的发现和应用,远比毕达哥拉斯早得多。中国最早的一部数学著作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?” 商高回答说:“ 数的产生来源于对方和圆这些形体的认识。其中有一条原理:当直角三角形…矩'得到的一条直角边…勾'等于3,另一条直角边?股'等于4的时候,那么它的斜边'弦'就必定是5。这个原理是大禹在治水的时候就总结出来的呵。” 如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例。所以现在数学界把它称为“勾股定理”是非常恰当的。

《勾股定理》教学分析

《勾股定理》教学分析 本节课我从教材、教法与学法、教学过程、信息技术与课程整合、教学评价五个方面对本节课进行分析。 一、教材分析 (一)本节内容在全书和章节的地位 “勾股定理”是义务教育新课程标准人教版八年级第十八章第一课时内容。勾股定理是几何中几个重要的定理之一,它揭示了直角三角形三边之间的一种美妙关系,它将数与形密切联系起来,在数学的发展中起着重要的作用,在现实世界中有着广泛的应用。 (二)学情分析 八年级学生已初步具有几何图形的观察,几何证明的理论思维能力。他们希望老师创设便于他们进行观察的几何环境,给他们发表自己见解和表现自己才华的机会,希望老师满足他们的创造愿望,让他们实际操作,使他们获得施展自己创造才能的机会。但对于勾股定理的得出,首先需要学生通过动手操作,在观察的基础上,大胆猜想数学结论,而这需要学生具备一定的分析、归纳的思维方法和运用数学的思想意识,但学生在这一方面的可预见性和耐挫折能力并不是很成熟,从而形成困难。据此,我制定教学目标及重难点如下: (三)三维教学目标 【知识与能力目标】⒈理解并掌握勾股定理的内容和证明,能够灵活运用勾股定理及其计算; ⒉通过观察分析,大胆猜想,并探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。 【过程与方法目标】在探索勾股定理的过程中,让学生经历“观察-猜想-归纳-

验证”的数学思想,并体会数形结合和从特殊到一般的思想方法。 【情感态度与价值观】通过介绍中国古代勾股方面的成就,激发学生热爱祖国悠久文化的思想感情,培养学生的民族自豪感和钻研精神。 (四)教学重点、难点 【教学重点】探索发现并验证勾股定理。 【教学难点】1.“割补法”探究直角三角形斜边为边长的正方形的面积计算。 2.通过拼图验证勾股定理; 【学具准备】4个全等的直角三角形硬纸板. 二、教法与学法分析 在教学中我采用的是“引导探索法”,由浅到深,由特殊到一般的提出问题。以导为主,采用设疑的形式,让学生逐步进行探究性学习。 这种教学理念紧随新课改理念,也反映了时代精神。同时鼓励学生采用自主探索,合作交流的研讨式学习方式,培养学生“动手”、“动脑”、“动口”的习惯与能力,使学生真正成为学习的主人。”授之以鱼,不如授之以渔”这才是中学教育的真正目标. 三、教学过程分析 教学过程我采用以下环节:创设情境以古引新,提出问题发现探索 动手操作证明定理,应用知识回归生活,总结升华推荐作业。 在创设情境以古引新这一环节,我由故事引入了商高定理的由来,这样引起学生学习兴趣,激发学生求知欲。然后出示问题:是不是所有的直角三角形都有这个性质呢?问题的设计有一定的挑战性,目的是激发学生的探究欲望,使学生进入乐学状态。 在提出问题发现探索这一环节,由古希腊著名数学家毕达哥拉斯从朋友家的地砖铺成的地面上发现了直角三角形的某种特性开始,提出问题,首先让学生用数方

相关主题